Spatial and Temporal Coordination of *oskar* mRNA Localization and Translation During *Drosophila* Oogenesis

by

Birgit S. Koppetsch

A Thesis
Submitted to the Faculty
of the

Worcester Polytechnic Institute

in partial fulfillment of the requirements for the Degree of Master of Science in Biotechnology

May 2003

Approved:

Dr. William E. Theurkauf
University of Massachusetts Medical School
Major Advisor

Dr. Jill Rulfs
Worcester Polytechnic Institute
Department Head / Committee Member

Dr. Elizabeth Ryder
Worcester Polytechnic Institute
Committee Member
ABSTRACT

In the fruit fly, *Drosophila melanogaster*, accumulation of *osk* mRNA at the posterior pole of the oocyte and local translation initiate assembly of the pole plasm, which is required for germ cell formation and posterior patterning of the embryo. I have used fluorescence *in situ* hybridization (FISH) in combination with immunofluorescence and laser scanning confocal microscopy to examine the spatial and temporal control of *osk* transcript localization and translation. *Drosophila* oocytes develop within cysts of 16 interconnected cells. One cell in each cyst differentiates to form the oocyte while the remaining cells form nurse cells that produce RNAs and proteins that are transported to the oocyte. *osk* mRNA is produced by the nurse cells and accumulates in the oocyte throughout oogenesis, but is only specifically localized to the posterior pole and translated during mid to late oogenesis. My studies help define distinct steps in the *osk* mRNA localization process. An early step in posterior localization is removal of *osk* mRNA from most of the cortex, leading to accumulation in the oocyte interior. This process requires microtubules, the microtubule motor protein Kinesin I, the actin binding protein Tropomyosin, and the RNA binding protein Staufen. Transcript then moves from the oocyte interior to the posterior pole through a microtubule independent process. The genes *cappuccino*, *chickadee*, *spire*, *armitage*, *maelstrom*, *par-1* and *gurken* are all required for this next step in *osk* mRNA localization. The final capturing or tethering *osk* mRNA at the cortex requires an intact actin filament system, but additional components of this anchoring system remain to be identified. I also find that *osk* mRNA first begins to accumulate at the posterior pole during oogenesis stage 8, but protein is not detectable until stage 9. In addition, *grk* and *par-1* mutations that block *osk* mRNA localization to the posterior pole and lead to transcript accumulation in the interior do not prevent translation; again, Osk protein production is only observed during stage 9 and later. These observations indicate that posterior localization is neither
sufficient nor necessary to trigger osk mRNA translation, which appears to be under tight temporal control.
Table of Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title Page</td>
<td>1</td>
</tr>
<tr>
<td>Abstract</td>
<td>2</td>
</tr>
<tr>
<td>List of Figures</td>
<td>6</td>
</tr>
<tr>
<td>List of Tables</td>
<td>7</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>8</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>10</td>
</tr>
<tr>
<td>Introduction</td>
<td>11</td>
</tr>
<tr>
<td>Drosophila oogenesis</td>
<td>11</td>
</tr>
<tr>
<td>Oocyte Determination</td>
<td>12</td>
</tr>
<tr>
<td>Microtubule organization during Drosophila oogenesis</td>
<td>13</td>
</tr>
<tr>
<td>Axis specification during Drosophila oogenesis</td>
<td>14</td>
</tr>
<tr>
<td>Methods</td>
<td>27</td>
</tr>
<tr>
<td>Drosophila stocks and germline clones</td>
<td>27</td>
</tr>
<tr>
<td>in vitro transcription and fluorescent labeling of RNA</td>
<td>27</td>
</tr>
<tr>
<td>Isolation and fixation of egg chambers</td>
<td>28</td>
</tr>
<tr>
<td>Cytoskeletal inhibitor treatment</td>
<td>28</td>
</tr>
<tr>
<td>RNA and protein localization analysis</td>
<td>29</td>
</tr>
<tr>
<td>Results</td>
<td>31</td>
</tr>
<tr>
<td>Characterization of osk RNA and Osk protein localization during Drosophila oogenesis</td>
<td>31</td>
</tr>
<tr>
<td>Kinesin I, Tropomyosin and Staufen are required for removal of osk RNA from the oocyte cortex</td>
<td>32</td>
</tr>
<tr>
<td>capu, chic and spir induce premature ooplasmic streaming and block posterior localization of osk mRNA</td>
<td>33</td>
</tr>
<tr>
<td>par-1 and grk are required for microtubule asymmetry and posterior localization of osk mRNA</td>
<td>34</td>
</tr>
<tr>
<td>armi, mael and spn-E are required for microtubule asymmetry and posterior localization of osk mRNA</td>
<td>34</td>
</tr>
<tr>
<td>armi, mael and spn-E affect temporal control of osk translation</td>
<td>35</td>
</tr>
<tr>
<td>par-1 and grk are required for spatial control of osk translation</td>
<td>36</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1. Formation and development of *Drosophila* egg chambers21
Figure 2. Microtubule organization during *Drosophila* oogenesis.................. 23
Figure 3. Schematic representation of microtubule organization and RNA localization during *Drosophila* oogenesis ... 25
Figure 4. Dual detection of osk mRNA and Osk protein in wild-type oocytes 39
Figure 5. Quantification of the transient transport intermediate in stage 8 wild-type oocytes .. 41
Figure 6. osk RNA localization in khc, TmII and stau mutant oocytes 42
Figure 7. osk RNA localization in capu, chic and spir mutant oocytes 44
Figure 8. osk RNA localization in par-1 and grk mutant oocytes 46
Figure 9. osk RNA localization in armi, mael and spn-E mutant oocytes 48
Figure 10. Premature Osk protein expression in armi, mael and spn-E mutant oocytes... 50
Figure 11. Ectopic expression of Osk protein in armi, par-1 and grk mutant oocytes..... 52
Figure 12. Cytoskeletal inhibitor treatment of wild-type egg chambers 54
Figure 13. Localization of osk, bcd and cyclin B RNA in control and colcemid Treated wild-type oocytes .. 56
Figure 14. Colcemid treatment of mutant egg chambers 58
Figure 15. A model for the multi-step process of osk mRNA localization 68
List of Tables

Table 1. Experimental Results Summary – osk FISH and Osk protein immunofluorescence analysis

..70
LIST OF ABBREVIATIONS

armi armitage
bcd bicoid
Bcd Bicoid protein
Bic-D Bicaudal-D
Bic-D Bicaudal-D protein
BLE1 bicoid localization element
bp base-pair
BREs Bruno response elements
capu cappuccino
c chic chickadee
cy5 Cyanine 5
DEPC diethyl pyrocarbonate
DER Drosophila epidermal growth factor receptor
EGF epidermal growth factor
exu exuperantia
Exu Exuperantia protein
grk gurken
Grk Gurken protein
egl egalitarian
FISH fluorescence in situ hybridization
hb hunchback
kD kilodalton
khc Kinesin I heavy chain
mael maelstrom
MTOC microtubule organizing center
nos nanos
nt nucleotide
osk oskar
Osk Oskar protein
PBS Phosphate buffered saline
spn-E spindle-E
spir spire
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>stau</td>
<td>staufen</td>
</tr>
<tr>
<td>sww</td>
<td>swallow</td>
</tr>
<tr>
<td>TmII</td>
<td>Tropomyosin</td>
</tr>
<tr>
<td>TGF-β</td>
<td>Transforming growth factor-β</td>
</tr>
<tr>
<td>UTR</td>
<td>untranslated region</td>
</tr>
<tr>
<td>vls</td>
<td>valois</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

I would like to take this opportunity to thank all the people whose support and encouragement over the past year made the completion of this thesis possible. First and foremost, I would like to thank Dr. William Theurkauf for affording me the opportunity to conduct my thesis research in his laboratory, for his guidance and support. I would also like to thank my committee members Dr. Jill Rulfs and Dr. Elizabeth Ryder.

I thank all the members of the Theurkauf laboratory. Your advice and encouragement was greatly appreciated. I wish you all the best in your future endeavors. I would like to sincerely thank Dr. Byeong-Jik Cha for his comments and suggestions on this manuscript.

Thank you 😊
INTRODUCTION

The localization of mRNAs to discrete regions of the cell is one general mechanism for the efficient targeting of proteins to their site of function (Bashirullah et al., 1998; Gottlieb, 1990; Lipshitz and Smibert, 2000; Micklem, 1995). In developing oocytes and embryos as well as in numerous cell types in a diversity of organisms, mRNA localization plays important roles in a variety of processes including axis specification, cell differentiation and polarization.

Drosophila melanogaster serves as an excellent model system in which to analyze mRNA localization. During *Drosophila* oogenesis, the proper localization of mRNAs and the proteins they encode figures prominently in oocyte differentiation and the establishment of the embryonic axes (Lasko, 1999).

Drosophila oogenesis

Each *Drosophila* ovary consists of approximately ten to twenty ovarioles, each composed of a string of progressively developing egg chambers (Figure 1a). Oogenesis begins with the asymmetric division of a germline stem cell in a specialized structure called the germarium located at the anterior of the ovariole (King, 1970; Spradling, 1993). In region 1 of the *Drosophila* germarium, the first division of the stem cell produces a daughter stem cell and a cystoblast (Figure 1b). Subsequently, the cystoblast undergoes four mitotic divisions. As a result of incomplete cytokinesis at each division, cytoplasmic bridges called ring canals interconnect the sixteen resulting germline cells, the cystocytes. During these divisions, a branching vesicular organelle called the fusome spans the cystocytes via the ring canals (de Cuevas and Spradling, 1998; McKearin, 1997; Storto and King, 1989). The fusome anchors one pole of each mitotic spindle, establishing an invariable pattern to the cystocyte divisions (Carpenter, 1975; King, 1970). The resulting sixteen-cell cyst contains eight cells with one ring canal, four cells with two, two cells with three, and two cells with four. The sixteen cell cyst enters region 2a of the germarium, where the two cells with four ring canals, the pro-oocytes, enter prophase I and
accumulate centrioles that migrate from the nurse cells through the ring canals (Carpenter, 1975; Grieder et al., 2000; King, 1970; Mahowald and Strassheim, 1970). In region 2b, only one pro-oocyte is selected to differentiate into an oocyte. The oocyte nucleus remains arrested in meiotic prophase and is transcriptionally dormant whereas the remaining pro-oocyte exits meiosis and begins to endoreplicate its DNA, along with the fourteen cystocytes, to become a transcriptionally active polyploid nurse cell (King, 1970).

