Current and Innovative Strategies in Energy Efficiency
A Case Study of Astrakhan State University

An Interactive Qualifying Project submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the degree of Bachelor of Science by Michael Bodanza, Ching-Hsiang Chen, Nicole Chittim, and Ankit Kumar

Date: 13 October 2016

Report Submitted to:
Professors Oleg V. Pavlov and Thomas J. Balistrieri
Worcester Polytechnic Institute

This report represents work of WPI undergraduate students submitted to the faculty as evidence of a degree requirement. WPI routinely publishes these reports on its web site without editorial or peer review. For more information about the projects program at WPI, see http://www.wpi.edu/Academics/Projects.
Abstract

The purpose of this Interactive Qualifying Project was to conduct an energy audit on three buildings at Astrakhan State University in Russia and propose recommendations regarding ways in which electrical energy efficiency could be improved. After researching multiple energy-saving technologies, we recommend that Astrakhan State University install more efficient light bulbs and motion sensors. We also recommend Astrakhan State University implement piezoelectric flooring to become a leader in energy sustainability among universities in Russia.
Acknowledgements

The team would like to express their gratitude and appreciation to the following people and institutions; without their assistance, we could not have completed our project:

Astrakhan State University Vice Rector for Administrative Affairs and Capital Construction, Alexander Gennadyevich Kondratyev, for sponsoring our project.

Astrakhan State University Director of Institute of Strategy and Competitive Awareness, Inna Nikolayevna Akhunzhanova, for her help in communicating and coordinating with our sponsor and Russian teammates.

Professors Thomas J. Balistrieri and Oleg Valerievich Pavlov for their invaluable help and guidance throughout our project.

Astrakhan State University Chief Engineer of Maintenance Services, Sergey Grigoryevich Muravyov, for his knowledge and availability to answer questions relating to our project.

The Astrakhan State University for their hospitality and accommodations while we completed our project.

The Financial University in Moscow for their hospitality and accommodations during our time in Russia.

Our teammates from Astrakhan State University -- Dmitriy Korolkov, Ayzar Mustafin, Igor Pashovkin, Yaroslav Sedov, and Lyudmila Shekotova -- for their assistance and commitment to our project, especially in data collection and translation.

Our interviewees -- David Litalien, Professor John Orr, Elizabeth Tomaszewski, and Jim Armstrong -- for their knowledge and expertise relating to our project.
Authorship

Michael Bodanza was the primary editor of the report. He conducted primary interviews and assisted in the completion of the walk-through and standard energy audits.

Ching-Hsiang Chen was the primary researcher for the project. He conducted primary interviews and assisted in the completion of the lighting audit. He participated in the construction of the benchmark in addition to gathering all of the information and data needed to analyze the recommended solutions.

Nicole Chittim was the primary writer of the report. She assisted in conducting primary interviews and collected data during the walk-through and standard energy audits.

Ankit Kumar was the primary data analyst. He assisted in the completion of the lighting audit and analyzed all of the data collected. He participated in the construction of the benchmark and completed all of the cost-benefit analysis.
Table of Contents

Abstract .. ii
Acknowledgements .. iii
Authorship ... iv
Table of Contents ... v
Executive Summary ... viii

Introduction: Energy Strategy of Russia ... 1

Background: Conserving Energy ... 2

Energy Conservation: A Worldwide Problem ... 2

 Incentive 1: Cost .. 2
 Incentive 2: Environment ... 3

Energy Efficient Practices ... 3

 Technion Institute of Technology: Piezoelectric Flooring .. 3
 National University of Singapore: Vertical Garden System 3
 Cadbury House in Congresbury, England: Eco Machine .. 3

Russia’s Energy Conservation ... 4

Astrakhan State University’s Progress ... 4

 Old Buildings: Hostel 1, Hostel 3 and Academic Building 1 4
 The New Building ... 5

Methodologies: Identifying Inefficiencies and Solutions ... 7

Results and Findings: Analyzing Possible Energy Saving Solutions 9

 Benchmark .. 9
 Electrical Energy Audit ... 10
 Recommendations ... 11

 Efficient Bulbs ... 11
 Motion Sensors ... 12
 Siemens Desigo Building Automation System ... 14

Innovative Technologies ... 15

 Piezoelectric Flooring ... 15
Recommendations and Conclusion: Change the Bulbs

Our Recommendations

Efficient Bulbs

Motion Sensors

Siemens Desigo Building Automation System

Piezoelectric Flooring

Vertical Garden System

Eco Machine

Conclusion

Bibliography

Appendix A. – Interview Questionnaire

Appendix A.1. – David Litalien

Appendix A.2 – John Orr

Appendix A.3 – Elizabeth Tomaszewski

Appendix B. - Benchmark

Appendix C. - The Energy Audit

Appendix D. - Energy Audit Worksheets

Appendix D.1 - Hostel 1

Appendix D.2 - Hostel 3

Appendix D.3 - Academic Building 1
Executive Summary

Problem
According to the U.S. Department of Energy Conservation, Russia is the third largest energy consumer in the world. In order to encourage the energy conservation movement, the Russian President passed legislation in 2008, declaring an energy conservation plan to “reduce the energy intensity of the Russian economy by 40 percent by 2020” (The Federation of Finnish Technology Industries, 2014). However, legislation in 2011 extended the deadline to 2035 (Ministry of Energy of the Russian Federation, 2010). Part of this legislation includes a policy that requires state-funded organizations to decrease their energy consumption by 3% each year (Gusev, 2014).

In order to comply with these laws, Astrakhan State University has decided to implement new, efficient, electrical technologies into three of its buildings. Energy conservation will be cost effective for the University and less deleterious to the environment.

Goal and Objectives
The goal of our project was to conduct an electrical energy audit of three older buildings at Astrakhan State University (ASU) and propose recommendations regarding ways in which the University could make the buildings more energy efficient.

To accomplish this task we developed five objectives:
1. Research efficient electrical technologies that are considered best practices for energy efficiency.
2. Interview technical professionals in the electric-power industry.
3. Establish a benchmark for the current state of the ASU buildings and conduct an electrical energy audit.
4. Propose recommendations that are in line with the University’s need and budget.
5. Advise ASU on innovative solutions that can be implemented.

Our proposed recommendations will help further increase Astrakhan State University’s energy efficiency as well as help establish ASU as one of the leaders in sustainability among universities in Russia.

Background
Energy production accounts for a large portion of Russia’s economy. Russia has large, rich deposits of natural gas and petroleum that compose over 70% of Russia’s energy production. This facet of the energy industry alone generates 50% of Russia’s federal budget (U.S. Energy Information Administration, 2015).

According to reports in 2013, Russia ranks among the top 10 most energy intensive countries in the world (Kahraman, 2014). As many concerns for the nation, economy, and environment have increased, the government has taken an active role in increasing energy efficiency. In 2010, the Ministry of Energy of the Russian Federation enacted policies to decrease electrical intensity by 40% by the year 2030. If this goal is met, CO₂ emissions would be 20% below the 1990 levels. According to IFC, achieving Russia’s energy efficiency potential would cost 320 billion USD (U.S. Energy Information Administration, 2015).
Methodologies
Our methodologies were selected as the most efficacious means of assessing the condition of Astrakhan State University and identifying solutions to increase its electrical efficiency. This was accomplished by researching best practices, conducting an electrical energy audit, and recommending solutions.

Our research of printed documents, such as books, articles, government documents and studies, led us to two important discoveries. First, we discovered legislation set by the government, mandating an increase in energy efficiency. Second, we found examples of best energy efficient practices implemented at universities and businesses throughout the world.

We interviewed three professionals in the energy industry. The interview transcripts can be seen in Appendix A. We used our research and Energy Star Portfolio Manager to establish a benchmark for Astrakhan State University.

We began the audit process with the Benchmarking Audit -- analyzing energy usage and cost, primarily using electrical bills. The Walk-Through Audit consisted of our physically walking through each building and analyzing the electrical systems and technologies used. The Standard Audit quantified the energy used by the electrical technologies. A detailed explanation of the audit is located in Appendix B, and the data collected throughout the audit can be viewed in Appendix C.

After the audit was completed, we proposed recommendations to Astrakhan State University. A cost analysis was done on each proposed replacement, and the analysis can be found in Appendices E-G. We also provided ASU with innovative solutions to improve their energy efficiency. As with the other recommendations, we provided a detailed cost analysis of these solutions, which can be found in Appendices H-J.

Recommendations
After careful consideration, we compiled two proposals for Astrakhan State University. The first proposal offered recommendations for easily implemented technologies. The proposal included an analysis of light bulb options, motion sensors, and the Siemens Desigo System.

The second proposal recommended innovative technological solutions for Astrakhan State University. These recommendations included technologies such as piezoelectric ceramic tiles, a vertical garden system, and eco exercise machines. A full list of all recommendations can be viewed in Appendices E-J, which includes a detailed cost analysis and a strengths and weaknesses analysis for each proposed technology.
Introduction: Energy Strategy of Russia

The world has experienced an increase in energy intensity (the amount of energy used per unit of GDP) over the years (IEA, 2015). As a result of this escalated energy consumption, harmful emissions are being released into the environment, destroying our planet. To combat this problem, governments have enacted energy efficiency policies, and research has been done to develop energy-smart technologies. Many countries, including Russia, have continued to set goals to decrease energy intensity (Coyle, 2014).

In 2010, the Ministry of Energy of the Russian Federation modified previous legislation by extending the goal of a national 40% decrease in energy intensity to 2030 (FFTI, 2014). Part of this legislation includes a policy that requires state-funded organizations to decrease their energy consumption by 3% each year over a five-year period (Gusev, 2014).

Astrakhan State University began a project in 2016 to decrease the energy consumption on campus. The University built a new academic building, which incorporated the Siemens’ Desigo System; the new building contains light occupancy sensors, energy efficient lamps, and an efficient heating, ventilation and air conditioning (HVAC) system. After completing this building, Astrakhan State University intends to implement new energy efficient technology into the older buildings: two dormitories and an academic building.

The purpose of our project was to conduct an electrical energy audit of three older buildings at Astrakhan State University and propose recommendations regarding ways in which the University could make the buildings more energy efficient. In order to achieve this goal, we developed and followed the following objectives:

1. Research efficient electrical technologies that are considered best practices for energy efficiency.
2. Interview technical professionals in the electric-power industry.
3. Establish a benchmark and conduct an electrical energy audit for the current state of the ASU buildings.
4. Propose recommendations that are in line with the University’s need and budget.
5. Advise ASU on innovative solutions that can be implemented.

By increasing its energy efficiency, Astrakhan State University will comply with Russia’s goal of decreased energy consumption. If they choose to implement the innovative recommendations, Astrakhan State University will prove to be a leader in sustainability among universities in Russia.
Background: Conserving Energy

As concerns for energy sources and the environment increase, energy efficiency and sustainability are becoming more globally emphasized topics. Over the last few decades, governments have taken on the responsibility of increasing reforms in these fields. Russia has implemented several policies that aim at increasing national energy efficiency, with the most recent goal set for 2030 (Ministry of Energy of the Russian Federation, 2010). While improvements have been made over the past few decades, the country still requires further development. This chapter outlines the various concerns motivating increases in energy efficiency, solutions of related projects completed around the globe, and the benefits that are available for developing energy efficiency.

Energy Conservation: A Worldwide Problem

Historically, energy has been a key factor in the development of many countries. Various sources of energy have been realized and developed, including oil, natural gas, and renewable resources. These advances have spread from the more developed countries to less developed countries, improving living conditions. Between 1971 and 2013, the world has more than doubled its total energy consumption (IEA, 2015).

While rapid expansion of energy usage has been beneficial, governments, companies, and the environment have been burdened by this turn of events. A general trend has illustrated that many countries have experienced increases in energy intensity (the amount of energy used per unit of GDP) (IEA, 2015). In other words, more energy is being consumed than is required. This becomes a threat to the environment as an increase in harmful emissions is produced. Many reports indicate that the most effective way to improve conditions in terms of cost and the environment is improving energy efficiency (Lychuk, 2012; World Energy Council, 2013).

Incentive 1: Cost

Recent studies from the American Council for an Energy Efficient Economy (ACEEE) indicate that improving the energy efficiency of existing technologies results in a significant cost reduction. According to the report, researchers measured the cost of running energy efficiency programs in 20 states from 2009 to 2012. They discovered the average cost to be 2.8 cents per kilowatt-hour (Kiker, 2014). This is significantly less than other common power sources; nuclear and coal have an average cost of approximately 10 cents per kilowatt-hour (Molina, 2014).

Other studies have produced similar results and have identified high potential savings. According to a report published by South-Central Partnership for Energy Efficiency as a Resource (SPEER), the residential sector has the largest potential for savings. It reported that the residential sector in Texas consumed 1400 terawatt hours of electricity in 2009. If major household appliances (refrigerators, washers, dryers, etc.) were replaced with more efficient, modern designs, the state could reduce its consumption by 525 terawatt hours, approximately a 37.5% reduction (Walton, R., 2016). Energy efficient technologies remain a significant source of potential savings.
Incentive 2: Environment
It is an established fact that the use of fossil fuels releases harmful gases that negatively impacts the environment. Burning fossil fuels accounted for 80% of the world’s primary energy sources in 2013 and released 30,000 Megatons (Mt) of CO₂ – nearly twice the emissions in 1971 (IEA, 2015). With continued emphasis placed on fossil fuels in energy production, the build-up of greenhouses gases (GHG) in the atmosphere could have irreversible effects on the environment.

Alternative energy sources have been discovered: renewable and nuclear. Many renewables have low impact on the environment and produce no emissions; they are considered to be a promising alternative energy source. However, many forms of renewables are restricted largely due to geographic conditions and high operational costs (IEA, 2015). Nuclear energy produces no greenhouse emissions. However, the fuel rods can pose a high risk to the environment and to life itself. Further measures must be taken to ensure safety of the environment and the future of the globe.

Energy Efficient Practices
With increasing support and dedicated research, energy-smart technologies have become increasingly available and affordable. In government offices, industries, and universities, many projects aimed at increasing energy efficiency have been developed and have demonstrated the benefits of increasing energy efficiency (Enerdata, 2015).

Technion Institute of Technology: Piezoelectric Flooring
Professor Haim Abramovich implemented piezoelectric flooring at the Technion Institute of Technology in Haifa. This floor harvests mechanical energy from roadways, sidewalks and indoor flooring and converts it to electricity. The electricity produced can be used immediately, or it can be stored for future use. In this case, the piezoelectric floor was placed six centimeters (cm) under a road at a distance of 30 cm apart. As vehicles drove over the road, the floor detected changes in weight, motion, temperature and vibration, and converted the mechanical energy to an electrical current. The current was then stored as electrical energy for later use. Assuming 600 vehicles pass this one-kilometer segment of road in one hour, the piezoelectric floor can generate 400 kilowatt-hours (kWh) of electricity -- enough to power 700 homes (Henderson, 2009).

National University of Singapore: Vertical Garden System
The National University of Singapore implemented a vertical garden system on buildings to reduce energy consumption related to heating and cooling. Vertical gardens consist of plants grown in trays that are then installed on the outside of buildings. These systems help to insulate the building while offering an aesthetic appeal. The National University of Singapore found that indoor areas where the vertical garden system had been installed stayed 7 degrees cooler than those without it. This resulted in a decrease in electricity used to power the air conditioning system (Suntory, 2015).

Cadbury House in Congresbury, England: Eco Machine
A gym in England is being called the world’s first self powering gym after installing 42 eco machines -- these machines are self-powering exercise equipment. Once a person begins using the equipment, it generates enough electricity to power the machine, including the screen on the
machine. Any excess electricity produced is stored in a holding cell, or dynamo, and then is fed back into the energy supply for the building. On average, these machines will feed 100 watts of energy back into the energy supply for the building every hour. This technology has reduced the energy consumption of the gym by 30% (Edmonds, 2013).

Russia’s Energy Conservation

As concerns for the nation and the economy have increased, the Russian Federal government has taken an active role in increasing energy efficiency. In 2008, Russian President Dmitry Medvedev determined energy efficiency to be a top priority of the nation and launched several policies with the goal of decreasing the country’s energy intensity by 40% by the year 2020. In 2010, the Ministry of Energy of the Russian Federation redefined the policies and modified the target year to 2030 (Ministry of Energy of the Russian Federation, 2010).

The legislation establishes energy consumption guidelines and demands compliance to these regulations. The main goal of the guidelines is to implement energy-saving or low-energy intensive technologies, which will decrease Russia's reliance on the energy sector of the economy. The guidelines establish the required decrease in energy consumption for specific sectors, and are paraphrased as follows (Ministry of Energy of the Russian Federation, 2010):

- The concept of fuel and energy in relation to gross domestic product and to exports should decrease by a factor of at least 1.7.
- Energy exports should decrease by a factor of at least three.
- The total investments in fuel and energy should decrease by a factor greater than two.
- Total energy intensity should decrease by a factor greater than two, and electricity intensity should decrease by a factor of at least 1.6.

Part of this legislation also mandates state-funded organizations to decrease their energy consumption by 3% each year over the course of five years. The policy requires a 3% decrease in energy consumption annually, regardless of any previous decrease. For example, if an organization decreases its energy consumption by 15% in the first year, it is still required to decrease energy consumption by at least 3% for each subsequent year; the decrease percentage does not “roll over” (Gusev, 2014).

Astrakhan State University’s Progress

Astrakhan State University is a state-funded university located on the Volga River in southern Russia. It is subjected to temperatures as high as forty-two degrees Celsius (107.6 degrees Fahrenheit) in the summer and as low as negative twenty-six degrees Celsius (-14.8 degrees Fahrenheit) in the winter (Weather Almanac for URWA, 2010). The University spans many campuses throughout the city, but the main campus contains four buildings: two dormitories (Hostel 1 and Hostel 3), one academic building (Academic Building 1) and the new building. As it is state-funded, the University must decrease its energy consumption by a minimum of 3% annually.

The Older Buildings: Hostel 1, Hostel 3 and Academic Building 1
The three older buildings on the main campus of Astrakhan State University are outdated; Hostel 1 and Hostel 3 were constructed in 1932. As a result, the lighting systems are outdated and
inefficient. Additionally, the internal temperature of the buildings is controlled by window air conditioning units and portable heaters, which both require a significant amount of electrical energy. Personnel practices, such as running electrical appliances when they are not being utilized, leads to electrical energy inefficiency.

The lighting systems implemented in the older buildings of ASU vary throughout the buildings; there is no consistency across the campus. The buildings incorporate a traditional maintenance system, making it difficult to identify and replace worn out bulbs when necessary.

The older buildings also incorporate an outdated heating and cooling system; window air conditioning units and portable electric heaters are used to regulate the temperature in each room. These technologies drain a significant amount of electricity, and are often used when they are not necessary.

Astrakhan State University personnel are not utilizing proper, energy efficient behavior. Lights and air conditioning units are left on in unoccupied rooms, wasting electricity. ASU has attempted to conserve the wasted energy by posting signs like the one in Figure 1, telling students and faculty to turn off lights as they exit a room. However, according to current ASU students, these signs are routinely ignored.

Figure 1. A sign posted next to the doors in the older buildings of ASU. It tells students and faculty to shut the lights off when they leave the room to conserve energy.

The New Building
The new building on Astrakhan State University was built in 2016. It is nine stories tall and is attached to the main academic building on campus. The new building incorporates the Siemens Desigo V5 System, a building automation system that operates the lighting and ventilation systems at optimal efficiency.

Part of this system includes motion sensors for the lighting, which turns on lights in a room when there is movement and turns off lights when there has been no movement for an extended period of time. Since this is an issue in the older buildings according to ASU students, the motion sensors will prove to be an energy saving technology for the new building. Additionally, this system includes an alert that notifies the controller when light bulbs are worn out and not
operating at optimal efficiency. This allows the operators to replace light bulbs immediately, increasing the energy efficiency of the building.

