Implications of Self-Determination Theory on Student Performance

An Interactive Qualifying Project Submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of requirements for the Degree of Bachelor of Science.

By
Nathaniel Dennler

Date:
May 25th, 2018

Advisors:
Neil T. Heffernan
Korinn S. Ostrow
Abstract

Acknowledgments

1. Introduction
 1.1 Self-Determination Theory
 1.2 ASSISTments
 1.2.1 Platform
 1.2.2 Testbed
 1.3 Prior Works

2. Methodology and Results
 2.1 Autonomy Study 1: Hint Choice
 Hypothesis
 Design
 2.1.1 Flowchart
 2.1.2 Experimental Treatment
 2.1.3 Control
 2.1.4 Problem Set Information
 Results
 2.1.5 Independence of groups
 2.1.6 Descriptive Data
 2.1.7 Analysis of Hint Average
 2.1.8 Analysis of Attempt Average
 2.1.9 Analysis of Median Problem Time
 2.1.10 Analysis of Post-Test Correctness
 2.1.11 Discussion
 2.2 Autonomy Study 2: Mastery Level Choice
 Hypothesis
 Design
 2.2.1 Flowchart
 2.2.2 Experimental Treatment
 2.2.3 Control
 2.2.4 Problem Set Information
 Results
 2.2.5 Independence of Groups
 2.2.6 Descriptive Data
 2.2.7 Analysis of Hint Average
 2.2.8 Analysis of Attempt Average
 2.2.9 Analysis of Median Time per Problem
2.2.11 Analysis of Post Test Correctness
2.2.11 Discussion

2.3 Belonging Study 1: Value Affirmation
 Hypothesis
 Design
 2.3.1 Flowchart
 2.3.2 Experimental Treatment
 2.3.3 Control
 2.3.4 Problem Set Information
 Results

2.4 Belonging Study 2: Human Tutoring Intervention
 Hypothesis
 Design
 2.4.1 Flowchart
 2.4.2 Experimental Treatment
 2.4.3 Control
 2.4.4 Problem Set Information
 Results
 2.4.5 Independence of Groups
 2.4.6 Descriptive Data
 2.4.7 Analysis of Hint Average
 2.4.8 Analysis of Attempt Average
 2.4.9 Analysis of Median Time per Problem
 2.4.10 Analysis of Post Test Correctness
 2.4.11 Discussion

2.5 Competence Study 1: Adaptive Questions
 Hypothesis
 Design
 2.5.1 Flowchart
 2.5.2 Experimental Treatment
 2.5.3 Control
 2.5.4 Problem Set Information
 Results
 2.5.5 Independence of Groups
 2.5.6 Descriptive Data
 2.5.7 Analysis of Hint Average
 2.5.8 Analysis of Attempt Average
 2.5.9 Analysis of Median Time per Problem
 2.5.10 Analysis of Post Test Correctness
2.5.11 Discussion

2.6 Competence Study 2: External Encouragement
 Hypothesis
 Design
 2.6.1 Flowchart
 2.6.2 Experimental Treatment
 2.6.3 Control
 2.6.4 Problem Set Information
 Results
 2.6.5 Independence of Groups
 2.6.6 Descriptive Data
 2.6.7 Analysis of Hint Average
 2.6.8 Analysis of Attempt Average
 2.6.9 Analysis of Median Time per Problem
 2.6.10 Analysis of Post Test Correctness
 2.6.11 Discussion

3. Conclusion

4. References

5. Appendices
 5.1 Appendix A - Code to Analyze Data
 5.2 Appendix B - ASSISTments Study Questions
Abstract

Self-Determination Theory (SDT) proposes that autonomy, belonging, and competence are major contributors to human motivation. To test this, several randomized controlled trials were developed to test the pillars of SDT. Skill Builders in ASSISTments were developed to deploy the proposed studies. The data were processed first with python to extract relevant features, and SPSS was used to generate statistic analyses. The statistics were then analyzed to validate the claims of SDT.

Acknowledgments

I would like to thank my advisors Neil Heffernan and Korinn Ostrow for guiding me through this process. I would also like to thank Cristina Heffernan and the other faculty working with ASSISTments for their support.
1. Introduction

1.1 Self-Determination Theory

Motivation is pivotal to the accomplishments humans have made as a race. There have been many theories of motivation that have been established, including Herzberg Two-Factor Theory (Herzberg, 1959), ERG Theory (Alderfer, 1969), and Temporal Motivation Theory (Steel, 2006). To better quantify what motivates us in general, Self-Determination Theory (SDT) was proposed in 1985 (Deci, 1985). It provides a broad yet focused framework from which studies can be viewed to determine the effects of human motivation. SDT proposes that motivation lies on a spectrum ranging from intrinsic to extrinsic to amotivation, where intrinsic motivation leads to the best performance in tasks. Intrinsic motivation encompasses tasks that subjects desire internally to complete through forces such as curiosity, passion, and values. Extrinsic motivation, on the other hand, is concerned more with the rewards received from completing tasks, such as money, grades, or opinions. Extrinsic motivation tends to fade when the rewards fade, but internal motivation is more persistent--beyond extrinsic motivation is amotivation, which is the lack of desire for a particular task. External factors can help move motivation along the spectrum. It is rare that motivation is purely intrinsic, especially for children, since they may not yet be developmentally ready. Generally, external factors can help move motivation toward internalized forms of extrinsic motivation. SDT proposes three main pillars to classify these external motivational factors: Autonomy, Belonging, and Competence (Self-Determination Theory, 2018).

Autonomy is concerned with an individual’s perception of choice. The idea is that having the ability to shape one’s own destiny yields an investment in a task, since the participants are actively choosing rather than being forced to complete that task. Since there is a choice, the outcome is theoretically that the motivation becomes more intrinsic as the individual reflects on what the task at hand really means for their future. Having a choice can also make them feel like their time and inputs are valuable, as well as give them a feeling of responsibility for their choices.

Belonging is related to feeling like a part of a larger group. People tend to perform tasks for other people, because they want to develop a stronger connection with them (Ryan, 2000). This is especially evident in younger people, who exhibit stronger internal motivation to please people they respect, such as their parents, teachers, or peers. Belonging is manifested by relationships, which can intrinsically motivate individuals to do tasks for the common good.

Competence is a measure of the level at which an individual can perform a given task. It is linked to confidence in one’s abilities to achieve something, and leads to a desire for higher achievement. People are more motivated to do tasks that they already know how to do, and are confident they can again do it well. A higher degree of competence implies that the individual will be making a positive impact with relatively little effort.

1.2 ASSISTments

The platform used to present problem sets to students is called ASSISTments. It provides a framework to develop modular sequences of problems and deploy them at a large scale, and is used by middle and high schools across the nation in varied environments. It has two main parts: the classroom
aspect, which is what students use to complete assignments and teachers use to view progress and a Problem Set Builder, which is used by teachers or researchers to design problem sets for deployment.

1.2.1 Platform

The ASSISTments platform is used by teachers for a variety of reasons. It is used as a way to give automatic feedback to students regarding their level of understanding of different problems, as well as to track students progress. ASSISTments allows the teachers and students to understand how well certain skills are known. Teachers also use it to find common misconceptions in the classroom, allowing them to refine their teaching style. To use the system, the teacher first ‘assigns’ a student, or group of students a specific problem set ID which corresponds to a sequence of questions. The correctness of the questions is based on the number of attempts and hints the student uses to get the right answer. In general, the question is marked as correct if the student answered it correctly on the first try. If the student doesn’t get the question right on the first try, they may still get partial credit if they answer correctly depending on the grading rules the teacher has in place.

Teachers can assign pre-made Skill Builders, which are usually classified by their Common Core State Standards String. These strings consist of four parts separated by periods going from a very broad description of the assignment to a very narrow one. The order of the parts are the grade number, the letters describing the domain of the problem, the number of the criterion the problem set teaches, and lastly the subtask of the criterion (National Governors Association Center for Best Practices, 2010). An example of this would be the string “6.NS.B.3”. This indicates that the skill is a sixth grade skill dealing with Number System (NS), and is on computing fluently with multi-digit numbers (B), and is specifically concerned with adding, subtracting, multiplying, and dividing decimals (3). There may be several slightly different premade Skill Builders in ASSISTments with the same string. All these Skill Builders align with the Common Core Standards which provide a standard for state education curricula.

Teachers can also make their own Skill Builders to more accurately target their class’s skill levels. They can do this by looking through the Common Core Skill Builders and selecting the questions that they find pertinent to the skills they are teaching. Researchers can similarly make Skill Builders to make randomized controlled trial experiments to find effects that may increase the efficiency of teaching math skills to students. Skill sets can be built by both the Teacher and the Researcher by using the Skill Builder.

1.2.2 Testbed

The ASSISTments builder allows unique problem sets to be constructed using four main section types: Complete All, Skill Builder, Choose One, and If-Then-Else. Complete All requires students to complete all listed problems in a section. This can be done in two ways: linear or randomized. Linear Complete All modules require that students finish all problems in the order they are listed. While randomized Complete All modules still require students to complete all the problems, the order they are presented in is randomized.

Skill Builders pull content from a skill pool of around 100 problems, and students are required to accurately answer a preset number of consecutive problems. This number is usually three, but it can be changed by teachers or researchers as desired. Skill Builders can also be random or linear. In Linear Skill Builders the pool of problems is traversed in order until the student sequentially answers three questions
correctly, at which point they exit the module. The randomized version presents the questions in a random order and terminates when three questions are correctly answered in a row.

Choose One and If-Then-Else section types help to control the flow through the problem sets. Choose One sections contain additional sections and will assign students to one based on random chance, which can be used to assign students to groups within a randomized controlled trial. If-Then-Else takes three sections and presents the first to a student. If they score above a predefined threshold within that section (i.e., the score from one or more problems) they are presented with a second “then” section. Otherwise, they received a score below the threshold and are placed in a third, “else” section. This section type can be used to present students with choices, for instance by using a multiple choice question as the conditional statement with an option marked as “correct” and the other as “incorrect”. The question can also be redacted from the students’ final grade, making the choice purely related to presentation of the problem set.

1.3 Prior Works

Bettering education provision and knowledge retention has been a field of study for many years. Past research has identified what mastery entails (Beck, 2013) and has shown that online tutoring platforms can be more helpful than traditional pen and paper grading schemes (Mendicino, 2009). ASSISTments answers these two papers by providing an online platform that has the ability to establish randomized controlled trials using Skill Builders that help students achieve skill fluency. Using ASSISTments, researchers have then been able to identify several treatments that improve teaching. There are several overarching studies that have explored complexities in the delivery of problem and feedback content. A study on the effectiveness on text versus video hint feedback found that low knowledge students generally did better when they were presented video instruction (Ostrow, 2014). Another study evaluated the delivering a triad of skills in various patterns, either blocked (where skills were grouped together) or interleaved (where skills were mixed). It was found that interleaving skill content helped students pay better attention to the problem set, and thus more effectively master their assignment (Ostrow, 2015). A final study on the availability of hints determined that hints on demand (as traditionally provided by ASSISTments) and hints provided in response to incorrect answers had similar effects on students’ performance (Razzaq, 2010). This was attributed to the idea that hints are generally helpful regardless of how they are received.

While many studies have examined the overall effectiveness of online tutoring platforms, the set of studies presented in this report evaluate the effectiveness of treatments as they pertain to the framework of Self-Determination Theory. There is a considerable amount of work that has already tested several aspects of SDT in ASSISTments, which will be reproduced to verify previously observed effects. Autonomy has been tested by using ASSISTments to give students choices during their assignments. If-Then-Else modules can be used to give students autonomy in how they learn, as well as random assignment to arbitrarily separate students. A belonging study has estimated the effect of reflection on morals and values on cognitive performance. A competence study has also evaluated the effects of skill lesson placement on later achievement and perceptions of competence (Ostrow, 2018).
2. Methodology and Results

The seven experiments performed followed similar overarching structures. First, the experiments were conceived based on the pillars of SDT. The experiments were then embedded into ASSISTments Skill Builders which would aid in reaching a wide, uniformly distributed audience. The Skill Builders were left for teachers to assign to their students for 6 months, and after that time had elapsed, the data were pulled from the ASSISTments database using the Assessment of Learning Infrastructure available through the ASSISTments TestBed (The ASSISTments Team, n.d.). To analyze the data, metadata was first gathered, which included the number of schools the problem set was deployed to, and the median prior percent correct metric, which measures the average score for all prior skill builders the student has attempted prior to entering the study. Four main metrics were chosen based on skill builder performance to assess the effects of the experiments: hint average, attempt average, median time, and post test score.

Hint average is the total number of hints from the problem set (not including the post test) divided by the number of non-trivial questions there were in the problem set. To get accurate accounts of the hint usage, transition questions that let students know how they are progressing through the assignment are ignored, along with any other question they cannot get wrong. For hint averages, a lower number is generally better, indicating that there were less hints needed to complete the problem set.

Attempt average is an average of the attempts for non-trivial questions in the problem set. This again does not include the post test, and a lower score is generally better.

Median time is the median time to complete problems in the problem set. The median was chosen because there are often extreme outliers in time data within ASSISTments due to students taking breaks or walking away from their computers while leaving the tutor open, and the median is less sensitive to these data points than the average. The outliers make the average positively skewed, and the data tends to follow a drastic curve. Lower median times indicate quicker performance on the data set.

The post test score was a measurement of the correctness of the post test. All students received the same post test, and their percent correct is indicative of their mastery of near and far transfer items related to the assessed skill.

To sort the data from the raw format downloaded from the ASSISTments website to the form used for the analysis a program was written in python. The program identified the headings in the data that were relevant to the metrics, and looped through each students responses. To do this, several lists were made: noCount, groupPartition, and experimentPartition. noCount contained all the problem IDs that were trivial; they either did not have wrong solutions or were not pertinent to the problem set. The groupPartition list contained several problem IDs that could be used to identify the group of the student. The group is usually dependent on the experiment being studied, but it further partitions the experimental and control sets in general. The experimentPartition list had problem IDs that separated the students into treatment and control groups. The full code can be found in Appendix B.

Once the data were sorted and the metrics were established, attrition rates were examined to make sure the experiment did not cause a difference in the number of students who dropped out of the study. If there had been a difference, the reason for drop out would have to be analyzed and taken into account when viewing the data. Then the mean and standard deviation were calculated for the different treatment groups to see overall trends. An ANOVA was performed for each of the metrics to assess effects of the experimental conditions.
2.1 Autonomy Study 1: Hint Choice

Hypothesis

Having control over one’s own actions is an intrinsically motivating force. Allowing students to choose the type of help they will receive should make them more invested in their learning.

Design

2.1.1 Flowchart

![Flowchart](image)

Figure 2.1.1 Problem Set Flowchart

The problem set begins with a single question to determine whether or not the students can see video. If they are not able to see video, they are sent into a regular random Skill Builder. If they were able to correctly see the video, they pass into the experiment. The study then uses random assignment to place students in either the choice condition or the no-choice condition. In the choice condition, there is a single question that asks the students whether they would rather have video or text hints. The answer to that question sorts them into the corresponding hint style that they chose, which consists of 10 questions given in a random order. Video questions are 10 questions with hints that have videos, and Text Questions are the same 10 questions that have text hints following the same wording as the video hints. Students who are in the no choice condition are randomly assigned to a text or video Skill Builder. Once the students complete their respective Skill Builder, they enter the post test, a linear complete all section.

2.1.2 Experimental Treatment

Before the experiment begins, the students will determine whether or not they can see video hints. If they cannot see videos due to school policy or hardware restrictions, they will not be included in the study. The experimental group will receive the ability to have their own choice as to the type of hints they will receive. They can choose between having video-based hints or having text-based hints. Once they choose, they cannot change the type of hints they receive.
2.1.3 Control

The control group will be randomly assigned either text hints or video hints since we already know they can see video as they have entered the experiment.

2.1.4 Problem Set Information

This experiment was built on the common core strand F.B.4 and was deployed for students in eighth grade. The problem set involved writing equations in slope-intercept form. For brevity, just the post test is shown below; See Appendix B for full problem set.

Figure 2.1.2 Post Test Questions in Autonomy Study 1
Results

2.1.5 Independence of groups

This study reached 177 students from eight different schools and the median prior score for the students in the study was 61.66%. A chi-squared test was performed on the data to determine the homogeneity between the groups with regards to attrition.

Table 2.1.1 Cross Tabulation of Finished and Experiment Conditions

<table>
<thead>
<tr>
<th></th>
<th>No Choice</th>
<th>Choice</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Did not Finish</td>
<td>28</td>
<td>25</td>
<td>53</td>
</tr>
<tr>
<td>Finished</td>
<td>65</td>
<td>59</td>
<td>124</td>
</tr>
<tr>
<td>Total</td>
<td>93</td>
<td>84</td>
<td>177</td>
</tr>
</tbody>
</table>

From Table 2.1.1, we can see that in the control group, there were 28 students that were not able to finish, and in the experimental group there were 25 students that did not finish. The Chi-Square value was $\chi^2(1) = 0.003$, giving a significance of 0.96 which is much larger than 0.05 (the standard threshold to determine significance). Since the significance value is so high, it is safe to say that there was no significant effect regarding attrition between the experiment conditions. Giving the students a choice on the type of hints they receive did not make them quit any more than assigning them different hint types. Because the attrition rate is independent between the experimental conditions, only the students who finished the assignment will be analyzed.

2.1.6 Descriptive Data

Table 2.1.2 Means (SDs) of Text and Video Partitions for Four Metrics

<table>
<thead>
<tr>
<th>Hint Type</th>
<th>Hint Average</th>
<th>Attempt Average</th>
<th>Median Time</th>
<th>Post Test Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text (N=80)</td>
<td>.21 (.26)</td>
<td>1.16 (.28)</td>
<td>53.37 (76.96)</td>
<td>.59 (.34)</td>
</tr>
<tr>
<td>Video (N=44)</td>
<td>.20 (.25)</td>
<td>1.18 (.31)</td>
<td>39.23 (21.95)</td>
<td>.59 (.34)</td>
</tr>
<tr>
<td>Total (N=124)</td>
<td>.20 (.26)</td>
<td>1.17 (.29)</td>
<td>48.35 (63.40)</td>
<td>.59 (.33)</td>
</tr>
</tbody>
</table>

Table 2.1.3 Means (SDs) of Choice and No-Choice Partitions for Four Metrics
<table>
<thead>
<tr>
<th>Choice</th>
<th>Hint Average</th>
<th>Attempt Average</th>
<th>Median Time</th>
<th>Post Test Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Choice</td>
<td>.15 (.22)</td>
<td>1.15 (.27)</td>
<td>42.75 (36.44)</td>
<td>.56 (.32)</td>
</tr>
<tr>
<td>(N=65)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choice</td>
<td>.27 (.28)</td>
<td>1.19 (.31)</td>
<td>54.52 (83.57)</td>
<td>.62 (.35)</td>
</tr>
<tr>
<td>(N=59)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>.20 (.26)</td>
<td>1.17 (.29)</td>
<td>48.35 (63.40)</td>
<td>.59 (.33)</td>
</tr>
<tr>
<td>(N=124)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The means and standard deviations are shown in the tables above. Between the experiment and control groups, there was a relatively even distribution in number of participants. Between video and text, however, there was an apparent skew towards text hints (80 students in the text partition vs. 44 students in the video partition). This implies that the students chose video less often since the control had equal assignment between the two choices. The ratio of students who chose video to text is roughly 1:5. Preference for text hints is reflected in results found in a study on text vs. video for different problem sets (Ostrow, 2014).
2.1.7 Analysis of Hint Average

Based on the Q-Q graphs of this data split both on the Text/Video and Choice/No Choice, the data fall roughly on the trend line, indicating that the data is normal. There are a couple of outliers in the average number of hints, but nothing deviates too strongly from the line. Relatively normal distributions coupled with sample size suggested that we were able to proceed with ANOVA analyses.
Table 2.1.4 ANOVA results for Hint Average

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Partial Eta Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choice</td>
<td>.18</td>
<td>1</td>
<td>.18</td>
<td>3.96</td>
<td>.049</td>
<td>.03</td>
</tr>
<tr>
<td>Hint Type</td>
<td>.01</td>
<td>1</td>
<td>.01</td>
<td>.18</td>
<td>.675</td>
<td>.01</td>
</tr>
<tr>
<td>Choice * Hint Type</td>
<td>.05</td>
<td>1</td>
<td>.05</td>
<td>1.01</td>
<td>.316</td>
<td>.05</td>
</tr>
<tr>
<td>Error</td>
<td>5.52</td>
<td>120</td>
<td>.05</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Based on table 2.1.5, there was a significant main effect of choice, F(1, 120) = 3.96, p = .049, partial η² = .03. This shows a strong correlation between the number of hints that the students used based on the fact that they were given a choice to select the style of their hints. From the graph of estimated marginal means, it is evident that when students are given a choice of hint type, they request significantly more hints when they prefer text. This may be best explained by the fact that the students were aware of
the hints (Patall, 2008). The act of choosing a certain type of hint may have prompted students to check to see if the hints were indeed the version they chose. Although not directly related to Self-Determination Theory, the finding was telling of other psychological forces at play with regards to hint usage.

2.1.8 Analysis of Attempt Average

These graphs show that the data is relatively normal. There are a couple of outliers, but for the most part the graphs are normal. It is easy to have outliers with students since there are a lot of extenuating circumstances that would affect their attempts.
Based on the ANOVA results, when considering average attempt counts there was a near significant interaction effect between having a choice and the type of hint that was received, $F(1, 120) = 2.65, p = .106$, partial $\eta^2 = .28$. It appears that having a choice and choosing video was correlated with using more attempts, whereas having no choice and being assigned video was correlated with using less hints.
2.1.9 Analysis of Median Problem Time

The Q-Q graphs for the median time show relatively large deviation from the trend line. Although this indicates a lack of normality, it can be seen that the data are skewed the same way for all four of the graphs. Since the graphs slice the data in several ways, the time it takes to complete the problem set is pretty homogenous across all the partitions. Based on the data, the time appeared to follow an exponential curve more than a straight line, so this test of fitting it to a straight line may not be the best way to represent the normality of the data. These results have been seen in the other studies as well, so it is likely due to the nature of the metric rather than any actual error in data.
Table 2.1.6 ANOVA results for Median Time

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Partial Eta Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hint Type</td>
<td>5530.40</td>
<td>1</td>
<td>5530.40</td>
<td>1.37</td>
<td>0.244</td>
<td>0.01</td>
</tr>
<tr>
<td>Choice</td>
<td>2132.98</td>
<td>1</td>
<td>2132.98</td>
<td>0.53</td>
<td>0.468</td>
<td>0.01</td>
</tr>
<tr>
<td>Hint Type * Choice</td>
<td>1543.75</td>
<td>1</td>
<td>1543.75</td>
<td>0.38</td>
<td>0.537</td>
<td>0.01</td>
</tr>
<tr>
<td>Error</td>
<td>483439.25</td>
<td>120</td>
<td>4028.66</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Estimated Marginal Means of Median Time](image)

Figure 2.1.8 Marginal Means for Median Time

From the ANOVA results, there is again no statistically significant effect based on the time it takes to answer questions based on the data. Based on the interaction plot, it does seem that having a choice implies that you will take longer on the problem set, but having video will reduce the time it takes to answer questions. Note that these effects are not significant, and thus cannot be reasonably concluded without further testing which could reduce or enhance this effect.
2.1.10 Analysis of Post-Test Correctness

These Q-Q plots show that the data for Post Test Average is very normal across all the partitions. This is important because the post test is the most indicative of the effect the treatment had on the population overall.