Oocyte determination

The mechanism of oocyte determination is not known; however, the oocyte is defined by the differential accumulation of specific factors such as \textit{oskar (osk)} and \textit{Bicaudal-D (Bic-D)} RNAs and Bicaudal-D (Bic-D), Egalitarian (Egl), Oo18 RNA-binding (Orb) and Cup proteins (Ephrussi et al., 1991; Keyes and Spradling, 1997; Kim-Ha et al., 1991; Lantz et al., 1994; Mach and Lehmann, 1997; Suter and Steward, 1991; Wharton and Struhl, 1989). \textit{Bic-D} and \textit{egl} appear to be two major components in these oocyte-determining processes. RNAs and proteins that define the oocyte fail to localize in a single cystocyte in \textit{Bic-D} and \textit{egl} mutants (Huynh and St Johnston, 2000; Mach and Lehmann, 1997; Mohler and Wieschaus, 1986; Ran et al., 1994; Schupbach and Wieschaus, 1991; Suter and Steward, 1991; Theurkauf et al., 1993). Subsequently, \textit{Bic-D} and \textit{egl} mutants produce cysts lacking an oocyte and the sixteen cystocytes differentiate into polyploid nurse cells (Mohler and Wieschaus, 1986; Schupbach and Wieschaus, 1991).

The transport of mRNAs to the oocyte is dependent on the polarized microtubule network established early in oogenesis (Theurkauf, 1994b; Theurkauf et al., 1993). Treatment with microtubule depolymerizing drugs disrupts the accumulation of specific factors in the pro-oocyte, resulting in the failure of the determination of an oocyte (Koch and Spitzer, 1983; Theurkauf et al., 1993). Immunocytological examination reveals that mutations in \textit{Bic-D} and \textit{egl} similarly affect oocyte determination as a result of defects in microtubule organization (Theurkauf et al., 1993). In \textit{Bic-D} mutants, the initial establishment and later maintenance of the microtubule
organizing center (MTOC) in the germarial cyst is disrupted (Oh and Steward, 2001). egl mutants, by comparison, initially establish a polarized microtubule network in region 2a; however, in region 2b this network degenerates, and within region 3 an organized focus is no longer observed (Theurkauf et al., 1993). These observations provide evidence that a polarized microtubule network is necessary for the transport of factors to the future oocyte and its eventual determination.

Microtubule organization during *Drosophila* oogenesis

The oocyte cytoskeleton reorganizes several times during the course of oocyte development (Knowles and Cooley, 1994; Theurkauf, 1994b; Theurkauf et al., 1992). Early in oogenesis, in region 2b in the germarium, a clearly defined anterior microtubule organizing center (MTOC) is first observed in the oocyte and is maintained through stage 1 (Figure 2a, arrowhead in a′) (Theurkauf et al., 1993). During stages 2-6 of oogenesis, microtubules extend from a MTOC positioned at the posterior pole of the oocyte and pass through the ring canals adjoining the oocyte and the neighboring nurse cells (Figure 2b, arrowhead in b′) (Theurkauf et al., 1993). Additionally, microtubules are observed in the nurse cells. These nurse cell microtubules do not appear to originate from the oocyte and do not nucleate from well-defined MTOCs. During stage 7 and early 8, the posterior MTOC degenerates as a result of a grk-dependent signaling event and the majority of microtubules reorganize at the anterior of the oocyte (Theurkauf et al., 1992). Microtubules are oriented in such a way that the minus-ends, the nucleation site of microtubules, are proximal to the oocyte cortex. The plus-ends of microtubules, the growing ends, are oriented towards the center of the oocyte. There is an evident gradient of microtubules along the cortex of the oocyte, with the highest abundance towards the anterior (arrowheads in Figure 2c′) and with a decline in density towards the posterior pole (arrow in Figure 2c, c′). This anterior to posterior gradient in microtubule density is maintained throughout stages 8-10a. During stage 10b, the next major microtubule reorganization event takes place. Cytoplasm from the nurse cells dumps
into the oocyte concomitant with subcortical bundling of the microtubules and cytoplasmic streaming within the oocyte (Gutzeit, 1986; Theurkauf et al., 1992) (Figure 2d, arrowhead in d’).

Axis specification during *Drosophila oogenesis*

Axis specification in the *Drosophila melanogaster* embryo and formation of the germline are established during oogenesis by the asymmetric positioning of morphogenetic factors, mRNAs and proteins, in the oocyte (Figure 3) (Lasko, 1999; St Johnston and Nusslein-Volhard, 1992). Through much of oogenesis, the oocyte is transcriptionally inactive, and the majority of the mRNAs and proteins are synthesized in the nurse cells and transported to the oocyte through the ring canals (Mahajan-Miklos and Cooley, 1994). Genetic analyses have identified RNAs and proteins that are essential for specification of the dorsal-ventral and anterior-posterior axes. Several extensively researched examples include the maternal RNAs *oskar* (*osk*), *bicoid* (*bcd*), *gurken* (*grk*) and *nanos* (*nos*), and Vasa (Vas) and Staufen (Stau) proteins.

grk

grk RNA is transcribed in the nurse cells early during oogenesis. During the later stages of oogenesis, *grk* RNA is also transcribed by the oocyte nucleus, in contrast to the majority of maternal factors (Neuman-Silberberg and Schupbach, 1993). *grk* mRNA is involved in defining both the anterior-posterior and dorsal-ventral axes (Gonzalez-Reyes et al., 1995; Neuman-Silberberg and Schupbach, 1993). The establishment of the anterior-posterior axis is dependent on the signaling between the oocyte and the posterior follicle cells. Early in oogenesis, *grk* mRNA is localized at the posterior pole of the oocyte where it is translated. Gurken (Grk) protein, a member of the transforming growth factor α (TGFα) family, signals to the posterior follicle cells, via the *Drosophila* epidermal growth factor (EGF) receptor homologue *torpedo/DER*, to adopt a posterior rather than anterior fate (Gonzalez-Reyes et al., 1995; Neuman-Silberberg and Schupbach, 1993; Ray and Schupbach, 1996; Roth et al., 1995). As early as stage 7 of oogenesis, upon induction of the posterior follicle cells, an unknown signal
back to the oocyte induces a major rearrangement of the oocyte microtubule cytoskeleton, establishing the anterior-posterior microtubule gradient network (Gonzalez-Reyes et al., 1995; Roth et al., 1995). This reorganization of microtubules leads to the repositioning of the oocyte nucleus from the posterior pole to the anterodorsal margin of the oocyte (Neuman-Silberberg and Schupbach, 1993; Spradling, 1993). Similar to anterior-posterior axis specification, grk mRNA localized to the anterodorsal region is locally translated and activates the Drosophila EGF receptor in the adjacent follicle cells, specifying the fate of these cells as dorsal anterior (Neuman-Silberberg and Schupbach, 1993; Price et al., 1989; Schejter and Shilo, 1989).

bicoid

bcd mRNA, the primary anterior defining morphogen, is synthesized in the nurse cells and transported through the ring canals to localize at the anterior cortex adjoining the nurse cells (Berleth et al., 1988; Driever and Nusslein-Volhard, 1988b; St Johnston et al., 1989). The transport of bcd mRNA into the oocyte and anchoring to the anterior cortex is dependent upon exuperantia (exu), swallow (sww), staufen (stau) and an intact microtubule network (Macdonald et al., 1991; Marcey et al., 1991; Pokrywka and Stephenson, 1991; Pokrywka and Stephenson, 1995; St Johnston et al., 1989). Additionally, the bcd 3′ untranslated region (UTR) has been identified as an essential cis-acting element for the proper localization of bcd RNA (Macdonald et al., 1993; Macdonald and Struhl, 1988).

Localization of bcd mRNA to the anterior of the oocyte is comprised of three distinct steps. Initially, bcd RNA associates with Exu protein in a microtubule dependent process and this Exu-bcd complex is transported by microtubules to the oocyte. Exu is not necessary for transport within the nurse cells, but is critical for anterior localization upon entering the oocyte (Cha et al., 2001; Macdonald et al., 1991; Marcey et al., 1991). A 53 base-pair element identified within the bcd 3′ UTR, the bicoid localization element (BLE1), is required for the Exu-dependent anterior localization (Macdonald et al., 1993; Macdonald and Struhl, 1988). Once localized to the
anterior, Swallow is responsible for the maintenance of cortical anchoring of \textit{bcd} mRNA during later oogenesis (Stephenson et al., 1988). Lastly, Stau protein has been shown to associate with the \textit{bcd} 3’ UTR, including the BLE1, to prevent diffusion of the RNA once it is released into the egg cytoplasm during egg activation (Ferrandon et al., 1994).

Following fertilization, \textit{bcd} mRNA is translated to produce a gradient of Bicoid (Bcd) protein extending over the anterior half of the embryo (Berleth et al., 1988; Driever and Nusslein-Volhard, 1988a; Driever and Nusslein-Volhard, 1988b; St Johnston et al., 1989). Bcd protein directs the expression of zygotically expressed segmentation genes that establish anterior patterning in the developing embryo (St Johnston and Nusslein-Volhard, 1992).

\textsc{oskar}

\textit{oskar} is required for pole plasm assembly and abdominal patterning

\textit{oskar} serves a dual role during \textit{Drosophila} development. Localization of \textit{osk} RNA at the posterior pole of the oocyte is essential for the assembly of the pole plasm, which is required for both germ cell formation and posterior patterning (Ephrussi et al., 1991; Kim-Ha et al., 1991; Lehmann and Ephrussi, 1994). Several genes are required for pole plasm formation: \textit{osk} (Lehmann and Nusslein-Volhard, 1986), \textit{stau}, \textit{vasa} (\textit{vas}), \textit{valois} (\textit{vls}) (Schupbach and Wieschaus, 1986), \textit{tudor} (\textit{tud}) (Boswell and Mahowald, 1985), \textit{cappuccino} (\textit{capu}) and \textit{spire} (\textit{spir}) (Manseau and Schupbach, 1989). Embryos derived from females which are homozygous mutant for these genes lack polar granules, fail to form pole cells, and show defects in abdomen formation due to failure of \textit{nanos} (\textit{nos}) mRNA localization and translation (Gavis and Lehmann, 1994; Wang and Lehmann, 1991).