The system also includes a modern ventilation system. It incorporates the centralized control and efficiencies of a central ventilation system with the flexibility to control the climate of an individual room. The control system also ensures the temperature regulation is operating at the highest efficiency.

Figure 2 offers a visual on the juxtaposition of the new building relative to the three older buildings. The new building is modern and efficient, while the older buildings are outdated and inefficient. As a result, the University is hoping to update the older buildings and decrease the energy consumption in accordance with Federal Regulations.
Methodologies: Identifying Inefficiencies and Solutions

Our goal was to conduct an electrical energy audit of three older buildings at Astrakhan State University: one academic building and two dormitory buildings. After conducting the energy audit, we proposed recommendations regarding ways in which the University could make the buildings more energy efficient. In order to achieve this goal, we developed and followed the following objectives:

1. Research efficient electrical technologies that are considered best practices for energy efficiency.
2. Interview technical professionals in the electric-power industry.
3. Establish a benchmark and conduct an electrical energy audit for the current state of the ASU buildings.
4. Propose recommendations that are in line with the University’s need and budget.
5. Advise ASU on innovative solutions that can be implemented.

Initially, our team researched other universities and their strategies for developing energy efficient campuses. These best practices served as a guide to the available options for Astrakhan State University. The most effective energy smart campus initiatives had been built into a new building, whereas our project at Astrakhan State University would be viewed as a retrofit project. Additional research had to be conducted to evaluate if an effective comparison could be made with ASU.

Once we established the current best energy efficient practices, we had to establish the current state of Astrakhan State University. To do this, we created a benchmark using Energy Star Portfolio Manager, a website that allows the user to create a professional benchmark to manage the energy usage for any building. We entered data specific to ASU and were presented with analysis of the energy consumption.

As a continuation of our research, we interviewed three professionals in the field of energy:
- Elizabeth Tomaszewski -- Associate Director of Sustainability at WPI
- John Orr -- Director and Professor of Office of Sustainability at WPI
- David Litalien -- Licensed Electrician

Each interviewee was asked a series of questions to assess his or her familiarity with energy audits. The interview then developed into a discussion of the timing, documents needed, and basic steps of performing an energy audit. The full list of interview questions can be viewed in Appendix A, with transcripts of each interview found in Appendices A.1-A.3.

We were able to perform the first step in the energy audit before arriving in Astrakhan. This was a Type 0, or Benchmarking Audit. The Benchmarking Audit consisted of analyzing energy usage and cost, primarily through data collection using electricity bills. We completed this section of the audit in Moscow with the help of the Russian students at ASU. The Benchmarking Audit process involved us inspecting electric bills, blueprints and other documents from the buildings. From this, we were able to derive abstract conclusions regarding the energy efficiency of the University.

Upon arriving at Astrakhan State University, we performed a Type 1 and Type 2 energy audit on the three buildings: a Walk-Through Audit and Standard Audit, respectively. The Walk-Through
Audit was the second step in our energy audit process. It consisted of us physically walking through each building and analyzing the implementation of the lighting systems currently used. For example, during our Walk-Through Audit, we discovered lights that were left on in unoccupied areas. From this observation, a possible recommendation would be to use a motion sensor.

The Standard Audit was the final step of our energy audit process. The Standard Audit relied on the Walk-Through Audit and quantified the energy used by the electrical technologies implemented. The detailed steps of the entire energy audit process are explained in Appendix C.

We created a detailed spreadsheet to record specific data about each room during our audit, which can be seen in Figure 3. Using this, we were then able to compare the efficiency of the rooms. The completed documents for each building can be found in Appendix D. We used the data collected during the Standard Audit to analyze the technologies and perform calculations regarding the energy usage of each room.

Using the information gathered during the audit and our previous research, we developed a series of recommendations regarding ways in which Astrakhan State University could increase its energy efficiency. We relied on Federal Regulations to illustrate the need for upgraded technology. For each technology we recommended, we provided the University with two analyses: strengths-weaknesses and cost, which can be viewed in Appendices E-G, based on each technology.

We also provided ASU with innovative solutions to improve its energy efficiency. This was done based on research regarding new energy efficient and sustainable practices. As with the other recommendations, we provided detailed strengths-weaknesses and cost analyses of these solutions, which can be viewed in Appendices H-J, based on each solution.

The proposed recommendations we drafted in collaboration with the team of students from Astrakhan State University helped to further establish the University in energy sustainability. If implemented, the solutions will also help to establish ASU as one of the leaders in sustainability among universities in Russia.
Results and Findings: Analyzing Possible Energy Saving Solutions

The results of our benchmark study for the Astrakhan State University buildings proved that ASU was energy efficient when compared with universities in the United States of America. Through our energy audit, we were able to collect data that was used to analyze the electrical usage of the buildings. From this, we found technologies that could be implemented into the buildings to improve energy efficiency. Our analysis and findings are presented here.

Benchmark

The Energy Star Portfolio Manager was used to establish a benchmark of each of the three buildings we examined at Astrakhan State University. The software used data gathered from each building and compared the buildings to those of similar size in the United States of America.

We were able to input information including gross floor area, percentage of building that is heated and cooled, number of rooms, and information collected from the energy meter bills for a year. The software used this information to find buildings of similar size in the United States of America and compare the ASU buildings. From the comparison, the Portfolio Manager developed a score for the ASU buildings ranging from 0 to 100 -- a number above 75 is energy efficient, a number from 50-75 is average, and a number below 50 is inefficient.

After analyzing the data for the three buildings, the Energy Star Portfolio Manager provided us with a score for each of the buildings: Hostel 1 had a score of 98, Hostel 3 had a score of 100, and Academic Building 1 had a score of 100.

At first glance, it appears that the three ASU buildings are extremely energy efficient based on the scores. However, we know that the buildings currently incorporate inefficient electrical technologies. For example, LPO 4x18 light bulbs are used in the buildings. These light bulbs have a power rating of 80W, which means the bulbs are very inefficient. Replacing LPO 4x18 light bulbs with Armstrong light bulbs, which have a power rating of 27W, would significantly increase the efficiency of the buildings.

As illustrated in Figure 4, the buildings used to compare to the ASU buildings consume significantly more energy than the ASU buildings. This is a result of a greater usage of technology in the United States. The buildings at ASU do not contain electrical technologies such as vending machines, clothes dryers, elevators, etc., which are common in the buildings in the US. Because the buildings at Astrakhan State University do not incorporate energy intensive technologies, they appear to be more energy efficient, even though the technologies that are incorporated in the buildings are not energy efficient.
Additionally, Astrakhan State University is required by Federal Law to decrease its energy consumption by a minimum of 3% every year. Although the buildings may already appear to be very efficient and produce scores of 98, 100 and 100, the University must still improve their energy efficiency annually.

Electrical Energy Audit

The energy audit we conducted helped us to create two main analyses. The first was an analysis of the energy consumption of each building. The second used the current electrical cost to analyze the costs for each proposed solution.

Using the reports created during the audit, the energy consumption from each type of electrical appliance was calculated. The full calculation sheets for each building can be found in Appendices D.1, D.2 and D.3. This calculation allowed us to create a pie chart, seen in Figure 5, which illustrates the consumption of electricity of each electrical technology.

As seen in the chart, lighting is the largest consumer of electricity in the three buildings. As a
result, lighting was the main focus for the recommendations offered to the University because it could offer the largest decrease in energy consumption.

Recommendations
The recommendations compiled for Astrakhan State University consisted of three major areas of improvement -- installing efficient bulbs, motion sensors and the Siemens Desigo building automation system. A cost analysis and efficiency analysis were conducted on each of the proposed solutions.

Efficient Bulbs
The energy audit revealed that the lighting system accounts for 29% of the total energy consumption of the three buildings. Because of this, simply replacing inefficient light bulbs is cheaper and easier than replacing an inefficient HVAC system. Modern LED bulbs are up to two times more efficient than older bulbs, and the light cycle is longer as well.

However, simply replacing the light bulbs may not be the best solution. Bad manufacturing quality could extend the payback period, and lighting fixtures may have to be changed as well. Additionally, many people dispose of old light bulbs improperly, which contributes to pollution.

Astrakhan State University Chief Engineer of Maintenance Services, Sergey Grigoryevich Muravyov, provided us with his recommendations for bulb replacement. Currently, the University uses six types of light bulbs: LPO 4x18, LPO 2x18, NPP 1x16, E27 1x18, LPO 2x36, and Chandeliers 1x50. The engineer proposed that each of the current types of light bulb be replaced with a more energy efficient model: Armstrong, LPO 2x9, DBP/Medusa, E27, DPO 2x18, and Foton G4, respectively. Table 1 analyzes the cost and efficiency of these replacements.

<table>
<thead>
<tr>
<th>Light Bulb (Current and Replacement)</th>
<th>Wattage (W)</th>
<th>Efficiency (lm/w)</th>
<th>Price per Unit (RUB)</th>
<th>Replacement Cost (RUB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPO 4x18</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27 Armstrong</td>
<td>27</td>
<td>118</td>
<td>1100</td>
<td>150</td>
</tr>
<tr>
<td>LPO 2x18</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPO 2x18</td>
<td>20</td>
<td>79</td>
<td>1100</td>
<td>120</td>
</tr>
<tr>
<td>LPO 2x36</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPO 2x18</td>
<td>40</td>
<td>88</td>
<td>1100</td>
<td>150</td>
</tr>
<tr>
<td>LPO 4x18</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27 Armstrong</td>
<td>27</td>
<td>118</td>
<td>1100</td>
<td>150</td>
</tr>
<tr>
<td>NPP 1x60</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBP 7w</td>
<td>7</td>
<td>72.85</td>
<td>450</td>
<td>25</td>
</tr>
<tr>
<td>E27 1x18</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E27 1x7</td>
<td>7</td>
<td>71.4</td>
<td>180</td>
<td>25</td>
</tr>
<tr>
<td>E27 1x40</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E27 1x7</td>
<td>7</td>
<td>71.4</td>
<td>180</td>
<td>25</td>
</tr>
<tr>
<td>Chandeliers 1x12</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G4 LED</td>
<td>3</td>
<td>100</td>
<td>150</td>
<td>25</td>
</tr>
</tbody>
</table>

Table 1. A comparison of the current lighting systems used in the ASU buildings and the proposed changes.

Using the consumption data collected during the audit, the projected energy consumption and cost of replacing the light bulbs for each building was calculated. A detailed calculation can be found in Appendix E.
Figure 6 displays a bar graph that analyzes the difference in energy consumption by replacing the light bulbs according to the recommendations provided by the engineer. Using the recommended replacements, we can display the energy consumption before and after the replacement.

![Energy Consumption Analysis for Light Bulbs](image)

Figure 6. A graph comparing the energy consumption of the different buildings. The dark green bar indicates the energy consumed before replacing the light bulbs. The light green bar indicates the energy consumed after replacing the light bulbs. This replacement is projected to improve the total energy consumption by 16%. The detailed calculation can be viewed in Appendix E.

From the energy consumption data, the projected costs for replacement in each building was calculated. The result was then summarized to create a cost analysis graph. Calculations can be found in Appendix E, and Figure 7 illustrates the breakeven date for the replacement.

![Projected Cumulative Costs for Light Bulbs](image)

Figure 7. A cost analysis graph illustrating the cumulative cost of energy consumption before and after replacing the light bulbs over the next three years for all three buildings. The dark green line indicates the cumulative expenditure on the current lighting system over the course of three years. The light green line shows the cumulative projected expenditure on the lighting system if the bulbs are replaced. Initially the projected expenditure is higher as replacing the bulbs entails a one time replacement fee. In June 2018, the replacement costs will be paid back.

Motion Sensors

Motion sensors turn on lights in an area when motion is detected, and lights are then turned off after a set amount of time without any detected movement. Turning the lights off when no movement is detected saves an immense amount of energy. However, the sensors are not perfect, and occasionally the sensor might not detect movement to turn on lights. Additionally, if a person is still for a while, the lights may turn off.
To calculate the energy savings, it was projected that a total of 121 motion sensors would be installed in the three buildings. It was not practical to install motion sensors in each room of each building, so we proposed the sensors be installed in lobbies, corridors, bathrooms, laundry rooms, etc. A detailed breakdown of the installation criteria is located in the Appendix F.1.

It is estimated that there will be a 13% savings in lighting energy in the areas where motion sensors were installed (Carnegie Mellon University, 2013). Using this estimation, the total energy savings of the three buildings was calculated to be 1.23%. A detailed breakdown of the calculation can be found in Appendix F. Energy consumption and savings for the installation of motion sensors can be seen in Figure 8.

![Energy Consumption Analysis for Motion Sensors](image)

Figure 8. A graph comparing the energy consumption of the buildings. The dark green bar indicates the energy consumed before installing motion sensors. The light green bar indicates the energy consumed after installing motion sensors. This replacement is projected to improve the total energy consumption by 1.3%. The detailed calculation can be viewed in Appendix F.

It was estimated that a motion sensor would cost 1874 Rubles, or 30 USD (Zhao, 2013). Using the projected energy consumption, the expenditure for the next three years was projected. A cost analysis graph was created to compare the effect of installing motion sensors, which can be seen in Figure 9.

![Projected Cumulative Costs for Motion Sensors](image)

Figure 9. A cost analysis graph analyzing the cumulative cost of energy consumption before and after installing motion sensors for all three buildings. The dark green line indicates the cumulative expenditure on the current lighting system over the course of three years. The light green line shows the cumulative projected expenditure on the lighting system if motion sensors are installed. Initially the projected expenditure is higher as the installation requires a one-time fee. In April 2019, the costs will be paid back.
Siemens Desigo Building Automation System
The Siemens Desigo Building Automation System is the system implemented in the new academic building at Astrakhan State University. It controls the lighting and HVAC systems in a building and optimizes the energy consumption and productivity. Running these systems at top efficiency saves massive amounts of energy and extends the life of the equipment. Implementing the same system into the older buildings of ASU would be ideal because the manager is already familiar with the system, and there would be one master control system for all of the buildings. However, once the system is installed, the company will generally “lock the buyer into” a long-term service contract, which might not always be ideal.

Additionally, the Siemens System is not suitable for small and simple scale buildings, like the three older buildings under examination. For the calculation purposes, it was estimated that installing the building automation system in small- and medium-size commercial building would save 15% of lighting energy consumed (Brambley, 2013). A graph illustrating energy consumption savings can be seen in Figure 10.

Additionally, the software and hardware for this system is also very expensive to implement. The cost of installing the building automation system in the three Astrakhan buildings was expected to be 1 562 023 Rubles or 25,000 USD (Brambley, 2013). Using this information, the expenditure for the next three years with and without installing Siemens system was projected. Figure 11 illustrates a cost analysis graph comparing the effect of installing building automation system.
Innovative Technologies

In addition to short-term recommendations to increase the energy efficiency of Astrakhan State University, we also analyzed more innovative technologies that ASU could implement. Through our research, we found three possible innovative technologies from which ASU could benefit: Piezoelectric flooring, vertical garden systems and eco exercise machines. A cost analysis and efficiency analysis were conducted on each of the proposed solutions.

Piezoelectric Flooring
Piezoelectric flooring is a polymer sheet that can be installed underneath normal flooring. It uses the force exerted on the flooring to generate electricity. The electricity produced can either be used immediately or stored in a battery for later use. Unlike with a solar panel, manufacturing piezoelectric flooring does not pollute the environment. Additionally, this type of flooring can withstand harsh outdoor weather conditions, including rain and snow. However, it is not as durable as wooden or ceramic flooring; piezoelectric flooring can only last for five years (Henderson, 2009).
Piezoelectric flooring is a newer technology, and is therefore expensive when compared with traditional wooden flooring. The price of the one square foot of piezoelectric floor is estimated to be 4,686 Rubles or 75 USD (Williston, 2013). It was projected that around twelve square feet of piezoelectric flooring would be installed in the campus entrance. The total cost of installation was calculated to be 56,232 Rubles. The power generated by each step on the tile is expected to be 5 Watts (Pavegen, 2016). The total expected energy generated per day was expected to be 100 watt-hours (Wh). This electricity generated could charge 20 cellphones per day. However, with the cost of installation being so high, the energy generated by the flooring does not pay back the installation cost. A detailed summary of the calculation could be seen in Appendix H.

Vertical Garden System

A vertical garden system is simply any plant that is grown along the outside wall of a building. Not only does a system like this appeal aesthetically, but it also helps to regulate the internal temperature of the building. For example, the National University of Singapore found that the internal temperature of a building with the vertical garden system was seven degrees cooler than a building without it. The system is also very efficient -- artificial soil is used so mud does not fall from the building, and it requires less water than a normal, horizontal garden. The cost of a typical vertical garden system ranges from 95 to 165 USD per square foot (Architek, 2016).

![Figure 13. Vertical garden installed at Queens University of Charlotte features a double-helix design (Heffernan, 2013).](image)

However, due to its orientation, the vertical garden system is more complicated to maintain than a normal garden. It is also more expensive to develop and build than a normal garden.

There are three structures for a vertical garden system: panel systems, tray systems, and freestanding systems. A panel system has plants pre-grown into plates that are then attached to the external or internal wall of a building. A tray system is similar to a panel system, but can only be attached to an internal wall of a building. A freestanding wall does not incorporate a plate system and is commonly used inside of a building.

Two types of watering systems can be used for a vertical garden: recirculating irrigation systems and non-circulating irrigation systems. A recirculating irrigation system has a dripping system...
from above. Water flows down the garden with the help of gravity and is collected in a tank at the bottom, where it is circulated through the dripping system again. The non-circulating irrigation system is similar, except it does not collect the water at the bottom. This is commonly used for outdoor systems.

Looking at the building plans, it was projected that the vertical garden system would be installed on the South and the West side of the Academic Building 1. The cost of installing and managing the garden was estimated. The vertical garden system is expected reduce the energy spent on heating and cooling by 23% (Lof, 2008).

Air conditioning accounts for 9% of the total electricity consumption of the Academic Building 1. Using this information, a cost analysis was done to compare the expenditure on the current cooling system to the projected expenditure if the vertical garden system was installed. The projected cost of installing the system was calculated to be 113 million Rubles. The total electrical energy savings of the Academic Building 1 was calculated to be 2.25%. Although this system saves energy, implementing the vertical garden system is expensive and does not pay back the installation costs. A detailed summary of the calculation can be found in the Appendix I.

Eco Machine

Eco machines are exercise equipment that generate electricity when used. These machines use the mechanical force applied by a user and converts it into electrical energy. Traditional exercise equipment can be replaced by eco machines in the University’s gym to serve the user’s need in addition to contributing to energy production. These machines can produce up to 100 watts an hour by an average user (Atkin, 2013).

![Eco machines installed at a gym in Manhattan, New York.](image)

However, these machines are currently more expensive than traditional machines. Additionally, the power generated from these machines is not significant.

The cost of each machine was estimated to be around 1.14 million Rubles (Atkin, 2013). It was estimated that the University would install five eco machines in the gym, and each of those machines would be used for seven hours per day. Using this data, a cost analysis was done to compare the cost of installing the machines and the energy produced by these machines. It was
calculated that a total of 3.5 kWh energy could be generated per day from these machines. A
detailed summary of the calculation can be found in Appendix J. The analysis proved that the
electricity generated by these machines is not a worthwhile investment; the installation cost
would not be paid back in a three-year period. Although the machine would not pay back the
installation fee, one machine could generate more electricity than two 200-watt solar panels in
one day (Rhymebus, 2013).
Recommendations and Conclusion: Change the Bulbs

After an extensive examination of the three older buildings at Astrakhan State University, we focused our research on three energy efficient technologies that would be easily implemented into the buildings and three innovative technologies. An analysis of the six technologies proved that changing the light bulbs is the easiest, fastest and most effective solution.