Figure 2.1.9 Q-Q Plots for Experiment and Group Partitions
Although there wasn’t a significant main effect of choice, $F(1, 120) = .91$, $p = .342$, partial $\eta^2 = .01$, there was a pretty stark difference in the post test result averages as shown by the graph of the marginal means. There was about a 0.06 point gain by having a choice. The standard deviation is quite large, however, so the results would need to be further explored. If this finding were true, it would support the autonomy aspect of self-determination theory, as the presence of choice would positively impact the student’s performance. This would imply that because the students have input in their problem set as to the type of hints they receive, they learn the content that they’ve had the problem set on since they are
invested in the assignment. Based on Figure 2.1.10, it does seem that the type of hint they choose has no effect. What matters is that there is a choice rather than the outcome of the choice.

| Table 2.1.8 ANOVA Results considering Knowledge Level for Post Test Score |
|----------------------------------|-----|-------------------|-----|--------|------------------|
| | SS | df | Mean Square | F | Sig. | Partial Eta Squared |
| Hint Type | .00 | 1 | .00 | .01 | .920 | .00 |
| Choice | .11 | 1 | .11 | .93 | .336 | .01 |
| Knowledge | .03 | 1 | .03 | .28 | .595 | .00 |
| Hint Type * Choice | .00 | 1 | .00 | .00 | .952 | .00 |
| Hint Type * Knowledge | .12 | 1 | .12 | 1.03| .314 | .01 |
| Choice * Knowledge | .06 | 1 | .06 | .49 | .484 | .00 |
| Hint Type * Choice * Knowledge | .00 | 1 | .00 | .02 | .885 | .00 |
| Error | 13.41| 116 | .12 | | | |
Upon further analysis of the data, splitting on the prior knowledge of the student resulted in further interesting results. The results, however, are not statistically significant, but the results mimic prior
research (Ostrow, 2014). The graphs maintain that having a choice improves the post test score, but splitting based on the knowledge level of the student unveils another potential effect. The finding is that the video hints seem to positively affect the low-knowledge students who were below the median prior percent correct value. The high-knowledge students were inversely affected by the content of the hints. With high knowledge students, the videos seem to have a negative effect.

2.1.11 Discussion

Overall the most significant effect of letting students choose the types of hints they get was the number of hints that the average student used. This was an interesting effect that seems at first to imply that students who get to choose their hint medium need more hints. In reality, a likely explanation would be that students are actually verifying that their choice has a real consequence. Because they are aware that they are making a choice, they are more likely to see if their choice had an effect on their assignment. Seeing that it does satisfies their curiosity. The increase in hints may show that the students actually do care about the choices they make. This supports the axiom proposed in self determination theory.

Although not necessarily significant, there were also sizable differences in the post test score. Based on the means of the data, there was about a 6 point increase on post test score. Based on the knowledge split, there was also an interesting trend in text versus video. For students below the median prior percent correct, video feedback had a positive effect as opposed to text. For the students above the median, text appeared to fair better. It is also noted that the difference in score for having choice is a wider gap for students below the median.

Another oddity of this dataset is that there is a very large significance value (Sig. > 0.50) based on the knowledge split in the post test. Usually the prior knowledge of the students has very small significance value, meaning that the past knowledge of a student has a strong effect on the post-test score. Since this is not the case, this data could imply that the prior knowledge is not significant.
2.2 Autonomy Study 2: Mastery Level Choice

Hypothesis

Allowing students to choose the level of mastery they wish to achieve will make them more invested in completing their problem set.

Design

2.2.1 Flowchart

Students are immediately sorted into choice categories or no-choice categories. In the choice category, students are asked if they want to answer the recommended amount of questions or a non-standard amount. If they want to answer the recommended number of questions, they are sent to the 4 correct category which is a random order Skill Builder requiring 4 consecutive correct answers to reach mastery. If they choose to answer a non-standard amount, they can then choose more or less than the recommended amount. If they choose more, they must answer 5 correct in a row, and if they choose less, they must answer 3 correct in a row. Students in the no-choice group are randomly assigned 3, 4, or 5.
correct in a row. Once the students have completed their associated problem set, they are given the post test, a linear complete all section.

2.2.2 Experimental Treatment

The experimental group will be given the choice to define how well they want to know the material they are learning. Once they enter the experimental group, they will be given the choice of low, medium, or high proficiency. If they choose low proficiency, they will be required to answer 3 correct questions in their Skill Builder. Medium will result in 4 correct questions, and high will result in 5 correct questions in a row. Once the student chooses their desired mastery level, they cannot change it.

2.2.3 Control

The control group will receive a random assignment of three, four, or five correct. This will maintain symmetry with the experimental treatment and allow for better comparison between the groups. It provides the same experience as the experimental treatment but removes the choice.

2.2.4 Problem Set Information

This experiment was built on the common core strand NS.A.2c and was deployed for students in seventh grade. The problem set involved multiplying integers. For brevity, just the post test is shown below; See Appendix B for full problem set.
Results

2.2.5 Independence of Groups

This study reached 301 students from seven schools. The median prior percent correct was 72.66%. To determine the independence of groups with regards to attrition rates, a Chi-Squared test was performed.

<table>
<thead>
<tr>
<th></th>
<th>Finished</th>
<th>Unfinished</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment Partition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Choice</td>
<td>7</td>
<td>139</td>
<td>146</td>
</tr>
<tr>
<td>Choice</td>
<td>8</td>
<td>147</td>
<td>155</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>286</td>
<td>301</td>
</tr>
</tbody>
</table>

The data show that there were only 7 students who quit from the non-choice group and 8 students who quit from the choice group. Because these numbers represented similar proportions of the sample, it can be assumed that the rate of attrition was consistent across experimental conditions. The Chi-Squared test value, $\chi^2(1) = .021$, showed a consistent result where the significance was .884. Since this is much larger than 0.05, the null hypothesis is valid, indicating that the groups are independent with respect to attrition rates.
2.2.6 Descriptive Data

<table>
<thead>
<tr>
<th>Table 2.2.2 Means (SDs) of Choice Partition for Four Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment Partition</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>No Choice (N=139)</td>
</tr>
<tr>
<td>Choice (N=147)</td>
</tr>
<tr>
<td>Total (N=286)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2.2.3 Means (SDs) of Mastery Partition for Four Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mastery Level</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>Three Correct (N=92)</td>
</tr>
<tr>
<td>Four Correct (N=110)</td>
</tr>
<tr>
<td>Five Correct (N=84)</td>
</tr>
<tr>
<td>Total (N=286)</td>
</tr>
</tbody>
</table>

The data show that the distribution between the experimental condition and the mastery level were pretty consistent. Assuming that the non-choice partition was equally distributed among the three mastery levels, we see that there is a split of around 46-64-38 for 3-4-5 in a row respectively. Most students chose the recommended amount, but there were comparable amounts that chose both a higher level and lower level of mastery. The recommended amount was slightly more probable than a non-recommended amount, but there was not a major skew. Another notable feature is that no one in the Five Correct group needed a hint.
2.2.7 Analysis of Hint Average

The Q-Q Plots suggest that the data is not normal. This is probably due to ceiling effects because there were so few data points, as most students didn’t use very many hints, or really any at all. There was also no one in the Five Correct category who needed a hint, which made it impossible to draw a trend line, since there was only one data point. Even though the points didn’t fall on the trend line, they do line up mostly on a straight line, so they can still be counted, just with more scrutiny.

Figure 2.2.3 Q-Q Plots of Experiment and Group Partitions
Table 2.2.4 ANOVA results for Hint Average

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Partial Eta Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choice</td>
<td>6.16E-5</td>
<td>1</td>
<td>6.16E-5</td>
<td>.16</td>
<td>.688</td>
<td>.00</td>
</tr>
<tr>
<td>Mastery Level</td>
<td>.00</td>
<td>2</td>
<td>.00</td>
<td>3.74</td>
<td>.025</td>
<td>.03</td>
</tr>
<tr>
<td>Choice * Mastery Level</td>
<td>3.96E-5</td>
<td>2</td>
<td>1.98E-5</td>
<td>.05</td>
<td>.950</td>
<td>.00</td>
</tr>
<tr>
<td>Error</td>
<td>.11</td>
<td>280</td>
<td>.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>.11</td>
<td>286</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>.11</td>
<td>285</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2.2.4 Marginal Means of Hint Average

Results from the ANOVA showed a significant effect across the Mastery Level, $F(2, 280) = 3.74$, $p = .025$, partial $\eta^2 = .03$. This makes sense because as more questions in a row are completed, the less hints they use overall, and thus the lower their average is for hints during the problem set. There were some ceiling effects in this measurement where entire groups of students did not use any hints at all.
2.2.8 Analysis of Attempt Average

Again, these graphs seem to deviate a bit from the trendlines, but there is again a heavy weight toward answering questions correctly on the first try for all questions. The points still line up on a straight line, even if it is not the trend line, so the observations are probably normal for the most part.

Figure 2.2.5 Q-Q Plots for Attempt Average in Experiment and Group Partitions
Table 2.2.5 ANOVA Results for Attempt Average

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Partial Eta Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choice</td>
<td>.01</td>
<td>1</td>
<td>.01</td>
<td>1.58</td>
<td>.209</td>
<td>.01</td>
</tr>
<tr>
<td>Mastery Level</td>
<td>.01</td>
<td>2</td>
<td>.00</td>
<td>1.21</td>
<td>.300</td>
<td>.01</td>
</tr>
<tr>
<td>Choice * Mastery Level</td>
<td>.00</td>
<td>2</td>
<td>.00</td>
<td>.16</td>
<td>.850</td>
<td>.00</td>
</tr>
<tr>
<td>Error</td>
<td>.80</td>
<td>280</td>
<td>.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>293.69</td>
<td>286</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>.81</td>
<td>285</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2.2.6 Marginal Means of Attempt Average

Although there were no significant effects, there is a practical difference in attempts when students are given a choice. On average, the students used fewer attempts on the problem set when they were given a choice. Again, there is a negative trend with the mastery level choice which indicates that the more students practice, the better they do.
2.2.9 Analysis of Median Time per Problem

Figure 2.2.7 Q-Q Plots of Experiment and Partition Data

Again these follow more of an exponential curve, which is expected from time-based metrics. They still relatively follow the trend lines and can be interpreted as normal.
Table 2.2.6 ANOVA Results for Median Time

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Partial Eta Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choice</td>
<td>6.15</td>
<td>1</td>
<td>6.15</td>
<td>.10</td>
<td>.75</td>
<td>.00</td>
</tr>
<tr>
<td>Mastery Level</td>
<td>245.13</td>
<td>2</td>
<td>122.57</td>
<td>2.06</td>
<td>.13</td>
<td>.02</td>
</tr>
<tr>
<td>Choice * Mastery Level</td>
<td>152.54</td>
<td>2</td>
<td>76.27</td>
<td>1.28</td>
<td>.28</td>
<td>.01</td>
</tr>
<tr>
<td>Error</td>
<td>16634.69</td>
<td>280</td>
<td>59.41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>51382.37</td>
<td>286</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>17000.93</td>
<td>285</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2.2.8 Marginal Means of Median Time

There were no strongly significant effects in the Median Time for this experiment. The nearest effect there was was over the Mastery level. As more questions were answered correctly in a row, the faster students got. This supports the idea that repetition increases speed and accuracy. Having a choice also seemed to decrease time overall for four and five correct. This supports the autonomy aspect of self determination theory.
2.2.11 Analysis of Post Test Correctness

The post test data strongly follows the trend lines for this experiment, indicating that the data collected fit assumptions of normality.

Table 2.2.7 ANOVA Results for Post Test Score

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Partial Eta Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choice</td>
<td>.10</td>
<td>1</td>
<td>.10</td>
<td>1.83</td>
<td>.178</td>
<td>.01</td>
</tr>
<tr>
<td>Mastery Level</td>
<td>.03</td>
<td>2</td>
<td>.02</td>
<td>.29</td>
<td>.747</td>
<td>.00</td>
</tr>
<tr>
<td>Choice * Mastery Level</td>
<td>.25</td>
<td>2</td>
<td>.13</td>
<td>2.37</td>
<td>.096</td>
<td>.02</td>
</tr>
<tr>
<td>Error</td>
<td>14.87</td>
<td>280</td>
<td>.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>125.72</td>
<td>286</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>15.19</td>
<td>285</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2.2.9 Q-Q Plots for Experiment and Group Partitions
There was a near significant effect in the interaction between having a choice and the mastery level chosen, \(F(2,280) = 2.37, p = .096, \) partial \(\eta^2 = .02. \) For three and five correct, having a choice seemed to be detrimental to students’ performance on the post test, whereas choosing the recommended amount seemed to be better than being assigned the recommended amount. To further explore what was happening, the groups were further split into high and low knowledge students.
<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Partial Eta Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choice</td>
<td>.10</td>
<td>1</td>
<td>.10</td>
<td>1.91</td>
<td>.169</td>
<td>.01</td>
</tr>
<tr>
<td>Mastery Level</td>
<td>.04</td>
<td>2</td>
<td>.02</td>
<td>.39</td>
<td>.676</td>
<td>.00</td>
</tr>
<tr>
<td>High Knowledge</td>
<td>.08</td>
<td>1</td>
<td>.08</td>
<td>1.40</td>
<td>.237</td>
<td>.01</td>
</tr>
<tr>
<td>Choice * Mastery Level</td>
<td>.21</td>
<td>2</td>
<td>.11</td>
<td>1.97</td>
<td>.142</td>
<td>.01</td>
</tr>
<tr>
<td>Choice * High Knowledge</td>
<td>.00</td>
<td>1</td>
<td>.00</td>
<td>.06</td>
<td>.813</td>
<td>.00</td>
</tr>
<tr>
<td>Mastery Level * High Knowledge</td>
<td>.13</td>
<td>2</td>
<td>.07</td>
<td>1.21</td>
<td>.299</td>
<td>.01</td>
</tr>
<tr>
<td>Choice * Mastery Level * High Knowledge</td>
<td>.03</td>
<td>2</td>
<td>.01</td>
<td>.27</td>
<td>.763</td>
<td>.00</td>
</tr>
<tr>
<td>Error</td>
<td>14.59</td>
<td>274</td>
<td>.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>125.72</td>
<td>286</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>15.19</td>
<td>285</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 2.2.11 Marginal Means of Post Test Score for Low-Knowledge Students

Figure 2.2.12 Marginal Means of Post Test Score for High-Knowledge Students
Here it is noted that having a choice seems to have little effect based on the mastery level chosen for low-knowledge students. The high-knowledge students, however, did seem to have a more radical response between the ability to choose and the number they chose.

2.2.11 Discussion

Based on the Autonomy pillar of Self-Determination Theory, the experiment performed agreed that increased autonomy benefited students’ performance. This was supported by the average number of attempts and median time per question, but to a lesser extent in the post test score. Number of Attempts, while not significant, showed that there was an overall decrease in the number of hints used when students had a choice in the level of mastery they would practice. The drop was only by about .01 attempts on average but there was a consistent lower value for the students in the experimental treatment.

The median time metric likewise supported that autonomy invests students more in their work. The median time was shown to decrease by about 1.5 seconds for students in the four and five correct groups, but was one second more for students in the three correct group. There was less time taken by the students when they got to choose, which supports that autonomy is a motivator to remain focused on the problem set. It is also possible that since the students were actively choosing to do less than the recommended amount, they felt guilty about choosing to do less than the standard, so they paid a great amount of attention to the questions they did do.

Hint Count did not appear to support the notion that autonomy increases motivation. This result was again not significant, and it only resulted in a difference of about .001 hint per problem, so the inconsistency can be noted, but it holds little bearing on the overall effect of the experiment. Because the difference is so small and the result is insignificant, for practical purposes, it can be assumed that the number of hints was relatively unaffected by the experimental condition.

Lastly, the post test score tells a much more interesting story. It is evident from the plots that having the ability to choose, but only choosing the recommended amount is better than being assigned the recommended amount. Choosing to deviate from the norm, however, results in being worse off than just being assigned the amount chosen. This is possibly an effect of perceived competence coming in to play. Potentially, the students who chose to do less felt like they weren’t as well prepared for the post test, and felt like they sabotaged their learning. This would result in a lower test score because they believed they weren’t prepared. The students who chose to do five correct could have also suffered a blow to their competence. They may have been bored with the extreme repetitivity of trying to get 5 questions correct in a row, such that by the time they get to the post test, they are mentally exhausted.
2.3 Belonging Study 1: Value Affirmation

Hypothesis

Polling students values before they engage in a Skill Builder will increase their interest in completing it as they will feel more connected with their peers.

Design

2.3.1 Flowchart

![Flowchart](image)

Figure 2.3.1 Experiment Flowchart

The Experiment began by randomly assigning the students into the Value Affirmation Group, or the Null Value Affirmation Group. The Value Affirmation group was polled on the attribute the most value. The Null Value Affirmation group was polled on what they least Value. Once they were split into these groups, they are further randomly assigned to immediate and delayed surveys. Immediate survey gives the student a survey, then presents them with a randomized Skill Builder. The Delayed Survey first gives students the randomized Skill Builder, then the survey. Once the survey and Skill Builder have been completed, the student completes the post test, which is a linear Skill Builder.

2.3.2 Experimental Treatment

The experimental group will be broken further into immediate and delayed polling groups. In the immediate group, before beginning the assignment, the student will be asked what trait they most value, and be asked to choose from 54 traits. They will then continue onto the Skill Builder. The delayed group
will first complete the Skill Builder, and then will be polled. Once both groups have completed their assignment, they will be given a post test.

2.3.3 Control

The control group will also be broken into immediate and delayed polling. The immediate group will first be polled on their least valued trait from a large list, and then be asked to explain why it might be important to someone else. Then they will be given the Skill Builder. The delayed group will first be given the Skill Builder then they will be polled on their least desired trait and explain why it might be important to someone else. Both groups will also be given the same post test to measure their learning.

2.3.4 Problem Set Information

This experiment was built on the common core strand EE.C.7b and was deployed for students in eighth grade. The problem set involved explaining in words how to solve algebra problems. For brevity, just the post test is shown below; See Appendix B for full problem set.

Figure 2.3.2 Post Test Questions
Results

The experiment was deployed, but due to the time and scope of the project, the results have not yet been analyzed. This can be further explored by the ASSISTments team, or by a future IQP group.
2.4 Belonging Study 2: Human Tutoring Intervention

Hypothesis

Belonging relies heavily on close human relationships. Generally, text is not a perfect substitute for human interaction. The idea of this experiment is that having hints that are text will be less effective than having a simple narrated video, which will in turn be less effective than having a real human visual.

Design

2.4.1 Flowchart

![Figure 2.4.1 Experiment Flowchart](image)

The experiment began by having the students pass a video check which determined if they would be able to view videos. If they passed, they could enter the study, otherwise, they just received a standard Skill Builder. If they did pass, they were sorted into three different categories at random, where each category had different hints. The first category had only text hints, the next category had video hints, where words were written on the screen, and the last category had video hints where a person was standing in front of a blackboard. Once each student has completed the assigned work, they are administered a post test.

2.4.2 Experimental Treatment

There will be two experimental groups. Both will involve video, and will thusly need an additional video check in the start of the experiment to see if they can even see a video. If they cannot, they will be sent immediately to the regular version of the assignment and excluded from the study. If they pass, they will either be assigned to the narration videos or the human videos. The narration videos will consist of text drawn on the screen with a human speaking about the text, and the human videos will be a human writing on the whiteboard and speaking in front of a camera. Both of these videos will only appear in place of hints, and if the student doesn’t need hints, they will not see the videos.
2.4.3 Control

The control group will be given text cues for hints.

2.4.4 Problem Set Information

This experiment was built on the common core strand EE.B.4a and was deployed for students in seventh grade. The problem set involved solving one step addition and subtraction problems. For brevity, just the post test is shown below; See Appendix B for full problem set.

Figure 2.4.2 Post Test Questions
Results

2.4.5 Independence of Groups

The study was deployed to 319 students from ten schools. 175 of these students entered the study, and the remainder received a regular Skill Builder as they were not able to view video. For this study, the median prior score of the students was 70.61%. To determine that the experiment condition did not affect the attrition rates of the students, a chi-squared test was performed on the data.

<table>
<thead>
<tr>
<th></th>
<th>Text Hints</th>
<th>Narrated Hints</th>
<th>Human Hints</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Did Not Finish</td>
<td>9</td>
<td>10</td>
<td>13</td>
<td>32</td>
</tr>
<tr>
<td>Finished</td>
<td>50</td>
<td>45</td>
<td>48</td>
<td>143</td>
</tr>
<tr>
<td>Total</td>
<td>59</td>
<td>55</td>
<td>61</td>
<td>175</td>
</tr>
</tbody>
</table>

From the data, it appears that the groups are independent. There were 9 students who did not finish who had text hints, 10 students who did not finish with narration hints, and 13 students who did not finish with human hints. The Chi-Square tests showed $\chi^2(1) = .74$, with a significance of .692, indicating that there wasn’t a large differential attrition rate across the groups.
2.4.6 Descriptive Data

Table 2.4.2 Means (SDs) by Hint Type for Four Metrics

<table>
<thead>
<tr>
<th>Hint Type</th>
<th>Hint Average</th>
<th>Attempt Average</th>
<th>Median Time</th>
<th>Post Test Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text Hints</td>
<td>.07 (.18)</td>
<td>1.33 (.57)</td>
<td>53.96 (57.01)</td>
<td>.77 (.24)</td>
</tr>
<tr>
<td>(N=50)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Narrated Hints</td>
<td>.06 (.16)</td>
<td>1.23 (.36)</td>
<td>25.81 (15.18)</td>
<td>.81 (.23)</td>
</tr>
<tr>
<td>(N=45)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Hints</td>
<td>.05 (.12)</td>
<td>1.30 (.45)</td>
<td>31.85 (26.42)</td>
<td>.72 (.29)</td>
</tr>
<tr>
<td>(N=48)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>.06 (.16)</td>
<td>1.29 (.47)</td>
<td>37.68 (39.67)</td>
<td>.77 (.26)</td>
</tr>
<tr>
<td>(N=143)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2.4.3 Means (SDs) by Knowledge Level for Four Metrics

<table>
<thead>
<tr>
<th>Knowledge</th>
<th>Hint Average</th>
<th>Attempt Average</th>
<th>Median Time</th>
<th>Post Test Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Knowledge</td>
<td>.09 (.17)</td>
<td>1.44 (.62)</td>
<td>35.01 (21.40)</td>
<td>.72 (.28)</td>
</tr>
<tr>
<td>(N=59)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Knowledge</td>
<td>.05 (.14)</td>
<td>1.18 (.29)</td>
<td>39.56 (48.61)</td>
<td>.80 (.22)</td>
</tr>
<tr>
<td>(N=84)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>.06 (.16)</td>
<td>1.29 (.47)</td>
<td>37.68 (39.67)</td>
<td>.77 (.26)</td>
</tr>
<tr>
<td>(N=143)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The data show that there was a relatively even spread among the partitions. From the table, we can also see that the Narrated Hints outperformed the other types of hint in all metrics but Hint Average. Hint Average had the best performance for Human Hints. The overall post test score did not seem to encounter severe ceiling effects, so it will be more likely to have beneficial analysis. An interesting quirk to note is that the high knowledge students took longer than low knowledge students to solve the problems. Usually there is a relatively conclusive performance on average from the high knowledge students.
2.4.7 Analysis of Hint Average

From the graphs, it appears that there are a few outliers. For the most part, however, the data are relatively straight which indicates normalcy.