Pole plasm assembly and posterior polarity are established by an ordered series of events whereby one gene product is responsible for localizing the next. The localization of Stau protein to the posterior pole is dependent upon the functions of \textit{capu} and \textit{spir} (St Johnston et al., 1991). Stau protein is in turn required for posterior localization of \textit{osk} mRNA (Ephrussi et al., 1991;
Kim-Ha et al., 1991; St Johnston et al., 1991). These initial steps are prerequisite for the posterior localization of Vas (Hay et al., 1990; Lasko and Ashburner, 1990) as well as Tudor and Valois proteins, whose functions are not precisely known. Oskar is also required for the posterior localization of nos, which is required for determining abdominal cell fate (Lehmann and Nusslein-Volhard, 1991; Wang and Lehmann, 1991). Vas protein, already localized to the posterior of the oocyte, is required for the translation of nos (Gavis and Lehmann, 1994). With the aid of Pumilio, Nos protein binds to hunchback (hb) RNA (Murata and Wharton, 1995) resulting in the translational repression of hb mRNA in the posterior of the embryo, thus establishing abdominal cell fate (Barker et al., 1992; Tautz and Pfeifle, 1989).

oskar mRNA localization

osk mRNA, transcribed in the nurse cells, is transported to and enriched within the oocyte as early as gerarial stage 2b (Ephrussi et al., 1991; Kim-Ha et al., 1991). The transport of osk RNA into the oocyte and eventual localization to the posterior pole requires the microtubule cytoskeleton (Clark et al., 1994; Pokrywka and Stephenson, 1994). Through stage 6, a microtubule organizing center is situated at the posterior pole of the oocyte and microtubules nucleated from this site extend through the ring canals into the nurse cells (Theurkauf et al., 1993). osk RNA is localized to the posterior cortical region presumably by minus-end directed movement along microtubules. During stage 7-8, a grk-dependent signaling event results in a major rearrangement of the oocyte microtubule network, such that the posterior MTOC disassembles and microtubules begin to nucleate from the anterior of the oocyte (Gonzalez-Reyes et al., 1995; Roth et al., 1995). By stage 8 of oogenesis, osk RNA is observed at the anterior marginal cortex with slight accumulation at the posterior pole (Ephrussi et al., 1991; Kim-Ha et al., 1991). From stage 8 onwards, the exclusion of osk RNA from the cortex is accomplished by the plus-end directed microtubule motor Kinesin in conjunction with an intact microtubule network (Cha et al., 2002). osk RNA is exclusively localized to the posterior pole by stage 9, when it is first translated (Ephrussi et al., 1991; Kim-Ha et al., 1991).
cis-acting elements required for osk mRNA localization

The osk 3′ UTR contains sequence elements required for osk mRNA localization. Construction of a transgenic mutant with a 728bp deletion within the 1043bp osk 3′ UTR failed to localize osk mRNA (Kim-Ha et al., 1993). Further analysis of mutants lacking regions in the 3′ UTR identified sequence elements responsible for distinct steps in the osk RNA localization process. The region between nt 532-791 of the osk 3′ UTR is necessary for the accumulation of osk mRNA in the oocyte, whereas a distinct region between nt 1-242 is required for posterior localization (Kim-Ha et al., 1993).

trans-acting elements required for osk mRNA localization

osk mRNA localization also requires trans-acting factors. Throughout oogenesis Stau, a putative RNA binding protein, colocalizes with osk mRNA, and stau mutations block osk RNA localization to the posterior pole (Ephrussi et al., 1991; Kim-Ha et al., 1991; St Johnston et al., 1991). It has been proposed that osk RNA and Stau protein form a complex that is transported to the posterior pole of the oocyte. The microtubule network is apparently intact, yet osk RNA fails to localize to the posterior pole in stau mutant oocytes, suggesting that Stau may mediate microtubule-dependent transfer of osk RNA to the posterior pole (Ephrussi et al., 1991; Kim-Ha et al., 1991). Following localization of Stau protein and osk RNA to the posterior pole of the oocyte, osk mRNA is translated. In the absence of Osk protein, osk RNA is liberated from the posterior pole at stage 10 of oogenesis (Ephrussi et al., 1991; Kim-Ha et al., 1991; Rongo et al., 1995). Osk protein thus appears to anchor osk mRNA at the posterior pole (Breitwieser et al., 1996; Markussen et al., 1995).

Translational regulation of oskar mRNA

The localization of RNAs restricts production of proteins to sites where they are required. Generally, RNAs are translationally silent until they reach their prescribed destination within the cell. Translational repression during transport is imperative, as premature or ectopic translation
of RNAs leads to developmental defects (Driever et al., 1990; Ephrussi and Lehmann, 1992; Gavis and Lehmann, 1992; Kim-Ha et al., 1995; Smith et al., 1992).

Translational regulation of osk mRNA depends on cis-acting sequence elements in both the 3’ and 5’ UTRs and trans-acting factors that interact with these sequence elements. The 3’ UTR contains elements regulating repression of translation (Kim-Ha et al., 1995; Kim-Ha et al., 1993). Bruno, encoded by the arrest gene, colocalizes with osk RNA at the posterior pole and represses premature translation of osk transcript (Kim-Ha et al., 1995; Webster et al., 1997). Bruno recognizes a 7-9nt repeated sequence, the Bruno response elements (BRE), in the 3’ UTR of osk mRNA (Kim-Ha et al., 1995; Rongo et al., 1995; Webster et al., 1997). Mutations in the BREs result in premature translation of unlocalized osk mRNA (Kim-Ha et al., 1995). This result indicates that under wild-type conditions, unlocalized osk mRNA is translationally repressed. A 50kD protein (p50), also interacts with the BRE in the 3’ UTR and appears to be required for translational repression of osk mRNA (Gunkel et al., 1998). A third protein, Bicaudal-C, an RNA binding protein, is implicated in oskar translational repression, although it has not been demonstrated to bind to osk mRNA (Saffman et al., 1998). In Bic-C mutants, osk mRNA is dispersed in the oocyte and is ectopically translated (Saffman et al., 1998).

The 3’ UTR alone is not sufficient for translational activation of transcript localized at the posterior pole; heterologous transcripts containing the full-length osk 3’ UTR are localized, but not translated (Rongo et al., 1995). Additional sequences within the osk mRNA thus appear to be necessary for translation. An element between two alternative start codons within the 5’ UTR of osk is required to terminate BRE-mediated repression (Gunkel et al., 1998). Translational derepression is additionally linked to the binding of p50, and a 68kD protein, p68, to the 5’ UTR (Gunkel et al., 1998). Several additional proteins have also been implicated in osk translation although their precise roles are yet to be determined. Included are Oskar itself (Markussen et al., 1997; Markussen et al., 1995); Stau (Kim-Ha et al., 1995; St Johnston et al., 1991; St Johnston
and Nusslein-Volhard, 1992); the DEAD-box RNA helicase Vasa, which interacts with Osk and Bruno (Markussen et al., 1995; Webster et al., 1997); and Aubergine, a protein required for efficient osk mRNA translation (Kim-Ha et al., 1995; Markussen et al., 1995; Rongo et al., 1995; Wilson et al., 1996). The localization of osk mRNA to the posterior pole and translational repression/derepression ensures the restriction of Osk protein and pole plasm determinants to the posterior of the oocyte and proper establishment of the anterior-posterior axis.
Figure 1. Formation and development of *Drosophila* egg chambers.

(a) Schematic representation of a *Drosophila* ovariole. Each ovariole consists of a string of developing egg chambers increasing in age from anterior (left) to the posterior (right). Egg chambers formed in the germarium exit to the vitellarium where they continue to grow and mature. Beginning with stage 8, the oocyte volume increases as cytoplasm is transported from the nurse cells and yolk is taken up by the oocyte. During stage 10b-11, the nurse cells rapidly dump their cytoplasm into the oocyte. Oocyte maturation is completed during stages 12-14 with the advent of complete incorporation of nurse cell cytoplasm and deposition of the chorion to the oocyte exterior.

(b) Cyst formation and oocyte determination. The first division of the stem cell produces a daughter stem cell and a cystoblast. The cystoblast undergoes four mitotic divisions. As a result of incomplete cytokinesis at each division, cytoplasmic bridges called ring canals interconnect the sixteen resulting germline cells, the cystocytes. The resulting sixteen-cell cyst contains eight cells with one ring canal, four cells with two, two cells with three and two cells with four. One of the two cells with four ring canals, the pro-oocytes, invariably becomes the oocyte and the remaining pro-oocyte and remaining cystocytes are fated to become polyploid nurse cells.

(c) Germarial regions and oocyte positioning. Region 1 contains the germ line stem cells and mitotically dividing cystocytes. Region 2a, the two cells with four ring canals, pro-oocytes (red), enter meiosis. In region 2b, one of the pro-oocytes is selected to become the oocyte (purple) while the other reverts to a nurse cell fate. Somatic follicle cells encapsulate the sixteen-cell cyst. In region 3/stage 1, the cyst is spherical in shape with the oocyte positioned at the posterior and the fifteen nurse cells anterior to it.
a Ovariole

Stage 1 4 6 8 9 10 11 14

Germarium

b Germline Cyst Formation

Mitosis 1

Mitosis 2 3 4

Mitosis 3

Mitosis 4

Oocyte Selection

C Germarium - Oocyte Positioning

Follicle Cell

Nurse Cell

Stem Cell

Cystoblast

Oocyte
Figure 2. Microtubule organization during Drosophila oogenesis

Isolated egg chambers from wild-type females were fixed and microtubule structure was visualized with FITC conjugated anti-α-Tubulin (clone DM1A, Sigma). (a and a’) Germarium and stage 1 egg chamber. Anterior microtubule organizing center (MTOC) (arrowhead) observed in stage 1 oocyte (asterisk). (b and b’) Stage 4 egg chamber. MTOC observed at the posterior of the oocyte (arrowhead). During stage 7, the posterior MTOC degenerates and microtubules reorganize at the anterior of the oocyte. (c and c’) Stage 9 egg chamber. A gradient of microtubules is seen along the lateral cortical surface. The highest abundance of microtubules is observed along the anterior (arrowheads in c’) and decreases towards the posterior (arrow in c’). This organization is maintained until stage 10a. (d and d’) Stage 10b. Microtubules become bundled at the subcortical region (arrowhead in d’) accompanying ooplasmic streaming and the influx of nurse cell cytoplasm. These representations are consistent with previous observations (Theurkauf et al., 1992).
Figure 3. Schematic representation of microtubule organization and mRNA localization during *Drosophila* oogenesis

The anterior-posterior and dorsal-ventral axes of the *Drosophila* oocyte and subsequent embryo are established by the asymmetric distribution of morphogenetic factors during oogenesis. During stages 2-6 of oogenesis, the microtubules (green) are focused at the posterior pole of the oocyte forming a microtubule organizing center (MTOC). During this period, mRNAs and proteins begin to accumulate in the developing oocyte. *oskar* (*osk*) mRNA (purple), the primary posterior defining factor, accumulates at the posterior pole by minus-end microtubule directed transport. During stage 7-8, microtubules undergo dramatic reorganization as a result of a *grk*-dependent signaling event. The posterior MTOC appears to be inactivated and the microtubules nucleate from the anterior and lateral cortical surfaces and establish an anterior to posterior gradient. The minus-ends of the microtubules lie at the cortex while the plus-ends are oriented towards the oocyte cytoplasm. Accompanying microtubule reorganization, specific mRNAs localize. *gurken* (*grk*) mRNA (red), which defines future dorsal-ventral polarity, accumulates between the oocyte nucleus and the area proximal to the dorsal-anterior cortex. *bicoid* (*bcd*) mRNA (orange), the primary anterior-defining morphogen, begins to accumulate in the oocyte during these early stages. *osk* mRNA, which had accumulated at the posterior cortex, pools in the center of the oocyte. By stage 9, these essential mRNAs have localized to their final destinations. *osk* mRNA is localized to the posterior pole, *bcd* mRNA along the anterior cortex of the oocyte adjacent to the nurse cells and *grk* mRNA at the antero-dorsal margin flanking the oocyte nucleus. The next major microtubule reorganizing event occurs at stage 10b when cytoplasm from the adjoining nurse cells begins to dump into the oocyte. The microtubules bundle along the cortex concomitant with streaming of the oocyte cytoplasm, which evenly mixes the nurse cell cytoplasm with the contents of the oocyte. The localized RNAs remain anchored to their respective locations. At stage 11, the remaining nurse cell cytoplasm is dumped into the oocyte.
METHODS