Our Recommendations

<table>
<thead>
<tr>
<th>Solutions</th>
<th>Initial Cost</th>
<th>Payback Period</th>
<th>Energy Savings/Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficient Bulbs</td>
<td>2 147 025 rubles</td>
<td>2 years</td>
<td>16.44% total savings</td>
</tr>
<tr>
<td>Motion Sensors</td>
<td>226 754 rubles</td>
<td>2.5 years</td>
<td>1.23% total savings</td>
</tr>
<tr>
<td>Siemens System</td>
<td>1 562 023 rubles</td>
<td>5 years</td>
<td>4.43% total savings</td>
</tr>
<tr>
<td>Piezoelectric Floor</td>
<td>56 232 rubles</td>
<td>Not in the next 5 years</td>
<td>0.1 kWh per day production</td>
</tr>
<tr>
<td>Vertical Garden</td>
<td>113 163 970 rubles</td>
<td>Not in the next 5 years</td>
<td>2.25% total savings on Academic Building 1</td>
</tr>
<tr>
<td>Eco Machine</td>
<td>5 680 023 rubles</td>
<td>Not in the next 5 years</td>
<td>3.5 kWh per day production</td>
</tr>
</tbody>
</table>

Table 2. Comparison of all technologies.

Efficient Bulbs
We recommend that Astrakhan State University change all of the light bulbs in each of the three buildings based on the chief engineer’s suggestions. Although the light bulbs have an initial installation cost, we have calculated that it will be paid off within the next two years. Additionally, it will improve the lighting efficiency of the campus by 56% and overall electricity efficiency by 16%.

Motion Sensors
We recommend that Astrakhan State University install motion sensors into the lobbies, hallways, restrooms and stairways of the three buildings. Motion sensors are a cost effective solution; the initial setup is not expensive compared to other solutions, and the payback period is two and a half year. Motion sensors are not proven to increase energy efficiency significantly, but they will still help the university comply with annual energy consumption regulations.

Siemens Desigo Building Automation System
We do not recommend that Astrakhan State University install the Siemens Desigo Building Automation System into the older campus buildings. The cost of implementing the system is high compared to other similar solutions. The three older buildings we analyzed at ASU are not
as technologically advanced as the new building. Where the new building uses the system to control both lighting and HVAC systems, the older buildings would only use the system to control lighting. Additionally, the cost of the system cannot be paid back within 3 years. As a result, the Siemens Desigo Building Automation System would not prove to be a worthwhile investment.

Piezoelectric Flooring
We recommend that Astrakhan State University install 12 square feet piezoelectric floor tiles into the entryways of the three buildings. Piezoelectric flooring is a newer and expensive technology, and the price of the system has been decreasing exponentially in the past years. Rather than increasing the efficiency, this is an innovative technology that can produce electricity. We have proven that it would be difficult to pay back the installation cost of the flooring. We recommend that Astrakhan State University revisit this technology in two years to install additional piezoelectric floor tiles; this would allow the price of the flooring to decrease, therefore offering a more attractive payback period.

Vertical Garden System
We do not recommend that Astrakhan State University install a vertical garden system in the three buildings. The vertical garden system helps to increase the efficiency of the heating and cooling systems in the buildings. However, the current air conditioning system does not account for a significant percentage of electrical consumption. The total savings produced through this system would not be worthwhile when considering the initial cost of the technology. Although this is an interesting solution for energy efficiency, our team does not think it will offer significant energy savings for the University at this time.

Eco Machine
We do not recommend that Astrakhan State University install eco machines into their gym solely for the purpose of generating energy. The cost analysis proved that the installation cost for these machines cannot be paid back in the next three years. Additionally, the electrical energy generated by the machines does not significantly increase the energy efficiency of the University. However, if there comes a time when Astrakhan State University is purchasing new gym equipment, we would recommend that they purchase these machines.

Conclusion
After extensive analysis, we propose that Astrakhan State University change the lighting technologies in accordance to the chief engineer’s suggestions. This is the fastest, most effective way to decrease the energy consumption of the University and would result in the most rapid payback period. We would also recommend that motion sensors be installed in the lobbies, hallways and stairways of the three buildings. Motion sensors are easily implemented and inexpensive, and would also decrease the energy consumption of the buildings.

If Astrakhan State University is willing to invest the money, we would also recommend that the piezoelectric floor be installed in the doorways of the buildings. Although it is currently expensive and would offer a longer payback period, the piezoelectric floor would also decrease the amount of external energy required in the buildings. If three tiles are placed in the doorways
to the buildings, it would reduce energy consumption while also helping to establish Astrakhan State University as a leader in energy efficiency among universities in Russia.
Bibliography

Bilgen, S. (10/01/2014). "Structure and environmental impact of global energy consumption". Renewable & sustainable energy reviews (1364-0321), 38, p. 890

Appendix A. – Interview Questionnaire

For Interviewee’s with Energy Audit Experience

1) What has your experience been with conducting energy audits?

2) What type of audit would be the best suitable for three academic buildings over a period of 1-2 weeks of data collection?

 a) How long does it typically take?

 b) Are there any tools required to complete the audit?

3) In your experience, what are the most important steps to conduct an energy audit?

4) What precautions should be taken, if any?

5) Is there any specific type of audit/step that we should account for since our focus will be on lighting equipment on the buildings?
Michael: What has your experience been with conducting energy audits?

David: For the past 10 years, my experience with conducting the audits has been on a call-by-call basis where industry or residential has been looking to save money on electrical bills. What I do is I take the call and we go to the business or residence and see exactly what they have for what they are using for energy. What we normally do is we take the low fruit first, which would be the lighting -- get them into the mode of seeing what it is like to receive rebates, to get different types of lighting -- that’s the easy part of the job. Then what can happen in the industry is that we can start motors on the compressors and bigger items on the machinery and everything else. So that being said, that it what my business is related to the energy audit -- to go in, gather all the information that is needed, and required by the individual power company -- each one has different formats -- we find out what they pay for the energy, put it into a mathematical process and we come out with a number. Normally what happens is there’s a bottom line number to do the job, and then through the process of finding out what energy they use, how much they want to save, how much they pay per kWh, we give a rebate -- each individual power company is different. So let’s say that the job is $1000, the power company might pay half… so the customer will pay $500 for an $1000 job. And there’s the savings…per month so they get their $500 back.

Michael: What type of audit, as described as follows, would be the best suited for three academic buildings for a period of 1-2 weeks of data collection? We have an attached document with the three different types -- there’s a benchmarking audit [explains], a walk-through audit [explains], and a standard audit [explains] and a computer simulation [explains].

David: The first thing you would want to do is go through and see what the highest unit of energy use would be… The first thing you would do is look at the lighting...to get a flavor of the audit… Step number one is “here is what your lighting consumption is” and you show the wattage… And then what we’ll do is go into the HVAC, which is one of the big loads of the building. And we’ll say this is what it is costing you in the summer, in the winter, etc…. We can find ways of replacing [the biggest draws of energy] -- that’s the high end of the job. That is where the biggest cost and the biggest savings is… And then step two is we take all that information and we give it to the power company. The power company looks at what they’ve been using for energy for the past couple months, they look at our proposal for savings. Then they will approve the lower fruit, like the lighting… And then they’ll start looking at the higher end changes, which is complicated… They have engineers that will come in and look at the equipment and examine our proposal… After all that has been approved, the next step is to actually do the work. We would go in and do the lighting change… Most companies look for one-year payback… We have to work real hard to put the right equipment in, whether that be
fluorescent, LED, whatever we can put in for materials that will not jeopardize what they have now. We can go better, but we can’t go worse.

Michael: One thing you mentioned -- how do they typically look back at their usage?

David: As far as gathering what they have right now, the process of gathering that is looking at the electric bill… On your energy bill it shows your consumption… I have to go in and show the energy company this, and show them what I’m proposing. There has to be a difference in what they are actually using and what they are going to save… That’s how the whole process works -- proving what they are using now and proving what you are going to do for a change, so they are going to use less energy without jeopardizing their business.

Michael: How long does it typically take to gather the information?

David: That all depends on where you are going and the amount of work the individual is looking at doing… I have to look at all the lighting in all the rooms. If its a fluorescent, I have to look at the ballast, I have to look at the wattage, I have to see what size. I’ll gather all that from the rooms, and then I’ll go into the common areas like the hallways, and then I’ll look at the exterior lighting. So an office building with seven offices, common areas and exterior lighting would probably take about 4-5 hours… Then the paperwork end of it would probably be about another eight-hour workday to put everything together to present to the power company.

Michael: Are there any tools required to complete the audit?

David: There is tools required. If we go in with our lighting we have meters and we’re going to measure the amount of light that they have now, and that’s what our standard will be. We will have to either go above the standard or stay there, we cannot go below it. And the customer will tell us if they want to increase it or if they want it to stay the same… The tools that we use are light meters.

Michael: Can you tell me a little bit more about the light meters? Maybe what they measure?

David: What they measure is in lumen, there are different names for it. What that is starts at what the sunlight would be at that meter and starts to stray back from that. The highest reading is what the sunlight would measure and then it decreases from there… Every application is different. It basically finds the actual illumination from each fixture.

Michael: In your experience, what are the most important steps to conduct an energy audit?
David: The most important step is being accurate. When you actually go in to conduct the audit, you don’t just guess, you really have to look into it… One of the other important things is the actual hours of usage.

Michael: What precautions should be taken, if any?

David: There’s a lot of precautions that can harm. Nowadays, the industry is very strict about going into electrical panels, going into electrical fixtures, going into live parts. If you’re going to be going into live parts and the company has conducted what is called an arc-fault energy audit, it will tell you on that item what you need to wear in terms of clothing, distances you need to stay away from it…

Michael: Is there a specific type of audit or steps we should account for since our focus will be on the lighting of the buildings?

David: The first step is to ask the customer for his electrical bill for the past two months -- the past three months would be better. Once we have that, then we can look into that particular building. We can gather wattages of all our existing lighting. The next step is what are we going to replace that with? What is the best way to replace that -- with different fixtures, bulb, lamps?... We figure out the cheapest cost of replacement without jeopardizing any lighting issues for the customer… Then put that together and run a spreadsheet to show the existing draw is, what the saving is, the total cost of the job, the rebate on the job, and how quick the payoff is… We give that spreadsheet to the power company and they will either say yay or nay… If they approve it, then you go in and do the job. The power company will then come in and look at the job, they’ll approve the project and cut a check… After that’s all complete, it is important to make sure the disposal is done properly, and there’s a cost associated with that, which should have been put into the estimated cost of the job.

Michael: You had mentioned reading the bills -- does it break down and itemize the systems?

David: It doesn’t. It is very important to get an accurate count of what the lighting is going to be. They’ll base the rebate number on your calculates really. You really want to try to do it right to get the biggest bang for the customer’s buck.

Michael: Good, I think that about does it, thank you for your time.
Appendix A.2 – John Orr

- Atwater Kent has had an energy audit earlier and the type of equipment were changed after the audit. It seems like AK needs another energy audit.
- We should look at an IQP on Gordon library a couple of years back: the IQP found good economic payback but it wasn’t implemented. This is because when the library was built, asbestos was added in the walls, which is now proved to be carcinogenic, and so breaking building walls wasn’t considered a good idea to expose that material.
- The step one for our procedure should be analyze the lighting fixtures: how efficient is it now? Think on the lines of how can lighting in a room be more efficient. Looking to retrofit this with change in lighting. Look into: 1) changing the bulb. 2) changing both the values and the bulb. Check one bulb and analyze and then conclude.
- Another step could be to change the light entirely: moving light around the room (maybe just have a desk light?)
- *Hallways are different than rooms - sensors can be used- they have both pros and cons
- Simple things like “turn off lights board” can have some impact in human behavioral.
- We should concentrate on good data capture while at the university. Cameras, pictures, data from the light fixtures --- light meters (Professor Orr could let us borrow his own).
- Do a dry run in WPI that could help us! Pick a building and walk around as if we were in Russia. Think how would we improve the efficiency!
- LED lighting has gained a lot of efficiency. LED has been super energy efficient in general and replacing old bulbs with LEDs could make a good impact.
- Beware of energy fraud out there: companies lying about their products reducing energy consumption.
Appendix A.3 – Elizabeth Tomaszewski

- If we want actual data there is a form to fill out
- Done retrofits in CC – substantially energy saving
 - Mostly LED lighting
 - Can look up report to see savings
 - Campus Center Walking Tour
 - Focusing lighting on room instead of on the ceiling
 - Sent us a brochure on how they improved the CC lighting
- Lots of reporting on energy saving in CC – mostly done on lighting
 - Will look through and look for reports and email them to us
- Sports and Rec center
 - Lighting in pool area – inaccessible
 - Replace with LEDs to last longer
 - Not sure if any reports exist, she will look
- Project done on replacing lights in library a few years ago
 - Anticipated 3 year payback
 - We found this and have used it in our background research
- Motion sensors
 - Sports and rec center sustainability
 - Lighting sensors and controls – made a big difference
 - Daylight sensor – side of light has a sensor that dims light when senses daylight
- Consider Glass, Windows, and Shades
 - Deflect solar heating and glare
- GreenerU involved with WPI
 - Worked together for many years, ended in 2015
 - Engaged in 2012
 - Tri campus council synergy Worcester
 - Ready to sign a new contract with GreenerU for energy saving in retrofitting
 - GreenerU will be working with WPI this summer on Alden, AK and Morgan
 - Not a lot of lighting retrofits
 - Will email contact information – Director of change management
 - May not be the best person to talk to, but will direct us to someone to help us more
Appendix B. - Benchmark

The following tables contain the electrical meter data from ASU campus buildings as well as the analysis provided by Energy Star Portfolio Manager Software. The large difference between the buildings at ASU and similar median buildings in the US is particularly noted.

Table B.1: Monthly electrical meter data collected from ASU records for the past year.

<table>
<thead>
<tr>
<th>Building Name</th>
<th>Academic Building 1</th>
<th>Hostel 3</th>
<th>Hostel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Date</td>
<td>End Date</td>
<td>Energy Consumed (kWh)</td>
<td></td>
</tr>
<tr>
<td>9/1/2015</td>
<td>10/1/2015</td>
<td>25,334</td>
<td>30,950</td>
</tr>
<tr>
<td>10/1/2015</td>
<td>11/1/2015</td>
<td>32,815</td>
<td>24,778</td>
</tr>
<tr>
<td>11/1/2015</td>
<td>12/1/2015</td>
<td>38,392</td>
<td>29,092</td>
</tr>
<tr>
<td>12/1/2015</td>
<td>1/1/2016</td>
<td>43,497</td>
<td>22,260</td>
</tr>
<tr>
<td>1/1/2016</td>
<td>2/1/2016</td>
<td>24,926</td>
<td>8,077</td>
</tr>
<tr>
<td>2/1/2016</td>
<td>3/1/2016</td>
<td>31,014</td>
<td>43,721</td>
</tr>
<tr>
<td>3/1/2016</td>
<td>4/1/2016</td>
<td>35,626</td>
<td>28,814</td>
</tr>
<tr>
<td>4/1/2016</td>
<td>5/1/2016</td>
<td>36,686</td>
<td>30,062</td>
</tr>
<tr>
<td>5/1/2016</td>
<td>6/1/2016</td>
<td>26,996</td>
<td>21,575</td>
</tr>
<tr>
<td>6/1/2016</td>
<td>7/1/2016</td>
<td>41,257</td>
<td>25,487</td>
</tr>
<tr>
<td>7/1/2016</td>
<td>8/1/2016</td>
<td>40,640</td>
<td>15,018</td>
</tr>
<tr>
<td>8/1/2016</td>
<td>9/1/2016</td>
<td>44,000</td>
<td>19,135</td>
</tr>
</tbody>
</table>

Table B.2: Gross floor area (GFA) for each building.

<table>
<thead>
<tr>
<th>Floor</th>
<th>Academic Building 1</th>
<th>Hostel 3</th>
<th>Hostel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gross Floor Area (GFA) (m²)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground</td>
<td>367.5</td>
<td>672.0</td>
<td>548.6</td>
</tr>
<tr>
<td>1</td>
<td>2224.9</td>
<td>1518.8</td>
<td>690.3</td>
</tr>
<tr>
<td>2</td>
<td>1823.3</td>
<td>1518.8</td>
<td>727.5</td>
</tr>
<tr>
<td>3</td>
<td>1207.6</td>
<td>1518.8</td>
<td>713.9</td>
</tr>
<tr>
<td>4</td>
<td>1283.3</td>
<td>1518.8</td>
<td>707.1</td>
</tr>
<tr>
<td>5</td>
<td>N/A</td>
<td>1518.8</td>
<td>713.2</td>
</tr>
<tr>
<td>Total</td>
<td>6906.7</td>
<td>8266.3</td>
<td>4100.6</td>
</tr>
</tbody>
</table>

Table B.3: Table of the assumptions used in the Portfolio Manager. Heating was assumed to be 0.0% as the heating system was not electric. Cooling was assumed low as the buildings had sparse window and wall units, rather than a central system. Lastly, occupancy was determined from determined from the amount of office space or dorm rooms when compared to other room types.

<table>
<thead>
<tr>
<th>Assumptions</th>
<th>Academic Building 1</th>
<th>Hostel 3</th>
<th>Hostel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Heated</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>% Cooled</td>
<td>40.0</td>
<td>40.0</td>
<td>40.0</td>
</tr>
<tr>
<td>% Occupancy</td>
<td>80.0</td>
<td>80.0</td>
<td>80.0</td>
</tr>
</tbody>
</table>
Table B.4: Energy Star Portfolio Manager analysis of Academic Building 1 with comparison to the median value of similar buildings in the US.

<table>
<thead>
<tr>
<th>Building Name</th>
<th>Metric</th>
<th>ASU Building (Current)</th>
<th>Median Property</th>
<th>% Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Building 1</td>
<td>Energy Star Score (1-100)</td>
<td>100</td>
<td>50</td>
<td>72.9</td>
</tr>
<tr>
<td></td>
<td>Energy Use Intensity (kWh/m²)</td>
<td>61</td>
<td>225</td>
<td>72.9</td>
</tr>
<tr>
<td></td>
<td>Energy Use (kWh)</td>
<td>421,166</td>
<td>1,552,707</td>
<td>72.9</td>
</tr>
<tr>
<td></td>
<td>Total GHG Emissions (MtCO₂)</td>
<td>236.6</td>
<td>872.2</td>
<td>72.9</td>
</tr>
</tbody>
</table>

Table B.5: Energy Star Portfolio Manager analysis of Academic Hostel 3 with comparison to the median value of similar buildings in the US.

<table>
<thead>
<tr>
<th>Building Name</th>
<th>Metric</th>
<th>ASU Building (Current)</th>
<th>Median Property</th>
<th>% Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hostel 3</td>
<td>Energy Star Score (1-100)</td>
<td>100</td>
<td>50</td>
<td>76.7</td>
</tr>
<tr>
<td></td>
<td>Energy Use Intensity (kWh/m²)</td>
<td>37</td>
<td>160</td>
<td>76.6</td>
</tr>
<tr>
<td></td>
<td>Energy Use (kWh)</td>
<td>298,957</td>
<td>1,277,366</td>
<td>76.6</td>
</tr>
<tr>
<td></td>
<td>Total GHG Emissions (MtCO₂)</td>
<td>168</td>
<td>718</td>
<td>76.6</td>
</tr>
</tbody>
</table>

Table B.6: Energy Star Portfolio Manager analysis of Hostel 1 with comparison to the median value of similar buildings in the US.