Figure 2.4.3 Q-Q Plots by Hint Type and Knowledge Level for Hint Average
Table 2.4.4 ANOVA Results for Hint Average

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Partial Eta Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hint Type</td>
<td>.02</td>
<td>2</td>
<td>.01</td>
<td>.42</td>
<td>.659</td>
<td>.01</td>
</tr>
<tr>
<td>Knowledge</td>
<td>.04</td>
<td>1</td>
<td>.04</td>
<td>1.67</td>
<td>.199</td>
<td>.01</td>
</tr>
<tr>
<td>Hint Type * Knowledge</td>
<td>.21</td>
<td>2</td>
<td>.11</td>
<td>4.63</td>
<td>.011</td>
<td>.06</td>
</tr>
<tr>
<td>Error</td>
<td>3.17</td>
<td>137</td>
<td>.02</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2.4.4 Marginal Means of Hint Average

There is a significant interaction effect between the knowledge level and hint type of the students across the knowledge levels, $F(2, 137) = 4.63, p = .011$, partial $\eta^2 = .06$. High knowledge students need the least amount of hints with text hints, and low knowledge students need less hints when given narrated
Hints. Human hints are better than narrated hints for high knowledge students, but worse than narrated hints for low knowledge students.

2.4.8 Analysis of Attempt Average

Figure 2.4.5 Q-Q Plots by Hint Type and Knowledge Level for Attempt Average

The Attempt Average follows the trend line pretty well across the partitions of hint type and knowledge level. This indicates that the data are normal.
Table 2.4.5 ANOVA Results for Attempt Average

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Partial Eta Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hint Type</td>
<td>.26</td>
<td>2</td>
<td>.13</td>
<td>.64</td>
<td>.527</td>
<td>.01</td>
</tr>
<tr>
<td>Knowledge</td>
<td>2.07</td>
<td>1</td>
<td>2.07</td>
<td>10.08</td>
<td>.002</td>
<td>.07</td>
</tr>
<tr>
<td>Hint Type * Knowledge</td>
<td>.56</td>
<td>2</td>
<td>.28</td>
<td>1.37</td>
<td>.257</td>
<td>.02</td>
</tr>
<tr>
<td>Error</td>
<td>28.16</td>
<td>137</td>
<td>.21</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Although there was a significant effect in knowledge, $F(1, 137) = 10.08$, $p = .002$, partial $\eta^2 = .07$, the finding is not insightful since high knowledge students can be expected to need less attempts for a problem set. There was a noticeable drop in attempt average for the low knowledge students when they received video hints over text hints. Narrated hints seemed to provide a better attempt average for low knowledge students.
2.4.9 Analysis of Median Time per Problem

Although the distribution is more exponential, the median time falls quite nicely in line with the trendline. This means that the data are normal.
Table 2.4.6 ANOVA Results for Median Time

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Partial Eta Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hint Type</td>
<td>19351.07</td>
<td>2</td>
<td>9675.53</td>
<td>6.71</td>
<td>.002</td>
<td>.09</td>
</tr>
<tr>
<td>Knowledge</td>
<td>1085.24</td>
<td>1</td>
<td>1085.24</td>
<td>.75</td>
<td>.387</td>
<td>.01</td>
</tr>
<tr>
<td>Hint Type * Knowledge</td>
<td>3377.25</td>
<td>2</td>
<td>1688.62</td>
<td>1.17</td>
<td>.313</td>
<td>.02</td>
</tr>
<tr>
<td>Error</td>
<td>197509.53</td>
<td>137</td>
<td>1441.68</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2.4.8 Marginal Means for Median Time

There was a significant effect based on the Hint Type, $F(1, 137) = 6.71$, $p = .002$, partial $\eta^2 = .09$. Having video hints is universally beneficial with regards to the median time to solve a problem. Narrated hints seemed to provide the best time reduction, up to 30 seconds lower on average for high knowledge students over text hints.
2.4.10 Analysis of Post Test Correctness

The Post Test Scores are relatively normal because they follow the trendline closely. This is true across the different slices of the data set, so the data is normal overall.

Figure 2.4.9 Q-Q Plots by Hint Type and Knowledge Level for Post Test Average
Table 2.4.7 ANOVA Results for Post Test Average

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Partial Eta Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hint Type</td>
<td>.20</td>
<td>2</td>
<td>.10</td>
<td>1.54</td>
<td>.218</td>
<td>.02</td>
</tr>
<tr>
<td>Knowledge</td>
<td>.27</td>
<td>1</td>
<td>.27</td>
<td>4.25</td>
<td>.041</td>
<td>.03</td>
</tr>
<tr>
<td>Hint Type * Knowledge</td>
<td>.05</td>
<td>2</td>
<td>.03</td>
<td>.40</td>
<td>.673</td>
<td>.01</td>
</tr>
<tr>
<td>Error</td>
<td>8.80</td>
<td>137</td>
<td>.06</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2.4.10 Marginal Means for Post Test Score

Although the only significance was in knowledge level-- $F(1, 137) = 4.25, p = .041$, partial $\eta^2 = .03$, there was a noticeable increase for high knowledge students by about 5 points when they were given narrated hints. Both knowledge levels suffered when given human hints.
2.4.11 Discussion

Overall there was strong support for hints that are narrated videos. The narrated videos outperformed text hints and human explanation videos on all factors for low knowledge students, and for two factors for high knowledge students. The two factors were Post Test and Median Time. Both of these factors are important because they can reflect the learning that happens and the efficiency with which the problems are solved.

Hint Average had an interesting interaction effect. It showed that low knowledge students needed far fewer hints when given narrated videos indicating that the video helped them enough to not need further hints. The high knowledge students on the other hand needed many more hints, indicating that they weren’t learning the material as well, and needed more hints to solve the problems. The two knowledge levels met in the middle for hint averages when they were given human hints. The findings suggest that the high knowledge students perform best with text hints over video hints, and the low knowledge students perform better with video hints, specifically narrated video hints.

The Attempt Average told a similar story to the Hint Average. High Knowledge students still did best with text hints hints, but Low Knowledge students performed more efficiently when given narrated video hints. This reflects previous findings, and the findings in the Hint Choice Study (2.1). Giving the students video hints helped the low knowledge students understand the concepts better, and allowed them to perform more consistently on their problem set.

Median time experienced an improvement for both the knowledge levels. It showed that the video hints reduced the median time to answer questions considerably, again with the narrated videos providing the most benefit. This could be because the videos more clearly walk through the method to solve the problems over the text hints, which may be confusing to students. Having a video may help students pay attention and better absorb the information being presented.

The Post Test Scores show further improvement. The High Knowledge students saw an increase of 5 points in the post test score when given narrated hints. Low knowledge students saw a marginal increase. Due to the other metrics being greatly improved, it is still worthwhile for the low knowledge students to be given narrated video feedback. Both knowledge groups, however, experienced a severe drop in post test score when given human feedback. Although human feedback may attempt to provide a sense of belonging, it may actually provide too much additional information, as the students may spend more time interpreting the nuances of body language and mouth movements rather than focusing on the subject at hand. Narrated videos seemed to provide enough human interaction to motivate the students but not too much to distract the students.
2.5 Competence Study 1: Adaptive Questions

Hypothesis

To establish a sense of competence, ASSISTments will give easier problems to students who are struggling, and increase difficulty as students become more confident in their skills.

Design

2.5.1 Flowchart

![Experiment Flowchart](image)

Figure 2.5.1 Experiment Flowchart

This experiment begins by randomly sorting the students into the Adaptive or Non-Adaptive partition. In the Adaptive condition, the students are given a diagnostic problem. If they get it wrong, they get 3 easier problems to practice prerequisite skills. Once they finish practising the prerequisite skills, they return to the skill at hand. If they correctly answered the diagnostic question, they immediately go to the Skill Builder for the skill the problem set is on. If they were sorted into the non-adaptive section, they immediately get the Skill Builder for the problem set. Once the students have completed their respective Skill Builders, they go on to the post-test.

2.5.2 Experimental Treatment

The experiment will offer the students the ability to first practice on easier but related problems if they struggle on the ones they start with. This will be accomplished by first asking a diagnostic problem. If the student gets it right, they continue on with the Skill Builder as usual. If they get the diagnostic question wrong, they will enter the easier version of the Skill Builder. This will allow them to establish a sense of competence that will make them want to continue. This motivation will be reflected by their post test scores.
2.5.3 Control

The control group will get no adaptive questions regardless of whether or not they get the diagnostic question right.

2.5.4 Problem Set Information

This experiment was built on the common core strand NS.B.3 and was deployed for students in sixth grade. The problem set involved multiplying decimals. For brevity, just the post test is shown below; See appendix *** for full problem set.

Figure 2.5.2 Post Test Questions
Results

2.5.5 Independence of Groups

The study was deployed to 242 students from five schools. For this study, the median prior score of the students was 62.72%. To determine that the experiment condition did not affect the attrition rates of the students, a chi-squared test was performed on the data.

<table>
<thead>
<tr>
<th>Control</th>
<th>Adaptive</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unfinished</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Finished</td>
<td>126</td>
<td>101</td>
</tr>
<tr>
<td>Total</td>
<td>133</td>
<td>109</td>
</tr>
</tbody>
</table>

From the data, it appears that the groups are independent. There were 7 students who did not finish from the control and 8 who did not finish from the experiment condition. The Chi-Square test shows $\chi^2(1) = .44$, where the probability that the groups are independent is .505. This is sufficiently high to assume that the attrition rate was equal across the participants.

2.5.6 Descriptive Data

<table>
<thead>
<tr>
<th>Knowledge</th>
<th>Hint Average</th>
<th>Attempt Average</th>
<th>Median Time</th>
<th>Post Test Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Knowledge (N=107)</td>
<td>.07 (.17)</td>
<td>1.18 (.29)</td>
<td>79.65 (69.99)</td>
<td>.50 (.26)</td>
</tr>
<tr>
<td>High Knowledge (N=120)</td>
<td>.01 (.07)</td>
<td>1.10 (.28)</td>
<td>35.95 (67.26)</td>
<td>.66 (.28)</td>
</tr>
<tr>
<td>Total (N=227)</td>
<td>.04 (.13)</td>
<td>1.14 (.29)</td>
<td>56.55 (71.82)</td>
<td>.59 (.28)</td>
</tr>
</tbody>
</table>
We can see that although the split between control and experiment was relatively equal, there was considerably fewer student who needed the adaptive part of the experiment. Most people got the diagnostic question correct.

2.5.7 Analysis of Hint Average

The Q-Q plots show that there may not be a normal distribution for the data. Although the points deviate from the trend line given, they are still relatively straight lines, so the data can still be analyzed.

Table 2.5.4 ANOVA Results for Hint Average

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge</td>
<td>.12</td>
<td>1</td>
<td>.12</td>
<td>8.14</td>
<td>.005</td>
</tr>
<tr>
<td>Adaptivity</td>
<td>.07</td>
<td>2</td>
<td>.04</td>
<td>2.51</td>
<td>.084</td>
</tr>
</tbody>
</table>
There is a significant effect on knowledge level, $F(1, 221) = 8.14$, $p = .005$ and a near significant effect on the partitioning of the groups, $F(1, 221) = 2.51$, $p = .084$. The knowledge level is understandable, because the students’ past performance is a strong predictor of how they will do on any given problem set.
2.5.8 Analysis of Attempt Average

Attempt average also does not appear to be normal. This is due to some outliers that could be trimmed to receive more understandable results. For the scope of this paper, the untrimmed data set will be analyzed.

Table 2.5.5 ANOVA Results for Attempt Average

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge</td>
<td>.10</td>
<td>1</td>
<td>.10</td>
<td>1.36</td>
<td>.245</td>
</tr>
<tr>
<td>Adaptivity</td>
<td>1.39</td>
<td>2</td>
<td>.70</td>
<td>9.55</td>
<td>.000</td>
</tr>
<tr>
<td>Knowledge * Adaptivity</td>
<td>.06</td>
<td>2</td>
<td>.03</td>
<td>.40</td>
<td>.673</td>
</tr>
<tr>
<td>Error</td>
<td>16.11</td>
<td>221</td>
<td>.07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
There was a strong significance on adaptivity level for attempts used, $F(1, 221) = 9.55, p = .000$. Students who needed the adaptive section used far more hints than both the control and non-adaptive groups for both high and low knowledge levels.

2.5.9 Analysis of Median Time per Problem

Median time again follows a more exponential curve, but the data line up along the trend line relatively well, so this data can be viewed as normal.
Table 2.5.6 ANOVA Results for Median Time

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge</td>
<td>32577.46</td>
<td>1</td>
<td>32577.46</td>
<td>6.93</td>
<td>.009</td>
</tr>
<tr>
<td>Adaptivity</td>
<td>17963.73</td>
<td>2</td>
<td>8981.86</td>
<td>1.91</td>
<td>.151</td>
</tr>
<tr>
<td>Knowledge * Adaptivity</td>
<td>1105.40</td>
<td>2</td>
<td>552.70</td>
<td>.12</td>
<td>.889</td>
</tr>
<tr>
<td>Error</td>
<td>1039601.40</td>
<td>221</td>
<td>4704.08</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2.5.8 Marginal Means for Median Time

There was again a significant effect of knowledge level on the median time used for the problem set, $F(1, 221) = 6.93, p = .009$. This is expected because students who have performed better in the past are usually able to understand material better and answer questions more quickly. There is also almost an effect on the group partition. It appears that students who are in the control take about the same time as students in the adaptive section, but students who are in the adaptive experiment, but don’t need the adaptive section take less time.
2.5.10 Analysis of Post Test Correctness

Figure 2.5.9 Q-Q Plots by Adaptivity for Post Test Average

These Q-Q plots show strongly correlated lines, indicating that the data are normal.
Table 2.5.7 ANOVA Results for Post Test Scores

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge</td>
<td>.32</td>
<td>1</td>
<td>.32</td>
<td>4.39</td>
<td>.037</td>
</tr>
<tr>
<td>Adaptivity</td>
<td>.13</td>
<td>2</td>
<td>.07</td>
<td>.91</td>
<td>.405</td>
</tr>
<tr>
<td>Knowledge * Adaptivity</td>
<td>.07</td>
<td>2</td>
<td>.04</td>
<td>.47</td>
<td>.624</td>
</tr>
<tr>
<td>Error</td>
<td>16.18</td>
<td>221</td>
<td>.07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2.5.10 Marginal Means of Post Test Score

The only significant effect was the knowledge level. From the graph, there is a suggestion that students do slightly worse if they needed the adaptive section regardless of their previous knowledge level. This could just be an artifact from the fact that since they got the question wrong, they would get future questions wrong. Essentially the group partitions aren’t completely independent from the knowledge separation, so the dip can be explained by the fact that knowledge has a significant effect.
2.5.11 Discussion

Overall the level of adaptivity is difficult to analyze as it splits the data into three groups of unequal sizes. The difference between adaptive and non-adaptive also is not completely independent from the knowledge level split, as students are more likely to be in the adaptive section if they are of the low knowledge category. As a general overarching note, it seems that there was a very large error margin for the high-knowledge students in the adaptive group. This could be that there are high knowledge students who got the diagnostic question wrong because they didn’t know how to answer it, or because they made a trivial error. These cases are very different, and would contribute heavily to variance within the means. There were also fewer high-knowledge students in the adaptive section presumably, which would further expand the error range.

The number of hints required from the students show that high knowledge students use far fewer hints than low knowledge students, even when they enter the adaptive section. This could be a reflection of the elevated competence high-knowledge students feel from being successful in the past. A higher competence yields higher confidence, which would drive down the perceived need for external assistance. The low-knowledge students in the adaptive group having a sharp spike in hint usage show that they may not be benefitting from the adaptive questions. The adaptive questions may not have been easy enough for the students to really gain insight into the problem type.

The attempt average was pretty consistent across the knowledge levels. Instead, the partitions showed a significant effect. This is understandable since the adaptive students would have had to have gotten one of the questions wrong to qualify for the adaptive group. This would drive the average up. There doesn’t seem to be any non-obvious effects from the experiment, but it is difficult to determine since the groups aren’t similarly sized. There is at least no real effect across the knowledge levels.

Median time shows only a significance in knowledge level. This is not an important significance since it is well known that students will take longer on an assignment if they have performed less than the median in the past. Being in the adaptive group proved to take more time than in the non-adaptive group, but was very comparable to the control group. At the very least, it does not hurt the students to have an adaptive problem set.

Post test scores show a similar story across the knowledge levels. There were no significant effects in the adaptivity levels, and there was no interaction between the knowledge level and adaptivity level. There is a noticeable drop for students in the adaptive group. This is suggests that there wasn’t a major benefit to having an adaptive section to bolster competence in the post test. Overall, the experiment is relatively inconclusive as to the effect of increased competence on student’s performance.
2.6 Competence Study 2: External Encouragement

Hypothesis

Increasing competence can be done through external encouragement. To emulate this in an online environment, confidence boosting prompts will be interspersed throughout the Skill Builder.

Design

2.6.1 Flowchart

This experiment begins by randomly assigning a student to either an encouraging problem set or a regular problem set. The encouraging Skill Builder gives students inspiring quotes every three questions to boost morale. The standard Skill Builder simply delivers a regular Skill Builder. Once the student has finished their respective problem set, they are given a post test.

2.6.2 Experimental Treatment

The treatment group received external encouragement after every three questions. To keep the same requirement of answering 3 questions in a row, the encouragement ‘questions’ were marked as correct every time, and the skill builder exit criterion was answering 4 correct questions in a row instead of 3. This allows for students to fulfill their mastery requirement while also seeing the encouraging screens. There was an encouragement screen in the beginning that is marked right, so even students who have no trouble with the assignment and get the first three questions right will still have been exposed to the encouragement.

2.6.3 Control

The control group will receive no external encouragement. To maintain symmetry, the control will also answer a linear set of template problems. This should be doable since there will probably be a daily max of 10 anyway.
2.6.4 Problem Set Information

This experiment was built on the common core strand NS.B.3 and was deployed for students in sixth grade. The problem set involved Adding Decimals. For brevity, just the post test is shown below; See appendix *** for full problem set.

Figure 2.6.2 Post Test Questions
Results

2.6.5 Independence of Groups

This was a smaller study that reached 96 students from two schools. Their median prior percent correct was 80.00%. The attrition rates across the groups were analyzed by performing a Chi-Square test to determine that the experiment did not cause students to drop out.

| Table 2.6.1 Cross Tabulation of Encouragement Level and Finished Partitions |
|-----------------------------|-----------------------------|-----------------------------|
| | No Encouragement | Encouragement | Total |
| Unfinished | 2 | 1 | 3 |
| Finished | 44 | 49 | 93 |
| Total | 46 | 50 | 96 |

Based on the data it is evident that the rates of attrition are consistent across the experimental condition. The experiment had one student quit, whereas the control group only had two students quit. Based on the size of the sample, these were shown to be insignificant. The Chi-Square test shows similar conclusions, where \(\chi^2(1) = .44 \). The significance was 0.509, which indicates that the two groups are independent with respect to attrition rates.

2.6.6 Descriptive Data

<table>
<thead>
<tr>
<th>Table 2.6.2 Means (SDs) by Encouragement for Four Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encouragement</td>
</tr>
<tr>
<td>Hint Average (N=44)</td>
</tr>
<tr>
<td>.01 (.03)</td>
</tr>
<tr>
<td>Attempt Average (N=44)</td>
</tr>
<tr>
<td>1.06 (.12)</td>
</tr>
<tr>
<td>Median Time (N=44)</td>
</tr>
<tr>
<td>27.57 (17.18)</td>
</tr>
<tr>
<td>Post Test Average (N=44)</td>
</tr>
<tr>
<td>.95 (.16)</td>
</tr>
<tr>
<td>Encouragement (N=49)</td>
</tr>
<tr>
<td>.00 (.00)</td>
</tr>
<tr>
<td>Attempt Average (N=49)</td>
</tr>
<tr>
<td>1.06 (.11)</td>
</tr>
<tr>
<td>Median Time (N=49)</td>
</tr>
<tr>
<td>28.11 (11.17)</td>
</tr>
<tr>
<td>Post Test Average (N=49)</td>
</tr>
<tr>
<td>.94 (.14)</td>
</tr>
<tr>
<td>Total (N=93)</td>
</tr>
<tr>
<td>.01 (.02)</td>
</tr>
<tr>
<td>Attempt Average (N=93)</td>
</tr>
<tr>
<td>1.06 (.12)</td>
</tr>
<tr>
<td>Median Time (N=93)</td>
</tr>
<tr>
<td>27.86 (14.25)</td>
</tr>
<tr>
<td>Post Test Average (N=93)</td>
</tr>
<tr>
<td>.95 (.15)</td>
</tr>
</tbody>
</table>

The results show that there was relatively little overall difference between the two groups overall, and they were the same size. Further investigation will be performed to analyze effects on low and high knowledge students.
2.6.7 Analysis of Hint Average

Due to extreme ceiling effects, there were no students in the Encouragement condition that needed a hint, and only one student in the control condition that needed a hint on one problem. This is reflected in the graphs where there is one point that is really far away from the trend line.