Drosophila stocks and germline clones

The following allelic combinations were used during the course of this study:

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>capu¹/capu¹</td>
<td>(Manseau and Schupbach, 1989)</td>
</tr>
<tr>
<td>chic¹º/c chic¹º</td>
<td>(Verheyen and Cooley, 1994)</td>
</tr>
<tr>
<td>spir¹/spir¹</td>
<td>(Manseau and Schupbach, 1989)</td>
</tr>
<tr>
<td>armi²¹/armi²¹</td>
<td>H. Cook and W. Theurkauf, unpublished</td>
</tr>
<tr>
<td>grkHK/grk²⁵⁶</td>
<td>(Neuman-Silberberg and Schupbach, 1993; Schupbach, 1987)</td>
</tr>
<tr>
<td>stauD³/stauD³</td>
<td>(Lehmann and Nusslein-Volhard, 1991)</td>
</tr>
<tr>
<td>mael²⁰/Df(3L)79E-F</td>
<td>(Clegg et al., 1997)</td>
</tr>
<tr>
<td>TmII²⁰/TmII²⁰</td>
<td>(Erdelyi et al., 1995)</td>
</tr>
<tr>
<td>Kinesin I heavy chain germline clone</td>
<td>(Brendza et al., 2000; Chou et al., 1993)</td>
</tr>
<tr>
<td>osk³⁴/osk³⁴</td>
<td>(Lehmann and Nusslein-Volhard, 1991)</td>
</tr>
<tr>
<td>spn-E¹/spn-E¹</td>
<td>(Gillespie and Berg, 1995)</td>
</tr>
<tr>
<td>par⁻¹⁶³²³/par⁻¹¹³</td>
<td>(Shulman et al., 2000)</td>
</tr>
</tbody>
</table>

Kinesin heavy chain (khc) null germline clones were generated by crossing w;p[w⁺,FRT]42B c khc²⁷/Cyo females to yw p[hs-FLP];p[w⁺,FRT]42B, p[OvoD¹]/55D/Cyo males (Brendza, 2000; Chou, T.B., 1993). Mitotic recombination in the germline stem cells of second and third instar larvae with the genotype yw p[hs-FLP]/w;p[w⁺,FRT]42B, p[OvoD¹]/55D/p[w⁺,FRT]42B c khc²⁷ was induced via heat-shock treatments. Oregon R served as the wild-type strain in all experiments.

In vitro transcription and fluorescent labeling of RNA

Full-length (2.9 kb) osk antisense RNA probes were synthesized in vitro by run-off transcription from the plasmid pBluescriptKS-osk (generously provided by R. Lehmann) restriction digested with HincII. Cyanine 5 (cy5)-conjugated UTP ribonucleotides were incorporated during the transcription reaction. Typically 1 μg DNA was digested in a volume of 30 μl with 10 Units Hinc II, incubated at 37 °C for 1 hour, phenol:chloroform:isoamyl alcohol
(25:24:1) extracted and ethanol precipitated using 1/10 volume 3M NH$_4$OAc. Transcription reaction components were combined on ice and included: 1 µg DNA, 1 mM ATP, 1 mM CTP, 1 mM GTP, 0.65 mM UTP, 0.55 mM cyanine 5-UTP (PerkinElmer Life Sciences, Inc.), 1× T7 transcription buffer (5×, Promega), 40 Units T7 RNA polymerase (20 U/µl, Promega) in a final volume of 18 µl. The reagents were mixed and centrifuged briefly prior to incubation at 37 °C for 2 hours. Following incubation, the transcription reaction was immediately terminated by the addition, on ice, of EDTA pH 8.0 to a final concentration of 20 µM. Conjugated RNAs were used immediately following dilution to 80 µl with dH$_2$O (DEPC treated) without further purification measures. A typical transcription reaction yields 1 µg/µl labeled RNA.

Isolation and fixation of egg chambers

Egg chambers were obtained by hand dissecting ovaries from yeast-paste fed females 3 to 5 days after eclosion and fixed as previously described (Theurkauf, 1994a). Briefly, egg chambers were isolated in 1× Robb’s medium (55 mM potassium acetate, 40 mM sodium acetate, 100 mM sucrose, 10 mM glucose, 12 mM MgCl$_2$, 1.0 mM CaCl$_2$, 100 mM HEPES pH 7.4). Egg chambers were not permitted to remain in Robb’s medium for more than 10 minutes. Following dissection, intact ovaries were transferred to 1:1 2× fixation buffer (2× fixation buffer: 200 mM cacodylic acid (dimethylarsinic acid, Sigma), 200 mM sucrose, 80 mM potassium acetate, 20 mM sodium acetate, 20 mM EGTA, pH 7.2):16% formaldehyde. Egg chambers were fixed for 10 minutes and allowed to settle. Following fixation, egg chambers were rinsed three times in PBST (1× Phosphate buffered saline (PBS), 0.05% Triton X-100). Intact ovaries were teased apart into individual ovarioles in PBST. Egg chambers were transferred to 1% Triton X-100 in PBS, for extraction, and incubated for 2 hours at room temperature with gentle rocking. After extraction, egg chambers were rinsed once in PBST and two times in PBT (1× PBS, 0.1% Tween®-20). Fixed egg chambers were processed immediately via *in situ* hybridization.

Cytoskeletal inhibitor treatment
Flies were fed yeast paste 3 days prior to harvesting egg chambers. The microtubule depolymerization agent colcemid (Sigma) was added to the yeast paste, at a concentration of 50 µg/ml, 20 hours prior to egg chamber harvesting. For disruption of F-actin, egg chambers were isolated in Robb’s medium and incubated in the same medium, containing 20 µg/ml cytochalasin D (Sigma), for 10 minutes at room temperature. Egg chambers were immediately fixed following cytochalasin D treatment.

RNA and Protein Localization Analysis – dual fluorescence in situ hybridization (FISH) and immunofluorescence

Whole-mount in situ hybridization was performed as previously described (Tautz and Pfeifle, 1989) with modifications. Briefly, fixed egg chambers were washed two times with PBT (PBS, 0.1% Tween®-20), rinsed in 1:1 PBT: Hyb-B Buffer (50% formamide, 5× SSC), rinsed in Hyb-B Buffer and prehybridized in Hyb-A Buffer (50% formamide, 5× SSC, 0.2 mg/ml DNA from salmon testes, 0.1 mg/ml yeast tRNA, and 0.05 mg/ml heparin) for 1 hour at 63 °C. RNA probes (1 µg/sample) were denatured at 80 °C for 10 minutes, placed on ice, centrifuged briefly, resuspended in 30 µl Hyb-A Buffer and added to the egg chambers. Egg chambers were incubated for 16 hours at 63 °C. Following hybridization, room temperature Hyb-B Buffer was added and egg chambers were permitted to settle for 15 minutes at 63 °C. Hyb-B Buffer was exchanged two additional times and finally diluted with PBT at room temperature. Egg chambers were rinsed three times with PBT. Prior to primary antibody incubation, egg chambers were blocked in 1% BSA in PBST for 1 hour at room temperature with gentle agitation. Egg chambers were incubated at 4 °C with gentle agitation for 16 hours with polyclonal rabbit anti-Osk (Ephrussi et al., 1991) diluted 1:75 in 1% BSA in PBST. Egg chambers were incubated overnight at 4 °C with gentle agitation. Following primary antibody incubation, egg chambers were rinsed in six changes of PBST. The secondary antibody, goat anti-rabbit IgG AlexaFluor 488-conjugated (Molecular Probes) was diluted 1:200 in PBST and egg chambers were incubated overnight at 4 °C with gentle agitation. Following secondary antibody incubation, egg chambers
were rinsed in six changes of PBST and mounted in PBS-glycerol mounting medium (9:1, glycerol:10× PBS).

Images were acquired with an inverted Leica DMIRB/E laser scanning confocal microscope. Leica TCS NT image acquisition software was used. All images were acquired under identical imaging conditions for a given experimental protocol. Single confocal optical sections are represented in the figures.
RESULTS

Characterization of osk mRNA and Osk protein localization during Drosophila oogenesis

Fluorescence in situ hybridization (FISH) in combination with immunofluorescence and subsequent analysis by laser scanning confocal microscopy provides a high-resolution method to detect both osk mRNA and Osk protein during Drosophila oogenesis. The simultaneous examination of RNA and protein allows a spatial and temporal correlation between transcript localization and protein expression.

Characterization of osk mRNA distribution in wild-type oocytes has defined distinct steps in the localization of osk mRNA to the posterior pole. Initially, as early as germarial stage 2b, osk mRNA becomes enriched in the oocyte (Ephrussi et al., 1991; Kim-Ha et al., 1991). During stages 2 through 6, osk mRNA is clearly localized to the posterior cortex of the oocyte (arrowheads in Figure 4a). During these early stages, microtubules appear to nucleate from a MTOC at the oocyte posterior (Theurkauf et al., 1993). The posterior accumulation of osk transcript is likely to be the result of minus-end directed movement from the nurse cells to the oocyte, given that mutants affecting dynein, a minus-end directed motor, show defects in oocyte determination and the transfer of osk, bcd, and other RNAs from the nurse cells to the oocyte (McGrail and Hays, 1997). Posterior cortical localization is maintained until stage 7, when the next major microtubule reorganization event occurs. As a result of grk signaling between the oocyte and the posterior follicle cells, the posterior microtubule organizing center disassembles and microtubules are organized along the anterior and lateral cortices of the oocyte, producing an anterior-to-posterior density gradient (Gonzalez-Reyes et al., 1995; Roth et al., 1995; Theurkauf et al., 1992). At this time, Kinesin I, a plus-end directed microtubule motor, removes osk mRNA from the lateral cortex, resulting in the accumulation of osk mRNA in the center of the oocyte (Figure 4d and g) (Cha et al., 2002). In approximately 47% of stage 8 oocytes, osk mRNA is
detected solely at the anterior/central region, while 53% show osk mRNA both at the posterior pole and in the central cytoplasmic pool (Figure 5).