<table>
<thead>
<tr>
<th>Building Name</th>
<th>Metric</th>
<th>ASU Building (Current)</th>
<th>Median Property</th>
<th>% Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hostel 1</td>
<td>Energy Star Score (1-100)</td>
<td>98</td>
<td>50</td>
<td>63.0</td>
</tr>
<tr>
<td></td>
<td>Energy Use Intensity (kWh/m²)</td>
<td>41</td>
<td>111</td>
<td>63.0</td>
</tr>
<tr>
<td></td>
<td>Energy Use (kWh)</td>
<td>167,511</td>
<td>454,036</td>
<td>63.1</td>
</tr>
<tr>
<td></td>
<td>Total GHG Emissions (MtCO₂)</td>
<td>94.1</td>
<td>255.1</td>
<td>63.1</td>
</tr>
</tbody>
</table>
Appendix C. - The Energy Audit

To provide an understanding on how well a building performs, an energy audit is an integral preliminary step on the path to increasing energy efficiency. Described simply, an energy audit is an evaluation of the consumption and use of energy in a building, generally with the aim to improve the overall energy efficiency. Many systems in a building can be analyzed through this process such as the following: heating, cooling, generators, lighting, and appliances such as pumps and computers. The scope varies for the type of building being considered: for instance in academic and office structures, electrical, lighting, heating and cooling systems are the most important and have high potential energy savings.

The prescribed steps taken during an audit vary among sources and depend largely on the needs and constraints of the project. However, the following types of audits, adopted from Albert Thumann’s *Handbook of Energy Audits*, build on each other and offer a clear path through the process of the energy audit (Thumann, 2012). The types of audits outlined are as follows: the benchmarking audit, the walkthrough audit, the standard audit, and computer simulation audit. These types are routine in practice, as was discussed with David Litalien, a licensed electrician. The following sections describe each audit in detail.

Type 0: The Benchmarking Audit

The most basic type of audit is the benchmarking audit. It provides a preliminary analysis of energy needs of a facility by initially examining billing records over a period of time, typically one to three years. This wide range of data allows the auditor to understand how energy demands may vary through seasons to predict average uses for future years. By comparing to standard energy needs in similar facilities, the auditor can understand how efficient the building currently is and quantify excess energy consumption. This type is cost-effective and requires only a minimum amount of time to analyze the data, as much of the work is done on paper. However, in this respect this type of audit is incomplete, as the full details of the facility can only be realized with closer and more personal inspection of the building.

Type 1: The Walkthrough Audit

The next type of audit is referred to as the walkthrough audit, as the auditor literally walks through the building, examining various energy-consuming systems (i.e. lighting, heating, cooling, etc.). This process aims primarily at categorizing the inventory of devices and models and maintenance practices, currently being used at the facility. In conjunction with the facility’s energy consumption record, the auditor can identify some preliminary savings and steps for minor improvements. Compared to the previous type, this audit can take longer, depending on the size of the building and scope of the audit. Moreover, this audit will provide more preliminary information, and the auditor can determine if more detailed audits are warranted.

Type 2: The Standard Audit

The following type, the standard audit, is typically used in energy efficiency projects, as it provides further detail of the building and can lend to higher energy savings. In this audit various instruments are used to measure the usage and efficiency of energy systems. From the data
gathered, an auditor can quantify the uses and losses of energy more adequately than the previous types. For example, to measure the output of lighting systems, a lux meter records the lighting level throughout a room to determine if the system provides an adequate level. Furthermore, this information can lend to renovations that can be more energy efficient and cost effective; recommendations are routinely made based on economic analyses. However, to conduct this type of audit, an auditor would require enough time to gather the proper amount of information. For example David Litalien, a licensed electrician, cites that a complete energy audit of all systems for a moderately sized office building could take up to two weeks even with a few auditors working on the project. Depending on the scope and scale of the project, a few weeks may be necessary to complete the audit.

Type 3: The Computer Simulation Audit

A more involved approach to the auditing process is the computer simulation audit. As the name suggests, a computer program is designed to predict the energy consumption for a cycle, typically a year period. This approach is typically implemented in complex environments where varying energy systems can interact with each other: an example would be the lighting system affecting the heating system or vice versa. However, as one can surmise, a complete set of data, consisting of weather patterns and other variables, would have to be captured initially to design the software around the given parameters. For an accurate simulation, the auditor would need at least a year’s worth of data, if not more. This type of audit is the most costly of the ones described and requires a lengthy time span to implement. Due to this reason, this audit is best reserved for more complex systems.
Appendix D. - Energy Audit Worksheets

This appendix contains all information collected from the three ASU buildings during the Standard Audit as well as the total energy consumption of each appliance on an average daily basis. The total energy consumption was calculated by using the following estimate daily uses:

1. Lobby lights were assumed to be on 24 hours/day.
2. Hallway lights were assumed to be on 12 hours/day.
3. Room lights and office equipment (computers, printers, fax machines, etc.) were assumed to be on for 6 hours/day.
4. Refrigerators and water coolers were assumed to be on for 24 hours/day.
5. AC’s were assumed to be on for 1.5 hours/day, to account for when they are shut off during the heating season.
6. All other house equipment (ovens, microwaves, washing machines, TV’s, etc.) were assumed to operate between 0.5 – 2 hours/day, depending on the equipment.

Table D.1 lists the average energy consumption of each type of device. These values were estimated from common values of devices (ABS Alaskan, 2008).

<table>
<thead>
<tr>
<th>Device</th>
<th>Wattage (W)</th>
<th>Device</th>
<th>Wattage (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC (wall)</td>
<td>1000</td>
<td>Laptop</td>
<td>75</td>
</tr>
<tr>
<td>AC (window)</td>
<td>1200</td>
<td>Microwave</td>
<td>1050</td>
</tr>
<tr>
<td>ATM</td>
<td>5520</td>
<td>Oven</td>
<td>2150</td>
</tr>
<tr>
<td>Bulbs</td>
<td>see Type Code</td>
<td>Printer</td>
<td>25</td>
</tr>
<tr>
<td>Computer</td>
<td>103</td>
<td>Radio</td>
<td>20</td>
</tr>
<tr>
<td>Computer (videographer)</td>
<td>1200</td>
<td>Treadmill</td>
<td>1800</td>
</tr>
<tr>
<td>Fax Machine</td>
<td>100</td>
<td>TV</td>
<td>150</td>
</tr>
<tr>
<td>Fridge</td>
<td>275</td>
<td>Washing Machine</td>
<td>500</td>
</tr>
<tr>
<td>Iron</td>
<td>1000</td>
<td>Water Cooler</td>
<td>650</td>
</tr>
</tbody>
</table>

Table D.1: Average wattage of standard devices.

Additionally, the following type codes (TC) were used to condense the size of the audit sheets (see Table D.2).

<table>
<thead>
<tr>
<th>Type Code (TC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Incandescent</td>
</tr>
<tr>
<td>B. Fluorescent</td>
</tr>
<tr>
<td>C. Mercury Vapor</td>
</tr>
<tr>
<td>D. High Pressure Sodium</td>
</tr>
<tr>
<td>E. Low Pressure Sodium</td>
</tr>
<tr>
<td>F. Lamp 4x18</td>
</tr>
<tr>
<td>G. LPO 2x18</td>
</tr>
<tr>
<td>G1. LPO 2x36</td>
</tr>
<tr>
<td>H. NPP 1x60</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Table D.2: Type code of each device cataloged in energy audit.
Appendix D.1 - Hostel 1

The following audit sheets catalog the electrical equipment present in each room for Hostel 1. For floors 1 – 5, we estimated that each room had identical equipment and usage. All remaining data was collected as prescribed in the methods.

<table>
<thead>
<tr>
<th>Building:</th>
<th>Hostel 1</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Floor</th>
<th>Lighting</th>
<th>Computers</th>
<th>Refrigerator</th>
<th>Air Conditioner</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground</td>
<td>29,520</td>
<td>19,776</td>
<td>26,400</td>
<td>7,800</td>
<td>4,280</td>
</tr>
<tr>
<td>1</td>
<td>41,988</td>
<td>27,000</td>
<td>99,000</td>
<td>36,000</td>
<td>2,625</td>
</tr>
<tr>
<td>2</td>
<td>25,488</td>
<td>31,500</td>
<td>99,000</td>
<td>42,000</td>
<td>21,850</td>
</tr>
<tr>
<td>3</td>
<td>43,260</td>
<td>31,500</td>
<td>99,000</td>
<td>42,000</td>
<td>21,550</td>
</tr>
<tr>
<td>4</td>
<td>34,548</td>
<td>31,500</td>
<td>99,000</td>
<td>42,000</td>
<td>21,550</td>
</tr>
<tr>
<td>5</td>
<td>39,996</td>
<td>29,250</td>
<td>92,400</td>
<td>39,000</td>
<td>21,950</td>
</tr>
<tr>
<td>Total</td>
<td>214,800</td>
<td>170,526</td>
<td>514,800</td>
<td>208,800</td>
<td>93,805</td>
</tr>
</tbody>
</table>

Table D.3: Summary of data collected from Hostel 1.
Individual Room Data - Ground Floor (1 of 1)

Building: Hostel 1

Floor: Basement 1

<table>
<thead>
<tr>
<th>Room Number</th>
<th>Lighting</th>
<th>Computers</th>
<th>Other Appliances</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TC</td>
<td>#</td>
<td>W</td>
</tr>
<tr>
<td>1 - *lighting info for entire floor</td>
<td>G</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>5</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>22</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 3 | | 3 | LG | 6 | 1854 | AB | | 2 | 25 | 6 | 300 |
| AF | | 1 | 20 | 2 | 40 |

5		5		6	3090	AB		3	25	6	450
O	Hyundai	1	1050	0.5	525						
S	Capatob	1	275	24	6600						
AD		1	1000	1.5	1500						

6		6		8	6	4944	AB		2	25	6	300
O	Fusion BpmR	1	1050	0.5	525							
S	Nord Standard	1	275	24	6600							
AD	General Climate	1	1000	1.5	1500							
AG		1	100	6	600							

<p>| 7 | | 8 | | 6 | 4944 | AD | | 1 | 1000 | 1.5 | 1500 |
| AB | | 2 | 25 | 6 | 300 |
| AF | | 1 | 20 | 2 | 40 |
| S | Brand: Indesit | 1 | 275 | 24 | 6600 |
| O | Brand: CRS | 1 | 1050 | 0.5 | 525 |</p>
<table>
<thead>
<tr>
<th>Room Number</th>
<th>Lighting</th>
<th>Computers</th>
<th>Other Appliances</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TC</td>
<td># W hr/day</td>
<td>Brand hr/day</td>
</tr>
<tr>
<td>Lobby</td>
<td>F 5 80</td>
<td>24</td>
<td>9600</td>
</tr>
<tr>
<td></td>
<td>I 12 18</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Left Corridor</td>
<td>F 3 80</td>
<td>12</td>
<td>2880</td>
</tr>
<tr>
<td>Right Corridor</td>
<td>F 5 80</td>
<td>12</td>
<td>4800</td>
</tr>
<tr>
<td></td>
<td>G 1 40</td>
<td>12</td>
<td>480</td>
</tr>
<tr>
<td>Kitchen 1</td>
<td>I 3 18</td>
<td>6</td>
<td>324</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kitchen 2</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dining Room & Kitchen</td>
<td>I 6 18</td>
<td>6</td>
<td>648</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture Hall 1</td>
<td>G 3 40</td>
<td>6</td>
<td>720</td>
</tr>
<tr>
<td>Lecture Hall 2</td>
<td>G 3 40</td>
<td>6</td>
<td>720</td>
</tr>
<tr>
<td>Lecture Hall 3</td>
<td>G 3 40</td>
<td>6</td>
<td>720</td>
</tr>
<tr>
<td>Room Number</td>
<td>Building:</td>
<td>Lighting</td>
<td>Computers</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>Hostel 1</td>
<td>TC</td>
<td>W</td>
</tr>
<tr>
<td>Lecture Hall 4</td>
<td></td>
<td>G 3 40 6</td>
<td>720</td>
</tr>
<tr>
<td>Lecture Hall 5</td>
<td></td>
<td>G 2 40 6</td>
<td>480</td>
</tr>
<tr>
<td>Apartment 101</td>
<td>I 12 18 6</td>
<td></td>
<td>1296</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apartment 102</td>
<td>F 3 80 6</td>
<td>I 3 18 6</td>
<td>1440</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>324</td>
</tr>
<tr>
<td>Apartment 103</td>
<td>I 8 18 6</td>
<td></td>
<td>864</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apartment 104</td>
<td>I 10 18 6</td>
<td></td>
<td>1080</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apartment 105</td>
<td>H 2 60 6</td>
<td>I 11 18 6</td>
<td>720</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1188</td>
</tr>
<tr>
<td>Apartment 106</td>
<td>I 8 18 6</td>
<td></td>
<td>864</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apartment 107</td>
<td>I 8 18 6</td>
<td></td>
<td>864</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room Number</td>
<td>Lighting</td>
<td>Computers</td>
<td>Other Appliances</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>TC</td>
<td>#</td>
<td>W</td>
</tr>
<tr>
<td>Apartment 108</td>
<td>I</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>AD</td>
<td>2</td>
<td>1000</td>
</tr>
<tr>
<td>Apartment 109</td>
<td>I</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>AD</td>
<td>2</td>
<td>1000</td>
</tr>
<tr>
<td>Apartment 110</td>
<td>I</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>AD</td>
<td>2</td>
<td>1000</td>
</tr>
<tr>
<td>Apartment 111</td>
<td>I</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>AD</td>
<td>2</td>
<td>1000</td>
</tr>
<tr>
<td>Apartment 112</td>
<td>G</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>Bathroom</td>
<td>H</td>
<td>3</td>
<td>60</td>
</tr>
</tbody>
</table>
Individual Room Data – Floor 2 (1 of 4)

<table>
<thead>
<tr>
<th>Room Number</th>
<th>Lighting</th>
<th>Computers</th>
<th>Other Appliances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building: Hostel 1</td>
<td>Floor: 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lobby</td>
<td></td>
<td>AA 72"</td>
</tr>
<tr>
<td>TC</td>
<td>#</td>
<td>W</td>
<td>hr/day</td>
</tr>
<tr>
<td>F</td>
<td>4</td>
<td>80</td>
<td>24</td>
</tr>
<tr>
<td>Left Corridor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>3</td>
<td>80</td>
<td>12</td>
</tr>
<tr>
<td>Right Corridor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>5</td>
<td>40</td>
<td>12</td>
</tr>
<tr>
<td>Kitchen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>2</td>
<td>60</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bathroom</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>1</td>
<td>60</td>
<td>6</td>
</tr>
<tr>
<td>Dining Room & Kitchen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>6</td>
<td>60</td>
<td>6</td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>Apartment 201</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>6</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building:</td>
<td>Hostel 1</td>
<td>Floor: 2</td>
<td>Other Appliances</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Room Number</td>
<td>Lighting</td>
<td>Computers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TC</td>
<td>#</td>
<td>W</td>
</tr>
<tr>
<td>Apartment 202</td>
<td>I</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apartment 203</td>
<td>I</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apartment 204</td>
<td>I</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apartment 205</td>
<td>I</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apartment 206</td>
<td>I</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apartment 207</td>
<td>I</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Individual Room Data - Floor 2 (3 of 4)

| Building: | Hostel 1 | Floor: | 2 |

<table>
<thead>
<tr>
<th>Room Number</th>
<th>Lighting</th>
<th>Computers</th>
<th>Other Appliances</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TC</td>
<td>#</td>
<td>W</td>
</tr>
<tr>
<td>Apartment 208</td>
<td>I</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apartment 209</td>
<td>I</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apartment 210</td>
<td>I</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apartment 211</td>
<td>I</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apartment 212</td>
<td>I</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room Number</td>
<td>Building</td>
<td>Lighting</td>
<td>Computers</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>Hostel 1</td>
<td>TC</td>
<td>#</td>
</tr>
<tr>
<td>Apartment 213</td>
<td>2</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apartment 214</td>
<td>2</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room Number</td>
<td>Lighting</td>
<td>Computers</td>
<td>Other Appliances</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>TC</td>
<td>#</td>
<td>W</td>
</tr>
<tr>
<td>Lobby</td>
<td>F</td>
<td>6</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>2</td>
<td>60</td>
</tr>
<tr>
<td>Right Corridor</td>
<td>G</td>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>Left Corridor</td>
<td>G</td>
<td>6</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>4</td>
<td>60</td>
</tr>
<tr>
<td>Kitchen</td>
<td>H</td>
<td>5</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bathroom</td>
<td>H</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dining Room + Kitchen</td>
<td>I</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dorm No 301</td>
<td>I</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building</td>
<td>Hostel 1</td>
<td>Floor</td>
<td>3</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>Room Number</td>
<td>Lighting</td>
<td>Computers</td>
<td>Other Appliances</td>
</tr>
<tr>
<td></td>
<td>TC</td>
<td>W</td>
<td>hr/day</td>
</tr>
<tr>
<td>Dorm No 302</td>
<td>I 11</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dorm No 303</td>
<td>I 11</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dorm No 304</td>
<td>I 11</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dorm No 305</td>
<td>I 11</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dorm No 306</td>
<td>I 11</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dorm No 307</td>
<td>I 11</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room Number</td>
<td>Lighting</td>
<td>Computers</td>
<td>Other Appliances</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>TC</td>
<td>#</td>
<td>W</td>
</tr>
<tr>
<td>Dorm No 308</td>
<td>I</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dorm No 309</td>
<td>I</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dorm No 310</td>
<td>I</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dorm No 311</td>
<td>I</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dorm No 312</td>
<td>I</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dorm No 313</td>
<td>I</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dorm No 314</td>
<td>I</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room Number</td>
<td>Lighting</td>
<td>Other Appliances</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TC</td>
<td>#</td>
<td>W</td>
</tr>
<tr>
<td>Lobby</td>
<td>F</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>Left Corridor</td>
<td>G</td>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td>Right Corridor</td>
<td>G</td>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>Kitchen</td>
<td>I</td>
<td>4</td>
<td>18</td>
</tr>
<tr>
<td>Bathroom</td>
<td>I</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>Dining Room + Kitchen</td>
<td>G</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>Apartment 401</td>
<td>I</td>
<td>11</td>
<td>18</td>
</tr>
</tbody>
</table>