Figure 2.6.3 Q-Q Plot by Encouragement Level of Hint Average
Table 2.6.3 ANOVA Results for Hint Average

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Partial Eta Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encouragement</td>
<td>.00</td>
<td>1</td>
<td>.00</td>
<td>1.23</td>
<td>.271</td>
<td>.01</td>
</tr>
<tr>
<td>Knowledge</td>
<td>.00</td>
<td>1</td>
<td>.00</td>
<td>1.23</td>
<td>.271</td>
<td>.01</td>
</tr>
<tr>
<td>Encouragement *</td>
<td>.00</td>
<td>1</td>
<td>.00</td>
<td>1.23</td>
<td>.271</td>
<td>.01</td>
</tr>
<tr>
<td>Knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>.04</td>
<td>89</td>
<td>.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2.6.4 Marginal Means of Hint Usage

This graph basically shows that the one student who needed a hint was in the low knowledge group. Realistically, no conclusions can be drawn from this.
2.6.8 Analysis of Attempt Average

![Q-Q Plot Image]

Figure 2.6.5 Q-Q Plots by Encouragement for Attempt Average

Attempt average follows the line pretty closely. This indicates that both there are enough data points and that they follow a normal distribution.

Table 2.6.4 ANOVA Results for Attempt Average

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Partial Eta Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encouragement</td>
<td>4.82E-5</td>
<td>1</td>
<td>4.82E-5</td>
<td>.00</td>
<td>.951</td>
<td>.00</td>
</tr>
<tr>
<td>Knowledge</td>
<td>.01</td>
<td>1</td>
<td>.01</td>
<td>.76</td>
<td>.385</td>
<td>.01</td>
</tr>
<tr>
<td>Encouragement *</td>
<td>.11</td>
<td>1</td>
<td>.11</td>
<td>8.63</td>
<td>.004</td>
<td>.09</td>
</tr>
<tr>
<td>Knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>1.11</td>
<td>89</td>
<td>.01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
There was a significant interaction effect between the experiment condition and knowledge level. Based on the ANOVA results, there are less attempts that are needed by the low knowledge students when they receive encouragement, whereas high knowledge students require more attempts on average when they receive encouragement.

2.6.9 Analysis of Median Time per Problem

Figure 2.6.6 Marginal Means of Attempt Average

Figure 2.6.7 Q-Q Plots by Encouragement of Median Time
Based on the Q-Q plots, the median time to complete a question follows an exponential curve, and the curve falls mostly on the trend line, so the data can be viewed as normal.

Table 2.6.5 ANOVA Results for Median Time

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Partial Eta Squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encouragement</td>
<td>2.57</td>
<td>1</td>
<td>2.57</td>
<td>.01</td>
<td>.911</td>
<td>.00</td>
</tr>
<tr>
<td>Knowledge</td>
<td>447.17</td>
<td>1</td>
<td>447.17</td>
<td>2.20</td>
<td>.141</td>
<td>.02</td>
</tr>
<tr>
<td>Encouragement *</td>
<td>181.60</td>
<td>1</td>
<td>181.60</td>
<td>.89</td>
<td>.347</td>
<td>.01</td>
</tr>
<tr>
<td>Error</td>
<td>18082.24</td>
<td>89</td>
<td>203.17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>90854.81</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>18689.44</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2.6.8 Marginal Means of Median Time
There wasn’t a significant effect for any of the partitions, but there was a similar effect between knowledge and treatment as there was as in attempt average. The low knowledge students took less time with encouragement, and the high knowledge students took more time.

2.6.10 Analysis of Post Test Correctness

![Figure 2.6.9 Q-Q Plots by Encouragement of Post Test Average](image)

Figure 2.6.9 Q-Q Plots by Encouragement of Post Test Average

The Post Test distributions don’t really fall on the trend line, but it does still approximate a straight line, so it can be considered normal with a few outliers.
Based on the graph, there were no significant effects based on the knowledge split and treatment. The high knowledge students only lose 2 points based on receiving encouragement and the low knowledge students gain less than a point.
2.6.11 Discussion

Based on the results, there appears to be very little effect of the insertion of encouraging quotes within the problem set. This was consistent across the average number of hints, the median time, and the post test. There was a significant effect on the interaction between the experiment and knowledge level of the attempts used. It was shown that the low knowledge students were able to use considerably fewer attempts on average when they were encouraged. This could be that the low knowledge students actually took the time to read the encouraging quotes, and were inspired by them resulting in fewer attempts needed. The high knowledge students may have found the quotes condescending, and felt that they were incompetent, resulting in more attempts needed.

A major problem with this data set is that there were significant ceiling effects. Almost every student got the first questions right and didn’t need to see more than one motivational quote. This means that the results show little meaning especially for the significant effect of attempt average. Because the encouraging quote was delivered and then the students went right in to the post test, there probably wasn’t a very big influence from the quotes. Overall it seems that there is no effect one way or the other when there are inspirational quotes interspersed with the questions.

3. Conclusion

Although many results from the studies were not significant, they generally pointed towards the support of Self-Determination Theory. The Experiments proved to reduce the number of hints, attempts, and time to complete the Skill Builder in general. They tended to increase the post test scores of the students as well. Based on this, it appears that the motivation of a student is indeed tied to the factors of autonomy, belonging and competence.

Another interesting finding is that the experiments seemed to help the low-knowledge students much more than the high knowledge students. It seems that the students who were doing well prior to the experiments were thriving in the default environment that ASSISTments has set up. The Low-knowledge students, on the other hand, have not been doing as well. Changing the way the Skill Builders are delivered seemed to provide a different enough experience to help them overcome their prior experiences. From the studies, high-knowledge students tend to resist the changes, whereas low-knowledge students tend to embrace them. This may indicate that there are different ways of learning things which can be benefitted or hindered by presenting information in different ways.

Further studies could expand on these concepts. Many of the studies in this paper were replications of previous studies to verify their efficacy. These studies drew similar conclusions to the ones performed in the past. Further experimentation could verify whether these findings are applicable on different age groups, as well as different math subjects. It could be that different subjects in math should be treated differently, which could be determined by replication of these studies in different subjects.
4. References

5. Appendices

5.1 Appendix A - Code to Analyze Data
#!/usr/bin/env python
import csv
import statistics
from student import Student

-- VARIABLES --
noCount = ['PRABEDGH', 'PRA5K5P', 'PRA4MUZ', 'PRADSHN', 'PRABESMH', 'PRABE2JV'] #questions that should not add to correctness
condition = ['PRAJN85'] #make a dictionary?
noDiagnostic = ['PRAJN85']
diagnostic = ['PRABE2JV', 'PRABESZK', 'PRABESZM', 'PRABEKMU']
postTest = ['PRA79', 'PRASRU', 'PRA9PED'] # post test questions
FINAL_QUESTION = 'PRA9PED'

studentData = []
priorPercents = []
schoolIds = set()
STUDENT_ID_OFFSET = 0
QUESTION_ID_OFFSET = 0
CORRECTNESS_OFFSET = 0
HINT_OFFSET = 0
ATTEMPT_OFFSET = 0
START_TIME_OFFSET = 0
END_TIME_OFFSET = 0
FEATURE_OFFSET = 0
NUM_QUESTIONS_OFFSET = 0
ROWS_PER_STUDENT = 0
PRIOR_PERCENT_OFFSET = 0
SCHOOL_ID_OFFSET = 0

--- METHODS ---------------------------------------

#read data into an array
def readFile(csvName):
 with open(csvName, newline='') as csvfile:
 csvreader = csv.reader(csvfile, delimiter=',', quotechar='"
 return list(csvreader)

def getOffsets(data, covariate):
 global STUDENT_ID_OFFSET, QUESTION_ID_OFFSET, CORRECTNESS_OFFSET, HINT_OFFSET
 global ATTEMPT_OFFSET, START_TIME_OFFSET, END_TIME_OFFSET, FEATURE_OFFSET
 global NUM_QUESTIONS_OFFSET, ROWS_PER_STUDENT, PRIOR_PERCENT_OFFSET, SCHOOL_ID_OFFSET

 for index in range(len(data[0])): #features
 if data[0][index] == 'features':
 FEATURE_OFFSET = index
 if data[0][index] == 'Problem Count':
 pass
NUMQUESTIONS_OFFSET = index

for index in range(len(covariate[0])):
 if covariate[0][index] == 'Prior Percent Correct':
 PRIOR_PERCENT_OFFSET = index
 if covariate[0][index] == 'School ID':
 SCHOOL_ID_OFFSET = index

firstUserID = data[1][0]

for index in range(1, len(data)):
 if data[index][0] != firstUserID:
 ROWS_PER_STUDENT = index - 1
 print('ROWS PER STUDENT: ', ROWS_PER_STUDENT)
 break

if data[index][FEATURE_OFFSET] == 'Problem ID':
 QUESTION_ID_OFFSET = index - 1
 print('QUESTION ID OFFSET: ', QUESTION_ID_OFFSET)
if data[index][FEATURE_OFFSET] == 'Correct':
 CORRECTNESS_OFFSET = index - 1
if data[index][FEATURE_OFFSET] == 'Hint Count':
 HINT_OFFSET = index - 1
if data[index][FEATURE_OFFSET] == 'Attempt Count':
 ATTEMPT_OFFSET = index - 1
if data[index][FEATURE_OFFSET] == 'Problem Start Time':
 STARTTIME_OFFSET = index - 1
if data[index][FEATURE_OFFSET] == 'Problem End Time':
 ENDTIME_OFFSET = index - 1

determine how the question should be counted

values that determine which row/column the data is in
firstResponseTimeRow = startRow + 21

def processQuestion(student, data, questionNumber, startRow):
 correctnessRow = startRow + CORRECTNESS_OFFSET
 questionIDRow = startRow + QUESTION_ID_OFFSET
 hintRow = startRow + HINT_OFFSET
 attemptRow = startRow + ATTEMPT_OFFSET
 startTimeRow = startRow + STARTTIME_OFFSET
 endTimeRow = startRow + ENDTIME_OFFSET
 problemID = (data[questionIDRow][questionNumber]).replace('"', '')
 if problemID in condition:
 student.condition = 1
 if problemID in noDiagnostic:
 student.subgroup = 1
 if problemID in diagnostic:
 student.subgroup = 2
 if not (problemID in noCount):
 if problemID in postTest:
 student.countPostTest(data[correctnessRow][questionNumber])
 else:
 student.countCorrect(data[correctnessRow][questionNumber])
 student.countHints(data[hintRow][questionNumber])
 student.countAttempts(data[attemptRow][questionNumber])
 student.addTime(data[startTimeRow][questionNumber], data[endTimeRow][questionNumber])
 if problemID == FINAL_QUESTION:
 student.finished = 1

 # student.countResponseTime(data[firstResponseTimeRow][questionNumber])

 #return a populated student object with important data
def processEntry(studentNumber, data, covariatedata):
 student = Student()
 # gather covariate data
 student.ID = int(covariatedata[studentNumber+1][STUDENT_ID_OFFSET])
 student.setPriorPercentCorrect(covariatedata[studentNumber+1][PRIOR_PERCENT_OFFSET])
 priorPercents.append(student.priorPercentCorrect)
schoolIds.add(covariatedata[studentNumber+1][SCHOOL_ID_OFFSET])

 startRow = studentNumber*ROWS_PER_STUDENT + 1
 offset = FEATURE_OFFSET + 1 # handle scaffolds
 questionIDRow = startRow + QUESTION_ID_OFFSET
 numQuestions = int(data[startRow][NUM_QUESTIONS_OFFSET])

 # loop through the questions and update
 print(numQuestions)
 for question in range(0, numQuestions):
 try:
 while(len(data[questionIDRow][question+offset].replace('"', '').replace(' ', '')) == 0):
 print('Empty DATA!')
 offset += 1
 processQuestion(student, data, question+offset, startRow)
 except IndexError:
 break

 return student

------------------------------- Main Method ---
data = readFile('DATA.csv')
covariate = readFile('COVARIATE.csv')
getOffsets(data, covariate)

for studentNumber in range(0, len(covariate)-1):
 student = processEntry(studentNumber, data, covariate)
 studentData.append(student)

studentData.sort()

------------------------------- Write Data Out ---
def writeCSV(fileName, listOfStudents):
 with open(fileName, 'w') as csvfile:
 datawriter = csv.writer(csvfile, delimiter=';', quotechar='"', quoting=csv.QUOTE_MINIMAL)
 datawriter.writerow(['ID', 'High Knowledge', 'Experiment Partition', 'Group Partition', 'Finished', 'Hint Average', 'At'])
 for student in listOfStudents:
 datawriter.writerow(student.getRow(statistics.median(priorPercents)))
datawriter.writerow([''])
datawriter.writerow([''])
writeCSV('PSA59VC.csv', studentData)

print('Number of Schools: {}, Knowledge Split: {}'.format(len(schoolIds), statistics.median(priorPercents)))

------------------------------- VARIABLES ---
noCount = ['PRABEGH', 'PRASKJ8', 'PRA4MUZ', 'PRADSHN',] # questions that should not add to correctness
condition = ['PRASK5P'] # make a dictionary

video = ['PRABEB92', 'PRABEB93', 'PRABEB94', 'PRABEB95', 'PRABEB96', 'PRABEB97', 'PRABEB98', 'PRABEB99', 'PRABEB92', 'PRABECA2']

read data into an array

read data into an array

def readFile(csvName):
 with open(csvName, newline='') as csvfile:
 csvreader = csv.reader(csvfile, delimiter=',', quotechar='"')
 return list(csvreader)

def getOffsets(data, covariate):
 global STUDENT_ID_OFFSET, QUESTION_ID_OFFSET, CORRECTNESS_OFFSET, HINT_OFFSET
 global ATTEMPT_OFFSET, START_TIME_OFFSET, END_TIME_OFFSET, FEATURE_OFFSET
 global NUM_QUESTIONS_OFFSET, ROWS_PER_STUDENT, PRIOR_PERCENT_OFFSET, SCHOOL_ID_OFFSET

 for index in range(len(data[0])): # 'features'
 if data[0][index] == 'features':
 FEATURE_OFFSET = index
 for index in range(len(covariate[0])): # 'Problem Count'
 if covariate[0][index] == 'Problem Count':
 NUM_QUESTIONS_OFFSET = index

 for index in range(len(covariate[0])): # 'Prior Percent Correct'
 if covariate[0][index] == 'Prior Percent Correct':
 PRIOR_PERCENT_OFFSET = index

 for index in range(len(covariate[0])): # 'School ID'
 if covariate[0][index] == 'School ID':
 SCHOOL_ID_OFFSET = index
firstUserID = data[1][0]

for index in range(1, len(data)):
student.ID = int(covariatedata[studentNumber+1][STUDENT_ID_OFFSET])
student.setPriorPercentCorrect(covariatedata[studentNumber+1][PRIOR_PERCENT_OFFSET])
priorPercents.append(student.priorPercentCorrect)
schoolIds.add(covariatedata[studentNumber+1][SCHOOL_ID_OFFSET])

startRow = studentNumber*ROWS_PER_STUDENT + 1
offset = FEATURE_OFFSET + 1 # handle scaffolds
questionIDRow = startRow + QUESTION_ID_OFFSET
numQuestions = int(data[startRow][NUM_QUESTIONS_OFFSET])
loop through the questions and update
print(numQuestions)
for question in range(0, numQuestions):
 try:
 while(len(data[questionIDRow][question+offset].replace('"', ',') == 0):
 print('Empty DATA!')
 offset += 1
 processQuestion(student, data, question+offset, startRow)
 except IndexError:
 break

return student

#--- Main Method ---
data = readFile('DATA.csv')
covariate = readFile('COVARIATE.csv')
getOffsets(data, covariate)
for studentNumber in range(0, len(covariate)-1):
 student = processEntry(studentNumber, data, covariate)
 studentData.append(student)
studentData.sort()
#-- Write Data Out ---

def writeCSV(fileName, listOfStudents):
 with open(fileName, 'w') as csvfile:
 datawriter = csv.writer(csvfile, delimiter=',', quotechar='', quoting=csv.QUOTE_MINIMAL)
 datawriter.writerow(['ID', 'High Knowledge', 'Experiment Partition', 'Group Partition', 'Finished', 'Hint Average', 'At'])
 for student in listOfStudents:
 datawriter.writerow(student.getRow(statistics.median(priorPercents)))

writeCSV('PSA59VB.csv', studentData)

print('Number of Schools: {}, Knowledge Split: {}'.format(len(schoolIds), statistics.median(priorPercents)))

#-- VARIABLES --
noCount = ['PRA4MUZ', 'PRABESMF'] # questions that should not add to correctness
condition = [] make a dictionary?
narrated = ['PRABEEJ9', 'PRABEEKA', 'PRABEEKB', 'PRABEEKC', 'PRABEEKD', 'PRABEEKE', 'PRABEEKF']

human = ['PRABEEJ', 'PRABEEJ2', 'PRABEEJ3', 'PRABEEJ4', 'PRABEEJ5', 'PRABEEJ6', 'PRABEEJ7', 'PRABEEJ8']

postTest = ['PRABESYJ', 'PRABESYG', 'PRABESYK', 'PRABESYH'] # post test questions

FINAL_QUESTION = 'PRABESYJ'

studentData = []
priorData = []
schoolIds = set()

STUDENT_ID_OFFSET = 0
QUESTION_ID_OFFSET = 0
CORRECTNESS_OFFSET = 0
HINT_OFFSET = 0
ATTEMPT_OFFSET = 0
START_TIME_OFFSET = 0
END_TIME_OFFSET = 0

FEATURE_OFFSET = 0
NUM_QUESTIONS_OFFSET = 0
ROWS_PER_STUDENT = 0
PRIOR_PERCENT_OFFSET = 0
SCHOOL_ID_OFFSET = 0

--- METHODS ---------------------------------------

#read data into an array
def readFile(csvName):
 with open(csvName, newline='') as csvfile:
 csvreader = csv.reader(csvfile, delimiter=' ', quotechar='\'')
 return list(csvreader)
def getOffsets(data, covariate):
 global STUDENT_ID_OFFSET, QUESTION_ID_OFFSET, CORRECTNESS_OFFSET, HINT_OFFSET
 global ATTEMPT_OFFSET, START_TIME_OFFSET, END_TIME_OFFSET, FEATURE_OFFSET
 global NUM_QUESTIONS_OFFSET, ROWS_PER_STUDENT, PRIOR_PERCENT_OFFSET, SCHOOL_ID_OFFSET

 for index in range(len(data[0])):
 if data[0][index] == 'features':
 FEATURE_OFFSET = index
 elif data[0][index] == 'Problem Count':
 NUM_QUESTIONS_OFFSET = index

 for index in range(len(covariate[0])):
 if covariate[0][index] == 'Prior Percent Correct':
 PRIOR_PERCENT_OFFSET = index
 elif covariate[0][index] == 'School ID':
 SCHOOL_ID_OFFSET = index

 firstUserID = data[1][0]

 for index in range(1, len(data)):
 if data[index][0] != firstUserID:
 ROWS_PER_STUDENT = index - 1
 print('ROWS PER STUDENT: ', ROWS_PER_STUDENT)
 break

https://gist.github.com/ndennler/2370af76b90af33d8ed3e8b8b18dbe13
if data[index][FEATURE_OFFSET] == 'Problem ID':
 QUESTION_ID_OFFSET = index - 1
 print('QUESTION ID OFFSET: ', QUESTION_ID_OFFSET)
if data[index][FEATURE_OFFSET] == 'Correct':
 CORRECTNESS_OFFSET = index - 1
if data[index][FEATURE_OFFSET] == 'Hint Count':
 HINT_OFFSET = index - 1
if data[index][FEATURE_OFFSET] == 'Attempt Count':
 ATTEMPT_OFFSET = index - 1
if data[index][FEATURE_OFFSET] == 'Problem Start Time':
 START_TIME_OFFSET = index - 1
if data[index][FEATURE_OFFSET] == 'Problem End Time':
 END_TIME_OFFSET = index - 1

determine how the question should be counted
def processQuestion(student, data, questionNumber, startRow):
 values that determine which row/column the data is in
correctnessRow = startRow + CORRECTNESS_OFFSET
questionIDRow = startRow + QUESTION_ID_OFFSET
hintRow = startRow + HINT_OFFSET
attemptRow = startRow + ATTEMPT_OFFSET
startTimeRow = startRow + START_TIME_OFFSET
endTimeRow = startRow + END_TIME_OFFSET

firstResponseTimeRow = startRow + 21
problemID = (data[questionIDRow][questionNumber]).replace('', '')
if (problemID in condition):
 student.condition = 1
if (student.subgroup == 0):
 student.subgroup = 1
if (problemID in narrated):
 student.subgroup = 2
if (problemID in human):
 student.subgroup = 3
if (not (problemID in noCount)):
 if (problemID in postTest):
 student.countPostTest(data[correctnessRow][questionNumber])
 else:
 student.countCorrect(data[correctnessRow][questionNumber])
 student.countHints(data[hintRow][questionNumber])
 student.countAttempts(data[attemptRow][questionNumber])
 student.addTime(data[startTimeRow][questionNumber], data[endTimeRow][questionNumber])
if (problemID == FINAL_QUESTION):
 student.finished = 1
if (problemID == 'PRA4Muz' and data[correctnessRow][questionNumber] == '0'):
 student.condition = -999

return a populated student object with important data
def processEntry(studentNumber, data, covariatedata):
 student = Student()
 # gather covariate data
 student.ID = int(covariatedata[studentNumber+1][STUDENT_ID_OFFSET])
 student.setPriorPercentCorrect(covariatedata[studentNumber+1][PRIOR_PERCENT_OFFSET])
 priorPercent.append(student.priorPercentCorrect)
schoolIds.add(covariatedata[studentNumber+1][SCHOOL_ID_OFFSET])

 startRow = studentNumber*ROWS_PER_STUDENT + 1
 offset = FEATURE_OFFSET + 1 # handle scaffolds

https://gist.github.com/ndennler/2370af76b90af33d8ed3e8b8b18d8e13
sortDataAdaptive.py

```python
# Calculate question ID row
questionIDRow = startRow + QUESTION_ID_OFFSET

# Calculate number of questions
numQuestions = int(data[startRow][NUM_QUESTIONS_OFFSET])

# Loop through the questions and update
for question in range(0, numQuestions):
    try:
        while len(data[questionIDRow][question+offset].replace('"', ' ')) == 0:
            print('Empty DATA!')
            offset += 1
        processQuestion(student, data, question+offset, startRow)
    except IndexError:
        break

# Calculate number of students
numStudents = len(covariate) - 1

# Loop through the students and update
for studentNumber in range(0, len(covariate) - 1):
    student = processEntry(studentNumber, data, covariate)
    studentData.append(student)

studentData.sort()
```

```python
# Define writeCSV function
def writeCSV(fileName, listOfStudents):
    with open(fileName, 'w') as csvfile:
        datawriter = csv.writer(csvfile, delimiter=',', quotechar='', quoting=csv.QUOTE_MINIMAL)
        datawriter.writerow(['ID', 'High Knowledge', 'Experiment Partition', 'Group Partition', 'Finished', 'Hint Average', 'At Knowledge Split'])
        for student in listOfStudents:
            datawriter.writerow(student.getRow(statistics.median(priorPercents)))

# Write data to CSV files
writeCSV('PSA6DUN.csv', studentData)
```

```python
#!/usr/bin/env python
import csv
import statistics
from student import Student

# Variables
noCount = ['PRABESZG', 'PRABEBUC', 'PRABECAC', 'PRABET7F'] # questions that should not add to correctness
condition = ['PRABEBUC'] # make a dictionary?
threeCorrect = ['PRABF87', 'PRABFB82', 'PRABFB6', 'PRABFB3', 'PRABFB8', 'PRABFBY', 'PRABFB4', 'PRABFB2', 'PRABFD5', 'PRABFD2', 'PRABFC2', 'PRABFCZ', 'PRABFCA', 'PRABFEA', 'PRABFEP', 'PRABFDK', 'PRABFDA', 'PRABFDQ', 'PRABFDQ', 'PRABFCD', 'PRABFCE', 'PRABFEN', 'PRABFEH'

fourCorrect = ['PRABFCC', 'PRABFEE', 'PRABFD8', 'PRABFCT', 'PRABFS2', 'PRABFD2', 'PRABFCF', 'PRABFCN', 'PRABFCD', 'PRABFEM', 'PRABFEH'...
```
sortDataAdaptive.py