While osk mRNA is present in the oocyte throughout oogenesis, osk mRNA first localizes to the posterior pole during stage 8 (Figure 4g), and Osk protein is only detected at approximately stage 9 (Figure 4k), after essentially all detectable osk transcript is at the posterior pole of the oocyte (Figure 4j) (Gunkel et al., 1998; Kim-Ha et al., 1995; Rongo et al., 1995). These observations suggest that cortical localization is not sufficient to prompt osk mRNA translation. Instead, it appears that translational activation is triggered by temporal signals that may function in conjunction with spatial cues.

Kinesin I, Tropomyosin, and Staufen are required for removal of osk mRNA from the oocyte cortex.

Kinesin I heavy chain (khc), a plus-end-directed motor (Vale et al., 1985), is required for osk mRNA localization to the posterior pole of the oocyte (Brendza et al., 2000). To further elucidate the role of Kinesin in osk mRNA localization, FISH analysis was used to examine osk mRNA distribution in khc mutant oocytes that were generated as germ line clones (Brendza et al., 2000). During early oogenesis, osk mRNA localizes to the posterior cortex in khc mutant oocytes (Figure 6d); however, the association of osk mRNA with the cortex appears to be not as tight as seen in wild-type (Figure 6a). While osk mRNA normally pools in the center and begins to translocate to the posterior pole in stage 8 oocytes (Figure 6b), in khc mutants, osk RNA is found along the oocyte cortex with no accumulation in the interior (Figure 6e). This broad cortical distribution is maintained through later stages of oogenesis (Figure 6f). Similar uniform cortical localization is observed following microtubule disruption. These observations indicate that Kinesin is required to move osk mRNA from the cortex to the oocyte interior (Cha et al., 2002).

Mutants in Tropomyosin (TmII) exhibit defects in the localization and/or maintenance of pole plasm components at the posterior of the oocyte (Erdelyi et al., 1995). Through early oogenesis, the localization of osk mRNA to the posterior cortex in TmII mutant oocytes (Figure
6g) appears wild-type. However, during stage 8, osk transcript accumulates along the anterior margin proximal to the nurse cells, the lateral cortex, and at the posterior pole (Figure 6h). The internal cytoplasmic accumulation of osk RNA is never observed. Uniform distribution of osk mRNA along the oocyte cortex is seen through stage 10 (Figure 6i), and osk mRNA is never restricted to a tight region at the posterior pole of the oocyte.

Stau, a presumptive RNA binding protein (Lasko, 1999) colocalizes with and is necessary for the posterior localization of osk mRNA to the posterior of oocyte (Ephrussi et al., 1991; Kim-Ha et al., 1991; St Johnston et al., 1991). In stau mutants, accumulation of osk mRNA to the posterior cortex during early oogenesis appears normal (Figure 6j). During stage 8, however, osk transcript is seen along the anterior margins and posterior pole, but the internal pool is never observed (Figure 6k). The localization of osk mRNA along the anterior and lateral cortices as well as at the posterior of the oocyte is maintained through the later stages of oocyte development (Figure 6l), and exclusive accumulation of osk mRNA to the posterior is never observed. Together, these results suggest a role for Staufen, Tropomyosin and Kinesin I in the efficient removal of osk mRNA from the oocyte cortex.

capu, chic and spir induce premature ooplasmic streaming and block posterior localization of osk mRNA

capu, chic and spir mutants all disrupt microtubule organization, trigger premature microtubule-based ooplasmic streaming, and block osk mRNA localization (Emmons et al., 1995; Manseau and Schupbach, 1989; Theurkauf, 1994b). Through oogenesis stage 6, osk mRNA accumulates normally at the posterior cortex of the oocyte in capu, chic and spir mutants (Figure 7d, g, and j). During midoogenesis, osk mRNA accumulates in the center of the oocyte (Figure 7e, h, and k), as in wild-type (Figure 7b). capu, chic and spir mutations all lead to premature ooplasmic streaming during stages 8-9 (Emmons et al., 1995; Manseau and Schupbach, 1989; Theurkauf, 1994b), and these dramatic cytoplasmic movements may hinder the final step in osk mRNA localization. During stage 10, osk mRNA is usually localized to the posterior pole in wild-type (Figure 7c).
By contrast, in *capu, chic* and *spir* mutants, *osk* mRNA remains dispersed in the cytoplasm, displaced somewhat towards the anterior pole (Figure 7f, i and l). *capu, chic* and *spir* are therefore required for the efficient movement of *osk* mRNA from the interior to the posterior pole of the oocyte.

par-1 and grk are required for microtubule asymmetry and posterior localization of osk mRNA

Mutations in *par-1* and *grk*, as in *capu, spir* and *chic*, block *osk* mRNA localization to the posterior pole (Shulman et al., 2000; Tomancak et al., 2000). However, unlike *capu, spir*, and *chic, par-1* and *grk* do not lead to premature ooplasmic streaming. In *par-1* and *grk* mutants, the accumulation of *osk* mRNA at the posterior cortex of the oocyte through stage 6 appears wild-type (Figure 8d and g). Stage 8 *par-1* and *grk* mutant egg chambers accumulate *osk* mRNA in a central cytoplasmic region in the oocyte (Figure 8e and h), comparable to the *osk* mRNA localization pattern in wild-type (Figure 8b). During the later stages of oogenesis when *osk* mRNA normally localizes at the posterior pole (Figure 8c), *osk* mRNA is mislocalized to an ectopic site in the center of the oocyte in *par-1* and *grk* mutants (Figure 8f and i).

The ectopic localization of *osk* mRNA in *par-1* and *grk* mutants correlates with observed defects in microtubule organization. In wild-type, stage 8 and 9 oocytes, a cortical microtubule gradient is established with the highest concentration at the anterior and a decline in density towards the posterior (Theurkauf et al., 1992). *osk* mRNA localizes to the microtubule-poor posterior pole, presumably because Kinesin cannot efficiently remove *osk* mRNA from this region (Cha et al., 2002). In *par-1* and *grk* mutants, however, cortical microtubules persist at the posterior pole (Cox et al., 2001; Gonzalez-Reyes et al., 1995; Huynh et al., 2001; Shulman et al., 2000; Tomancak et al., 2000). Therefore, in *grk* and *par-1* mutant oocytes, Kinesin-dependent movement on cortical microtubules prevents *osk* mRNA localization to the oocyte posterior, trapping *osk* transcript in the oocyte interior.

armi, mael and spn-E are required for microtubule asymmetry and posterior localization of osk mRNA
Armi, mael and spn-E have demonstrated defects in microtubule organization, osk mRNA localization, and translational regulation of osk mRNA (H. Cook and W. Theurkauf, unpublished observations) (Clegg et al., 1997; Gillespie and Berg, 1995). osk RNA FISH analysis of oocytes isolated from armi, mael and spn-E mutant females revealed a defect in osk mRNA localization that manifests itself early in oogenesis. During the early stages of oogenesis, osk transcript accumulates at the posterior cortical region in wild-type oocytes (Figure 9a); however, in armi, mael and spn-E mutant oocytes osk mRNA is dispersed in the oocyte cytoplasm (Figure 9d, g, and j). During stage 8, osk transcript accumulates in the oocyte center in wild-type (Figure 9b). Similarly, although apparently more diffuse, osk mRNA accumulates in a central cytoplasmic region in stage 8 mutant oocytes (Figure 9e, h, and k). Late in oogenesis, during stage 9-10, osk mRNA has tightly localized to the posterior pole in wild-type oocytes (Figure 9c). However, in armi and mael mutant oocytes, osk mRNA is seen accumulating at an ectopic site in the cytoplasm towards the anterior of the oocyte (Figure 9f and i). Some egg chambers derived from armi and mael mutants show an accumulation of osk RNA at the posterior, but the predominant accumulation remains in the central cytoplasmic region. Mutants in spn-E produce very few late stage egg chambers and in those examples, osk RNA is distributed at the posterior of the oocyte but is not tightly localized (Figure 9l). The inefficient localization of osk mRNA to the posterior pole observed in mutant oocytes suggests a direct or indirect role for armi, mael and spn-E in the effective localization of osk mRNA to the oocyte posterior.

Armi, mael and spn-E affect temporal control of osk translation

Localized osk mRNA translation at the posterior of the oocyte is essential for the proper posterior patterning of the embryo, and defects in the spatial and temporal control of Osk protein production result in severe developmental defects (Driever et al., 1990; Ephrussi and Lehmann, 1992; Gavis and Lehmann, 1992; Kim-Ha et al., 1995; Smith et al., 1992). FISH, in conjunction with immunofluorescence, was used to simultaneously examine the localization of osk mRNA
and Osk protein. In wild-type, osk mRNA is expressed through most of oogenesis, but Osk protein is only observed during stage 9 (inset in Figure 10b), when osk mRNA is strictly localized at the posterior pole (inset in Figure 10a). As described earlier, in egg chambers isolated from armi, mael and spn-E1 mutant females, osk mRNA accumulates in the oocyte but does not localize to the posterior pole during early oogenesis (Figure 10d, g and j). In addition, we find that Osk protein is prematurely expressed in these mutants (Figure 10e, h and k) (H. Cook and W. Theurkauf, unpublished observations). armi, mael and spn-E are therefore required for translational silencing of osk mRNA during early oogenesis.

par-1 and grk are required for spatial control of osk translation

By contrast, mutations in par-1 and grk alter the spatial control of osk mRNA translation. In wild type, osk mRNA is only translated after localization to the posterior pole is complete, during stage 9. osk mRNA translation is never observed when osk transcript is pooled in the center of the oocyte (inset in Figure 11a and b) during stage 8. In par-1 and grk mutants, however, osk mRNA fails to localize at the posterior pole and accumulates in the center of the oocyte during stages 9 and 10 (Figure 11g and j), and this ectopically localized transcript is translated (Figure 11h and k). Similarly, armi mutants show ectopic expression of Osk protein in the center of stage 9 and 10 oocytes (Figure 11d). par-1 and grk, are therefore required for proper spatial control of osk mRNA translation, while armi is required for both spatial and temporal control of Osk expression.