Building: Hostel 1
Floor: 4
<table>
<thead>
<tr>
<th>Room</th>
<th>Lighting</th>
<th>Computers</th>
<th>Other Appliances</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TC</td>
<td>#</td>
<td>W</td>
</tr>
<tr>
<td>Apartment 402</td>
<td>I</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apartment 403</td>
<td>I</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apartment 404</td>
<td>I</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apartment 405</td>
<td>I</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apartment 406</td>
<td>I</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apartment 407</td>
<td>I</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apartment 408</td>
<td>I</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building:</td>
<td>Hostel 1</td>
<td>Floor:</td>
<td>4</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>Room Number</td>
<td>Lighting</td>
<td>Computers</td>
<td>Other Appliances</td>
</tr>
<tr>
<td></td>
<td>TC</td>
<td># W</td>
<td>hr/day</td>
</tr>
<tr>
<td>Apartment 409</td>
<td>I 11 18 6 1188</td>
<td>5 laptops 6 2250</td>
<td>AA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AD</td>
</tr>
<tr>
<td>Apartment 410</td>
<td>I 11 18 6 1188</td>
<td>5 laptops 6 2250</td>
<td>AA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AD</td>
</tr>
<tr>
<td>Apartment 411</td>
<td>I 11 18 6 1188</td>
<td>5 laptops 6 2250</td>
<td>AA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AD</td>
</tr>
<tr>
<td>Apartment 412</td>
<td>I 11 18 6 1188</td>
<td>5 laptops 6 2250</td>
<td>AA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AD</td>
</tr>
<tr>
<td>Apartment 413</td>
<td>I 11 18 6 1188</td>
<td>5 laptops 6 2250</td>
<td>AA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AD</td>
</tr>
<tr>
<td>Apartment 414</td>
<td>I 11 18 6 1188</td>
<td>5 laptops 6 2250</td>
<td>AA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AD</td>
</tr>
<tr>
<td>Room Number</td>
<td>Lighting</td>
<td>Computers</td>
<td>Other Appliances</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>TC</td>
<td>#</td>
<td>W</td>
</tr>
<tr>
<td>Lobby</td>
<td>F 4</td>
<td>80</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>F 4</td>
<td>80</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>H 1</td>
<td>60</td>
<td>12</td>
</tr>
<tr>
<td>Right Corridor</td>
<td>F 3</td>
<td>80</td>
<td>12</td>
</tr>
<tr>
<td>Left Corridor</td>
<td>H 1</td>
<td>60</td>
<td>12</td>
</tr>
<tr>
<td>Kitchen</td>
<td>I 4</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>O 1</td>
<td>1050</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Y 1</td>
<td>1000</td>
<td>1</td>
</tr>
<tr>
<td>Bathroom</td>
<td>I 1</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>H 1</td>
<td>60</td>
<td>6</td>
</tr>
<tr>
<td>Dining Room + Kitchen</td>
<td>I 8</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Y 1</td>
<td>1000</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Q 1</td>
<td>2150</td>
<td>2</td>
</tr>
<tr>
<td>Dorm No</td>
<td>Room Number</td>
<td>Lighting</td>
<td>Computers</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TC</td>
<td># W hr/day</td>
</tr>
<tr>
<td>501</td>
<td></td>
<td>I</td>
<td>11 18 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>502</td>
<td></td>
<td>I</td>
<td>11 18 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>503</td>
<td></td>
<td>I</td>
<td>11 18 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>504</td>
<td></td>
<td>I</td>
<td>11 18 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>505</td>
<td></td>
<td>I</td>
<td>11 18 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>506</td>
<td></td>
<td>I</td>
<td>11 18 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>507</td>
<td></td>
<td>I</td>
<td>11 18 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room Number</td>
<td>Lighting</td>
<td>Computers</td>
<td>Other Appliances</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Dorm No 508</td>
<td>I 11 18 6 1188</td>
<td>5 laptops 6 2250</td>
<td>AA 27" 2 150 2 600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S 1 275 24 6600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AD 2 1000 1.5 3000</td>
</tr>
<tr>
<td>Dorm No 509</td>
<td>I 11 18 6 1188</td>
<td>5 laptops 6 2250</td>
<td>AA 27" 2 150 2 600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S 1 275 24 6600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AD 2 1000 1.5 3000</td>
</tr>
<tr>
<td>Dorm No 510</td>
<td>I 11 18 6 1188</td>
<td>5 laptops 6 2250</td>
<td>AA 27" 2 150 2 600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S 1 275 24 6600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AD 2 1000 1.5 3000</td>
</tr>
<tr>
<td>Dorm No 511</td>
<td>I 11 18 6 1188</td>
<td>5 laptops 6 2250</td>
<td>AA 27" 2 150 2 600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S 1 275 24 6600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AD 2 1000 1.5 3000</td>
</tr>
<tr>
<td>Dorm No 512</td>
<td>I 11 18 6 1188</td>
<td>5 laptops 6 2250</td>
<td>AA 27" 2 150 2 600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S 1 275 24 6600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AD 2 1000 1.5 3000</td>
</tr>
<tr>
<td>Dorm No 513</td>
<td>I 11 18 6 1188</td>
<td>5 laptops 6 2250</td>
<td>AA 27" 2 150 2 600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S 1 275 24 6600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AD 2 1000 1.5 3000</td>
</tr>
<tr>
<td>Dorm No 514</td>
<td>I 11 18 6 1188</td>
<td>5 laptops 6 2250</td>
<td>AA 27" 2 150 2 600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S 1 275 24 6600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AD 2 1000 1.5 3000</td>
</tr>
</tbody>
</table>
Appendix D.2 - Hostel 3

The following audit sheets catalog the electrical equipment present in each room for Hostel 3. For floor 2, we estimated that each room had similar equipment to other floors. All remaining data was collected as prescribed in the methods.

<table>
<thead>
<tr>
<th>Floor</th>
<th>Lighting</th>
<th>Computers</th>
<th>Refrigerator</th>
<th>Air Conditioner</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground</td>
<td>15,840</td>
<td>0</td>
<td>0</td>
<td>5,400</td>
<td>29,140</td>
</tr>
<tr>
<td>1</td>
<td>99,384</td>
<td>29,664</td>
<td>46,200</td>
<td>0</td>
<td>141,280</td>
</tr>
<tr>
<td>2</td>
<td>106,776</td>
<td>0</td>
<td>158,400</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>78,312</td>
<td>12,713</td>
<td>85,800</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>93,888</td>
<td>29,664</td>
<td>52,800</td>
<td>3,600</td>
<td>450</td>
</tr>
<tr>
<td>5</td>
<td>90,768</td>
<td>50,358</td>
<td>46,200</td>
<td>3,000</td>
<td>300</td>
</tr>
<tr>
<td>Total</td>
<td>484,968</td>
<td>122,399</td>
<td>389,400</td>
<td>12,000</td>
<td>171,170</td>
</tr>
</tbody>
</table>

Table D.4: Summary of data collected from Hostel 3.

<table>
<thead>
<tr>
<th>Room Number</th>
<th>Lighting</th>
<th>Computers</th>
<th>Other Appliances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gym (TC G1)</td>
<td>TC 33</td>
<td>W 80</td>
<td>hr/day 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building:</td>
<td>Hostel 3</td>
<td>Floor:</td>
<td>1</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Room</td>
<td>Lighting</td>
<td>Computers</td>
<td>Other Appliances</td>
</tr>
<tr>
<td>Number</td>
<td>TC</td>
<td>#</td>
<td>W</td>
</tr>
<tr>
<td>Lobby</td>
<td>F</td>
<td>6</td>
<td>80</td>
</tr>
<tr>
<td>Hallway</td>
<td>F</td>
<td>11</td>
<td>80</td>
</tr>
<tr>
<td>G1</td>
<td>2</td>
<td>80</td>
<td>12</td>
</tr>
<tr>
<td>Medical</td>
<td>G1</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>Point</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 - office</td>
<td>G1</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>7 - office</td>
<td>G1</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>8 - office</td>
<td>G1</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>11 - office</td>
<td>G1</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>12 - office</td>
<td>G1</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>13 - office</td>
<td>G1</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>Room Number</td>
<td>Lighting</td>
<td>Computers</td>
<td>Other Appliances</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>TC</td>
<td>#</td>
<td>W</td>
</tr>
<tr>
<td>14 - office</td>
<td>G1</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>15 - office</td>
<td>G1</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>16 - office</td>
<td>G1</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>17 - office</td>
<td>G1</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>18 - office</td>
<td>G1</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>19 - office</td>
<td>G1</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>20 - office</td>
<td>G1</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>21 - office</td>
<td>G1</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>Room Number</td>
<td>Lighting</td>
<td>Computers</td>
<td>Other Appliances</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>TC</td>
<td>#</td>
<td>W</td>
<td>hr/day</td>
</tr>
<tr>
<td>22 - office</td>
<td>G1</td>
<td>12</td>
<td>80</td>
</tr>
<tr>
<td>Female Locker Room</td>
<td>G1</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>Male Locker Room</td>
<td>G1</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>113 - office area in kitchen</td>
<td>H</td>
<td>4</td>
<td>60</td>
</tr>
<tr>
<td>Room Number</td>
<td>Lighting</td>
<td>Computers</td>
<td>Other Appliances</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>TC</td>
<td>#</td>
<td>W</td>
<td>hr/day</td>
</tr>
<tr>
<td>G</td>
<td>6</td>
<td>40</td>
<td>6</td>
</tr>
<tr>
<td>G1</td>
<td>40</td>
<td>80</td>
<td>6</td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dining Room</td>
<td>H</td>
<td>64</td>
<td>60</td>
</tr>
<tr>
<td>Room Number</td>
<td>Lighting</td>
<td>Computers</td>
<td>Other Appliances</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>TC</td>
<td># W hr/day</td>
<td>W hr/day</td>
</tr>
<tr>
<td>Lobby</td>
<td>F 4</td>
<td>80 24</td>
<td>7680</td>
</tr>
<tr>
<td>North Corridor</td>
<td>F 9 H 6</td>
<td>80 12 12</td>
<td>8640 4320</td>
</tr>
<tr>
<td>East Corridor</td>
<td>F 11</td>
<td>80 12</td>
<td>10560</td>
</tr>
<tr>
<td>Room 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Room 2</td>
<td>G1 2</td>
<td>80 6</td>
<td>960</td>
</tr>
<tr>
<td>Room 3</td>
<td>G1 2</td>
<td>80 6</td>
<td>960</td>
</tr>
<tr>
<td>Room 4</td>
<td>F 6</td>
<td>80 6</td>
<td>2880</td>
</tr>
<tr>
<td>Room 5</td>
<td>G1 2</td>
<td>80 6</td>
<td>960</td>
</tr>
<tr>
<td>Room 6</td>
<td>G1 2</td>
<td>80 6</td>
<td>960</td>
</tr>
<tr>
<td>Room Number</td>
<td>Lighting</td>
<td>Computers</td>
<td>Other Appliances</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>TC</td>
<td># W hr/day</td>
<td>ΣWh/day</td>
</tr>
<tr>
<td>Room 7</td>
<td>G1 2</td>
<td>80 6</td>
<td>960</td>
</tr>
<tr>
<td>Room 8</td>
<td>G1 4</td>
<td>80 6</td>
<td>1920</td>
</tr>
<tr>
<td>Room 9</td>
<td>G1 2</td>
<td>80 6</td>
<td>960</td>
</tr>
<tr>
<td>Room 10</td>
<td>G1 6</td>
<td>80 6</td>
<td>2880</td>
</tr>
<tr>
<td>Room 11</td>
<td>G1 2</td>
<td>80 6</td>
<td>960</td>
</tr>
<tr>
<td>Room 12</td>
<td>G1 6</td>
<td>80 6</td>
<td>2880</td>
</tr>
<tr>
<td>Room 13</td>
<td>G1 2</td>
<td>80 6</td>
<td>960</td>
</tr>
<tr>
<td>Room 14</td>
<td>G1 4</td>
<td>80 6</td>
<td>1920</td>
</tr>
<tr>
<td>Room 15</td>
<td>G1 2</td>
<td>80 6</td>
<td>960</td>
</tr>
<tr>
<td>Building</td>
<td>Floor: 2</td>
<td>Lighting</td>
<td>Computers</td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Room Number</td>
<td></td>
<td>TC</td>
<td># W hr/day</td>
</tr>
<tr>
<td>Room 16</td>
<td></td>
<td>G1</td>
<td>4 80 6</td>
</tr>
<tr>
<td>Room 17</td>
<td></td>
<td>G1</td>
<td>2 80 6</td>
</tr>
<tr>
<td>Room 19</td>
<td></td>
<td>G1</td>
<td>2 80 6</td>
</tr>
<tr>
<td>Room 21</td>
<td></td>
<td>G1</td>
<td>2 80 6</td>
</tr>
<tr>
<td>Room 23</td>
<td></td>
<td>G1</td>
<td>2 80 6</td>
</tr>
<tr>
<td>Room 25</td>
<td></td>
<td>F</td>
<td>14 80 6</td>
</tr>
<tr>
<td>Warehouse</td>
<td></td>
<td>G1</td>
<td>2 80 6</td>
</tr>
<tr>
<td>Men's bathroom</td>
<td></td>
<td>H</td>
<td>4 60 6</td>
</tr>
<tr>
<td>Women's bathroom</td>
<td></td>
<td>I</td>
<td>2 18 6</td>
</tr>
<tr>
<td>Room Number</td>
<td>Building: Hostel 3</td>
<td>Lighting</td>
<td>Computers</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TC</td>
<td># W hr/day</td>
</tr>
<tr>
<td>200</td>
<td></td>
<td>H</td>
<td>4 60 6</td>
</tr>
<tr>
<td>201</td>
<td></td>
<td>G1 H</td>
<td>2 80 6</td>
</tr>
<tr>
<td>202</td>
<td></td>
<td>H l</td>
<td>2 18 6</td>
</tr>
<tr>
<td>203</td>
<td></td>
<td>H</td>
<td>8 60 6</td>
</tr>
<tr>
<td>204</td>
<td></td>
<td>H l</td>
<td>2 18 6</td>
</tr>
<tr>
<td>205</td>
<td></td>
<td>H</td>
<td>4 60 6</td>
</tr>
<tr>
<td>206</td>
<td></td>
<td>H l</td>
<td>2 18 6</td>
</tr>
<tr>
<td>207</td>
<td></td>
<td>H l</td>
<td>2 18 6</td>
</tr>
<tr>
<td>208</td>
<td></td>
<td>H l</td>
<td>2 18 6</td>
</tr>
<tr>
<td>Room Number</td>
<td>Lighting</td>
<td>Computers</td>
<td>Other Appliances</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>TC</td>
<td>#</td>
<td>W</td>
</tr>
<tr>
<td>209</td>
<td>H 4</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>210</td>
<td>H 4</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>211</td>
<td>H 4</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>212</td>
<td>H 4</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>213</td>
<td>H 4</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>214</td>
<td>H 4</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>215</td>
<td>H 4</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>216</td>
<td>H 4</td>
<td>2</td>
<td>18</td>
</tr>
</tbody>
</table>
Individual Room Data - Floor 2 (6 of 6)

Building: Hostel 3
Floor: 2

<table>
<thead>
<tr>
<th>Room Number</th>
<th>Lighting</th>
<th>Computers</th>
<th>Other Appliances</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TC W hr/day</td>
<td>ΣWh/day</td>
<td># Brand hr/day</td>
</tr>
<tr>
<td>217</td>
<td>H 4 60</td>
<td>1440</td>
<td>S 1 275 24</td>
</tr>
<tr>
<td></td>
<td>I 2 18</td>
<td>216</td>
<td></td>
</tr>
<tr>
<td>218</td>
<td>H 4 60</td>
<td>1440</td>
<td>S 1 275 24</td>
</tr>
<tr>
<td></td>
<td>I 2 18</td>
<td>216</td>
<td></td>
</tr>
<tr>
<td>219</td>
<td>H 4 60</td>
<td>1440</td>
<td>S 1 275 24</td>
</tr>
<tr>
<td></td>
<td>I 2 18</td>
<td>216</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>I 2 18</td>
<td>216</td>
<td>S 1 275 24</td>
</tr>
<tr>
<td>221</td>
<td>I 2 18</td>
<td>216</td>
<td>S 1 275 24</td>
</tr>
<tr>
<td>222</td>
<td>F 4 80</td>
<td>1920</td>
<td>S 1 275 24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staircase</td>
<td>G 2 40</td>
<td>480</td>
<td>S 1 275 24</td>
</tr>
<tr>
<td>Room Number</td>
<td>Lighting</td>
<td>Computers</td>
<td>Other Appliances</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>TC</td>
<td>#</td>
<td>W</td>
</tr>
<tr>
<td>Lobby</td>
<td>F</td>
<td>6</td>
<td>80</td>
</tr>
<tr>
<td>North Corridor</td>
<td>F</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>G1</td>
<td>5</td>
<td>80</td>
</tr>
<tr>
<td>South Corridor</td>
<td>G1</td>
<td>7</td>
<td>80</td>
</tr>
<tr>
<td>Dorm No 1</td>
<td>G</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>G1</td>
<td>5</td>
<td>80</td>
</tr>
<tr>
<td>Dorm No 2</td>
<td>G</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>G1</td>
<td>5</td>
<td>80</td>
</tr>
<tr>
<td>Dorm No 3</td>
<td>G</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>G1</td>
<td>5</td>
<td>80</td>
</tr>
<tr>
<td>Dorm No 4</td>
<td>G</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>G1</td>
<td>5</td>
<td>80</td>
</tr>
<tr>
<td>Dorm No 5</td>
<td>G</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>G1</td>
<td>5</td>
<td>80</td>
</tr>
<tr>
<td>Dorm No 6</td>
<td>G</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>G1</td>
<td>5</td>
<td>80</td>
</tr>
<tr>
<td>Room Number</td>
<td>Lighting</td>
<td>Computers</td>
<td>Other Appliances</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>Dorm No 7</td>
<td>G 1 40 6</td>
<td>laptops 6</td>
<td>455 S 1 275 24 6600</td>
</tr>
<tr>
<td></td>
<td>G1 5 80 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dorm No 8</td>
<td>G 1 40 6</td>
<td>laptops 6</td>
<td>455 S 1 275 24 6600</td>
</tr>
<tr>
<td></td>
<td>G1 5 80 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dorm No 9</td>
<td>H 6 60 6</td>
<td>laptops 6</td>
<td>455 S 1 275 24 6600</td>
</tr>
<tr>
<td>Dorm No 10</td>
<td>H 6 60 6</td>
<td>laptops 6</td>
<td>455 S 1 275 24 6600</td>
</tr>
<tr>
<td>Dorm No 11</td>
<td>H 6 60 6</td>
<td>laptops 6</td>
<td>455 S 1 275 24 6600</td>
</tr>
<tr>
<td>Dorm No 12</td>
<td>H 6 60 6</td>
<td>laptops 6</td>
<td>455 S 1 275 24 6600</td>
</tr>
<tr>
<td>Dorm No 13</td>
<td>H 6 60 6</td>
<td>laptops 6</td>
<td>455 S 1 275 24 6600</td>
</tr>
<tr>
<td>Student Union</td>
<td>F 2 80 6</td>
<td>960</td>
<td></td>
</tr>
<tr>
<td>Office</td>
<td>F 2 80 6</td>
<td>960</td>
<td></td>
</tr>
<tr>
<td>Building:</td>
<td>Hostel 3</td>
<td>Floor:</td>
<td>3</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>Room Number</td>
<td>Lighting</td>
<td>Computers</td>
<td>Other Appliances</td>
</tr>
<tr>
<td>Dining Room 1</td>
<td>G1</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>Kitchen 1</td>
<td>G1</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>Bathroom 1</td>
<td>H</td>
<td>4</td>
<td>60</td>
</tr>
<tr>
<td>Person on Duty Office 1</td>
<td>G1</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>Laundry Room 1</td>
<td>G1</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>Washroom 1</td>
<td>G1</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>Shower 1</td>
<td>H</td>
<td>4</td>
<td>60</td>
</tr>
<tr>
<td>301</td>
<td>F</td>
<td>6</td>
<td>80</td>
</tr>
<tr>
<td>Room Number</td>
<td>Building: Hostel 3</td>
<td>Lighting</td>
<td>Computers</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>303</td>
<td></td>
<td>TC 6 W 80 hr/day 6 ΣWh/day 2880</td>
<td></td>
</tr>
<tr>
<td>Person on Duty Office 2</td>
<td></td>
<td>G1 1 80 6 480</td>
<td></td>
</tr>
<tr>
<td>Kitchen 2</td>
<td></td>
<td>H 3 60 6 1080</td>
<td></td>
</tr>
<tr>
<td>Dining Room 2</td>
<td></td>
<td>G1 3 80 6 1440</td>
<td></td>
</tr>
<tr>
<td>Shower 2</td>
<td></td>
<td>H 6 60 6 2160</td>
<td></td>
</tr>
<tr>
<td>Bathroom 2</td>
<td></td>
<td>I 4 18 6 432</td>
<td></td>
</tr>
<tr>
<td>Stairwell</td>
<td></td>
<td>G 2 40 6 480</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Note/Brand</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
</tr>
<tr>
<td>G1</td>
</tr>
<tr>
<td>H</td>
</tr>
<tr>
<td>G1</td>
</tr>
<tr>
<td>H</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>G</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Building: Hostel 3</th>
<th>Lighting</th>
<th>Computers</th>
<th>Other Appliances</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TC 6 W 80 hr/day 6 ΣWh/day 2880</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Person on Duty Office 2</td>
<td></td>
<td>G1 1 80 6 480</td>
<td></td>
</tr>
<tr>
<td>Kitchen 2</td>
<td></td>
<td>H 3 60 6 1080</td>
<td></td>
</tr>
<tr>
<td>Dining Room 2</td>
<td></td>
<td>G1 3 80 6 1440</td>
<td></td>
</tr>
<tr>
<td>Shower 2</td>
<td></td>
<td>H 6 60 6 2160</td>
<td></td>
</tr>
<tr>
<td>Bathroom 2</td>
<td></td>
<td>I 4 18 6 432</td>
<td></td>
</tr>
<tr>
<td>Stairwell</td>
<td></td>
<td>G 2 40 6 480</td>
<td></td>
</tr>
<tr>
<td>Room Number</td>
<td>Lighting</td>
<td>Computers</td>
<td>Other Appliances</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>TC</td>
<td>#</td>
<td>W</td>
</tr>
<tr>
<td>Lobby</td>
<td>F 4</td>
<td>80</td>
<td>24</td>
</tr>
<tr>
<td>North Corridor</td>
<td>F 4</td>
<td>80</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>G1 3</td>
<td>80</td>
<td>12</td>
</tr>
<tr>
<td>East Corridor</td>
<td>G 9</td>
<td>40</td>
<td>12</td>
</tr>
<tr>
<td>Student office</td>
<td>F 6</td>
<td>80</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>AB 1</td>
<td>25</td>
<td>6</td>
</tr>
<tr>
<td>Department of HR</td>
<td>F 12</td>
<td>80</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage</td>
<td>G1 2</td>
<td>80</td>
<td>6</td>
</tr>
<tr>
<td>Archive 1</td>
<td>G1 8</td>
<td>80</td>
<td>6</td>
</tr>
<tr>
<td>Archive 2</td>
<td>F 6</td>
<td>80</td>
<td>6</td>
</tr>
<tr>
<td>Room Number</td>
<td>Lighting</td>
<td>Computers</td>
<td>Other Appliances</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>TC</td>
<td>#</td>
<td>W</td>
</tr>
<tr>
<td>Archive 3</td>
<td>G1</td>
<td>14</td>
<td>80</td>
</tr>
<tr>
<td>Archive 4</td>
<td>G1</td>
<td>14</td>
<td>80</td>
</tr>
<tr>
<td>44 - class</td>
<td>G1</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>45 - class</td>
<td>F</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>46 - class</td>
<td>G1</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>47 - class</td>
<td>G1</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>48 - class</td>
<td>G1</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>49 - class</td>
<td>G1</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>414 - class</td>
<td>F</td>
<td>4</td>
<td>80</td>
</tr>
</tbody>
</table>
Individual Room Data - Floor 4 (3 of 5)