'PRABFCQ', 'PRABFDC', 'PRABFEN', 'PRABFEB', 'PRABFCS', 'PRABFEC', 'PRABFEK', 'PRABFC4', 'PRABFCM', 'PRABFCY', 'PRABFES', |

fiveCorrect = ['PRABFD0', 'PRABFCS', 'PRABFEC', 'PRABFEB', 'PRABFDW', 'PRABFCH', 'PRABFDX', 'PRABFDH', 'PRABFCS', 'PRABFD3', 'PRABFD6', 'PRABFDI', 'PRABFDV', 'PRABFD0', 'PRABFEC', 'PRABFCK', 'PRABFDS', 'PRABFCS', 'PRABFC7', 'PRABFEU', 'PRABFDE', 'PRABFCS', 'PRABFD7', '

postTest = ['PRABATEU', 'PRABEHM6', 'PRABAWP9', 'PRABAWP9'] # post test questions

FINAL_QUESTION = 'PRABAWP9'

studentData = []
priorPercent = []
schoolIds = set()

STUDENT_ID_OFFSET = 0
QUESTION_ID_OFFSET = 0
CORRECTNESS_OFFSET = 0
HINT_OFFSET = 0
ATTEMPT_OFFSET = 0
END_TIME_OFFSET = 0

FEATURE_OFFSET = 0
NUM_QUESTIONS_OFFSET = 0
ROWS_PER_STUDENT = 0
PRIOR_PERCENT_OFFSET = 0
SCHOOL_ID_OFFSET = 0

--- METHODS ---

#read data into an array

def readFile(csvName):
 with open(csvName, newline='') as csvfile:
 csvreader = csv.reader(csvfile, delimiter=',', quotechar='\''
 return list(csvreader)

def getOffsets(data, covariate):
 global STUDENT_ID_OFFSET, QUESTION_ID_OFFSET, CORRECTNESS_OFFSET, HINT_OFFSET
 global ATTEMPT_OFFSET, START_TIME_OFFSET, END_TIME_OFFSET, FEATURE_OFFSET
 global NUM_QUESTIONS_OFFSET, ROWS_PER_STUDENT, PRIOR_PERCENT_OFFSET, SCHOOL_ID_OFFSET

 for index in range(len(data[0])):
 if data[0][index] == 'features' :
 FEATURE_OFFSET = index
 if data[0][index] == 'Problem Count':
 NUM_QUESTIONS_OFFSET = index

 for index in range(len(covariate[0])):
 if covariate[0][index] == 'Prior Percent Correct':
 PRIOR_PERCENT_OFFSET = index
 if covariate[0][index] == 'School ID':
 SCHOOL_ID_OFFSET = index

firstUserID = data[1][0]

for index in range(1, len(data)):
 if data[index][0] != firstUserID:
 ROWS_PER_STUDENT = index + 1
 print('ROWS PER STUDENT:', ROWS_PER_STUDENT)
 break

 if data[index][FEATURE_OFFSET] == 'Problem ID':
 QUESTION_ID_OFFSET = index + 1
 print('QUESTION ID OFFSET:', QUESTION_ID_OFFSET)
if data[index][FEATURE_OFFSET] == 'Correct':
 CORRECTNESS_OFFSET = index - 1
if data[index][FEATURE_OFFSET] == 'Hint Count':
 HINT_OFFSET = index - 1
if data[index][FEATURE_OFFSET] == 'Attempt Count':
 ATTEMPT_OFFSET = index - 1
if data[index][FEATURE_OFFSET] == 'Problem Start Time':
 START_TIME_OFFSET = index - 1
if data[index][FEATURE_OFFSET] == 'Problem End Time':
 END_TIME_OFFSET = index - 1

determine how the question should be counted

def processQuestion(student, data, questionNumber, startRow):
 correctnessRow = startRow + CORRECTNESS_OFFSET
 questionIDRow = startRow + QUESTION_ID_OFFSET
 hintRow = startRow + HINT_OFFSET
 attemptRow = startRow + ATTEMPT_OFFSET
 startTimeRow = startRow + START_TIME_OFFSET
 endTimeRow = startRow + END_TIME_OFFSET
 # firstResponseTimeRow = startRow + 21

 problemID = data[questionIDRow][questionNumber].replace('', '')
 if (problemID in condition):
 student.condition = 1
 if (problemID in threeCorrect):
 student.subgroup = 1
 if (problemID in fourCorrect):
 student.subgroup = 2
 if (problemID in fiveCorrect):
 student.subgroup = 3
 if not (problemID in noCount):
 if (problemID in postTest):
 student.countPostTest(data[correctnessRow][questionNumber])
 else:
 student.countCorrect(data[correctnessRow][questionNumber])
 student.countHints(data[hintRow][questionNumber])
 student.countAttempts(data[attemptRow][questionNumber])
 student.addTime(data[startTimeRow][questionNumber], data[endTimeRow][questionNumber])
 if (problemID == FINAL_QUESTION):
 student.finished = 1
 # student.countResponseTime(data[firstResponseTimeRow][questionNumber])

 # return a populated student object with important data

def processEntry(studentNumber, data, covariatedata):
 student = Student()
 # gather covariate data
 student.ID = int(covariatedata[studentNumber + 1][STUDENT_ID_OFFSET])
 student.setPriorPercentCorrect(covariatedata[studentNumber + 1][PRIOR_PERCENT_OFFSET])
 priorPercents.append(student.priorPercentCorrect)
 schoolIds.add(covariatedata[studentNumber + 1][SCHOOL_ID_OFFSET])

 startRow = studentNumber * ROWS_PER_STUDENT + 1
 offset = FEATURE_OFFSET + 1
 # handle scaffolds
 questionIDRow = startRow + QUESTION_ID_OFFSET
 numQuestions = int(data[startRow][QUESTION_ID_OFFSET])

 # loop through the questions and update
 for question in range(0, numQuestions):
 while (len(data[questionIDRow][question + offset].replace('', '')) == 0):
 # print('Empty DATA!')
```python
def processQuestion(student, data, question+offset, startRow):
    return student

data = readfile('DATA2.csv')
covariate = readfile('COVARIATE2.csv')

getOffsets(data, covariate)
for studentNumber in range(0, len(covariate)-1):
    student = processEntry(studentNumber, data, covariate)
    studentData.append(student)
studentData.sort()

def writeCSV(fileName, listofStudents):
    datawriter = csv.writer(open(fileName, 'w'))
    datawriter.writerow(['ID', 'High Knowledge', 'Experiment Partition', 'Group Partition', 'Finished', 'Hint Average', 'At
                        for student in listofStudents:
                        datawriter.writerow(student.getRow(statistics.median(priorPercents)))
    datawriter.writerow('')
    datawriter.writerow('')

writeCSV('PSA59TP.csv', studentData)
print('Number of Schools: {}, Knowledge Split: {}'.format(len(schoolIds), statistics.median(priorPercents)))
```

```python
#!/usr/bin/env python
from math import log
from statistics import median

class Student:
    def __init__(self):
        self.ID = 0  # ID number
        self.priorPercentCorrect = 0  # the prior percent correct (from covariate file)

        self.condition = 0  # which condition the student is in (control = 0, experiment = 1)
        self.subgroup = 0  # which subgroup the student is in

        self.problemSetCorrect = 0  # total score for the whole problem set
        self.problemSetCount = 0  # number of questions answered in problem set
        self.postTestCorrect = 0  # total score for post test
        self.postTestCount = 0  # number of post test questions answered

        self.hintCount = 0
        self.atemptCount = 0

        self.timesToComplete = []
        self.firstResponseAverage = 0  # average for the first response time

        self.finished = 0  # 0 if unfinished, 1 if finished

    def __lt__(self, other):
        selfVal = self.calcGroup() + self.priorPercentCorrect + self.finished * 100
        otherVal = other.calcGroup() + other.priorPercentCorrect + other.finished * 100
        return selfVal < otherVal
```

https://gist.github.com/ndennler/2370af76b90af33d8ed3e8b8b18d8b613
def setPriorPercentCorrect(self, value):
 try:
 self.priorPercentCorrect = float(value)
 except ValueError:
 self.priorPercentCorrect = 0

def calcGroup(self):
 return self.condition * 1000 + self.subgroup * 10

def countPostTest(self, value):
 try:
 self.postTestCount += 1
 self.postTestCorrect += float(value)
 except ValueError:
 pass

def countCorrect(self, value):
 try:
 self.problemSetCount += 1
 self.problemSetCorrect += float(value)
 except ValueError:
 pass

def countResponseTime(self, value):
 try:
 self.firstResponseAverage += float(value)
 except ValueError:
 pass

def countHints(self, value):
 try:
 self.hintCount += float(value)
 except ValueError:
 pass

def countAttempts(self, value):
 try:
 self.attemptCount += float(value)
 except ValueError:
 pass

def addTime(self, start, end):
 try:
 start = start.replace(' ', '')
 end = end.replace(' ', '')
 startDate, startTime = start.split()
 endDate, endTime = end.split()
 if startDate == endDate:
 sH, sM, sS = startTime.split(':')
 eH, eM, eS = endTime.split(':')
 end = 3600 * float(eH) + 60 * float(eM) + float(eS)
 start = 3600 * float(sH) + 60 * float(sM) + float(sS)
 self.timesToComplete.append(end - start)
 # print(self.timesToComplete)
 except ValueError:
 pass

def getRow(self, med):
 try:
 hintAverage = self.hintCount / self.problemSetCount
 hintAverage = float(hintAverage)
 print(hintAverage)
 except ValueError:
 pass
attemptAverage = self.attemptCount / self.problemSetCount
postTestAverage = self.postTestCorrect / self.postTestCount

except ZeroDivisionError:
 postTestAverage = -1
 hintAverage = -1
 attemptAverage = -1

try:
 time = median(self.timesToComplete)
except Exception as e:
 time = -1

return [self.ID, int(self.priorPercentCorrect > med), self.condition, self.subgroup, self.finished, hintAverage, attemptAverage]
5.2 Appendix B - ASSISTments Study Questions
Problem Set "Writing a Linear Equation from Slope and y-Intercept 8.F.B.4" id:PSAP8V

Select All

1) Problem #PRADSJC "PRADSJC - 56786 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 3"
Write an equation in the form "y=_______________" using the following information about the equation:

Slope of the equation: 0
Y-intercept of the equation: 8
Use x as the independent variable.

Algebraic Expression:
8

Hints:
- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.

\[
y = m \times x + b
\]
- We know that $m = 0$ because the slope is 0.

We know that $b = 8$ because the y-intercept is 8.

- The slope is 0, so the equation is $y = 8$.
 Type in 8.
2) Problem #PRADSGY "PRADSGY - Algebra1 Equation from Slope and Y-intercept Mastery Learning"

Write an equation in the form "y=____________" using the following information about the equation:

Slope of the equation: 5/5

Y-intercept of the equation: 2

Use x as the independent variable.

Algebraic Expression:

- ✔️ \(\frac{5}{5}x + 2 \)
- ✔️ \(1x + 2 \)

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that $m = \frac{5}{5}$ because the slope is $\frac{5}{5}$

We know that $b = 2$ because the y-intercept is 2
The equation is $y = \frac{5}{5}x + 2$
Type in $\frac{5}{5}x + 2$

3) Problem #PRADSJZ "PRADSJZ - Algebra1 Equation from Slope and Y-intercept Mastery Learning 6"

Write a linear equation for the line with slope $= \frac{10}{8}$ going through the point: $(0, 2)$

Write your equation in the form $y = _________$

Use x as the independent variable.

Algebraic Expression:

✔️ $\frac{10}{8}x + 2$

Hints:
- Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that $m = \frac{10}{8}$ because the slope is $\frac{10}{8}$
We know that $b = 2$ because $(0, 2)$ is on the y-axis so it is the y-intercept

The equation is $y = \frac{10}{8}x + 2$
Type in $\frac{10}{8}x + 2$

4) Problem #PRADSJD "PRADSJD - 56786 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 3"
Write an equation in the form "$y =$___________" using the following information about the equation:

Slope of the equation: 0

Y-intercept of the equation: 5

Use x as the independent variable.

Algebraic Expression:

\checkmark 5

Hints:

- Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that $m = 0$ because the slope is 0.

We know that $b = 5$ because the y-intercept is 5.

The slope is 0, so the equation is $y = 5$.

Type in 5.

5) Problem #PRADSHQ "PRADSHQ - Algebra1 Equation from Slope and Y-intercept Mastery Learning 2"

Write an equation in the form "y=____________" using the following information about the equation:

Slope of the equation: $-5/8$

Y-intercept of the equation: 9

Use x as the independent variable.

Algebraic Expression:

$-5/8x + 9$

Hints:

- Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that \(m = -\frac{5}{8} \) because the slope is \(-\frac{5}{8}\)

We know that \(b = 9 \) because the y-intercept is 9

The equation is \(y = -\frac{5}{8}x + 9 \)

Type in \(-\frac{5}{8}x + 9\)

Problem #PRADSKN "PRADSKN - Algebra1 Equation from Slope and Y-intercept Mastery Learning 5"

Write a linear equation for the line with slope = \(-\frac{8}{10}\) going through the point: (0, 5)

Write your equation in the form \(y = ________\)_

Use \(x \) as the independent variable.

Algebraic Expression:

\(-\frac{8}{10}x + 5 \)

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that $m = -8/10$ because the slope is $-8/10$
We know that $b = 5$ because (0, 5) is on the y-axis so it is the y-intercept

The equation is $y = -8/10x + 5$

Type in $-8/10x + 5$

7) Problem #PRADSGX "PRADSGX - Algebra1 Equation from Slope and Y-intercept Mastery Learning"

Write an equation in the form "y=______________" using the following information about the equation:

Slope of the equation: 6/8
Y-intercept of the equation: 7
Use x as the independent variable.

Algebraic Expression:

✓ 6/8$x + 7$
✓ 0.75$x + 7$

Hints:

- Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that \(m = \frac{6}{8} \) because the slope is \(\frac{6}{8} \)

We know that \(b = 7 \) because the y-intercept is 7

The equation is \(y = \frac{6}{8}x + 7 \)

Type in \(\frac{6}{8}x + 7 \)

8) Problem #PRADSHR "PRADSHR - Algebra1 Equation from Slope and Y-intercept Mastery Learning 2"

Write an equation in the form "y=______________" using the following information about the equation:

Slope of the equation: -1/10

Y-intercept of the equation: 2

Use x as the independent variable.

Algebraic Expression:

\(-\frac{1}{10}x + 2 \)

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that \(m = -\frac{1}{10} \) because the slope is \(-\frac{1}{10}\).

We know that \(b = 2 \) because the y-intercept is 2.

The equation is \(y = -\frac{1}{10}x + 2 \).

Type in \(-\frac{1}{10}x + 2\).

9) Problem #PRADSKR "PRADSKR - Algebra1 Equation from Slope and Y-intercept Mastery Learning 5"

Write a linear equation for the line with slope = -6/4 going through the point: (0, 4)

Write your equation in the form \(y = \) _____________

Use x as the independent variable.

Algebraic Expression:

-6/4x + 4

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that $m = -6/4$ because the slope is $-6/4$

We know that $b = 4$ because $(0, 4)$ is on the y-axis so it is the y-intercept

The equation is $y = -6/4x + 4$

Type in $-6/4x + 4$

10) Problem #PRADSKQ "PRADSKQ - Algebra1 Equation from Slope and Y-intercept Mastery Learning 5"

Write a linear equation for the line with slope $=-3/6$ going through the point: $(0, 3)$

Write your equation in the form $y= ____________$

Use x as the independent variable.

Algebraic Expression:

-3/6$x + 3$

Hints:

- Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that \(m = \frac{-3}{6} \) because the slope is \(-\frac{3}{6}\).

We know that \(b = 3 \) because \((0, 3)\) is on the y-axis so it is the y-intercept.

The equation is \(y = \frac{-3}{6}x + 3 \).

Type in \(-\frac{3}{6}x + 3\).

11) Problem #PRADSJS "PRADSJS - 56786 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 3"

Write an equation in the form "y=____________" using the following information about the equation:

Slope of the equation: 0

Y-intercept of the equation: 1

Use x as the independent variable.

Algebraic Expression:

✓ 1

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that $m = 0$ because the slope is 0

We know that $b = 1$ because the y-intercept is 1

The slope is 0, so the equation is $y = 1$

Type in 1

12) Problem #PRADSHW "PRADSHW - Algebra1 Equation from Slope and Y-intercept Mastery Learning 2"

Write an equation in the form "y=___________" using the following information about the equation:

Slope of the equation: $-5/7$

Y-intercept of the equation: 3

Use x as the independent variable.

Algebraic Expression:

✓ $-5/7x + 3$

Hints:

- Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that \(m = -\frac{5}{7} \) because the slope is \(-\frac{5}{7}\)

We know that \(b = 3 \) because the y-intercept is 3

The equation is \(y = \frac{-5}{7}x + 3 \)

Type in \(-\frac{5}{7}x + 3\)

13) Problem #PRADSHZ "PRADSHZ - Algebra1 Equation from Slope and Y-intercept Mastery Learning 2"

Write an equation in the form "\(y = \)___________" using the following information about the equation:

Slope of the equation: \(-\frac{10}{4}\)

Y-intercept of the equation: 6

Use \(x \) as the independent variable.

Algebraic Expression:

\(-\frac{10}{4}x + 6 \)

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that \(m = -\frac{10}{4} \) because the slope is -10/4

We know that \(b = 6 \) because the y-intercept is 6

The equation is \(y = -\frac{10}{4}x + 6 \)

14) Problem #PRADSJ6 "PRADSJ6 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 6"
Write a linear equation for the line with slope = 5/7 going through the point: (0, 8)

Write your equation in the form \(y = \) ____________

Use \(x \) as the independent variable.

Algebraic Expression:

\(\checkmark \ 5/7x + 8 \)

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that \(m = \frac{5}{7} \) because the slope is \(\frac{5}{7} \)

We know that \(b = 8 \) because \((0, 8)\) is on the y-axis so it is the y-intercept

The equation is \(y = \frac{5}{7}x + 8 \)

Type in \(\frac{5}{7}x + 8 \)

15) Problem #PRADSK6 "PRADSK6 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 5"

Write a linear equation for the line with slope = -3/2 going through the point: \((0, 8)\)

Write your equation in the form \(y = \) __________

Use \(x \) as the independent variable.

Algebraic Expression:

✓ -3/2x + 8

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that \(m = -\frac{3}{2} \) because the slope is \(-\frac{3}{2}\).

We know that \(b = 8 \) because \((0, 8)\) is on the y-axis so it is the y-intercept.

The equation is \(y = -\frac{3}{2}x + 8 \).

Type in \(-\frac{3}{2}x + 8\).

16) Problem #PRADSJF "PRADSJF - 56786 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 3"

Write an equation in the form "y=_____________" using the following information about the equation:

Slope of the equation: 0

Y-intercept of the equation: 8

Use x as the independent variable.

Algebraic Expression:

\(\checkmark \) 8

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that \(m = 0 \) because the slope is 0

We know that \(b = 8 \) because the y-intercept is 8

The slope is 0, so the equation is \(y = 8 \)
Type in 8

17) Problem #PRADSHH "PRADSHH - Algebra1 Equation from Slope and Y-intercept Mastery Learning"

Write an equation in the form "\(y = \)_____________" using the following information about the equation:

Slope of the equation: 3/7

Y-intercept of the equation: 5

Use x as the independent variable.

Algebraic Expression:

\[3/7x + 5 \]

\[0.428571428571429x + 5 \]

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that $m = \frac{3}{7}$ because the slope is $\frac{3}{7}$

We know that $b = 5$ because the y-intercept is 5

The equation is $y = \frac{3}{7}x + 5$

Type in $\frac{3}{7}x + 5$

18) Problem #PRADSHE "PRADSHE - Algebra1 Equation from Slope and Y-intercept Mastery Learning"

Write an equation in the form "$y =$___________" using the following information about the equation:

Slope of the equation: 1/5

Y-intercept of the equation: 2

Use x as the independent variable.

Algebraic Expression:

✓ $\frac{1}{5}x + 2$

✓ $0.2x + 2$

Hints:

- Linear equations can be written in this form where m is the slope and b is the y-intercept.
• We know that \(m = \frac{1}{5} \) because the slope is \(\frac{1}{5} \)

We know that \(b = 2 \) because the \(y \)-intercept is \(2 \)

• The equation is \(y = \frac{1}{5}x + 2 \)
Type in \(\frac{1}{5}x + 2 \)

19) Problem #PRADSH9 "PRADSH9 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 2"

Write an equation in the form "\(y = _______ \)" using the following information about the equation:

Slope of the equation: -1/9

Y-intercept of the equation: 5

Use \(x \) as the independent variable.

Algebraic Expression:

\[
-\frac{1}{9}x + 5
\]

Hints:

• Linear equations can be written in this form where \(m \) is the slope and \(b \) is the \(y \)-intercept.
We know that $m = -1/9$ because the slope is $-1/9$.

We know that $b = 5$ because the y-intercept is 5.

The equation is $y = -1/9x + 5$.

Type in $-1/9x + 5$.

20) Problem #PRADSH3 "PRADSH3 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 2"

Write an equation in the form "y=___________" using the following information about the equation:

Slope of the equation: $-10/2$

Y-intercept of the equation: 4

Use x as the independent variable.

Algebraic Expression:

-10/2x + 4

Hints:

- Linear equations can be written in this form where m is the slope and b is the y-intercept.
• We know that $m = -10/2$ because the slope is $-10/2$

We know that $b = 4$ because the y-intercept is 4

• The equation is $y = -10/2x + 4$

Type in -$10/2x + 4$

21) Problem #PRADSHN "PRADSHN - Algebra1 Equation from Slope and Y-intercept Mastery Learning"

Write an equation in the form "y=____________” using the following information about the equation:

Slope of the equation: 7/6

Y-intercept of the equation: 4

Use x as the independent variable.