Microtubule Depolymerization – the role of cytoskeletal factors in short-range osk mRNA capturing/maintenance

osk mRNA localization within the oocyte appears to require direct transport to the desired location and capturing or anchoring at the localization site. osk RNA injected in close proximity to the posterior cortex localizes following microtubule disruption (Glotzer et al., 1997). This suggests the existence of a short-range, microtubule-independent mechanism for RNA capturing (Glotzer et al., 1997).
Uniform cortical distribution of osk RNA is observed in oocytes isolated from flies that had been fed the microtubule depolymerizing agent colcemid (Figure 12d) (Cha et al., 2002). Furthermore, egg chambers isolated from wild-type flies, and subsequently treated with cytochalasin D, which disrupts actin polymerization, show displacement of osk RNA and Osk protein from the entire oocyte cortex (arrowhead in inset, Figure 12i) (Cha et al., 2002). These observations indicate that a microtubule-independent process, which requires actin, anchors osk mRNA at the cortex. The exact mechanism of osk mRNA localization to the cortex remains to be determined. To this end, mutant flies showing osk mRNA localization defects were fed the microtubule depolymerizing drug colcemid, and the isolated egg chambers were analyzed for osk RNA localization.

In egg chambers from wild-type flies treated with colcemid for 20 hours, osk RNA shows a broad cortical distribution (arrowheads in Figure 13b) in contrast to the discrete localization of osk RNA at the posterior pole observed in untreated egg chambers (Figure 13a). To determine the specificity of the cortical osk RNA distribution following microtubule depolymerization, FISH analysis was performed to determine the distribution of other RNAs, bcd and cyclin B, following colcemid treatment. bcd mRNA, which normally localizes to the anterior margin of the oocyte adjacent to the nurse cells (Figure 13c), becomes dispersed in the oocyte cytoplasm on microtubule depolymerization (Figure 13d). cyclin B mRNA is normally localized along the anterior and lateral cortices (arrowheads in Figure 13e) and enriched at the posterior pole (arrow in Figure 13e). Following microtubule depolymerization, cyclin B transcript exhibits diffuse distribution at the anterior margins (arrowheads in Figure 13f) and is no longer detectable at the posterior pole (arrow in Figure 13f). Therefore, cortical distribution of osk mRNA following microtubule depolymerization is specific to osk RNA.

All of the mutants screened thus far (Figure 14d, f, h, j, l, n, p, r and t) have the capacity of localizing osk mRNA to the cortex in the absence of microtubules. This analysis has not revealed a candidate directly required in the capturing/anchoring of osk transcript to the oocyte
cortex. The possibility exists that actin alone is responsible for the capturing and tethering of osk RNA once it reaches its destination. Alternatively, a gene yet unidentified or not yet examined may act in association with the actin cytoskeleton to anchor osk RNA at the cortex.
Figure 4. Dual detection of osk mRNA and Osk protein in wild-type oocytes.

The simultaneous detection of *osk* RNA and Osk protein permits the spatial correlation of *osk* transcript localization and Osk protein production. (a-c) Stage 5 oocyte. *osk* RNA is localized to the posterior cortical region of the oocyte (arrowheads in a). (b) During early oogenesis, Osk protein is not detectable. (d-f) Stage 8 oocyte. *osk* RNA accumulates transiently in the central cytoplasm (arrowhead in d) without any detectable level of Osk protein (arrowhead in e). (g-i) Stage 8 oocyte. *osk* RNA is localized continuously between the central pool and the posterior pole. Even after the localization of transcript to the posterior, no protein is detected. (j-l) Stage 9 oocyte. *osk* RNA is strictly localized to the posterior pole and Osk protein is observed. (l) Colocalization of *osk* RNA and Osk protein at the posterior of the oocyte. (c, f, i and l) Composites of the *osk* RNA and Osk protein images. *osk* RNA is represented in green, Osk protein in red and colocalization of *osk* RNA and Osk protein represented in yellow.
Figure 5. Quantification of the transient transport intermediate in stage 8 wild-type oocytes.

osk fluorescence in situ hybridization was performed and individual stage 8 egg chambers were scored for osk RNA localization patterns. Two predominant patterns were observed, a centralized pool or an intermediate central-posterior distribution of osk RNA.
Figure 6. osk RNA localization in khc, TmII and stau mutant oocytes.
Cy5-conjugated osk antisense probes were used to detect osk transcript in situ in oocytes isolated from wild-type, Kinesin I Heavy Chain (khc) germline clone flies, TmII^{su1}/TmII^{su1} and stau^{D3}/stau^{D3} mutant females. (a-c) osk RNA localization in wild-type oocytes. (a) osk RNA is localized to the posterior cortical region in early wild-type oocytes. (b) During stage 8, osk transcript is transiently localized to the central region and posterior pole. (c) In stage 10 wild-type oocytes, osk RNA is exclusively localized to the posterior pole. (d) In early khc mutant oocytes, osk mRNA accumulates at the posterior cortex, however, distribution of osk transcript in the oocyte cytoplasm is observed as well. (g and j) In TmII and stau mutant stage 5-6 oocytes, osk RNA is localized to the posterior cortical region, similar to wild-type. (e) During midoogenesis in khc mutants, osk RNA is distributed along the cortex of the oocyte. (h) During stage 8 in TmII mutant oocytes, osk RNA localizes to the anterior cortical region proximal to the nurse cells and weakly along the cortex. (k) Stage 8 stau mutant oocytes show anterior cortical and posterior localization of osk RNA. In the three mutants examined here no central accumulation of osk RNA, as observed in wild-type, was detected. (f and i) During stage 10, osk RNA is detected along the cortex in khc and TmII mutant oocytes. (l) The anterior-cortical and posterior localization of osk RNA observed during stage 8 is maintained during the later stage of oogenesis in stau mutant oocytes.
Figure 7. *osk* RNA localization in *capu, chic* and *spir* mutant oocytes.

Cy5-labeled *osk* antisense probes were used to detect *osk* transcript *in situ* in oocytes isolated from wild-type, *capu'/capu', chic1320/chic1320* and *spir'/spir'*. Single confocal sections are shown. (a-c) *osk* RNA localization in wild-type oocytes. (a) *osk* RNA is localized to the posterior cortical region in early wild-type oocytes. (b) During stage 8, *osk* transcript is transiently localized to the central cytoplasmic region and posterior pole of wild-type oocytes. (c) In stage 10 oocytes, *osk* RNA is strictly localized to the posterior pole. (d, g, and j) During early oogenesis, up to stage 6, *capu, chic*, and *spir* mutant oocytes show posterior cortical localization. (e, h, and k) The localization of *osk* RNA in mutant oocytes during stage 8 appears, to some extent, wild-type. However, *osk* RNA is more diffuse than wild-type and little transcript accumulates at the posterior pole. (f, i, and l) *osk* mRNA localization to the posterior pole is not observed in *capu, chic* and *spir* mutant oocytes. Instead, a diffuse accumulation towards the anterior/central region is observed.
Figure 8. osk RNA localization in par-1 and grk mutant oocytes.

Cy5-conjugated osk antisense probes were used to detect osk transcript in situ in oocytes isolated from wild-type, and par-1^{w3}/par-1⁶⁵²³ and grk^{hik}/grk^{2B6} mutants. (a-c) osk RNA localization in wild-type oocytes. (a) During early oogenesis in wild-type, osk RNA accumulates at the posterior region of the oocyte. (b) During stage 8, osk transcript is observed in a transient central pool with accumulation at the posterior of the oocyte. (c) In stage 10 wild-type oocytes, osk transcript shows strict localization to the posterior cortex. (d and g) par-1 and grk mutant oocytes exhibit a normal posterior localization pattern of osk RNA during early oogenesis. (e and h) During stage 8, similar to wild-type, the intermediate pool of transcript is readily detectable in the par-1 and grk mutant oocytes. (f and i) During stage 10, when the transcript is observed at the posterior of the oocyte in wild-type, osk RNA remains accumulated in the center of par-1 and grk mutant oocytes.
Stage 5-6 Stage 8 Stage 10

Wild-type

par-1⁶³³/par-1⁶²²³

grk^{DK}/grk²⁸⁶
Figure 9. osk RNA localization in armi, mael and spn-E mutant oocytes.

Cy5-conjugated osk antisense probes were used to detect osk transcript in situ in oocytes isolated from wild-type, armi^{22.1}/armi^{22.1}, mael^{20}/Df and spn-E^{1}/spn-E^{1} mutant flies. (a-c) osk RNA localization in wild-type oocytes. (a) osk RNA is localized to the posterior cortical region in early wild-type oocytes. (b) During stage 8, osk transcript is transiently localized to the central region and posterior pole of wild-type oocytes. (c) In stage 10 wild-type oocytes, osk RNA is strictly localized to the posterior pole. (d, g, and j) In contrast to the tight posterior cortical localization of osk RNA observed in wild-type, osk RNA is distributed throughout the cytoplasm in stage 5-6 armi, mael and spn-E mutant oocytes. (e, h, and k) osk RNA appears to accumulate in the central cytoplasm in mutant oocytes during stage 8, similar to wild-type. (f and i) During stage 9-10 in armi and mael mutant oocytes, osk transcript accumulates predominantly in the central cytoplasm. Occasionally, osk RNA is observed at the posterior pole in mael mutants. (l) Later stage egg chambers are rarely observed in spn-E mutants; however, when they are seen, osk RNA diffusely accumulates at the posterior pole.
Figure 10. Premature Osk protein expression in armi, mael and spn-E mutant oocytes.

Egg chambers from wild-type, armi72.1/armi72.1, mael20/Df and spn-E'/spn-E' mutant flies were isolated and processed for FISH with osk antisense RNA probes followed by Anti-Osk immunolabeling. (a) During stage 5-6, osk RNA is detected at the posterior cortical surface in wild-type oocytes. (b) No Osk protein is detected in wild-type during the early stages of oogenesis. (inset a) At stage 9, once osk RNA localizes exclusively to the oocyte posterior, Osk protein is observed (inset b). (d, g, and j) osk transcript is distributed throughout the oocyte in stage 5-6 armi, mael and spn-E mutant oocytes. (e, h, and k) Osk protein is detected in the early oocytes from armi, mael and spn-E mutants. (c, f, i and l) Composites of the osk RNA and Osk protein images. osk RNA is represented in green, Osk protein in red and colocalization of osk RNA and Osk protein represented in yellow. (f, i and l) Moderate colocalization of osk transcript and Osk protein is observed in armi, mael and spn-E oocytes.
Figure 11. Ectopic expression of Osk protein in \textit{armi}, \textit{par-1} and \textit{grk} mutant oocytes.