<table>
<thead>
<tr>
<th>Room Number</th>
<th>Lighting</th>
<th>Computers</th>
<th>Other Appliances</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TC</td>
<td># W hr/day</td>
<td>Σ Wh/day</td>
</tr>
<tr>
<td>415 - class</td>
<td>F 4</td>
<td>80 6</td>
<td>1920</td>
</tr>
<tr>
<td>Dispatch</td>
<td>G1 2</td>
<td>80 6</td>
<td>960</td>
</tr>
<tr>
<td>Dorm No 1</td>
<td>G 1</td>
<td>40 6</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>G1 5</td>
<td>80 6</td>
<td>2400</td>
</tr>
<tr>
<td>Dorm No 2</td>
<td>G 1</td>
<td>40 6</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>G1 5</td>
<td>80 6</td>
<td>2400</td>
</tr>
<tr>
<td>Dorm No 3</td>
<td>G 1</td>
<td>40 6</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>G1 5</td>
<td>80 6</td>
<td>2400</td>
</tr>
<tr>
<td>Dorm No 4</td>
<td>G 1</td>
<td>40 6</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>G1 5</td>
<td>80 6</td>
<td>2400</td>
</tr>
<tr>
<td>Dorm No 5</td>
<td>G 1</td>
<td>40 6</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>G1 5</td>
<td>80 6</td>
<td>2400</td>
</tr>
<tr>
<td>Dorm No 6</td>
<td>G 1</td>
<td>40 6</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>G1 5</td>
<td>80 6</td>
<td>2400</td>
</tr>
<tr>
<td>Dorm No 7</td>
<td>G 1</td>
<td>40 6</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>G1 5</td>
<td>80 6</td>
<td>2400</td>
</tr>
<tr>
<td>Room Number</td>
<td>Lighting</td>
<td>Computers</td>
<td>Other Appliances</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>TC</td>
<td>#</td>
<td>W</td>
</tr>
<tr>
<td>Dorm No 8</td>
<td>G</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>G1</td>
<td>5</td>
<td>80</td>
</tr>
<tr>
<td>Canteen</td>
<td>G1</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>Laundry</td>
<td>G1</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>Washroom</td>
<td>H</td>
<td>3</td>
<td>60</td>
</tr>
<tr>
<td>Shower</td>
<td>H</td>
<td>4</td>
<td>60</td>
</tr>
<tr>
<td>Bathroom 1</td>
<td>H</td>
<td>4</td>
<td>60</td>
</tr>
<tr>
<td>Kitchen</td>
<td>G1</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>Room Number</td>
<td>Lighting</td>
<td>Computers</td>
<td>Other Appliances</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>TC</td>
<td># W hr/day</td>
<td>ΣWh/day</td>
</tr>
<tr>
<td>Floor Butler</td>
<td>G1 2</td>
<td>80 6</td>
<td>960</td>
</tr>
<tr>
<td>Bathroom 2</td>
<td>I 6</td>
<td>18 6</td>
<td>648</td>
</tr>
<tr>
<td>Staircase</td>
<td>G 2</td>
<td>40 6</td>
<td>480</td>
</tr>
<tr>
<td>Room Number</td>
<td>Lighting</td>
<td>Computers + Monitors</td>
<td>Other Appliances</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>----------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>TC # W hr/day</td>
<td># Brand hr/day</td>
<td>ΣWh/day</td>
</tr>
<tr>
<td>Lobby</td>
<td>9 80 24</td>
<td>1</td>
<td>17280</td>
</tr>
<tr>
<td>North Corridor</td>
<td>F 4 80 12</td>
<td>13 ViewSonic 6</td>
<td>8034</td>
</tr>
<tr>
<td>East Corridor</td>
<td>G 8 40 12</td>
<td>17 Samsung 6</td>
<td>10506</td>
</tr>
<tr>
<td>500</td>
<td>F 9 80 6</td>
<td>13 ViewSonic 6</td>
<td>8034</td>
</tr>
<tr>
<td>501</td>
<td>F 9 80 6</td>
<td>17 Samsung 6</td>
<td>10506</td>
</tr>
<tr>
<td>500A</td>
<td>F 9 80 6</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>502</td>
<td>G1 2 80 6</td>
<td>960</td>
<td>0</td>
</tr>
<tr>
<td>504</td>
<td>G1 2 80 6</td>
<td>12 ViewSonic 6</td>
<td>7416</td>
</tr>
<tr>
<td>505</td>
<td>G1 4 80 6</td>
<td>1920</td>
<td>0</td>
</tr>
<tr>
<td>Room Number</td>
<td>Lighting</td>
<td>Computers + Monitors</td>
<td>Other Appliances</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>----------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>TC</td>
<td>#</td>
<td>W</td>
</tr>
<tr>
<td>506</td>
<td>G1</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>507 internet class</td>
<td>G1</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>508</td>
<td>G1</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>509</td>
<td>G1</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>510</td>
<td>G1</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>511</td>
<td>G1</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>512</td>
<td>G1</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>513</td>
<td>G1</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>Warehouse 2</td>
<td>G1</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>Room Number</td>
<td>Lighting</td>
<td>Computers + Monitors</td>
<td>Other Appliances</td>
</tr>
<tr>
<td>------------------</td>
<td>----------</td>
<td>----------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>TC</td>
<td>#</td>
<td>W</td>
</tr>
<tr>
<td>Bathroom 2</td>
<td>I</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>515</td>
<td>F</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>Political Science room</td>
<td>F</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>Stairwell</td>
<td>G</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>Dorm No 1</td>
<td>G</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>Dorm No 2</td>
<td>G</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Dorm No 3</td>
<td>G</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>Dorm No 4</td>
<td>G</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Dorm No 5</td>
<td>G</td>
<td>1</td>
<td>40</td>
</tr>
</tbody>
</table>

Building: Hostel 3
Floor: 5

Note: The table includes the number of lighting fixtures (TC), the wattage (W), the hours of use per day (hr/day), the total energy consumption (ΣWh/day), the number of computer monitors (Brand), the hours of use per day (hr/day), and the total energy consumption (ΣWh/day) for each room on Floor 5 of Hostel 3.
<table>
<thead>
<tr>
<th>Building:</th>
<th>Hostel 3</th>
<th>Floor:</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room Number</td>
<td>Lighting</td>
<td>Computers + Monitors</td>
<td>Other Appliances</td>
</tr>
<tr>
<td></td>
<td>TC</td>
<td>#</td>
<td>W</td>
</tr>
<tr>
<td>Dorm No 6</td>
<td>G1</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>G1</td>
<td>5</td>
<td>80</td>
</tr>
<tr>
<td>Dorm No 7</td>
<td>G1</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>G1</td>
<td>5</td>
<td>80</td>
</tr>
<tr>
<td>Warehouse 1</td>
<td>G1</td>
<td>6</td>
<td>80</td>
</tr>
<tr>
<td>Kitchen</td>
<td>G1</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>Bathroom 1</td>
<td>H</td>
<td>4</td>
<td>60</td>
</tr>
<tr>
<td>Shower</td>
<td>H</td>
<td>4</td>
<td>60</td>
</tr>
<tr>
<td>Laundry</td>
<td>G1</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>Bathroom 1</td>
<td>G1</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>Shower</td>
<td>G1</td>
<td>2</td>
<td>80</td>
</tr>
</tbody>
</table>
Appendix D.3 - Academic Building 1

The following audit sheets catalog the electrical equipment present in each room for Academic Building 1. All data was collected as prescribed in the methods.

<table>
<thead>
<tr>
<th>Floor</th>
<th>Lighting</th>
<th>Computers</th>
<th>Refrigerator</th>
<th>Air Conditioner</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basement</td>
<td>35400</td>
<td>9270</td>
<td>13200</td>
<td>0</td>
<td>2270</td>
</tr>
<tr>
<td>1</td>
<td>104736</td>
<td>61464</td>
<td>33000</td>
<td>34500</td>
<td>411375</td>
</tr>
<tr>
<td>1.5</td>
<td>42240</td>
<td>11406</td>
<td>6600</td>
<td>7500</td>
<td>5400</td>
</tr>
<tr>
<td>2</td>
<td>130572</td>
<td>75510</td>
<td>66000</td>
<td>43200</td>
<td>78975</td>
</tr>
<tr>
<td>2.5</td>
<td>28920</td>
<td>0</td>
<td>0</td>
<td>15000</td>
<td>540</td>
</tr>
<tr>
<td>3</td>
<td>105588</td>
<td>25788</td>
<td>33000</td>
<td>27000</td>
<td>38287.5</td>
</tr>
<tr>
<td>3.5</td>
<td>9600</td>
<td>1854</td>
<td>6600</td>
<td>3000</td>
<td>825</td>
</tr>
<tr>
<td>4</td>
<td>79152</td>
<td>94218</td>
<td>13200</td>
<td>45900</td>
<td>101175</td>
</tr>
<tr>
<td>Total</td>
<td>536208</td>
<td>279510</td>
<td>171600</td>
<td>176100</td>
<td>638847.5</td>
</tr>
</tbody>
</table>

Table D.5: Summary of data collected from Academic Building 1.
<p>| Building: | Academic Building 1 | Floor: | Main floor, 1 |</p>
<table>
<thead>
<tr>
<th>Room Number</th>
<th>Lighting</th>
<th>Computers</th>
<th>Other Appliances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lobby</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC</td>
<td>#</td>
<td>W</td>
<td>hr/day</td>
</tr>
<tr>
<td>I</td>
<td>36</td>
<td>18</td>
<td>24</td>
</tr>
<tr>
<td>E</td>
<td>8</td>
<td>30</td>
<td>24</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>20</td>
<td>12</td>
</tr>
<tr>
<td>F</td>
<td>4</td>
<td>80</td>
<td>12</td>
</tr>
<tr>
<td>Left Corridor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>13</td>
<td>30</td>
<td>12</td>
</tr>
<tr>
<td>Right Corridor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>7</td>
<td>30</td>
<td>12</td>
</tr>
<tr>
<td>Bathroom</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>8</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>6</td>
<td>80</td>
<td>6</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>275</td>
<td>24</td>
</tr>
<tr>
<td>AC</td>
<td>1</td>
<td>1200</td>
<td>1.5</td>
</tr>
<tr>
<td>AD</td>
<td>1</td>
<td>1000</td>
<td>1.5</td>
</tr>
<tr>
<td>101 -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101 - cafetera</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>8</td>
<td>80</td>
<td>6</td>
</tr>
<tr>
<td>G1</td>
<td>4</td>
<td>80</td>
<td>6</td>
</tr>
<tr>
<td>H</td>
<td>16</td>
<td>60</td>
<td>6</td>
</tr>
<tr>
<td>H</td>
<td>16</td>
<td>60</td>
<td>6</td>
</tr>
<tr>
<td>103</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>3</td>
<td>80</td>
<td>6</td>
</tr>
<tr>
<td>O</td>
<td>1</td>
<td>1050</td>
<td>0.5</td>
</tr>
<tr>
<td>AD</td>
<td>1</td>
<td>1000</td>
<td>1.5</td>
</tr>
<tr>
<td>Room Number</td>
<td>Lighting</td>
<td>Computers</td>
<td>Other Appliances</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>TC</td>
<td>#</td>
<td>W</td>
</tr>
<tr>
<td>104</td>
<td>F</td>
<td>6</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>F</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>F</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>F</td>
<td>8</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112a</td>
<td>F</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>F</td>
<td>8</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room Number</td>
<td>Lighting</td>
<td>Computers</td>
<td>Other Appliances</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>TC #</td>
<td>W hr/day</td>
<td>ΣWh/day</td>
</tr>
<tr>
<td>113</td>
<td>F 3</td>
<td>80 6</td>
<td>1440</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114a</td>
<td>F 5</td>
<td>80 6</td>
<td>2400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>F 4</td>
<td>80 6</td>
<td>1920</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wardrobe</td>
<td>G1 3</td>
<td>80 6</td>
<td>1440</td>
</tr>
<tr>
<td>116</td>
<td>F 4</td>
<td>80 6</td>
<td>1920</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117, connect to 119a</td>
<td>E 22 30</td>
<td>6 3960</td>
<td>15 ViewSonic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room Number</td>
<td>Lighting</td>
<td>Computers</td>
<td>Other Appliances</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>TC</td>
<td>#</td>
<td>W</td>
</tr>
<tr>
<td>118</td>
<td>F</td>
<td>8</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>E</td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>F</td>
<td>6</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teacher's Room 1</td>
<td>E</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>Teacher's Room 2</td>
<td>E</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>Men's Bathroom</td>
<td>H</td>
<td>6</td>
<td>60</td>
</tr>
<tr>
<td>Building: Academic Building 1</td>
<td>Floor: Main floor, 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room Number</td>
<td>Lighting</td>
<td>Computers</td>
<td>Other Appliances</td>
</tr>
<tr>
<td></td>
<td>TC</td>
<td>#</td>
<td>W</td>
</tr>
<tr>
<td>Women's Bathroom</td>
<td>H</td>
<td>6</td>
<td>60</td>
</tr>
<tr>
<td>Gymnasium</td>
<td>G1</td>
<td>30</td>
<td>80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Building: Academic Building 1</th>
<th>Floor: 1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room Number</td>
<td>Lighting</td>
</tr>
<tr>
<td></td>
<td>TC</td>
</tr>
<tr>
<td>Lobby</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>G1</td>
</tr>
<tr>
<td>Library</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Room Number</td>
<td>Lighting</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>TC</td>
</tr>
<tr>
<td>Lobby</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Left Corridor</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Right Corridor</td>
<td></td>
</tr>
<tr>
<td>200 - office</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>201 - conference room</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>202 - dining</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>203 - office</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Room Number</td>
<td>Lighting</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>TC</td>
</tr>
<tr>
<td>207 - office</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>XX</td>
</tr>
<tr>
<td>210 - office</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>AD</td>
</tr>
<tr>
<td></td>
<td>XX</td>
</tr>
<tr>
<td>212 - office</td>
<td>F</td>
</tr>
<tr>
<td>with 2 adjacent rooms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AC</td>
</tr>
<tr>
<td></td>
<td>AD</td>
</tr>
<tr>
<td></td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>O</td>
</tr>
<tr>
<td>213 - office</td>
<td>G1</td>
</tr>
<tr>
<td></td>
<td>E</td>
</tr>
<tr>
<td>215 - comp lab</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>I</td>
</tr>
</tbody>
</table>

Individual Room Data - Floor 2 (2 of 5)

Building: Academic Building 1

Floor: 2
<table>
<thead>
<tr>
<th>Building:</th>
<th>Academic Building 1</th>
<th>Floor:</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room Number</td>
<td>Lighting</td>
<td>Computers</td>
<td>Other Appliances</td>
</tr>
<tr>
<td></td>
<td>TC</td>
<td>#</td>
<td>W</td>
</tr>
<tr>
<td>216 - office with 2</td>
<td>F</td>
<td>6</td>
<td>80</td>
</tr>
<tr>
<td>adjacent rooms</td>
<td>E</td>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>217 - classroom</td>
<td>E</td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>218 - office with 2</td>
<td>G1</td>
<td>15</td>
<td>80</td>
</tr>
<tr>
<td>adjacent rooms</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>219 - office</td>
<td>F</td>
<td>6</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bathroom</td>
<td>I</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>2</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>7</td>
<td>18</td>
</tr>
<tr>
<td>Room Number</td>
<td>Lighting</td>
<td>Computers</td>
<td>Other Appliances</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>closet (2 of the same)</td>
<td>TC: 1, W: 60, hr/day: 6, ΣWh/day: 360</td>
<td># Brand: 1, hr/day: 6, ΣWh/day: 3708</td>
<td>S: 1, W: 275, hr/day: 24, ΣWh/day: 6600</td>
</tr>
<tr>
<td>220 - office with 2 adjacent rooms</td>
<td>F: 6, W: 80, hr/day: 6, ΣWh/day: 2880</td>
<td>1, W: 6, ΣWh/day: 618</td>
<td>AB: 5, W: 25, hr/day: 6, ΣWh/day: 750</td>
</tr>
<tr>
<td>221 - comp room</td>
<td>F: 9, W: 80, hr/day: 6, ΣWh/day: 4320</td>
<td>12, W: 6, ΣWh/day: 7416</td>
<td></td>
</tr>
<tr>
<td>225 - hallway/class?, offices</td>
<td>F: 10, W: 80, hr/day: 6, ΣWh/day: 4800</td>
<td>1, W: 6, ΣWh/day: 618</td>
<td>AB: 5, W: 25, hr/day: 6, ΣWh/day: 750</td>
</tr>
<tr>
<td>226a - office</td>
<td>H: 12, W: 60, hr/day: 6, ΣWh/day: 4320</td>
<td>1, W: 6, ΣWh/day: 618</td>
<td></td>
</tr>
<tr>
<td>226 - office</td>
<td>F: 4, W: 80, hr/day: 6, ΣWh/day: 1920</td>
<td>3, W: 6, ΣWh/day: 1854</td>
<td>AC: 2, W: 1200, hr/day: 1.5, ΣWh/day: 3600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AB: 2, W: 25, hr/day: 6, ΣWh/day: 300</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S: 1, W: 275, hr/day: 24, ΣWh/day: 6600</td>
</tr>
</tbody>
</table>
Individual Room Data - Floor 2 (5 of 5)