Algebraic Expression:

✓ $7/6x + 4$

✓ $1.16666666666667x + 4$

Hints:

• Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that $m = \frac{7}{6}$ because the slope is $\frac{7}{6}$

We know that $b = 4$ because the y-intercept is 4

The equation is $y = \frac{7}{6}x + 4$

Type in $\frac{7}{6}x + 4$

22) Problem #PRADSHP "PRADSHP - Algebra1 Equation from Slope and Y-intercept Mastery Learning"
Write an equation in the form "y=______________" using the following information about the equation:

Slope of the equation: 4/3

Y-intercept of the equation: 8

Use x as the independent variable.

Algebraic Expression:

- $4/3x + 8$
- $1.33333333333333x + 8$

Hints:

- Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that \(m = \frac{4}{3} \) because the \textit{slope} is \(\frac{4}{3} \)

We know that \(b = 8 \) because the \textit{y-intercept} is 8

The equation is \(y = \frac{4}{3}x + 8 \)

Type in \(\frac{4}{3}x + 8 \)

23) Problem #PRADSH2 "PRADSH2 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 2"

Write an equation in the form "\(y = \underline{\quad} \)" using the following information about the equation:

Slope of the equation: -3/2

Y-intercept of the equation: 9

Use \(x \) as the independent variable.

\textbf{Algebraic Expression:}

\(-3/2x + 9 \)

\(\checkmark \)

\textbf{Hints:}

- Linear equations can be written in this form where \(m \) is the \textit{slope} and \(b \) is the \textit{y-intercept}.
We know that \(m = -\frac{3}{2} \) because the slope is \(-\frac{3}{2}\)

We know that \(b = 9 \) because the y-intercept is 9

The equation is \(y = -\frac{3}{2}x + 9 \)

Type in \(-\frac{3}{2}x + 9\)

24) Problem #PRADSGZ "PRADSGZ - Algebra1 Equation from Slope and Y-intercept Mastery Learning"

Write an equation in the form "y=___________" using the following information about the equation:

Slope of the equation: 3/2

Y-intercept of the equation: 10

Use x as the independent variable.

Algebraic Expression:

✓ 3/2x + 10
✓ 1.5x+10

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that $m = \frac{3}{2}$ because the slope is $\frac{3}{2}$

We know that $b = 10$ because the y-intercept is 10

The equation is $y = \frac{3}{2}x + 10$

Type in $\frac{3}{2}x + 10$

25) Problem #PRADSK2 "PRADSK2 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 5"

Write a linear equation for the line with slope $= -\frac{8}{8}$ going through the point: $(0, 8)$

Write your equation in the form $y =$ ____________

Use x as the independent variable.

Algebraic Expression:

✓ $-8/8x + 8$

Hints:

- Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that \(m = \frac{-8}{8} \) because the slope is \(-8/8\).

We know that \(b = 8 \) because \((0, 8)\) is on the y-axis so it is the y-intercept.

The equation is \(y = \frac{-8}{8}x + 8 \).

Type in \(-8/8x + 8\)

26) Problem #PRADSH6 "PRADSH6 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 2"

Write an equation in the form "y=______________" using the following information about the equation:

Slope of the equation: \(-3/3\)

Y-intercept of the equation: 9

Use x as the independent variable.

Algebraic Expression:

-3/3x + 9

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that $m = -\frac{3}{3}$ because the slope is $-\frac{3}{3}$

We know that $b = 9$ because the y-intercept is 9.

The equation is $y = -\frac{3}{3}x + 9$

Type in $-\frac{3}{3}x + 9$

27) Problem #PRADSHF "PRADSHF - Algebra1 Equation from Slope and Y-intercept Mastery Learning"

Slope of the equation: $\frac{2}{9}$

Y-intercept of the equation: 1

Use x as the independent variable.

Algebraic Expression:

- $\checkmark \ 2/9x + 1$
- $\checkmark \ 0.2222222222222222x + 1$

Hints:

- Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that \(m = \frac{2}{9} \) because the slope is 2/9.

We know that \(b = 1 \) because the y-intercept is 1.

The equation is \(y = \frac{2}{9}x + 1 \).

Type in \(\frac{2}{9}x + 1 \).

28) Problem #PRADSJY "PRADSJY - 56786 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 3"

Write an equation in the form "\(y = _ _ _ _ _ _ _ _ _ \)" using the following information about the equation:

Slope of the equation: 0

Y-intercept of the equation: 3

Use x as the independent variable.

Algebraic Expression:

✔️ 3

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that $m = 0$ because the slope is 0

We know that $b = 3$ because the y-intercept is 3

The slope is 0, so the equation is $y = 3$

Type in 3

29) Problem #PRADSK8 "PRADSK8 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 5"
Write a linear equation for the line with slope = -6/2 going through the point: (0, 4)

Write your equation in the form $y=$ _____________

Use x as the independent variable.

Algebraic Expression:

✓ -6/2x + 4

Hints:

- Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that $m = -6/2$ because the slope is $-6/2$.
We know that $b = 4$ because $(0, 4)$ is on the y-axis so it is the y-intercept.

The equation is $y = -6/2x + 4$
Type in $-6/2x + 4$.

30) Problem #PRADSJM "PRADSJM - 56786 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 3"
Write an equation in the form "$y = \underline{}$" using the following information about the equation:

Slope of the equation: 0
Y-intercept of the equation: 9
Use x as the independent variable.

Algebraic Expression:

✓ 9

Hints:
• Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that $m = 0$ because the slope is 0.

We know that $b = 9$ because the y-intercept is 9.

The slope is 0, so the equation is $y = 9$.

Type in 9.

31) Problem #PRADSK7 "PRADSK7 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 5"

Write a linear equation for the line with slope = -3/7 going through the point: (0, 10)

Write your equation in the form $y = \underline{\hspace{2cm}}$

Use x as the independent variable.

Algebraic Expression:

✓ $-\frac{3}{7}x + 10$

Hints:

• Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that $m = -\frac{3}{7}$ because the slope is $-\frac{3}{7}$.

We know that $b = 10$ because $(0, 10)$ is on the y-axis so it is the y-intercept.

The equation is $y = -\frac{3}{7}x + 10$.

Type in $-\frac{3}{7}x + 10$.

32) Problem #PRADSHV "PRADSHV - Algebra1 Equation from Slope and Y-intercept Mastery Learning 2"

Write an equation in the form "$y=_____________" using the following information about the equation:

Slope of the equation: $-\frac{4}{2}$

Y-intercept of the equation: 4

Use x as the independent variable.

Algebraic Expression:

-4/2x + 4

Hints:

- Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that \(m = -\frac{4}{2} \) because the slope is \(-\frac{4}{2}\)

We know that \(b = 4 \) because the y-intercept is 4

The equation is \(y = -\frac{4}{2}x + 4 \)

Type in \(-\frac{4}{2}x + 4\)

33) Problem #PRADSJ4 "PRADSJ4 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 6"

Write a linear equation for the line with slope = \(\frac{5}{9}\) going through the point: (0, 4)

Write your equation in the form \(y = \) ____________

Use \(x \) as the independent variable.

Algebraic Expression:

✓ \(\frac{5}{9}x + 4\)

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that \(m = \frac{5}{9} \) because the slope is \(\frac{5}{9} \)
We know that \(b = 4 \) because \((0, 4)\) is on the y-axis so it is the y-intercept

The equation is \(y = \frac{5}{9}x + 4 \)
Type in \(\frac{5}{9}x + 4 \)

34) Problem #PRADSHY "PRADSHY - Algebra1 Equation from Slope and Y-intercept Mastery Learning 2"

Write an equation in the form "\(y = \underline{\quad} \)" using the following information about the equation:

Slope of the equation: \(-\frac{7}{2}\)

Y-intercept of the equation: 10

Use \(x \) as the independent variable.

Algebraic Expression:

\(-\frac{7}{2}x + 10 \)

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
• We know that $m = -\frac{7}{2}$ because the slope is $-\frac{7}{2}$

We know that $b = 10$ because the y-intercept is 10

• The equation is $y = -\frac{7}{2}x + 10$
Type in $-\frac{7}{2}x + 10$

35) Problem #PRADSJT "PRADSJT - 56786 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 3"

Write an equation in the form "$y=____________" using the following information about the equation:

Slope of the equation: 0

Y-intercept of the equation: 4

Use x as the independent variable.

Algebraic Expression:

4

Hints:

• Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that \(m = 0 \) because the slope is 0.

We know that \(b = 4 \) because the y-intercept is 4.

The slope is 0, so the equation is \(y = 4 \).

Type in 4.

36) Problem #PRADSG4 "PRADSG4 - Algebra1 Equation from Slope and Y-intercept Mastery Learning"

Write an equation in the form "\(y = \)__________" using the following information about the equation:

Slope of the equation: 10/2

Y-intercept of the equation: 8

Use \(x \) as the independent variable.

Algebraic Expression:

- \(10/2x + 8 \)
- \(5x + 8 \)

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that \(m = \frac{10}{2} \) because the slope is \(\frac{10}{2} \)

We know that \(b = 8 \) because the y-intercept is \(8 \)

The equation is \(y = \frac{10}{2}x + 8 \)

Type in \(\frac{10}{2}x + 8 \)

37) Problem #PRADSKT “PRADSKT - Algebra1 Equation from Slope and Y-intercept Mastery Learning 5”

Write a linear equation for the line with slope = \(-\frac{8}{3}\) going through the point: \((0, 6)\)

Write your equation in the form \(y = \) __________

Use \(x \) as the independent variable.

Algebraic Expression:

✓ \(-\frac{8}{3}x + 6\)

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that \(m = -\frac{8}{3} \) because the slope is \(-8/3\)

We know that \(b = 6 \) because (0, 6) is on the y-axis so it is the y-intercept

The equation is \(y = -\frac{8}{3}x + 6 \)

Type in \(-8/3x + 6\)

38) Problem #PRADSJP "PRADSJP - 56786 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 3"

Write an equation in the form "\(y = _________ \)" using the following information about the equation:

Slope of the equation: 0

Y-intercept of the equation: 10

Use x as the independent variable.

Algebraic Expression:

\(\checkmark \) 10

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that $m = 0$ because the slope is 0

We know that $b = 10$ because the y-intercept is 10

The slope is 0, so the equation is $y = 10$

Type in 10

39) Problem #PRADSJN "PRADSJN - 56786 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 3"
Write an equation in the form "y=_____________" using the following information about the equation:

Slope of the equation: 0

Y-intercept of the equation: 1

Use x as the independent variable.

Algebraic Expression:

✓ 1

Hints:

- Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that $m = 0$ because the slope is 0.

We know that $b = 1$ because the y-intercept is 1.

The slope is 0, so the equation is $y = 1$.

Type in 1.

40) Problem #PRADSKH "PRADSKH - Algebra1 Equation from Slope and Y-intercept Mastery Learning 6"

Write a linear equation for the line with slope $= 6/8$ going through the point: (0, 10)

Write your equation in the form $y = ____________$

Use x as the independent variable.

Algebraic Expression:

✓ $6/8x + 10$

Hints:

- Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that $m = \frac{6}{8}$ because the slope is $\frac{6}{8}$

We know that $b = 10$ because $(0, 10)$ is on the y-axis so it is the y-intercept

The equation is $y = \frac{6}{8}x + 10$

Type in $\frac{6}{8}x + 10$

41) Problem #PRADSJ5 "PRADSJ5 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 6"

Write a linear equation for the line with slope = $\frac{4}{4}$ going through the point: $(0, 8)$

Write your equation in the form $y=$ ______________

Use x as the independent variable.

Algebraic Expression:

✓ $\frac{4}{4}x + 8$

Hints:

• Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that \(m = \frac{4}{4} \) because the slope is \(\frac{4}{4} \). We know that \(b = 8 \) because \((0, 8)\) is on the y-axis so it is the y-intercept.

The equation is \(y = \frac{4}{4}x + 8 \). Type in \(\frac{4}{4}x + 8 \).

42) Problem #PRADSKP "PRADSKP - Algebra1 Equation from Slope and Y-intercept Mastery Learning 5"
Write a linear equation for the line with slope = \(-1/10\) going through the point: \((0, 4)\)

Write your equation in the form \(y = \) _____________

Use \(x \) as the independent variable.

Algebraic Expression:

-1/10x + 4

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that $m = -1/10$ because the slope is -1/10
We know that $b = 4$ because (0, 4) is on the y-axis so it is the y-intercept

The equation is $y = -1/10x + 4$

Type in $-1/10x + 4$

43) Problem #PRADSJA "PRADSJA - Algebra1 Equation from Slope and Y-intercept Mastery Learning 2"

Write an equation in the form "y=______________" using the following information about the equation:

Slope of the equation: -5/9

Y-intercept of the equation: 5

Use x as the independent variable.

Algebraic Expression:

-5/9x + 5

Hints:

- Linear equations can be written in this form where m is the slope and b is the y-intercept.
- We know that $m = -\frac{5}{9}$ because the slope is $-\frac{5}{9}$

We know that $b = 5$ because the y-intercept is 5

- The equation is $y = -\frac{5}{9}x + 5$
Type in $-\frac{5}{9}x + 5$

44) Problem #PRADSJE "PRADSJE - 56786 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 3"

Write an equation in the form "y=____________" using the following information about the equation:

Slope of the equation: 0

Y-intercept of the equation: 4

Use x as the independent variable.

Algebraic Expression:

✔️ 4

Hints:

- Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that \(m = 0 \) because the slope is 0

We know that \(b = 4 \) because the y-intercept is 4

The slope is 0, so the equation is \(y = 4 \)

Type in 4

45) Problem #PRADSH5 "PRADSH5 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 2"

Write an equation in the form "\(y = \underline{\quad} \)" using the following information about the equation:

Slope of the equation: \(-10/4\)

Y-intercept of the equation: 5

Use x as the independent variable.

Algebraic Expression:

-10/4x + 5

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that \(m = -\frac{10}{4} \) because the slope is \(-\frac{10}{4}\)

We know that \(b = 5 \) because the y-intercept is 5

- The equation is \(y = -\frac{10}{4}x + 5 \)
Type in \(-\frac{10}{4}x + 5\)

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that $m = \frac{10}{6}$ because the slope is $10/6$

We know that $b = 9$ because the y-intercept is 9

The equation is $y = \frac{10}{6}x + 9$

Type in $\frac{10}{6}x + 9$

47) Problem #PRADSHC "PRADSHC - Algebra1 Equation from Slope and Y-intercept Mastery Learning"

Write an equation in the form "$y = \underline{}$" using the following information about the equation:

Slope of the equation: 9/10

Y-intercept of the equation: 1

Use x as the independent variable.

Algebraic Expression:

- $9/10x + 1$
- $0.9x + 1$

Hints:

- Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that \(m = \frac{9}{10} \) because the slope is \(\frac{9}{10} \).

We know that \(b = 1 \) because the y-intercept is 1.

The equation is \(y = \frac{9}{10}x + 1 \).

Type in \(\frac{9}{10}x + 1 \).

48) Problem #PRADSKS "PRADSKS - Algebra1 Equation from Slope and Y-intercept Mastery Learning 5"

Write a linear equation for the line with slope = -\(\frac{5}{9} \) going through the point: \((0, 3) \)

Write your equation in the form \(y = \) ____________

Use \(x \) as the independent variable.

Algebraic Expression:

\(-\frac{5}{9}x + 3 \)

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that \(m = \frac{-5}{9} \) because the slope is \(-\frac{5}{9}\).

We know that \(b = 3 \) because \((0, 3)\) is on the y-axis so it is the y-intercept.

The equation is \(y = \frac{-5}{9}x + 3 \)

Type in \(-\frac{5}{9}x + 3\)

49) Problem #PRADSKJ "PRADSKJ - Algebra1 Equation from Slope and Y-intercept Mastery Learning 6"

Write a linear equation for the line with slope = \(\frac{9}{6}\) going through the point: \((0, 9)\)

Write your equation in the form \(y = \) _____________

Use \(x\) as the independent variable.

Algebraic Expression:

✓\(9/6x + 9\)

Hints:

- Linear equations can be written in this form where \(m\) is the slope and \(b\) is the y-intercept.
We know that \(m = \frac{9}{6} \) because the slope is \(\frac{9}{6} \)
We know that \(b = 9 \) because \((0, 9) \) is on the y-axis so it is the y-intercept

The equation is \(y = \frac{9}{6}x + 9 \)
Type in \(\frac{9}{6}x + 9 \)

50) Problem #PRADSKV "PRADSKV - Algebra1 Equation from Slope and Y-intercept Mastery Learning 5"
Write a linear equation for the line with slope = -6/3 going through the point: \((0, 6)\)

Write your equation in the form \(y = \) ____________

Use \(x \) as the independent variable.

Algebraic Expression:

\(-6/3x + 6 \)

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that \(m = -\frac{6}{3} \) because the slope is \(-6/3\)

We know that \(b = 6 \) because \((0, 6)\) is on the y-axis so it is the y-intercept

The equation is \(y = -\frac{6}{3}x + 6 \)
Type in \(-\frac{6}{3}x + 6\)

51) Problem #PRADSK5 "PRADSK5 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 5"

Write a linear equation for the line with slope = \(-6/2\) going through the point: \((0, 10)\)

Write your equation in the form \(y = \underline{\text{___________}}\)

Use \(x \) as the independent variable.

Algebraic Expression:

\[
-\frac{6}{2}x + 10
\]

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that \(m = -6/2 \) because the slope is \(-6/2\).

We know that \(b = 10 \) because \((0, 10)\) is on the \(y\)-axis so it is the \(y\)-intercept.

The equation is \(y = -6/2x + 10 \).

Type in \(-6/2x + 10\).

52) Problem #PRADSJ7 "PRADSJ7 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 6"

Write a linear equation for the line with slope = \(2/9\) going through the point: \((0, 7)\)

Write your equation in the form \(y=\underline{\quad}\quad\)

Use \(x\) as the independent variable.

Algebraic Expression:

\(\checkmark\) \(2/9x + 7\)

Hints:

- Linear equations can be written in this form where \(m\) is the slope and \(b\) is the \(y\)-intercept.
We know that \(m = \frac{2}{9} \) because the slope is \(\frac{2}{9} \)
We know that \(b = 7 \) because \((0, 7)\) is on the y-axis so it is the y-intercept

- The equation is \(y = \frac{2}{9}x + 7 \)
Type in \(\frac{2}{9}x + 7 \)

53) Problem #PRADSBH "PRADSBH - Algebra1 Equation from Slope and Y-intercept Mastery Learning"

Write an equation in the form "y=______________" using the following information about the equation:

Slope of the equation: \(\frac{10}{1} \)

Y-intercept of the equation: 9

Use \(x \) as the independent variable.

Algebraic Expression:

- \(10/1x + 9 \)
- \(10x+9 \)

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
- We know that $m = \frac{10}{1}$ because the slope is $10/1$

We know that $b = 9$ because the y-intercept is 9
- The equation is $y = \frac{10}{1}x + 9$
Type in $10/1x + 9$

54) Problem #PRADSKZ “PRADSKZ - Algebra1 Equation from Slope and Y-intercept Mastery Learning 5”

Write a linear equation for the line with slope $= -\frac{7}{2}$ going through the point: $(0, 2)$

Write your equation in the form $y = \underline{}$

Use x as the independent variable.

Algebraic Expression:
- $-\frac{7}{2}x + 2$

Hints:
- Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that $m = -7/2$ because the slope is $-7/2$
We know that $b = 2$ because (0, 2) is on the y-axis so it is the y-intercept

The equation is $y = -7/2x + 2$
Type in $-7/2x + 2$

55) Problem #PRADSKW "PRADSKW - Algebra1 Equation from Slope and Y-intercept Mastery Learning 5"

Write a linear equation for the line with slope = -1/4 going through the point: (0, 5)

Write your equation in the form $y = \underline{\hspace{2cm}}$

Use x as the independent variable.

Algebraic Expression:

-1/4x + 5

Hints:

- Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that $m = -1/4$ because the slope is $-1/4$.
We know that $b = 5$ because $(0, 5)$ is on the y-axis so it is the y-intercept.

The equation is $y = -1/4x + 5$.
Type in $-1/4x + 5$.

56) Problem #PRADSK9 "PRADSK9 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 5"

Write a linear equation for the line with slope = $-8/10$ going through the point: $(0, 4)$.

Write your equation in the form $y =$ ____________

Use x as the independent variable.

Algebraic Expression:

✓ $-8/10x + 4$

Hints:

• Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that $m = -8/10$ because the slope is $-8/10$. We know that $b = 4$ because $(0, 4)$ is on the y-axis so it is the y-intercept.

The equation is $y = -8/10x + 4$. Type in $-8/10x + 4$.

57) Problem #PRADSH8 "PRADSH8 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 2"

Write an equation in the form "$y=\underline{\hspace{2cm}}$" using the following information about the equation:

Slope of the equation: $-6/4$

Y-intercept of the equation: 10

Use x as the independent variable.

Algebraic Expression:

-6/4x + 10

Hints:

- Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that $m = -\frac{6}{4}$ because the slope is $-\frac{6}{4}$

We know that $b = 10$ because the y-intercept is 10

The equation is $y = -\frac{6}{4}x + 10$

Type in $-\frac{6}{4}x + 10$

58) Problem #PRADSKB "PRADSKB - Algebra1 Equation from Slope and Y-intercept Mastery Learning 6"

Write a linear equation for the line with slope $= \frac{6}{3}$ going through the point: $(0, 5)$

Write your equation in the form $y =$ _____________

Use x as the independent variable.

Algebraic Expression:

$\checkmark \ 6/3x + 5$

Hints:

- Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that $m = \frac{6}{3}$ because the slope is $\frac{6}{3}$.

We know that $b = 5$ because $(0, 5)$ is on the y-axis so it is the y-intercept.

The equation is $y = \frac{6}{3}x + 5$.

Type in $\frac{6}{3}x + 5$.

59) Problem #PRADSHG "PRADSHG - Algebra1 Equation from Slope and Y-intercept Mastery Learning"

Write an equation in the form "$y=__________" using the following information about the equation:

Slope of the equation: $\frac{3}{4}$

Y-intercept of the equation: 5

Use x as the independent variable.

Algebraic Expression:

- $\frac{3}{4}x + 5$ [✓]
- $0.75x + 5$ [✓]

Hints:
Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.

\[
y = mx + b
\]

A Number that is the slope \(m \)

A Number that is the y-intercept \(b \)

Variable

We know that \(m = \frac{3}{4} \) because the slope is \(\frac{3}{4} \)

We know that \(b = 5 \) because the y-intercept is \(5 \)

The equation is \(y = \frac{3}{4}x + 5 \)

Type in \(\frac{3}{4}x + 5 \)

Write a linear equation for the line with slope = \(\frac{3}{5} \) going through the point: (0, 2)

Write your equation in the form \(y = \) __________

Use \(x \) as the independent variable.