\textit{osk} RNA and Osk protein are simultaneously detected by dual FISH and immunofluorescence. Wild-type stage 8 and 10 egg chambers are shown in panels a, b, and c. (inset a) \textit{osk} RNA is centrally localized in stage 8 wild-type oocytes. (inset b) Stage 8 oocytes have no detectable Osk protein. (a) By contrast, in stage 10 wild-type oocytes, \textit{osk} RNA is strictly localized to the posterior pole where it is translated to Osk protein (b). (c) Overlaying the \textit{osk} RNA image and the Osk protein image shows essentially complete colocalization of \textit{osk} transcript with Osk protein. (d, g and j) \textit{osk} RNA is ectopically localized in the central cytoplasmic region in stage 10 \textit{par-1}^{w3}/\textit{par-1}^{633}, \textit{grk}^{HK}/\textit{grk}^{268} and \textit{armi}^{72.1}/\textit{armi}^{72.1} mutant oocytes. (e, h, and k) Ectopic expression of Osk protein is observed in \textit{par-1}, \textit{grk} \textit{armi} mutant oocytes. (c, f, i and l) Composites of the \textit{osk} RNA and Osk protein images. \textit{osk} RNA is represented in green, Osk protein in red and colocalization of \textit{osk} RNA and Osk protein represented in yellow. (f, i, and l) Colocalization of \textit{osk} RNA and Osk protein is observed at the ectopic site in \textit{par-1}, \textit{grk} and \textit{armi} oocytes.
Figure 12. Cytoskeletal inhibitor treatment of wild-type egg chambers

Egg chambers were isolated from wild-type flies that had been fed the microtubule depolymerizing drug colcemid or egg chambers were isolated and subsequently treated with cytochalasin D, which disrupts actin polymerization. Following fixation, samples were processed for osk antisense FISH and Anti-Osk immunofluorescence. (a-c) Untreated stage 10 wild-type oocytes. (c) osk RNA and Osk protein are exclusively colocalized to the posterior pole of the oocyte. (d-f) Colcemid-treated egg chambers exhibit uniform distribution and colocalization of osk RNA and Osk protein along the entire cortex proximal to the overlying follicle cell layer. (g-i) Following cytochalasin-D treatment, osk RNA and Osk protein are found to be dissociated from the cortex (arrowhead in i, inset), yet remain colocalized. (c, f and i) Composites of the osk RNA and Osk protein images. osk RNA is represented in green, Osk protein in red and colocalization of osk RNA and Osk protein represented in yellow.
Figure 13. Localization of osk, bcd, cyclin B RNA in control and colcemid treated wild-type oocytes

(a) In stage 10 wild-type oocytes, osk RNA is exclusively localized to the posterior pole of the oocyte. (c) bcd RNA is localized to the anterior cortex and (e) cyclin B RNA localizes to the anterior lateral cortex (arrowheads in e) and accumulates at the posterior pole as well (arrow in e). After microtubule depolymerization, (b) osk RNA redistributes over a broad region of the oocyte cortex (arrowheads), whereas (d) bcd RNA is released into the oocyte cytoplasm and is no longer localized. (f) cyclin B is released from the posterior cortex (arrow) on microtubule depolymerization, but remains diffuse at the anterior margins of the oocyte (arrowheads in f).
Figure 14. Microtubule depolymerization

Egg chambers were isolated from wild-type and mutant flies that had been fed colcemid, which depolymerizes microtubules. Samples were examined by osk FISH. (a, c, e, g, i, k, m, o, q and s) Untreated stage 10 oocytes. (b, d, f, h, j, l, n, p, r and t) Colcemid treated oocytes. All mutants screened showed uniform cortical localization of osk RNA in the absence of microtubules.
DISCUSSION

In *Drosophila*, the embryonic axes are specified during oogenesis in a process that requires the precise asymmetric localization of RNAs and proteins (Riechmann and Ephrussi, 2001; van Eeden and St Johnston, 1999). Proper localization of *osk* RNA and local translation at the posterior pole of the oocyte are essential first steps in the assembly of the pole plasm, which is required for germ cell formation and posterior polarity (Ephrussi et al., 1991; Ephrussi and Lehmann, 1992; Kim-Ha et al., 1991; Lehmann and Ephrussi, 1994). I have used a modified whole-mount *in situ* hybridization protocol employing fluorescently labeled *osk* RNA antisense probes in conjunction with anti-Osk immunofluorescence and subsequent analysis by confocal microscopy to examine the temporal and spatial distribution of transcript and protein during *Drosophila* oogenesis.

Multi-step *osk* mRNA localization pathway

My studies help define distinct steps in the *osk* mRNA localization process (Figure 15). Initially, *osk* mRNA, transcribed in the nurse cells, becomes enriched in the future oocyte (Ephrussi et al., 1991; Kim-Ha et al., 1991). This initial accumulation of *osk* mRNA in the oocyte is dependent upon *Bic-D* and *egl* (Mohler and Wieschaus, 1985; Mohler and Wieschaus, 1986). During stages 2 through 6, *osk* mRNA localizes to the posterior cortex of the oocyte. Optical sectioning of the oocyte reveals distinct localization to the cortical region neighboring the overlying somatic follicle cells. During these early stages, microtubules appear to nucleate from a MTOC at the oocyte posterior (Theurkauf et al., 1992). The observed posterior accumulation of *osk* transcript is likely to be the result of minus-end directed movement along microtubules from the nurse cells to the oocyte (McGrail and Hays, 1997). During stages 7 and 8, as a result of a *grk*-dependent signaling event, the posterior MTOC disassembles and microtubules reorganize at the anterior and lateral cortices and establish an anterior-to-posterior gradient of microtubules (Gonzalez-Reyes et al., 1995; Theurkauf et al., 1992). A prominent central cytoplasmic
accumulation of osk RNA is observed during stage 8. The accumulation of osk RNA to the center of the oocyte is dependent on Kinesin I, a plus-end-directed motor, and the microtubule cytoskeleton, which function together to remove osk mRNA from the microtubule-rich cortex, thus preventing ectopic pole plasm assembly (Cha et al., 2002). Lastly, during stage 9 of oogenesis, osk mRNA translocates from the interior to the posterior pole of the oocyte where microtubule density is low. While lack of microtubules at the posterior cortex may not wholly account for posterior localization of osk mRNA, studies have also suggested the involvement of the actin cytoskeleton in a short-range microtubule-independent process (Erdelyi et al., 1995; Glotzer et al., 1997). Microtubule-independent translocation of osk mRNA from the cytoplasm to the posterior pole with subsequent capturing/anchoring by actin is supported by the observations that osk mRNA associates with the cortex in the absence of microtubules, and actin depolymerization disrupts cortical localization of osk mRNA (Cha et al., 2002). Localization of osk mRNA to the posterior pole results in localized translation and thus establishes the proper positioning for pole plasm assembly and axis specification.

Genetic dissection of the steps involved osk mRNA localization

Mutants that perturb osk mRNA localization were examined in an attempt to dissect the steps involved in localizing osk RNA to the posterior pole of the oocyte (Table 1). The initial step of removing osk transcript from the cortex requires Kinesin I and an intact microtubule network (Cha et al., 2002). Likewise, Tropomyosin and Staufen appear to be required for efficient movement of osk mRNA from the cortex to the center of the oocyte. Stau, an RNA binding protein, has been directly implicated in the localization of bcd RNA to the anterior of the oocyte (Ferrandon et al., 1994), and may have a direct role in the localization of osk mRNA. In Stau null mutant oocytes, osk RNA remains at the cortex, despite an apparently intact microtubule network (Ephrussi et al., 1991; Kim-Ha et al., 1991; St Johnston et al., 1991). Moreover, Stau protein colocalizes with osk RNA in the khc mutant (Brendza et al., 2000). osk mRNA, Kinesin and Staufen, which together, could form a complex and participate in excluding osk mRNA from
the cortex in a microtubule-dependent manner. Inhibitor and cytological studies have implicated the actin cytoskeleton in anchoring osk mRNA at the oocyte cortex. Mutants in Tropomyosin block osk mRNA movement from the cortex to the interior. Tropomyosin, an actin binding protein, stabilizes filamentous actin (Broschat et al., 1989) and my results suggest that it may antagonize binding of osk mRNA to the cortex, allowing for the cortical removal of osk mRNA during midoogenesis.

The localization of osk mRNA is microtubule dependent and several mutants that disrupt this process do so by directly or indirectly altering the organization of the oocyte microtubule network. In wild-type oocytes, as a result of a grk-dependent signaling event, the microtubules, once focused at the posterior of the oocyte, disassemble and reorganize at the anterior and establish an anterior to posterior gradient during stage 7-8 of oogenesis (Theurkauf et al., 1992). This organization is maintained until the next microtubule reorganization at stage 10b when cytoplasmic streaming takes place concurrently with the bundling of microtubules along the cortex of the oocyte (Gutzeit, 1986; Theurkauf et al., 1992).

Previous live analysis in wild-type oocytes showed that from stages 8 through 10a, only non-coordinated cytoplasmic movement is observed towards the anterior of the oocyte, while more posterior regions demonstrate hardly any cytoplasmic movement (Theurkauf, 1994c). During stages 10b through stage 12, however, the entire oocyte cytoplasm undergoes rapid, coordinated, and unidirectional streaming (Theurkauf, 1994c). Concomitant with ooplasmic streaming, microtubules bundle along the subcortical region of the oocyte (Gutzeit, 1986; Theurkauf et al., 1992). In capu, spir, chic, and mael mutant oocytes, however, rapid unidirectional ooplasmic streaming and bundling of microtubules along the oocyte cortex occur prematurely, as early as stage 8 (Clegg et al., 1997; Emmons et al., 1995; Manseau and Schupbach, 1989; Theurkauf, 1994c). These mutants do not localize osk mRNA to the posterior pole and osk transcript remains distributed towards the anterior cortex of the oocyte. Premature
streaming, or the changes in microtubule organization that accompany streaming, thus appear to prevent translocation of osk mRNA from the interior cytoplasm to the posterior pole.

Mutations in armi, spn-E, grk and par-1 also disrupt microtubule organization. During early oogenesis in armi mutants, the posterior MTOC fails to form, whereas later in oogenesis, a higher density of microtubules is observed at the posterior of the oocyte (H. Cook and W. Theurkauf, unpublished). In spn-E, par-1 and grk mutant oocytes, microtubules are similarly distributed along the oocyte cortex (Cox et al., 2001; Gillespie and Berg, 1995; Gonzalez-Reyes et al., 1995; Huynh et al., 2001; Shulman et al., 2000). All of these mutations lead to central ooplasmic accumulation of osk mRNA, with little accumulation at the posterior pole of the oocyte.