<table>
<thead>
<tr>
<th>Building:</th>
<th>Academic Building 1</th>
<th>Floor:</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room Number</td>
<td>Lighting</td>
<td>Computers</td>
<td>Other Appliances</td>
</tr>
<tr>
<td></td>
<td>TC</td>
<td># W</td>
<td>hr/day</td>
</tr>
<tr>
<td>228a - classroom</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>228 - office</td>
<td>F</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Individual Room Data - 2.5 (1 of 1)

<table>
<thead>
<tr>
<th>Building:</th>
<th>Academic Building 1</th>
<th>Floor:</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room Number</td>
<td>Lighting</td>
<td>Computers</td>
<td>Other Appliances</td>
</tr>
<tr>
<td></td>
<td>TC</td>
<td># W</td>
<td>hr/day</td>
</tr>
<tr>
<td>Lobby</td>
<td>F</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>40</td>
<td>12</td>
</tr>
<tr>
<td>Auditorium</td>
<td>E</td>
<td>54</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room Number</td>
<td>Lighting</td>
<td>Computers</td>
<td>Other Appliances</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>TC</td>
<td>#</td>
<td>W</td>
</tr>
<tr>
<td>Lobby</td>
<td>F 12</td>
<td>80</td>
<td>24</td>
</tr>
<tr>
<td>Left corridor</td>
<td>E 7</td>
<td>30</td>
<td>12</td>
</tr>
<tr>
<td>Right Corridor</td>
<td>E 7</td>
<td>30</td>
<td>12</td>
</tr>
<tr>
<td>300 - office</td>
<td>F 1</td>
<td>80</td>
<td>6</td>
</tr>
<tr>
<td>301 - auditorium</td>
<td>F 10</td>
<td>80</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>G 8</td>
<td>40</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>G1 12</td>
<td>80</td>
<td>6</td>
</tr>
<tr>
<td>302 - office</td>
<td>G1 1</td>
<td>80</td>
<td>6</td>
</tr>
<tr>
<td>303 - locked</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>304 - office</td>
<td>F 10</td>
<td>80</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room Number</td>
<td>Lighting</td>
<td>Computers</td>
<td>Other Appliances</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>TC</td>
<td>#</td>
<td>W</td>
</tr>
<tr>
<td>305 - class</td>
<td>F 6</td>
<td>80</td>
<td>6</td>
</tr>
<tr>
<td>306a - conference</td>
<td>F 2</td>
<td>80</td>
<td>6</td>
</tr>
<tr>
<td>306 - lecture hall</td>
<td>F 12</td>
<td>80</td>
<td>6</td>
</tr>
<tr>
<td>307 - class</td>
<td>F 6</td>
<td>80</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>308 - classroom</td>
<td>F 6</td>
<td>80</td>
<td>6</td>
</tr>
<tr>
<td>309 - office</td>
<td>F 3</td>
<td>80</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>310 - office</td>
<td>I 6</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>I 12</td>
<td>40</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room Number</td>
<td>Building</td>
<td>Lighting</td>
<td>Computers</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>311 -</td>
<td>Academic Building 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>conference</td>
<td>TC F 3 80 6</td>
<td>1440</td>
<td>1 Brand</td>
</tr>
<tr>
<td>room</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>312 -</td>
<td>I 7 18 6</td>
<td>756</td>
<td></td>
</tr>
<tr>
<td>office</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TC F 6 80 6</td>
<td>2880</td>
<td>5 Brand</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>313a -</td>
<td>TC F 2 80 6</td>
<td>960</td>
<td>3 Brand</td>
</tr>
<tr>
<td>office</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>313 -</td>
<td>TC F 4 80 6</td>
<td>1920</td>
<td>3 Brand</td>
</tr>
<tr>
<td>office</td>
<td>E 2 30 6</td>
<td>360</td>
<td>1 laptop</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>314 -</td>
<td>TC F 6 80 6</td>
<td>2880</td>
<td>1 Brand</td>
</tr>
<tr>
<td>class</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>315 -</td>
<td>TC F 12 80 6</td>
<td>5760</td>
<td>1 Brand</td>
</tr>
<tr>
<td>class</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Individual Room Data - Floor 3 (4 of 4)

Building: Academic Building 1
Floor: 3

<table>
<thead>
<tr>
<th>Room Number</th>
<th>Lighting</th>
<th>Computers</th>
<th>Other Appliances</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TC</td>
<td># W hr/day</td>
<td>ΣWh/day</td>
</tr>
<tr>
<td>316-class</td>
<td>F 12</td>
<td>80 6</td>
<td>5760</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>318</td>
<td>F 1</td>
<td>80 6</td>
<td>480</td>
</tr>
<tr>
<td>Women's Bathroom</td>
<td>I 8 18 6</td>
<td>864</td>
<td></td>
</tr>
<tr>
<td>Office</td>
<td>F 1</td>
<td>80 6</td>
<td>480</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>320-auditorium</td>
<td>G 10 40 6</td>
<td>2400</td>
<td>1 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

93
Individual Room Data - Floor 3.5 (1 of 1)

<table>
<thead>
<tr>
<th>Building:</th>
<th>Academic Building 1</th>
<th>Floor:</th>
<th>3.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room Number</td>
<td>Lighting</td>
<td>Computers</td>
<td>Other Appliances</td>
</tr>
<tr>
<td></td>
<td>TC</td>
<td>#</td>
<td>W</td>
</tr>
<tr>
<td>Lobby</td>
<td>F</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>425</td>
<td>F</td>
<td>9</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department Office</td>
<td>F</td>
<td>3</td>
<td>80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Room Number</th>
<th>Lighting</th>
<th>Computers</th>
<th>Other Appliances</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TC</td>
<td>#</td>
<td>W</td>
</tr>
<tr>
<td>Lobby</td>
<td>F</td>
<td>6</td>
<td>80</td>
</tr>
<tr>
<td>Left Corridor</td>
<td>E</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>Right Corridor</td>
<td>E</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>Left Stairs</td>
<td>G</td>
<td>6</td>
<td>40</td>
</tr>
<tr>
<td>Right Stairs</td>
<td>G</td>
<td>7</td>
<td>40</td>
</tr>
<tr>
<td>400 - office</td>
<td>F</td>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401</td>
<td>F</td>
<td>4</td>
<td>80</td>
</tr>
</tbody>
</table>

Building: Academic Building 1
Floor: 4
<table>
<thead>
<tr>
<th>Room Number</th>
<th>Building: Academic Building 1</th>
<th>Floor: 4</th>
<th>Lighting</th>
<th>Computers</th>
<th>Other Appliances</th>
</tr>
</thead>
<tbody>
<tr>
<td>402 - conference/AV room</td>
<td></td>
<td></td>
<td>TC</td>
<td>#</td>
<td>W</td>
</tr>
<tr>
<td>F</td>
<td>12</td>
<td>80</td>
<td>6</td>
<td>5760</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>404 - office</td>
<td></td>
<td></td>
<td>F</td>
<td>3</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>405 - class</td>
<td></td>
<td></td>
<td>F</td>
<td>9</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>406 - office</td>
<td></td>
<td></td>
<td>F</td>
<td>3</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>407 - class</td>
<td></td>
<td></td>
<td>F</td>
<td>6</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>408 - connected to 410</td>
<td></td>
<td></td>
<td>F</td>
<td>3</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>409 - office</td>
<td></td>
<td></td>
<td>F</td>
<td>8</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>410 - office</td>
<td></td>
<td></td>
<td>F</td>
<td>3</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room Number</td>
<td>Lighting</td>
<td>Computers</td>
<td>Other Appliances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TC</td>
<td>#</td>
<td>W</td>
<td>hr/day</td>
<td>ΣWh/day</td>
</tr>
<tr>
<td>412 - office</td>
<td>F</td>
<td>4</td>
<td>80</td>
<td>6</td>
<td>1920</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 laptop</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>413 - comp room</td>
<td>F</td>
<td>8</td>
<td>80</td>
<td>6</td>
<td>3840</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>415 - locked</td>
<td>F</td>
<td>3</td>
<td>80</td>
<td>6</td>
<td>1440</td>
</tr>
<tr>
<td>417 - office</td>
<td>F</td>
<td>6</td>
<td>80</td>
<td>6</td>
<td>2880</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>418 - office</td>
<td>F</td>
<td>9</td>
<td>80</td>
<td>6</td>
<td>4320</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>12</td>
<td>18</td>
<td>6</td>
<td>1296</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>419 - office</td>
<td>F</td>
<td>4</td>
<td>80</td>
<td>6</td>
<td>1920</td>
</tr>
<tr>
<td>422 - office</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Building: Academic Building 1
Floor: 4

Note: The table above represents individual room data for the floor 4 of Academic Building 1.
<table>
<thead>
<tr>
<th>Room Number</th>
<th>Lighting</th>
<th>Computers</th>
<th>Other Appliances</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TC</td>
<td>#</td>
<td>W</td>
</tr>
<tr>
<td>424 - study room</td>
<td>F</td>
<td>6</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>426 - office</td>
<td>H</td>
<td>8</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>428 - comp lab</td>
<td>F</td>
<td>11</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>429</td>
<td>F</td>
<td>4</td>
<td>80</td>
</tr>
</tbody>
</table>
Appendix E. - Lighting Recommendations

Cost of Replacement*

<table>
<thead>
<tr>
<th>Light Bulbs</th>
<th>Cost (Rubles)</th>
<th>Academic Building</th>
<th>Hostel 3</th>
<th>Hostel 1</th>
<th>All Buildings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Per Unit</td>
<td>Installation*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armstrong</td>
<td>1,100</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPO 2x9</td>
<td>900</td>
<td>120</td>
<td>35</td>
<td>46</td>
<td>64</td>
</tr>
<tr>
<td>DPO 2x18</td>
<td>1,100</td>
<td>120</td>
<td>131</td>
<td>399</td>
<td>0</td>
</tr>
<tr>
<td>DBP 7w</td>
<td>450</td>
<td>25</td>
<td>74</td>
<td>269</td>
<td>35</td>
</tr>
<tr>
<td>E27 7</td>
<td>180</td>
<td>25</td>
<td>182</td>
<td>72</td>
<td>716</td>
</tr>
<tr>
<td>G4 LED</td>
<td>150</td>
<td>25</td>
<td>395</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Installation cost includes the cost of disposing old bulbs as well as maintenance costs.

Energy Consumption Comparison for Efficient Bulb

<table>
<thead>
<tr>
<th>Floor</th>
<th>Current (W)</th>
<th>Replace (W)</th>
<th>Current (W)</th>
<th>Replace (W)</th>
<th>Current (W)</th>
<th>Replace (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground</td>
<td>35,400</td>
<td>15,432</td>
<td>15,840</td>
<td>15,840</td>
<td>29,520</td>
<td>9,948</td>
</tr>
<tr>
<td>1</td>
<td>104,736</td>
<td>49,254</td>
<td>99,384</td>
<td>49,992</td>
<td>41,988</td>
<td>15,330</td>
</tr>
<tr>
<td>1.5</td>
<td>42,240</td>
<td>16,440</td>
<td>106,776</td>
<td>65,364</td>
<td>25,488</td>
<td>8,754</td>
</tr>
<tr>
<td>2</td>
<td>130,572</td>
<td>49,626</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2.5</td>
<td>28,920</td>
<td>15,192</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>3</td>
<td>105,588</td>
<td>45,300</td>
<td>78,312</td>
<td>36,150</td>
<td>43,260</td>
<td>14,466</td>
</tr>
<tr>
<td>3.5</td>
<td>9,600</td>
<td>3,240</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>4</td>
<td>79,152</td>
<td>29,928</td>
<td>93,884</td>
<td>60,764</td>
<td>34,548</td>
<td>13,734</td>
</tr>
<tr>
<td>5</td>
<td>N/A</td>
<td>N/A</td>
<td>90,768</td>
<td>38,220</td>
<td>39,996</td>
<td>14,964</td>
</tr>
<tr>
<td>Total</td>
<td>536,208</td>
<td>224,412</td>
<td>484,968</td>
<td>246,240</td>
<td>214,800</td>
<td>77,196</td>
</tr>
</tbody>
</table>

Cost Comparison for Efficient Bulb

<table>
<thead>
<tr>
<th>Period</th>
<th>Academic Building</th>
<th>Current</th>
<th>Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days* Rubles/kWh**</td>
<td>kWh/day</td>
<td>Cost (Rubles)</td>
<td>kWh/day</td>
</tr>
<tr>
<td>Sept 2016 - Dec 2016</td>
<td>120</td>
<td>4.50</td>
<td>536</td>
</tr>
<tr>
<td>Jan 2017 - Jun 2017</td>
<td>185</td>
<td>4.95</td>
<td>536</td>
</tr>
<tr>
<td>Jul 2017 - Aug 2017</td>
<td>60</td>
<td>4.95</td>
<td>107</td>
</tr>
<tr>
<td>Yearly Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept 2017 - Dec 2017</td>
<td>120</td>
<td>4.95</td>
<td>536</td>
</tr>
<tr>
<td>Jan 2018 - Jun 2018</td>
<td>185</td>
<td>5.45</td>
<td>536</td>
</tr>
<tr>
<td>Jul 2018 - Aug 2018</td>
<td>60</td>
<td>5.45</td>
<td>107</td>
</tr>
<tr>
<td>Yearly Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept 2018 - Dec 2018</td>
<td>120</td>
<td>5.45</td>
<td>536</td>
</tr>
<tr>
<td>Jan 2019 - Jun 2019</td>
<td>185</td>
<td>6.00</td>
<td>536</td>
</tr>
<tr>
<td>Jul 2019 - Aug 2019</td>
<td>60</td>
<td>6.00</td>
<td>107</td>
</tr>
<tr>
<td>Yearly Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Installation cost includes the cost of disposing old bulbs as well as maintenance costs.
Table E.3: Comparing the cost of running current light bulbs to the new more efficient bulbs for the next three years in Academic Building 1.
*It was estimated that the total consumption is reduced to 20% during the summer.
**It was estimated that the price will inflate by 10% each year.

<table>
<thead>
<tr>
<th>Building:</th>
<th>Hostel 3</th>
<th>Current</th>
<th>Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period</td>
<td>Days*</td>
<td>Rubles/kWh**</td>
<td>kWh/day</td>
</tr>
<tr>
<td>Sept 2016 - Dec 2016</td>
<td>120</td>
<td>4.50</td>
<td>486</td>
</tr>
<tr>
<td>Jan 2017 - Jun 2017</td>
<td>185</td>
<td>4.95</td>
<td>486</td>
</tr>
<tr>
<td>Jul 2017 - Aug 2017</td>
<td>60</td>
<td>4.95</td>
<td>97</td>
</tr>
<tr>
<td>Yearly Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept 2017 - Dec 2017</td>
<td>120</td>
<td>4.95</td>
<td>486</td>
</tr>
<tr>
<td>Jan 2018 - Jun 2018</td>
<td>185</td>
<td>5.45</td>
<td>486</td>
</tr>
<tr>
<td>Jul 2018 - Aug 2018</td>
<td>60</td>
<td>5.45</td>
<td>97</td>
</tr>
<tr>
<td>Yearly Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept 2018 - Dec 2018</td>
<td>120</td>
<td>5.45</td>
<td>486</td>
</tr>
<tr>
<td>Jan 2019 - Jun 2019</td>
<td>185</td>
<td>6.00</td>
<td>486</td>
</tr>
<tr>
<td>Jul 2019 - Aug 2019</td>
<td>60</td>
<td>6.00</td>
<td>97</td>
</tr>
<tr>
<td>Yearly Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E.4: Comparing the cost of running current light bulbs to the new more efficient bulbs for the next three years in Hostel 3.
*It was estimated that the total consumption is reduced to 20% during the summer.
**It was estimated that the price will inflate by 10% each year.

<table>
<thead>
<tr>
<th>Building:</th>
<th>Hostel 1</th>
<th>Current</th>
<th>Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period</td>
<td>Days*</td>
<td>Rubles/kWh**</td>
<td>kWh/day</td>
</tr>
<tr>
<td>Sept 2016 - Dec 2016</td>
<td>120</td>
<td>4.50</td>
<td>215</td>
</tr>
<tr>
<td>Jan 2017 - Jun 2017</td>
<td>185</td>
<td>4.95</td>
<td>215</td>
</tr>
<tr>
<td>Jul 2017 - Aug 2017</td>
<td>60</td>
<td>4.95</td>
<td>43</td>
</tr>
<tr>
<td>Yearly Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept 2017 - Dec 2017</td>
<td>120</td>
<td>4.95</td>
<td>215</td>
</tr>
<tr>
<td>Jan 2018 - Jun 2018</td>
<td>185</td>
<td>5.45</td>
<td>215</td>
</tr>
<tr>
<td>Jul 2018 - Aug 2018</td>
<td>60</td>
<td>5.45</td>
<td>43</td>
</tr>
<tr>
<td>Yearly Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept 2018 - Dec 2018</td>
<td>120</td>
<td>5.45</td>
<td>215</td>
</tr>
<tr>
<td>Jan 2019 - Jun 2019</td>
<td>185</td>
<td>6.00</td>
<td>215</td>
</tr>
<tr>
<td>Jul 2019 - Aug 2019</td>
<td>60</td>
<td>6.00</td>
<td>43</td>
</tr>
<tr>
<td>Yearly Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table E.5: Comparing the cost of running current light bulbs to the new more efficient bulbs for the next three years in Hostel 1.
*It was estimated that the total consumption is reduced to 20% during the summer.
**It was estimated that the price will inflate by 10% each year.
<table>
<thead>
<tr>
<th>Building</th>
<th>Current kWh/day</th>
<th>Replacement kWh/day</th>
<th>Percent Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Building 1</td>
<td>1,802</td>
<td>1,490</td>
<td></td>
</tr>
<tr>
<td>Hostel 3</td>
<td>1,180</td>
<td>941</td>
<td></td>
</tr>
<tr>
<td>Hostel 1</td>
<td>1,203</td>
<td>1,065</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4,185</td>
<td>3,496</td>
<td>16.46%</td>
</tr>
</tbody>
</table>

Table E.6: Daily energy consumption comparison from current bulbs to more efficient bulbs.
Appendix F. - Motion Sensor Recommendations

<table>
<thead>
<tr>
<th>Building</th>
<th>Current</th>
<th>Replacement*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>With Motion Sensors</td>
<td>Without Motion Sensors</td>
</tr>
<tr>
<td>Academic Building 1</td>
<td>148</td>
<td>388</td>
</tr>
<tr>
<td>Dorm 1</td>
<td>97</td>
<td>118</td>
</tr>
<tr>
<td>Dorm 3</td>
<td>153</td>
<td>348</td>
</tr>
</tbody>
</table>

Table F.4: Table demonstrating the reduction in energy.
*Based on reported savings of motion sensors, our team assumed the motion sensors would reduce the total lighting consumption by 13% (CMU, 2013).