Algebraic Expression:

\(\checkmark \; \frac{3}{5}x + 2 \)

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that \(m = \frac{3}{5} \) because the slope is \(\frac{3}{5} \)
We know that \(b = 2 \) because \((0, 2)\) is on the y-axis so it is the y-intercept

The equation is \(y = \frac{3}{5}x + 2 \)
Type in \(\frac{3}{5}x + 2 \)

61) Problem #PRADSHJ "PRADSHJ - Algebra1 Equation from Slope and Y-intercept Mastery Learning"
Write an equation in the form "\(y = \)___________" using the following information about the equation:

Slope of the equation: \(3/1 \)
Y-intercept of the equation: 4
Use \(x \) as the independent variable.

Algebraic Expression:

✓ \(3/1x + 4 \)
✓ \(3x+4 \)

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that $m = \frac{3}{1}$ because the slope is 3/1.

We know that $b = 4$ because the y-intercept is 4.

The equation is $y = \frac{3}{1}x + 4$.

Type in $3/1x + 4$.

62) Problem #PRADSHD "PRADSHD - Algebra1 Equation from Slope and Y-intercept Mastery Learning"

Write an equation in the form "y=___________" using the following information about the equation:

Slope of the equation: 4/3

Y-intercept of the equation: 4

Use x as the independent variable.

Algebraic Expression:

✓ $4/3x + 4$
✓ $1.3333333333333x + 4$

Hints:

- Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that \(m = \frac{4}{3} \) because the slope is \(\frac{4}{3} \).

We know that \(b = 4 \) because the y-intercept is 4.

The equation is \(y = \frac{4}{3}x + 4 \).

Type in \(\frac{4}{3}x + 4 \).

63) Problem #PRADSMK "PRADSMK - 57702 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 4"

Write a linear equation for the line with slope = 0 going through the point: (0, 10)

Write your equation in the form \(y = \) ______________

Use \(x \) as the independent variable.

Algebraic Expression:

10

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that $m = 0$ because the slope is 0.

We know that $b = 10$ because (0, 10) is on the y-axis so it is the y-intercept.

The slope is 0, so the equation is $y = 10$.

Type in 10.

64) Problem #PRADSKG "PRADSKG - Algebra1 Equation from Slope and Y-intercept Mastery Learning 6"

Write a linear equation for the line with slope = 2/1 going through the point: (0, 8)

Write your equation in the form y= _____________

Use x as the independent variable.

Algebraic Expression:

✓ 2/1x + 8

Hints:

- Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that $m = \frac{2}{1}$ because the slope is $\frac{2}{1}$.

We know that $b = 8$ because $(0, 8)$ is on the y-axis so it is the y-intercept.

The equation is $y = \frac{2}{1}x + 8$.

Type in $\frac{2}{1}x + 8$.

65) Problem #PRADSMP "PRADSMP - 57702 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 4"

Write a linear equation for the line with slope $= 0$ going through the point: (0, 6)

Write your equation in the form $y =$ ____________

Use x as the independent variable.

Algebraic Expression:

✓ 6

Hints:

- Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that $m = 0$ because the slope is 0.

We know that $b = 6$ because (0, 6) is on the y-axis so it is the y-intercept.

The slope is 0, so the equation is $y = 6$.

Type in 6.
We know that $m = 0$ because the slope is 0.

We know that $b = 10$ because the y-intercept is 10.

The slope is 0, so the equation is $y = 10$.

Type in 10.

67) Problem #PRADSJR "PRADSJR - 56786 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 3"

Write an equation in the form "$y = \underline{\hspace{1cm}}$" using the following information about the equation:

Slope of the equation: 0

Y-intercept of the equation: 9

Use x as the independent variable.

Algebraic Expression:

9

Hints:

Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that \(m = 0 \) because the slope is 0.

We know that \(b = 9 \) because the y-intercept is 9.

The slope is 0, so the equation is \(y = 9 \).
Type in 9.

68) Problem #PRADSH7 "PRADSH7 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 2"

Write an equation in the form "y=___________" using the following information about the equation:

Slope of the equation: \(-4/1\)

Y-intercept of the equation: 2

Use x as the independent variable.

Algebraic Expression:

\[-4/1x + 2 \]

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that \(m = -\frac{4}{1} \) because the slope is \(-\frac{4}{1}\)

We know that \(b = 2 \) because the y-intercept is \(2\)

The equation is \(y = -\frac{4}{1}x + 2 \)

Type in \(-\frac{4}{1}x + 2\)

69) Problem #PRADSKK "PRADSKK - Algebra1 Equation from Slope and Y-intercept Mastery Learning 6"

Write a linear equation for the line with slope = 1/5 going through the point: (0, 2)

Write your equation in the form \(y = _________\) _

Use \(x \) as the independent variable.

Algebraic Expression:

\[\checkmark 1/5x + 2 \]

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that $m = \frac{1}{5}$ because the slope is $1/5$
We know that $b = 2$ because $(0, 2)$ is on the y-axis so it is the y-intercept

The equation is $y = \frac{1}{5}x + 2$
Type in $\frac{1}{5}x + 2$

70) Problem #PRADSJ3 "PRADSJ3 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 6"
Write a linear equation for the line with slope = $\frac{5}{7}$ going through the point: $(0, 8)$

Write your equation in the form $y = ____________________
Use x as the independent variable.

Algebraic Expression:

✓ $\frac{5}{7}x + 8$

Hints:
- Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that \(m = \frac{5}{7} \) because the slope is \(\frac{5}{7} \)
We know that \(b = 8 \) because (0, 8) is on the y-axis so it is the y-intercept

The equation is \(y = \frac{5}{7}x + 8 \)
Type in \(\frac{5}{7}x + 8 \)

71) Problem #PRADSMW "PRADSMW - 57702 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 4"

Write a linear equation for the line with slope = 0 going through the point: (0, 3)

Write your equation in the form \(y = \) ____________

Use x as the independent variable.

Algebraic Expression:

✓ 3

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that $m = 0$ because the slope is 0.

We know that $b = 3$ because (0, 3) is on the y-axis so it is the y-intercept.

The slope is 0, so the equation is $y = 3$

Type in 3

72) Problem #PRADSJ2 "PRADSJ2 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 6"

Write a linear equation for the line with slope = 4/1 going through the point: (0, 8)

Write your equation in the form $y = __________$

Use x as the independent variable.

Algebraic Expression:

✅ $\frac{4}{1}x + 8$

Hints:

- Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that $m = \frac{4}{1}$ because the slope is $4/1$
We know that $b = 8$ because $(0, 8)$ is on the y-axis so it is the y-intercept

The equation is $y = \frac{4}{1}x + 8$
Type in $\frac{4}{1}x + 8$

- 73) Problem #PRADSKU "PRADSKU - Algebra1 Equation from Slope and Y-intercept Mastery Learning 5"
Write a linear equation for the line with slope $= -\frac{5}{8}$ going through the point: $(0, 3)$

Write your equation in the form $y =$ _____________

Use x as the independent variable.

Algebraic Expression:

- $-\frac{5}{8}x + 3$

Hints:

- Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that \(m = -\frac{5}{8} \) because the slope is \(-\frac{5}{8}\).

We know that \(b = 3 \) because \((0, 3)\) is on the y-axis so it is the y-intercept.

The equation is \(y = -\frac{5}{8}x + 3 \).

Type in \(-\frac{5}{8}x + 3\).

74) Problem #PRADSMG "PRADSMG - 57702 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 4"

Write a linear equation for the line with slope = 0 going through the point: \((0, 5)\)

Write your equation in the form \(y = \) ____________

Use \(x \) as the independent variable.

Algebraic Expression:

\(\checkmark 5 \)

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that $m = 0$ because the slope is 0.

We know that $b = 5$ because $(0, 5)$ is on the y-axis so it is the y-intercept.

The slope is 0, so the equation is $y = 5$.

Type in 5.

75) Problem #PRADSME "PRADSME - 57702 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 4"

Write a linear equation for the line with slope = 0 going through the point: $(0, 10)$

Write your equation in the form $y = ___________$

Use x as the independent variable.

Algebraic Expression:

☑️ 10

Hints:

- Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that \(m = 0 \) because the slope is 0.

We know that \(b = 10 \) because (0, 10) is on the y-axis so it is the y-intercept.

The slope is 0, so the equation is \(y = 10 \).

Type in 10.
We know that \(m = 0 \) because the slope is 0

We know that \(b = 1 \) because (0, 1) is on the y-axis so it is the y-intercept

The slope is 0, so the equation is \(y = 1 \)
Type in 1

77) Problem #PRADSHS "PRADSHS - Algebra1 Equation from Slope and Y-intercept Mastery Learning 2"

Write an equation in the form "\(y = ___________________\)" using the following information about the equation:

Slope of the equation: -6/2

Y-intercept of the equation: 10

Use x as the independent variable.

Algebraic Expression:

\(-6/2x + 10 \)

Hints:

Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that \(m = -\frac{6}{2} \) because the slope is \(-6/2\)

We know that \(b = 10 \) because the y-intercept is 10

The equation is \(y = -\frac{6}{2}x + 10 \)

Type in \(-6/2x + 10\)

78) Problem #PRADSMU "PRADSMU - 57702 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 4"
Write a linear equation for the line with slope = 0 going through the point: (0, 3)

Write your equation in the form \(y = \) ____________

Use \(x \) as the independent variable.

Algebraic Expression:

✅ 3

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that $m = 0$ because the slope is 0.

We know that $b = 3$ because $(0, 3)$ is on the y-axis so it is the y-intercept.

The slope is 0, so the equation is $y = 3$.

Type in 3.

79) Problem #PRADSMT "PRADSMT - 57702 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 4"

Write a linear equation for the line with slope = 0 going through the point: $(0, 4)$.

Write your equation in the form $y =$ ____________

Use x as the independent variable.

Algebraic Expression:

✓ 4

Hints:

• Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that $m = 0$ because the slope is 0.

We know that $b = 4$ because $(0, 4)$ is on the y-axis so it is the y-intercept.

The slope is 0, so the equation is $y = 4$

Type in 4

80) Problem #PRADSJB "PRADSJB - Algebra1 Equation from Slope and Y-intercept Mastery Learning 2"

Write an equation in the form "y=___________" using the following information about the equation:

Slope of the equation: -3/9

Y-intercept of the equation: 1

Use x as the independent variable.

Algebraic Expression:

$-3/9x + 1$

Hints:

- Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that \(m = -\frac{3}{9} \) because the slope is \(-3/9\)

We know that \(b = 1 \) because the y-intercept is 1

The equation is \(y = \frac{-3}{9} x + 1 \)

Type in \(-\frac{3}{9}x + 1\)

81) Problem #PRADSH4 "PRADSH4 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 2"

Write an equation in the form "\(y = \underline{\quad} \)" using the following information about the equation:

Slope of the equation: \(-2/9\)

Y-intercept of the equation: 5

Use \(x \) as the independent variable.

Algebraic Expression:

\ ✔ \ -2/9x + 5

Hints:

• Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
• We know that $m = -2/9$ because the slope is $-2/9$

We know that $b = 5$ because the y-intercept is 5

• The equation is $y = -2/9x + 5$
Type in $-2/9x + 5$

82) Problem #PRADSKE "PRADSKE - Algebra1 Equation from Slope and Y-intercept Mastery Learning 6"

Write a linear equation for the line with slope = 9/9 going through the point: (0, 9)

Write your equation in the form $y =$ ____________

Use x as the independent variable.

Algebraic Expression:

✓ $9/9x + 9$

Hints:

• Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that \(m = \frac{9}{9} \) because the slope is \(\frac{9}{9} \)

We know that \(b = 9 \) because (0, 9) is on the y-axis so it is the y-intercept

The equation is \(y = \frac{9}{9}x + 9 \)

Type in \(\frac{9}{9}x + 9 \)

Write a linear equation for the line with slope = 0 going through the point: (0, 7)

Write your equation in the form \(y = \) ____________

Use \(x \) as the independent variable.

Algebraic Expression:

\(7 \)

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
- We know that $m = 0$ because the slope is 0

We know that $b = 7$ because $(0, 7)$ is on the y-axis so it is the y-intercept

- The slope is 0, so the equation is $y = 7$
Type in 7

84) Problem #PRADSHA "PRADSHA - Algebra1 Equation from Slope and Y-intercept Mastery Learning"
Write an equation in the form "y=___________" using the following information about the equation:

Slope of the equation: 8/9

Y-intercept of the equation: 4

Use x as the independent variable.

Algebraic Expression:
- 8/9x + 4
- 0.888888888888889x+4

Hints:
- Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that $m = \frac{8}{9}$ because the slope is $\frac{8}{9}$

We know that $b = 4$ because the y-intercept is 4

The equation is $y = \frac{8}{9}x + 4$

Type in $\frac{8}{9}x + 4$

85) Problem #PRADSJ8 "PRADSJ8 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 6"

Write a linear equation for the line with slope $= \frac{8}{1}$ going through the point: $(0, 9)$

Write your equation in the form $y = \underline{}$

Use x as the independent variable.

Algebraic Expression:

✓ $\frac{8}{1}x + 9$

Hints:

- Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that \(m = \frac{8}{1} \) because the slope is \(\frac{8}{1} \)
We know that \(b = 9 \) because (0, 9) is on the y-axis so it is the y-intercept

The equation is \(y = \frac{8}{1}x + 9 \)

Type in \(\frac{8}{1}x + 9 \)

Write a linear equation for the line with slope = 9/1 going through the point: (0, 7)

Write your equation in the form \(y = ______________ \)

Use x as the independent variable.

Algebraic Expression:

\(9/1x + 7 \)

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that $m = \frac{9}{1}$ because the slope is $9/1$

We know that $b = 7$ because $(0, 7)$ is on the y-axis so it is the y-intercept

The equation is $y = \frac{9}{1}x + 7$

Type in $\frac{9}{1}x + 7$

87) Problem #PRADSJK "PRADSJK - 56786 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 3"

Write an equation in the form "$y = _________________\" using the following information about the equation:

Slope of the equation: 0

Y-intercept of the equation: 7

Use x as the independent variable.

Algebraic Expression:

7

Hints:

- Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that \(m = 0 \) because the slope is 0

We know that \(b = 7 \) because the y-intercept is 7

The slope is 0, so the equation is \(y = 7 \)

Type in 7

88) Problem #PRADSHU "PRADSHU - Algebra1 Equation from Slope and Y-intercept Mastery Learning 2"

Write an equation in the form "\(y = \)___________" using the following information about the equation:

Slope of the equation: -5/3

Y-intercept of the equation: 3

Use x as the independent variable.

Algebraic Expression:

\[-\frac{5}{3}x + 3 \]

Hints:

Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that \(m = -\frac{5}{3} \) because the slope is \(-\frac{5}{3}\)

We know that \(b = 3 \) because the y-intercept is 3

The equation is \(y = -\frac{5}{3}x + 3 \)

Type in \(-\frac{5}{3}x + 3\)

89) Problem #PRADSKY "PRADSKY - Algebra1 Equation from Slope and Y-intercept Mastery Learning 5"

Write a linear equation for the line with slope = -9/7 going through the point: (0, 9)

Write your equation in the form \(y = \) ____________

Use x as the independent variable.

Algebraic Expression:

\[-\frac{9}{7}x + 9 \]

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that \(m = -\frac{9}{7} \) because the slope is \(-\frac{9}{7}\).

We know that \(b = 9 \) because \((0, 9)\) is on the y-axis so it is the y-intercept.

The equation is \(y = -\frac{9}{7}x + 9 \).
Type in \(-\frac{9}{7}x + 9\)

90) Problem #PRADSHX “PRADSHX - Algebra1 Equation from Slope and Y-intercept Mastery Learning 2”

Write an equation in the form "y=______________" using the following information about the equation:

Slope of the equation: \(-\frac{4}{3}\)

Y-intercept of the equation: 8

Use x as the independent variable.

Algebraic Expression:

\(-\frac{4}{3}x + 8\)

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
• We know that $m = -\frac{4}{3}$ because the slope is $-\frac{4}{3}$

We know that $b = 8$ because the y-intercept is 8

• The equation is $y = -\frac{4}{3}x + 8$

Type in $-\frac{4}{3}x + 8$

91) Problem #PRADSKM "PRADSKM - Algebra1 Equation from Slope and Y-intercept Mastery Learning 6"

Write a linear equation for the line with slope = $\frac{8}{3}$ going through the point: (0, 4)

Write your equation in the form $y=$ _____________

Use x as the independent variable.

Algebraic Expression:

✓ $\frac{8}{3}x + 4$

Hints:

• Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that \(m = \frac{8}{3} \) because the slope is \(\frac{8}{3} \)

We know that \(b = 4 \) because \((0, 4)\) is on the y-axis so it is the y-intercept

The equation is \(y = \frac{8}{3}x + 4 \)

Type in \(\frac{8}{3}x + 4 \)

92) Problem #PRADSJW "PRADSJW - 56786 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 3"

Write an equation in the form "\(y = ___}\n
Slope of the equation: 0

Y-intercept of the equation: 5

Use x as the independent variable.

Algebraic Expression:

\(\sqrt{5} \)

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that \(m = 0 \) because the slope is 0.

We know that \(b = 5 \) because the y-intercept is 5.

The slope is 0, so the equation is \(y = 5 \).

Type in 5.

93) Problem #PRADSKC "PRADSKC - Algebra1 Equation from Slope and Y-intercept Mastery Learning 6"

Write a linear equation for the line with slope = \(\frac{2}{5} \) going through the point: (0, 5)

Write your equation in the form \(y = _ \)___________

Use \(x \) as the independent variable.

Algebraic Expression:

✓ \(\frac{2}{5}x + 5 \)

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that \(m = \frac{2}{5} \) because the slope is \(\frac{2}{5} \)

We know that \(b = 5 \) because (0, 5) is on the y-axis so it is the y-intercept

The equation is \(y = \frac{2}{5}x + 5 \)

Algebraic Expression: \(\frac{2}{5}x + 5 \)

Hints:
- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that $m = 0$ because the slope is 0.

We know that $b = 7$ because the y-intercept is 7.

The slope is 0, so the equation is $y = 7$.
Type in 7.

Problem #PRADSKX “PRADSKX - Algebra1 Equation from Slope and Y-intercept Mastery Learning 5”

Write a linear equation for the line with slope = $-7/4$ going through the point: (0, 3)

Write your equation in the form $y = \underline{\hspace{2cm}}$

Use x as the independent variable.

Algebraic Expression:

- $-7/4x + 3$

Hints:

- Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that $m = -\frac{7}{4}$ because the slope is $-\frac{7}{4}$
We know that $b = 3$ because $(0, 3)$ is on the y-axis so it is the y-intercept

The equation is $y = \frac{-7}{4}x + 3$
Type in $-\frac{7}{4}x + 3$

96) Problem #PRADSJH "PRADSJH - 56786 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 3"
Write an equation in the form "$y = \underline{}$" using the following information about the equation:

Slope of the equation: 0
Y-intercept of the equation: 7
Use x as the independent variable.

Algebraic Expression:
✓ 7

Hints:
- Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that \(m = 0 \) because the slope is 0.

We know that \(b = 7 \) because the y-intercept is 7.

The slope is 0, so the equation is \(y = 7 \). Type in 7.

97) Problem #PRADSJ9 "PRADSJ9 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 6"
Write a linear equation for the line with slope = 9/5 going through the point: (0, 6)

Write your equation in the form \(y = \) _____________

Use \(x \) as the independent variable.

Algebraic Expression:

\[
\checkmark \quad \frac{9}{5}x + 6
\]

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that \(m = \frac{9}{5} \) because the slope is \(\frac{9}{5} \)

We know that \(b = 6 \) because \((0, 6)\) is on the y-axis so it is the y-intercept

The equation is \(y = \frac{9}{5}x + 6 \)

Type in \(\frac{9}{5}x + 6 \)

98) Problem #PRADSHT "PRADSHT - Algebra1 Equation from Slope and Y-intercept Mastery Learning 2"

Write an equation in the form "y=______________" using the following information about the equation:

Slope of the equation: -5/6

Y-intercept of the equation: 5

Use x as the independent variable.

Algebraic Expression:

-5/6x + 5

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
- We know that \(m = -\frac{5}{6} \) because the \textit{slope} is \(-\frac{5}{6}\)

We know that \(b = 5 \) because the \textit{y-intercept} is 5

- The equation is \(y = -\frac{5}{6}x + 5 \)

Type in \(-\frac{5}{6}x + 5\)

99) Problem #PRADSHM "PRADSHM - Algebra1 Equation from Slope and Y-intercept Mastery Learning"

Write an equation in the form "\(y=\ldots\)" using the following information about the equation:

Slope of the equation: 9/10

Y-intercept of the equation: 7

Use x as the independent variable.

\textbf{Algebraic Expression:}

- \(\checkmark \) 9/10x + 7
- \(\checkmark \) 0.9x+7

\textbf{Hints:}

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the \textit{y-intercept}.
We know that $m = \frac{9}{10}$ because the slope is 9/10.

We know that $b = 7$ because the y-intercept is 7.

• The equation is $y = \frac{9}{10}x + 7$

Type in $\frac{9}{10}x + 7$

100) Problem #PRADSJQ "PRADSJQ - 56786 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 3"

Write an equation in the form "$y=_______________\" using the following information about the equation:

Slope of the equation: 0

Y-intercept of the equation: 8

Use x as the independent variable.

Algebraic Expression:

✔️ 8

Hints:

• Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that \(m = 0 \) because the slope is 0.

We know that \(b = 8 \) because the y-intercept is 8.

The slope is 0, so the equation is \(y = 8 \).

Type in 8.

101) Problem #PRADSK4 "PRADSK4 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 5"

Write a linear equation for the line with slope = -7/3 going through the point: (0, 9)

Write your equation in the form \(y = __________ \)

Use \(x \) as the independent variable.

Algebraic Expression:

\[-\frac{7}{3}x + 9 \]

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that \(m = -\frac{7}{3} \) because the slope is \(-\frac{7}{3}\).

We know that \(b = 9 \) because \((0, 9)\) is on the y-axis so it is the y-intercept.

The equation is \(y = -\frac{7}{3}x + 9 \).

Type in \(-\frac{7}{3}x + 9\).

102) Problem #PRADSG8 "PRADSG8 - Algebra1 Equation from Slope and Y-intercept Mastery Learning"

Write an equation in the form "y=_____________" using the following information about the equation:

Slope of the equation: \(\frac{3}{7}\)

Y-intercept of the equation: 5

Use \(x\) as the independent variable.