Previous studies have shown that the establishment of the anterior-posterior axis and suppression of microtubules at the posterior pole is contingent upon grk-dependent signaling from the oocyte to the posterior follicle cells (Gonzalez-Reyes et al., 1995; Neuman-Silberberg and Schupbach, 1993). Grk signaling induces the posterior cells to adopt a posterior rather than anterior fate (Gonzalez-Reyes et al., 1995; Neuman-Silberberg and Schupbach, 1993; Ray and Schupbach, 1996; Roth et al., 1995). Upon induction, an unknown signal back to the oocyte induces major rearrangement of the oocyte microtubule cytoskeleton and initiates microtubule depolymerization at the posterior cortex (Gonzalez-Reyes et al., 1995; Roth et al., 1995). The exact nature of this signal and its target are not known. Par-1 is expressed in the somatic follicle cells and accumulates at the posterior pole of the oocyte during stages 8 and 9 (Cox et al., 2001; Shulman et al., 2000; Tomancak et al., 2000). par-1 mutants maintain posterior cortical microtubules and obstruct osk mRNA localization (Shulman et al., 2000; Tomancak et al., 2000). The mammalian Par-1 Kinase homologue phosphorylates microtubule-associated proteins, destabilizing the microtubules (Bohm et al., 1997; Drewes et al., 1997). grk-signaling may therefore regulate Par-1 association with the posterior pole, resulting in local depolymerization of microtubules, which allows osk mRNA movement to the cortex. Continued microtubule
nucleation at the posterior cortex in mutant oocytes thus produces Kinesin-dependent movement of \textit{osk} mRNA away from the cortex, maintaining cytoplasmic accumulation of \textit{osk} mRNA.

\textbf{Actin involvement in \textit{osk} mRNA capturing/anchoring}

The actin cytoskeleton has been implicated in the microtubule-independent short-range capturing/anchoring of \textit{osk} mRNA to the cortex (Erdelyi et al., 1995; Glotzer et al., 1997). A role for actin in cortical localization is supported by the observation that disruption of the actin cytoskeleton with cytochalasin-D prevents cortical localization of \textit{osk} mRNA (Cha et al., 2002). To determine if any known posterior patterning mutants disrupt cortical anchoring, \textit{osk} RNA localization was examined following microtubule depolymerization. Surprisingly, all of the mutants screened thus far (Table 1) showed normal cortical localization of \textit{osk} RNA in the absence of microtubules. Actin alone may be responsible for cortical capturing and tethering \textit{osk} mRNA, or an unidentified gene may act in association with the actin cytoskeleton to anchor \textit{osk} mRNA at the cortex.

\textbf{Translational regulation}

In wild-type egg chambers, \textit{osk} mRNA translation is repressed until stage 9, when \textit{osk} mRNA is exclusively localized to the oocyte posterior. During stage 8, however, a significant fraction of oocytes show some \textit{osk} mRNA localization to the posterior cortex, but no posterior accumulation of Osk protein. This observation indicates that cortical localization alone is not sufficient to initialize translation and suggests that \textit{osk} mRNA translation is also under tight temporal control. One group of mutants, \textit{armi}, \textit{mael} and \textit{spn-E} (H. Cook and W. Theurkauf, unpublished observations) disrupts temporal control of \textit{osk} mRNA translation. In these mutants, Osk protein is produced throughout oogenesis and is independent of cortical localization. In \textit{grk} and \textit{par-1} mutants, by contrast, Osk protein is not produced until stage 9, but protein production occurs in the absence of cortical localization. These mutants could affect \textit{osk} translation by restricting components of the translational machinery to the cortex.
My studies help define distinct steps in the osk mRNA localization process. An early step in posterior localization is removal of osk mRNA from most of the cortex, leading to accumulation in the oocyte interior. This process requires microtubules, the microtubule motor protein Kinesin I, the actin binding protein Tropomyosin, and the RNA binding protein Staufen. Transcript then moves from the oocyte interior to the posterior pole through a microtubule independent process. The genes cappuccino, chickadee, spire, armitage, maelstrom, par-1 and gurken are all required for this next step in osk mRNA localization. The final capturing or tethering osk mRNA at the cortex requires an intact actin filament system, but additional components of this anchoring system remain to be identified. I also find that osk mRNA first begins to accumulate at the posterior pole during oogenesis stage 8, but protein is not detectable until stage 9. In addition, grk and par-1 mutations that block osk mRNA localization to the posterior pole and lead to transcript accumulation in the interior do not prevent translation; again, Osk protein production is only observed during stage 9 and later. These observations indicate that posterior localization is neither sufficient nor necessary to trigger osk mRNA translation, which appears to be under tight temporal control.
Figure 15. A model for the multi-step process of *osk* mRNA localization

(a) During the early stages of oogenesis, a MTOC is established at the oocyte posterior. Microtubules (green) nucleated from this site extend through the ring canals into the neighboring nurse cells. *osk* mRNA (purple), synthesized in the nurse cells, is transported to the oocyte by microtubules and tightly localizes to the posterior cortex adjacent to the overlying follicle cell layer. (b) During stage 8, following microtubule reorganization, a gradient of microtubules is formed. The highest density of microtubules is observed towards the anterior and declining in density towards the posterior. *osk* transcript pools in the central cytoplasmic region of the oocyte as a function of cortical removal involving Kinesin I heavy chain, *Tropomyosin II* and *staufen*. (c) The microtubule-poor posterior pole region supports *osk* RNA binding to the cortical actin cytoskeleton. *osk* mRNA localization to the posterior pole is dependent on the functions of *cappuccino, spire, chickadee, maelstrom, armitage, par-1* and *spindle-E.*
<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
</table>
| Stage 2-6 | Transport to the oocyte and cortical binding:
 - Microtubules
 - Actin |
| Stage 7-8 | Cortical removal of osk mRNA:
 - Kinesin I heavy chain
 - Tropomyosin II
 - staufen |
| Stage 9-10a | Posterior localization of osk mRNA:
 - cappuccino
 - spire
 - chickadee
 & Translational control:
 - maelstrom
 - armitage
 - spindle-E
 - par-1
 - gurken |
Table 1. Experimental Results Summary - *osk* FISH and Osk protein immunofluorescence analysis data.

The table summarizes the results from *osk* FISH and Osk protein immunofluorescence analysis in untreated egg chambers and egg chambers collected from flies fed the microtubule depolymerizing drug colcemid. Results are representative for stage 10 egg chambers. *osk* RNA is denoted in green and *osk* RNA and Osk protein colocalization in orange. Osk protein expression in wild-type oocytes is observed at stage 9 when transcript is completely localized to the posterior pole of the oocyte. Several mutants have been identified where premature translation is observed. In these mutants, Osk protein is seen as early as germarial stage 1. Several mutants have been identified with ectopic Osk expression. With the exception of the protein null *osk*^54/Df, upon microtubule depolymerization, wild-type and all the mutants analyzed demonstrate *osk* RNA localization and subsequent expression at the oocyte cortex.
<table>
<thead>
<tr>
<th></th>
<th>osk RNA</th>
<th>osk RNA + Osk Protein (colocalization)</th>
<th>Osk Protein Expression</th>
<th>Localization Following Colcemid Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild-type</td>
<td></td>
<td></td>
<td>~stage 9+</td>
<td></td>
</tr>
<tr>
<td>TmlP<sup>01</sup>/TmlP<sup>ex1</sup></td>
<td><img src="image" alt="TmlP<sup>01</sup>/TmlP<sup>ex1</sup>" /></td>
<td><img src="image" alt="TmlP<sup>01</sup>/TmlP<sup>ex1</sup>" /></td>
<td>~stage 9+</td>
<td><img src="image" alt="TmlP<sup>01</sup>/TmlP<sup>ex1</sup>" /></td>
</tr>
<tr>
<td>stau<sup>03</sup>/stau<sup>03</sup></td>
<td><img src="image" alt="stau<sup>03</sup>/stau<sup>03</sup>" /></td>
<td><img src="image" alt="stau<sup>03</sup>/stau<sup>03</sup>" /></td>
<td>~stage 9+</td>
<td><img src="image" alt="stau<sup>03</sup>/stau<sup>03</sup>" /></td>
</tr>
<tr>
<td>khc glc</td>
<td></td>
<td></td>
<td>~stage 9+</td>
<td></td>
</tr>
<tr>
<td>capu<sup>1</sup>/capu<sup>1</sup></td>
<td><img src="image" alt="capu<sup>1</sup>/capu<sup>1</sup>" /></td>
<td><img src="image" alt="capu<sup>1</sup>/capu<sup>1</sup>" /></td>
<td>No Detectable Protein</td>
<td><img src="image" alt="capu<sup>1</sup>/capu<sup>1</sup>" /></td>
</tr>
<tr>
<td>chic<sup>1520</sup>/chic<sup>1520</sup></td>
<td><img src="image" alt="chic<sup>1520</sup>/chic<sup>1520</sup>" /></td>
<td><img src="image" alt="chic<sup>1520</sup>/chic<sup>1520</sup>" /></td>
<td>No Detectable Protein</td>
<td><img src="image" alt="chic<sup>1520</sup>/chic<sup>1520</sup>" /></td>
</tr>
<tr>
<td>spir<sup>1</sup>/spir<sup>1</sup></td>
<td><img src="image" alt="spir<sup>1</sup>/spir<sup>1</sup>" /></td>
<td><img src="image" alt="spir<sup>1</sup>/spir<sup>1</sup>" /></td>
<td>No Detectable Protein</td>
<td><img src="image" alt="spir<sup>1</sup>/spir<sup>1</sup>" /></td>
</tr>
<tr>
<td></td>
<td>osk RNA</td>
<td>osk RNA + Osk Protein (colocalization)</td>
<td>Osk Protein Expression</td>
<td>Localization Following Colcemid Treatment</td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
<td>--------------------------------------</td>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Wild-type</td>
<td>![Wild-type Image]</td>
<td>![Wild-type Image]</td>
<td>~stage 9+</td>
<td>![Wild-type Image]</td>
</tr>
<tr>
<td>armi^{72-1}/armi^{72-1}</td>
<td>![armi Image]</td>
<td>![armi Image]</td>
<td>Premature Translation</td>
<td>![armi Image]</td>
</tr>
<tr>
<td>mael^{20}/Df</td>
<td>![mael Image]</td>
<td>![mael Image]</td>
<td>Premature Translation</td>
<td>![mael Image]</td>
</tr>
<tr>
<td>spn-E'/spn-E'</td>
<td>![spn Image]</td>
<td>![spn Image]</td>
<td>Premature Translation</td>
<td>NA</td>
</tr>
<tr>
<td>par-1^{6323}/par-1^{w3}</td>
<td>![par-1 Image]</td>
<td>![par-1 Image]</td>
<td>~stage 9+</td>
<td>![par-1 Image]</td>
</tr>
<tr>
<td>grk^{HR}/grk^{2B6}</td>
<td>![grk Image]</td>
<td>![grk Image]</td>
<td>~stage 9+</td>
<td>NA</td>
</tr>
<tr>
<td>vas^{L}/vas^{23B6}</td>
<td>![vas Image]</td>
<td>![vas Image]</td>
<td>~stage 9+</td>
<td>![vas Image]</td>
</tr>
<tr>
<td>osk^{M4}/Df</td>
<td>![osk Image]</td>
<td>![osk Image]</td>
<td>No Detectable Protein</td>
<td>![osk Image]</td>
</tr>
</tbody>
</table>
REFERENCES