<table>
<thead>
<tr>
<th>Building:</th>
<th>Academic Building 1</th>
<th>Current</th>
<th>Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>Days*</td>
<td>Rubles/kWh**</td>
<td>kWh/day</td>
</tr>
<tr>
<td>Sept 2016 - Dec 2016</td>
<td>120</td>
<td>4.50</td>
<td>536</td>
</tr>
<tr>
<td>Jan 2017 - Jun 2017</td>
<td>185</td>
<td>4.95</td>
<td>536</td>
</tr>
<tr>
<td>Jul 2017 - Aug 2017</td>
<td>60</td>
<td>4.95</td>
<td>107</td>
</tr>
<tr>
<td>Yearly Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept 2017 - Dec 2017</td>
<td>120</td>
<td>4.95</td>
<td>536</td>
</tr>
<tr>
<td>Jan 2018 - Jun 2018</td>
<td>185</td>
<td>5.45</td>
<td>536</td>
</tr>
<tr>
<td>Jul 2018 - Aug 2018</td>
<td>60</td>
<td>5.45</td>
<td>107</td>
</tr>
<tr>
<td>Yearly Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept 2018 - Dec 2018</td>
<td>120</td>
<td>5.45</td>
<td>536</td>
</tr>
<tr>
<td>Jan 2019 - Jun 2019</td>
<td>185</td>
<td>6.00</td>
<td>536</td>
</tr>
<tr>
<td>Jul 2019 - Aug 2019</td>
<td>60</td>
<td>6.00</td>
<td>107</td>
</tr>
<tr>
<td>Yearly Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installation Cost***</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table F.5: Comparing the current scenario with using motion sensors for the next three years in Academic Building 1.
*It was estimated that the total consumption is reduced to 20% during the summer.
**It was estimated that the price will inflate by 10% each year.
***This represents the total cost of installing the motion sensors.
Cost Comparison for Motion Sensors

<table>
<thead>
<tr>
<th>Building:</th>
<th>Hostel 3</th>
<th>Current</th>
<th>Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>Days* Rubles/kWh**</td>
<td>kWh/day</td>
<td>Cost (Rubles)</td>
</tr>
<tr>
<td>Sept 2016 - Dec 2016</td>
<td>120 4.50</td>
<td>486</td>
<td>262,423</td>
</tr>
<tr>
<td>Jan 2017 - Jun 2017</td>
<td>185 4.95</td>
<td>486</td>
<td>445,025</td>
</tr>
<tr>
<td>Jul 2017 - Aug 2017</td>
<td>60 4.95</td>
<td>97</td>
<td>28,866</td>
</tr>
<tr>
<td>Yearly Total</td>
<td></td>
<td>736,314</td>
<td></td>
</tr>
<tr>
<td>Sept 2017 - Dec 2017</td>
<td>120 4.95</td>
<td>486</td>
<td>288,665</td>
</tr>
<tr>
<td>Jan 2018 - Jun 2018</td>
<td>185 5.45</td>
<td>486</td>
<td>489,977</td>
</tr>
<tr>
<td>Jul 2018 - Aug 2018</td>
<td>60 5.45</td>
<td>97</td>
<td>34,990</td>
</tr>
<tr>
<td>Yearly Total</td>
<td></td>
<td>810,425</td>
<td></td>
</tr>
<tr>
<td>Sept 2018 - Dec 2018</td>
<td>120 5.45</td>
<td>486</td>
<td>317,823</td>
</tr>
<tr>
<td>Jan 2019 - Jun 2019</td>
<td>185 6.00</td>
<td>486</td>
<td>539,424</td>
</tr>
<tr>
<td>Jul 2019 - Aug 2019</td>
<td>60 6.00</td>
<td>97</td>
<td>34,990</td>
</tr>
<tr>
<td>Yearly Total</td>
<td></td>
<td>892,237</td>
<td></td>
</tr>
<tr>
<td>Installation Cost***</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table F.6: Comparing the current scenario with using motion sensors for the next three years in Hostel 3.

*It was estimated that the total consumption is reduced to 20% during the summer.

**It was estimated that the price will inflate by 10% each year.

***This represents the total cost of installing the motion sensors.

Cost Comparison for Motion Sensors

<table>
<thead>
<tr>
<th>Building:</th>
<th>Hostel 1</th>
<th>Current</th>
<th>Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>Days* Rubles/kWh**</td>
<td>kWh/day</td>
<td>Cost (Rubles)</td>
</tr>
<tr>
<td>Sept 2016 - Dec 2016</td>
<td>120 4.50</td>
<td>215</td>
<td>115,992</td>
</tr>
<tr>
<td>Jan 2017 - Jun 2017</td>
<td>185 4.95</td>
<td>215</td>
<td>196,703</td>
</tr>
<tr>
<td>Jul 2017 - Aug 2017</td>
<td>60 4.95</td>
<td>43</td>
<td>12,759</td>
</tr>
<tr>
<td>Yearly Total</td>
<td></td>
<td>325,454</td>
<td></td>
</tr>
<tr>
<td>Sept 2017 - Dec 2017</td>
<td>120 4.95</td>
<td>215</td>
<td>127,591</td>
</tr>
<tr>
<td>Jan 2018 - Jun 2018</td>
<td>185 5.45</td>
<td>215</td>
<td>216,572</td>
</tr>
<tr>
<td>Jul 2018 - Aug 2018</td>
<td>60 5.45</td>
<td>43</td>
<td>14,048</td>
</tr>
<tr>
<td>Yearly Total</td>
<td></td>
<td>358,211</td>
<td></td>
</tr>
<tr>
<td>Sept 2018 - Dec 2018</td>
<td>120 5.45</td>
<td>215</td>
<td>140,479</td>
</tr>
<tr>
<td>Jan 2019 - Jun 2019</td>
<td>185 6.00</td>
<td>215</td>
<td>238,428</td>
</tr>
<tr>
<td>Jul 2019 - Aug 2019</td>
<td>60 6.00</td>
<td>43</td>
<td>15,466</td>
</tr>
<tr>
<td>Yearly Total</td>
<td></td>
<td>394,373</td>
<td></td>
</tr>
<tr>
<td>Installation Cost***</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table F.7: Comparing the current scenario with using motion sensors for the next three years in Hostel 1.

*It was estimated that the total consumption is reduced to 20% during the summer.

**It was estimated that the price will inflate by 10% each year.

***This represents the total cost of installing the motion sensors.
<table>
<thead>
<tr>
<th>Building</th>
<th>Current With Motion Sensors</th>
<th>Current Without Motion Sensors</th>
<th>Current Total</th>
<th>Replacement With Motion Sensors</th>
<th>Replacement Without Motion Sensors</th>
<th>Replacement Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Building 1</td>
<td>148</td>
<td>388</td>
<td>536</td>
<td>129</td>
<td>388</td>
<td>517</td>
</tr>
<tr>
<td>Dorm 1</td>
<td>97</td>
<td>118</td>
<td>215</td>
<td>84</td>
<td>118</td>
<td>202</td>
</tr>
<tr>
<td>Dorm 3</td>
<td>153</td>
<td>348</td>
<td>501</td>
<td>133</td>
<td>348</td>
<td>481</td>
</tr>
</tbody>
</table>

Table F.8: Comparing the reduction in total energy in all three buildings. The total savings will be approximately 1%.
Appendix F.1. - Criteria for Implementing Motion Sensors

Rooms Where Motion Sensors Will Be Installed

<table>
<thead>
<tr>
<th>Building</th>
<th>Academic Building 1</th>
<th>Current Lighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor</td>
<td>Type*</td>
<td>Sensors Needed</td>
</tr>
<tr>
<td>1</td>
<td>Lobby</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>Corridor</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>Men's locker</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Women's locker</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Toilet</td>
<td>1</td>
</tr>
<tr>
<td>1.5</td>
<td>Lobby</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Lobby</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Corridor</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Toilets</td>
<td>3</td>
</tr>
<tr>
<td>2.5</td>
<td>Lobby</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Lobby</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Corridor</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Toilets</td>
<td>2</td>
</tr>
<tr>
<td>3.5</td>
<td>Lobby</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Lobby</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Corridor</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>42</td>
</tr>
</tbody>
</table>

*Only certain rooms were estimated to contain sensors, such as bathrooms and hallways.

Rooms Where Motion Sensors Will Be Installed

<table>
<thead>
<tr>
<th>Building</th>
<th>Hostel 1</th>
<th>Current Lighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor</td>
<td>Type*</td>
<td>Sensors Needed</td>
</tr>
<tr>
<td>1</td>
<td>Lobby</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>Corridor</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Lobby</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Corridor</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Lobby</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Corridor</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Lobby</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Corridor</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Lobby</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Corridor</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>Floor</td>
<td>Type*</td>
<td>Sensors Needed</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>----------------</td>
</tr>
<tr>
<td>1</td>
<td>Lobby</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>Corridor</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Lobby</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Corridor</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Toilets</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Lobby</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Corridor</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Toilets</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Showers</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Washroom</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Lobby</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Corridor</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Toilets</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Shower</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Washroom</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Lobby</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Corridor</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>Toilets</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Shower</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Washroom</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

*Table F.2&3: Table tallying the amount of motion sensors needed to be installed in Hostel 1 & 3. *Only certain rooms were estimated to contain sensors, such as bathrooms and hallways.*
Appendix G. - Siemens System Recommendations

Lighting Energy Consumption Comparison for Siemens System

<table>
<thead>
<tr>
<th>Building</th>
<th>Current Total</th>
<th>Replacement Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dorm 1</td>
<td>215</td>
<td>183</td>
</tr>
<tr>
<td>Dorm 3</td>
<td>501</td>
<td>426</td>
</tr>
<tr>
<td>Academic Building 1</td>
<td>536</td>
<td>456</td>
</tr>
</tbody>
</table>

Cost Comparison for Siemens System

<table>
<thead>
<tr>
<th>Building</th>
<th>Academic Building 1</th>
<th>Current</th>
<th>Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Days* Rubles/kWh** kWh/day Cost (Rubles) kB/h/day Cost (Rubles)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept 2016 - Dec 2016</td>
<td>120 Rubles/kWh 4.50 536 kWh/day 289,552</td>
<td>456</td>
<td>246,121</td>
</tr>
<tr>
<td>Jan 2017 - Jun 2017</td>
<td>185 Rubles/kWh 4.95 536 kWh/day 491,032</td>
<td>456</td>
<td>417,381</td>
</tr>
<tr>
<td>Jul 2017 - Aug 2017</td>
<td>60 Rubles/kWh 4.95 107 kWh/day 31,850</td>
<td>91</td>
<td>27,075</td>
</tr>
<tr>
<td>Yearly Total</td>
<td></td>
<td>812,435</td>
<td>690,576</td>
</tr>
<tr>
<td>Sept 2017 - Dec 2017</td>
<td>120 Rubles/kWh 4.95 536 kWh/day 318,508</td>
<td>456</td>
<td>270,733</td>
</tr>
<tr>
<td>Jan 2018 - Jun 2018</td>
<td>185 Rubles/kWh 5.45 536 kWh/day 540,632</td>
<td>456</td>
<td>459,540</td>
</tr>
<tr>
<td>Jul 2018 - Aug 2018</td>
<td>60 Rubles/kWh 5.45 107 kWh/day 35,067</td>
<td>91</td>
<td>29,809</td>
</tr>
<tr>
<td>Yearly Total</td>
<td></td>
<td>894,207</td>
<td>760,083</td>
</tr>
<tr>
<td>Sept 2018 - Dec 2018</td>
<td>120 Rubles/kWh 5.45 536 kWh/day 350,680</td>
<td>456</td>
<td>298,080</td>
</tr>
<tr>
<td>Jan 2019 - Jun 2019</td>
<td>185 Rubles/kWh 6.00 536 kWh/day 595,191</td>
<td>456</td>
<td>505,916</td>
</tr>
<tr>
<td>Jul 2019 - Aug 2019</td>
<td>60 Rubles/kWh 6.00 107 kWh/day 38,606</td>
<td>91</td>
<td>32,818</td>
</tr>
<tr>
<td>Yearly Total</td>
<td></td>
<td>984,477</td>
<td>836,814</td>
</tr>
</tbody>
</table>

Cost Comparison for Siemens System

<table>
<thead>
<tr>
<th>Building</th>
<th>Hostel 3</th>
<th>Current</th>
<th>Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Days* Rubles/kWh** kWh/day Cost (Rubles) kB/h/day Cost (Rubles)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept 2016 - Dec 2016</td>
<td>120 Rubles/kWh 4.50 486 kWh/day 262,423</td>
<td>426</td>
<td>229,873</td>
</tr>
<tr>
<td>Jan 2017 - Jun 2017</td>
<td>185 Rubles/kWh 4.95 486 kWh/day 445,025</td>
<td>426</td>
<td>389,826</td>
</tr>
<tr>
<td>Jul 2017 - Aug 2017</td>
<td>60 Rubles/kWh 4.95 97 kWh/day 28,866 85</td>
<td>25,287</td>
<td></td>
</tr>
<tr>
<td>Yearly Total</td>
<td></td>
<td>736,314</td>
<td>644,985</td>
</tr>
<tr>
<td>Sept 2017 - Dec 2017</td>
<td>120 Rubles/kWh 4.95 486 kWh/day 288,665</td>
<td>426</td>
<td>252,860</td>
</tr>
<tr>
<td>Jan 2018 - Jun 2018</td>
<td>185 Rubles/kWh 5.45 486 kWh/day 489,977</td>
<td>426</td>
<td>429,202</td>
</tr>
<tr>
<td>Jul 2018 - Aug 2018</td>
<td>60 Rubles/kWh 5.45 97 kWh/day 31,782 85</td>
<td>27,841</td>
<td></td>
</tr>
<tr>
<td>Yearly Total</td>
<td></td>
<td>810,425</td>
<td>709,903</td>
</tr>
<tr>
<td>Sept 2018 - Dec 2018</td>
<td>120 Rubles/kWh 5.45 486 kWh/day 317,823</td>
<td>426</td>
<td>278,401</td>
</tr>
<tr>
<td>Jan 2019 - Jun 2019</td>
<td>185 Rubles/kWh 6.00 486 kWh/day 539,424</td>
<td>426</td>
<td>472,516</td>
</tr>
<tr>
<td>Jul 2019 - Aug 2019</td>
<td>60 Rubles/kWh 6.00 97 kWh/day 34,990 85</td>
<td>30,650</td>
<td></td>
</tr>
<tr>
<td>Yearly Total</td>
<td></td>
<td>892,237</td>
<td>781,568</td>
</tr>
</tbody>
</table>
Cost Comparison for Siemens System

<table>
<thead>
<tr>
<th>Period</th>
<th>Hostel 1</th>
<th>Current</th>
<th>Replacement</th>
<th>Percent Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days</td>
<td>Rubles/kWh**</td>
<td>kWh/day</td>
<td>Cost (Rubles)</td>
<td>kWh/day</td>
</tr>
<tr>
<td>Sept 2016 - Dec 2016</td>
<td>120</td>
<td>4.50</td>
<td>215</td>
<td>115,992</td>
</tr>
<tr>
<td>Jan 2017 - Jun 2017</td>
<td>185</td>
<td>4.95</td>
<td>215</td>
<td>196,703</td>
</tr>
<tr>
<td>Jul 2017 - Aug 2017</td>
<td>60</td>
<td>4.95</td>
<td>43</td>
<td>12,759</td>
</tr>
<tr>
<td>Yearly Total</td>
<td></td>
<td></td>
<td></td>
<td>325,454</td>
</tr>
<tr>
<td>Sept 2017 - Dec 2017</td>
<td>120</td>
<td>4.95</td>
<td>215</td>
<td>127,591</td>
</tr>
<tr>
<td>Jan 2018 - Jun 2018</td>
<td>185</td>
<td>5.45</td>
<td>215</td>
<td>216,572</td>
</tr>
<tr>
<td>Jul 2018 - Aug 2018</td>
<td>60</td>
<td>5.45</td>
<td>43</td>
<td>14,048</td>
</tr>
<tr>
<td>Yearly Total</td>
<td></td>
<td></td>
<td></td>
<td>358,211</td>
</tr>
<tr>
<td>Sept 2018 - Dec 2018</td>
<td>120</td>
<td>5.45</td>
<td>215</td>
<td>140,479</td>
</tr>
<tr>
<td>Jan 2019 - Jun 2019</td>
<td>185</td>
<td>6.00</td>
<td>215</td>
<td>238,428</td>
</tr>
<tr>
<td>Jul 2019 - Aug 2019</td>
<td>60</td>
<td>6.00</td>
<td>43</td>
<td>15,466</td>
</tr>
<tr>
<td>Yearly Total</td>
<td></td>
<td></td>
<td></td>
<td>394,373</td>
</tr>
</tbody>
</table>

Daily Energy Consumption Comparison for Siemens System

<table>
<thead>
<tr>
<th>Building</th>
<th>Current kWh/day</th>
<th>Replacement kWh/day</th>
<th>Percent Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Building 1</td>
<td>1,802</td>
<td>1,722</td>
<td></td>
</tr>
<tr>
<td>Hostel 3</td>
<td>1,180</td>
<td>1,107</td>
<td></td>
</tr>
<tr>
<td>Hostel 1</td>
<td>1,203</td>
<td>1,171</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4,185</td>
<td>4,000</td>
<td>4.42%</td>
</tr>
</tbody>
</table>
Appendix H. - Piezoelectric Floor

Assumptions for Piezoelectric Flooring Tile

<table>
<thead>
<tr>
<th>Piezoelectric Flooring Assumptions and Analysis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost of Piezoelectric flooring ($/ft²)</td>
<td>75</td>
</tr>
<tr>
<td>Exchange Rate*</td>
<td>62.48</td>
</tr>
<tr>
<td>Cost of Piezoelectric flooring (Rubles/ft²)</td>
<td>4686</td>
</tr>
<tr>
<td>Area in front of door way (ft²)</td>
<td>12</td>
</tr>
<tr>
<td>Amount of people crossing floor per day</td>
<td>3000</td>
</tr>
<tr>
<td>Amount of steps per person</td>
<td>20</td>
</tr>
<tr>
<td>Energy generated per step (W)</td>
<td>5</td>
</tr>
<tr>
<td>Total Energy generated per day (Wh)</td>
<td>100</td>
</tr>
<tr>
<td>Days used per year</td>
<td>230</td>
</tr>
<tr>
<td>Energy generated per year (kWh)</td>
<td>23</td>
</tr>
</tbody>
</table>

Table H.1: Assumptions used in estimating the price of implementing the Piezoelectric Flooring in the main entrance of Academic Building 1.

*Current exchange rate between dollars and rubles as of October 5, 2016.
Appendix I. - Vertical Garden System

Assumptions for Vertical Garden System

<table>
<thead>
<tr>
<th>The Vertical Garden System is to be installed in Academic Building #1</th>
</tr>
</thead>
<tbody>
<tr>
<td>The total area of the wall in Academic Building 1* (m²)</td>
</tr>
<tr>
<td>Total area covered by windows* (m²)</td>
</tr>
<tr>
<td>Total area to be covered by the garden (m²)</td>
</tr>
<tr>
<td>Total area to be covered by the garden (ft²)</td>
</tr>
<tr>
<td>Cost ($/ft²)**</td>
</tr>
<tr>
<td>Cost (Rub/ft²)</td>
</tr>
<tr>
<td>Total cost (Rubles)</td>
</tr>
</tbody>
</table>

Table I.1: Assumptions used in estimating the price of the Vertical Garden System.
*Estimated from floor plans.
**Average price range from $95-160/ft²
Appendix J. - Eco Machine

Analysis for Eco Machines

<table>
<thead>
<tr>
<th>Eco Machines Analysis and Assumptions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated cost per machine (£)</td>
<td>14,285.70</td>
</tr>
<tr>
<td>Exchange Rate (Rubles/£)*</td>
<td>79.5204</td>
</tr>
<tr>
<td>Estimated cost per machine (Rubles)</td>
<td>1136004.6</td>
</tr>
<tr>
<td>Number of machines</td>
<td>5</td>
</tr>
<tr>
<td>Total cost (Rubles)</td>
<td>5680023</td>
</tr>
<tr>
<td>Average energy produced per machine per hour (Wh)</td>
<td>100</td>
</tr>
<tr>
<td>Time each machine would work per day (hrs)</td>
<td>7</td>
</tr>
<tr>
<td>Total energy produced by 5 machines per day (kWh)</td>
<td>3.5</td>
</tr>
<tr>
<td>Days per year the gym is open (days)</td>
<td>300</td>
</tr>
<tr>
<td>Total electricity produced in a year (kWh)</td>
<td>105</td>
</tr>
<tr>
<td>Price of 105 kWh of electricity (Rubles)</td>
<td>472.5</td>
</tr>
</tbody>
</table>

Table J.1: Assumptions used in estimating the price of implementing the Eco Machines in the gym.
*Current exchange rate between pounds and rubles as of October 5, 2016.