Algebraic Expression:

- \(\sqrt{3/7}x + 5\)
- \(0.428571428571429x + 5\)

Hints:

- Linear equations can be written in this form where \(m\) is the slope and \(b\) is the y-intercept.
We know that $m = \frac{3}{7}$ because the slope is $\frac{3}{7}$

We know that $b = 5$ because the y-intercept is 5

- The equation is $y = \frac{3}{7}x + 5$
- Type in $\frac{3}{7}x + 5$

103) Problem #PRADSKA "PRADSKA - Algebra1 Equation from Slope and Y-intercept Mastery Learning 6"

Write a linear equation for the line with slope = $\frac{9}{4}$ going through the point: $(0, 6)$

Write your equation in the form $y =$ ____________

Use x as the independent variable.

Algebraic Expression:

✓ $\frac{9}{4}x + 6$

Hints:

- Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that $m = \frac{9}{4}$ because the slope is $\frac{9}{4}$.

We know that $b = 6$ because $(0, 6)$ is on the y-axis so it is the y-intercept.

The equation is $y = \frac{9}{4}x + 6$.

Type in $\frac{9}{4}x + 6$.

104) Problem #PRADSJX "PRADSJX - 56786 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 3"

Write an equation in the form "y=_____________" using the following information about the equation:

Slope of the equation: 0

Y-intercept of the equation: 4

Use x as the independent variable.

Algebraic Expression:

✓ 4

Hints:

- Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that \(m = 0 \) because the slope is 0.

We know that \(b = 4 \) because the y-intercept is 4.

The slope is 0, so the equation is \(y = 4 \).

Type in \(4 \).

105) Problem #PRADSJV "PRADSJV - 56786 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 3"

Write an equation in the form "y=_____________" using the following information about the equation:

Slope of the equation: 0

Y-intercept of the equation: 9

Use \(x \) as the independent variable.

Algebraic Expression:

\(9 \)

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that $m = 0$ because the slope is 0

We know that $b = 9$ because the y-intercept is 9

- The slope is 0, so the equation is $y = 9$
 Type in 9

106) Problem #PRADSMM "PRADSMM - 57702 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 4"

Write a linear equation for the line with slope = 0 going through the point: (0, 7)

Write your equation in the form $y = __________$

Use x as the independent variable.

Algebraic Expression:

✓ 7

Hints:
- Linear equations can be written in this form where m is the slope and b is the y-intercept.
We know that \(m = 0 \) because the **slope** is 0

We know that \(b = 7 \) because \((0, 7)\) is on the y-axis so it is the **y-intercept**

The **slope** is 0, so the equation is \(y = 7 \)
Type in 7

107) Problem #PRADSHK "PRADSHK - Algebra1 Equation from Slope and Y-intercept Mastery Learning"

Write an equation in the form "y=______________" using the following information about the equation:

Slope of the equation: 6/9

Y-intercept of the equation: 8

Use x as the independent variable.

Algebraic Expression:

- ✓ 6/9x + 8
- ✓ 0.666666666666667x+8

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the **y-intercept**.
We know that \(m = \frac{6}{9} \) because the **slope** is \(\frac{6}{9} \)

We know that \(b = 8 \) because the **y-intercept** is 8

The equation is \(y = \frac{6}{9} x + 8 \)

Type in \(\frac{6}{9} x + 8 \)

108) Problem #PRADSK3 "PRADSK3 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 5"

Write a linear equation for the line with slope = -1/10 going through the point: (0, 6)

Write your equation in the form \(y = \) ____________

Use \(x \) as the independent variable.

Algebraic Expression:

-1/10x + 6

Hints:

- Linear equations can be written in this form where \(m \) is the **slope** and \(b \) is the **y-intercept**.
We know that \(m = -\frac{1}{10} \) because the slope is \(-\frac{1}{10}\)

We know that \(b = 6 \) because (0, 6) is on the y-axis so it is the y-intercept

The equation is \(y = -\frac{1}{10}x + 6 \)

Type in \(-\frac{1}{10}x + 6\)

109) Problem #PRADSJJ "PRADSJJ - 56786 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 3"

Write an equation in the form "y=_____________" using the following information about the equation:

Slope of the equation: 0

Y-intercept of the equation: 1

Use x as the independent variable.

Algebraic Expression:

1

Hints:

- Linear equations can be written in this form where \(m \) is the slope and \(b \) is the y-intercept.
We know that \(m = 0 \) because the \textit{slope} is \(0 \).

We know that \(b = 1 \) because the \textit{y-intercept} is \(1 \).

The \textit{slope} is \(0 \), so the equation is \(y = 1 \).

Type in 1.
Select All

Problem #1044599 "PRABEB92 - 56786 - Algebra1 Equation from Slope and Y-intercept Mastery Learning
3 Video Hints"

Write an equation in the form "y = ___________" using the following information about the equation:

Slope of the equation: 0

Y-intercept of the equation: 5

Use x as the independent variable.

Algebraic Expression:

5

Hints:

•
The slope is 0, so the equation is $y = 5$
Type in 5
Problem #1044600 "PRABEB93 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 2 Video Hints"

Write an equation in the form "y=______________" using the following information about the equation:

Slope of the equation: -5/8

Y-intercept of the equation: 9

Use x as the independent variable.

Algebraic Expression:

-5/8x + 9

Hints:

-
The equation is \(y = \frac{-5}{8}x + 9 \)
Type in \(-\frac{5}{8}x + 9\)
Problem #1044601 "PRABEB94 - Algebra1 Equation from Slope and Y-intercept Mastery Learning Video Hints"

Write an equation in the form "y = ____________" using the following information about the equation:

Slope of the equation: $\frac{5}{5}$

Y-intercept of the equation: 2

Use x as the independent variable.

Algebraic Expression:

- $\frac{5}{5}x + 2$
- $1x + 2$

Hints:

- The equation is $y = \frac{5}{5}x + 2$
- Type in $\frac{5}{5}x + 2$
Problem #1044602 "PRABEB95 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 2 Video Hints"
Write an equation in the form "y=____________" using the following information about the equation:

Slope of the equation: -5/9

Y-intercept of the equation: 5

Use x as the independent variable.

Algebraic Expression:

-5/9x + 5

Hints:
The equation is \(y = \frac{-5}{9}x + 5 \)
Type in \(-\frac{5}{9}x + 5\)
Select All

Problem #1044603 "PRAEB96 - Algebra1 Equation from Slope and Y-intercept Mastery Learning 6 Video Hint"
Write a linear equation for the line with slope $= \frac{3}{5}$ going through the point: (0, 2)

Write your equation in the form $y =$ ____________

Use x as the independent variable.

Algebraic Expression:

$\checkmark \quad \frac{3}{5}x + 2$

Hints:

- The equation is $y = \frac{3}{5}x + 2$
Type in $\frac{3}{5}x + 2$
Problem #1044604 "PRABEB97 - 57702 - Algebra1 Equation from Slope and Y-intercept Mastery Learning

4 Video Hints"

Write a linear equation for the line with slope = 0 going through the point: (0, 6)

Write your equation in the form $y = __________________$

Use x as the independent variable.

Algebraic Expression:

✓ 6

Hints:

- The slope is 0, so the equation is $y = 6$

Type in 6
Problem Set "Multiplying Integers 7.NS.A.2c" id: PSAGGQ

Select All
☐ 1) Problem #PRABFB7 "PRABFB7 - Multiplication of Integers"

What is $7 \times (-6)$?

Algebraic Expression:
✓ -42

Hints:

Remember the rule of multiplying signs which says,

$+ \times + = +$

$+ \times - = -$

$- \times - = +$

$- \times + = -$
We have, the second case where,

\[
\begin{array}{ccc}
+ & \times & = \\
\end{array}
\]

Thus using this rule we get,

\[
7 \times (-6) = -42
\]

Type in -42

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[
7 \times 6
\]

Hints:

Below are the multiplication tables of 7 and 6.

You can use them to compute 7*6.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 * 0 = 0</td>
<td>6 * 0 = 0</td>
</tr>
<tr>
<td>7 * 1 = 7</td>
<td>6 * 1 = 6</td>
</tr>
<tr>
<td>7 * 2 = 14</td>
<td>6 * 2 = 12</td>
</tr>
<tr>
<td>7 * 3 = 21</td>
<td>6 * 3 = 18</td>
</tr>
<tr>
<td>7 * 4 = 28</td>
<td>6 * 4 = 24</td>
</tr>
</tbody>
</table>
Look at the row in table 1 that shows,
7 \times 6 = 42

And at the row in table 2 that shows,
6 \times 7 = 42

Thus, type in 42.

Scaffold:

- We know,
 7 \times 6 = 42

Hints:

- We know,
 7 \times 6 = 42

We need to consider the signs of the factors as well.

What is $7 \times (-6)$?

Algebraic Expression:

-42

Hints:

- We know,
 7 \times 6 = 42

We need to consider the signs of the factors as well.
Remember the rule of multiplying signs which says,

\[
\begin{align*}
+ \times + &= + \\
+ \times - &= - \\
- \times + &= - \\
- \times - &= +
\end{align*}
\]

We have, the second case where,

\[
\begin{align*}
+ \times - &= -
\end{align*}
\]

Thus using this rule we get,

\[
7 \times (-6) = -42
\]

Type in \(-42\)

2) Problem #PRABFB2 "PRABFB2 - Multiplication of Integers"
What is \(6 \times (-4)\)?

Algebraic Expression:

\(\checkmark\) \(-24\)

Hints:
Remember the rule of multiplying signs which says,

\[+ \times + = + \]
\[+ \times - = - \]
\[- \times + = - \]
\[- \times - = + \]
We have, the second case where,

\[\times \]

Thus using this rule we get,
\[6 \times (-4) \]
\[= -24 \]

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,
\[6 \times 4 \]

Algebraic Expression:

\[\checkmark \quad 24 \]

Hints:

- Below are the multiplication tables of 6 and 4.
 You can use them to compute \(6 \times 4 \).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 * 0 = 0</td>
<td>4 * 0 = 0</td>
</tr>
<tr>
<td>6 * 1 = 6</td>
<td>4 * 1 = 4</td>
</tr>
<tr>
<td>6 * 2 = 12</td>
<td>4 * 2 = 8</td>
</tr>
<tr>
<td>6 * 3 = 18</td>
<td>4 * 3 = 12</td>
</tr>
<tr>
<td>6 * 4 = 24</td>
<td>4 * 4 = 16</td>
</tr>
<tr>
<td>6 * 5 = 30</td>
<td>4 * 5 = 20</td>
</tr>
<tr>
<td>6 * 6 = 36</td>
<td>4 * 6 = 24</td>
</tr>
<tr>
<td>6 * 7 = 42</td>
<td>4 * 7 = 28</td>
</tr>
<tr>
<td>6 * 8 = 48</td>
<td>4 * 8 = 32</td>
</tr>
<tr>
<td>6 * 9 = 54</td>
<td>4 * 9 = 36</td>
</tr>
<tr>
<td>6 * 10 = 60</td>
<td>4 * 10 = 40</td>
</tr>
</tbody>
</table>

- Look at the row in table 1 that shows,
\[6 \times 4 = 24 \]

And at the row in table 2 that shows,
\[4 \times 6 = 24 \]
- \[6 \times 4 = 24 \]
Thus, type in 24.

Scaffold:
- We know,
 \(6 \times 4 = 24\)
- Now try the original problem again.

What is \(6 \times (-4)\)?

Algebraic Expression:
- \(\checkmark\) -24

Hints:
- We know,
 \(6 \times 4 = 24\)
- We need to consider the signs of the factors as well.
- Remember the rule of multiplying signs which says,

\[
\begin{align*}
\text{\textcolor{green}{+}} \times \text{\textcolor{green}{+}} & = \text{\textcolor{green}{+}} \\
\text{\textcolor{green}{+}} \times \text{\textcolor{red}{-}} & = \text{\textcolor{red}{-}} \\
\text{\textcolor{red}{-}} \times \text{\textcolor{green}{+}} & = \text{\textcolor{red}{-}} \\
\text{\textcolor{red}{-}} \times \text{\textcolor{red}{-}} & = \text{\textcolor{green}{+}}
\end{align*}
\]

- We have, the second case where,

\[
\begin{align*}
\text{\textcolor{green}{+}} \times \text{\textcolor{red}{-}} & = \text{\textcolor{red}{-}}
\end{align*}
\]

Thus using this rule we get,

\[
6 \times (-4) = -24
\]
Type in -24

3) Problem #PRABFB6 "PRABFB6 - Multiplication of Integers"
What is $2 \times (-3)$?

Algebraic Expression:

-6

Hints:

Remember the rule of multiplying signs which says,

$+ \times + = +$

$+ \times - = -$

$- \times + = -$

$- \times - = +$
We have, the second case where,

Thus using this rule we get,

$2 \times (-3) = -6$

Type in -6

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

$$2 \times 3$$

Algebraic Expression:

6

Hints:

- Below are the multiplication tables of 2 and 3.

You can use them to compute 2×3.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2 \times 0 = 0$</td>
<td>$3 \times 0 = 0$</td>
</tr>
<tr>
<td>$2 \times 1 = 2$</td>
<td>$3 \times 1 = 3$</td>
</tr>
<tr>
<td>$2 \times 2 = 4$</td>
<td>$3 \times 2 = 6$</td>
</tr>
<tr>
<td>$2 \times 3 = 6$</td>
<td>$3 \times 3 = 9$</td>
</tr>
<tr>
<td>$2 \times 4 = 8$</td>
<td>$3 \times 4 = 12$</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2 * 5</td>
<td>10</td>
</tr>
<tr>
<td>2 * 6</td>
<td>12</td>
</tr>
<tr>
<td>2 * 7</td>
<td>14</td>
</tr>
<tr>
<td>2 * 8</td>
<td>16</td>
</tr>
<tr>
<td>2 * 9</td>
<td>18</td>
</tr>
<tr>
<td>2 * 10</td>
<td>20</td>
</tr>
</tbody>
</table>

Look at the row in table 1 that shows,
2 * 3 = 6

And at the row in table 2 that shows,
3 * 2 = 6

Thus, type in 6.

Scaffold:

- We know,
 2 * 3 = 6
- Now try the original problem again.

What is 2 * (-3)?

Algebraic Expression:

-6

Hints:

- We know,
 2 * 3 = 6

We need to consider the signs of the factors as well.
Remember the rule of multiplying signs which says,

\[
\begin{align*}
+ & \times + = + \\
+ & \times - = - \\
- & \times + = - \\
- & \times - = +
\end{align*}
\]

We have, the second case where,

\[
\begin{align*}
+ & \times - = -
\end{align*}
\]

Thus using this rule we get,

\[
2 \times (-3)
\]

\[
= -6
\]

Type in -6

4) Problem #PRABFB3 "PRABFB3 - Multiplication of Integers"

What is 2 * (-5)?

Algebraic Expression:

-10

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[
2 \times 5
\]
Algebraic Expression:

✓ 10

Hints:

•

Below are the multiplication tables of 2 and 5.

You can use them to compute 2*5.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 * 0 = 0</td>
<td>5 * 0 = 0</td>
</tr>
<tr>
<td>2 * 1 = 2</td>
<td>5 * 1 = 5</td>
</tr>
<tr>
<td>2 * 2 = 4</td>
<td>5 * 2 = 10</td>
</tr>
<tr>
<td>2 * 3 = 6</td>
<td>5 * 3 = 15</td>
</tr>
<tr>
<td>2 * 4 = 8</td>
<td>5 * 4 = 20</td>
</tr>
<tr>
<td>2 * 5 = 10</td>
<td>5 * 5 = 25</td>
</tr>
<tr>
<td>2 * 6 = 12</td>
<td>5 * 6 = 30</td>
</tr>
<tr>
<td>2 * 7 = 14</td>
<td>5 * 7 = 35</td>
</tr>
<tr>
<td>2 * 8 = 16</td>
<td>5 * 8 = 40</td>
</tr>
<tr>
<td>2 * 9 = 18</td>
<td>5 * 9 = 45</td>
</tr>
<tr>
<td>2 * 10 = 20</td>
<td>5 * 10 = 50</td>
</tr>
</tbody>
</table>

•

Look at the row in table 1 that shows, 2 * 5 = 10

And at the row in table 2 that shows, 5 * 2 = 10

• 2 * 5 = 10

Thus, type in 10.

Scaffold:

We know,
2 * 5 = 10
Now try the original problem again.

What is 2 * (-5)?

Algebraic Expression:

✓ -10

Hints:

• We know,
2 * 5 = 10

We need to consider the signs of the factors as well.
Remember the rule of multiplying signs which says,

\[+ \times + = + \]

\[+ \times - = - \]

\[- \times + = - \]

\[- \times - = + \]

We have, the second case where,

\[+ \times - = - \]

Thus using this rule we get,

\[2 \times (-5) \]

\[= -10 \]

5) Problem #PRABFB8 "PRABFB8 - Multiplication of Integers"
What is \(8 \times (-9) \)?

Algebraic Expression:

\[-72 \]

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[8 \times 9 \]
Algebraic Expression:

✓ 72

Hints:

Below are the multiplication tables of 8 and 9.

You can use them to compute 8*9.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 * 0 = 0</td>
<td>9 * 0 = 0</td>
</tr>
<tr>
<td>8 * 1 = 8</td>
<td>9 * 1 = 9</td>
</tr>
<tr>
<td>8 * 2 = 16</td>
<td>9 * 2 = 18</td>
</tr>
<tr>
<td>8 * 3 = 24</td>
<td>9 * 3 = 27</td>
</tr>
<tr>
<td>8 * 4 = 32</td>
<td>9 * 4 = 36</td>
</tr>
<tr>
<td>8 * 5 = 40</td>
<td>9 * 5 = 45</td>
</tr>
<tr>
<td>8 * 6 = 48</td>
<td>9 * 6 = 54</td>
</tr>
<tr>
<td>8 * 7 = 56</td>
<td>9 * 7 = 63</td>
</tr>
<tr>
<td>8 * 8 = 64</td>
<td>9 * 8 = 72</td>
</tr>
<tr>
<td>8 * 9 = 72</td>
<td>9 * 9 = 81</td>
</tr>
<tr>
<td>8 * 10 = 80</td>
<td>9 * 10 = 90</td>
</tr>
</tbody>
</table>

Look at the row in table 1 that shows, 8 * 9 = 72
And at the row in table 2 that shows, 9 * 8 = 72
8 * 9 = 72

Thus, type in 72.

Scaffold:

We know,
8 * 9 = 72
Now try the original problem again.

What is 8 * (-9)?

Algebraic Expression:

✓ -72

Hints:

We know,
8 * 9 = 72

We need to consider the signs of the factors as well.
Remember the rule of multiplying signs which says,

\[+ \times + = + \]
\[+ \times - = - \]
\[- \times + = - \]
\[- \times - = + \]

We have, the second case where,

\[+ \times - = - \]

Thus using this rule we get,

\[8 \times (-9) \]
\[= -72 \]

Type in -72

6) Problem #PRABFBY "PRABFBY - Multiplication of Integers"

What is \(1 \times (-4)\)?

Algebraic Expression:

\[-4 \]

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[1 \times 4 \]
Algebraic Expression:

✓ 4

Hints:

• Below are the multiplication tables of 1 and 4.

You can use them to compute 1*4.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 * 0 = 0</td>
<td>4 * 0 = 0</td>
</tr>
<tr>
<td>1 * 1 = 1</td>
<td>4 * 1 = 4</td>
</tr>
<tr>
<td>1 * 2 = 2</td>
<td>4 * 2 = 8</td>
</tr>
<tr>
<td>1 * 3 = 3</td>
<td>4 * 3 = 12</td>
</tr>
<tr>
<td>1 * 4 = 4</td>
<td>4 * 4 = 16</td>
</tr>
<tr>
<td>1 * 5 = 5</td>
<td>4 * 5 = 20</td>
</tr>
<tr>
<td>1 * 6 = 6</td>
<td>4 * 6 = 24</td>
</tr>
<tr>
<td>1 * 7 = 7</td>
<td>4 * 7 = 28</td>
</tr>
<tr>
<td>1 * 8 = 8</td>
<td>4 * 8 = 32</td>
</tr>
<tr>
<td>1 * 9 = 9</td>
<td>4 * 9 = 36</td>
</tr>
<tr>
<td>1 * 10 = 10</td>
<td>4 * 10 = 40</td>
</tr>
</tbody>
</table>

• Look at the row in table 1 that shows,
 1 * 4 = 4

 And at the row in table 2 that shows,
 4 * 1 = 4

 • 1 * 4 = 4

Thus, type in 4.

Scaffold:

We know,
1 * 4 = 4

Now try the original problem again.

What is 1 * (-4)?

Algebraic Expression:

✓ -4

Hints:

• We know,
 1 * 4 = 4

We need to consider the signs of the factors as well.
Remember the rule of multiplying signs which says,

\[+ \times + = + \]
\[+ \times - = - \]
\[- \times + = - \]
\[- \times - = + \]

We have, the second case where,

\[+ \times - = - \]

Thus using this rule we get,

\[1 \times (-4) \]
\[= -4 \]

Type in -4

7) Problem #PRABFB4 "PRABFB4 - Multiplication of Integers"

What is \(6 \times (-5) \)?

Algebraic Expression:

\[6 \times (-5) = -30 \]

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[6 \times 5 \]
Algebraic Expression:

✓ 30

Hints:

Below are the multiplication tables of 6 and 5.

You can use them to compute 6×5.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$6 \times 0 = 0$</td>
<td>$5 \times 0 = 0$</td>
</tr>
<tr>
<td>$6 \times 1 = 6$</td>
<td>$5 \times 1 = 5$</td>
</tr>
<tr>
<td>$6 \times 2 = 12$</td>
<td>$5 \times 2 = 10$</td>
</tr>
<tr>
<td>$6 \times 3 = 18$</td>
<td>$5 \times 3 = 15$</td>
</tr>
<tr>
<td>$6 \times 4 = 24$</td>
<td>$5 \times 4 = 20$</td>
</tr>
<tr>
<td>$6 \times 5 = 30$</td>
<td>$5 \times 5 = 25$</td>
</tr>
<tr>
<td>$6 \times 6 = 36$</td>
<td>$5 \times 6 = 30$</td>
</tr>
<tr>
<td>$6 \times 7 = 42$</td>
<td>$5 \times 7 = 35$</td>
</tr>
<tr>
<td>$6 \times 8 = 48$</td>
<td>$5 \times 8 = 40$</td>
</tr>
<tr>
<td>$6 \times 9 = 54$</td>
<td>$5 \times 9 = 45$</td>
</tr>
<tr>
<td>$6 \times 10 = 60$</td>
<td>$5 \times 10 = 50$</td>
</tr>
</tbody>
</table>

Look at the row in table 1 that shows, $6 \times 5 = 30$

And at the row in table 2 that shows, $5 \times 6 = 30$

• $6 \times 5 = 30$

Thus, type in 30.

Scaffold:
We know,
$6 \times 5 = 30$
Now try the original problem again.

What is $6 \times (-5)$?

Algebraic Expression:

✓ -30

Hints:

• We know,
$6 \times 5 = 30$

We need to consider the signs of the factors as well.
Remember the rule of multiplying signs which says,

\[\begin{align*}
+ \times + &= + \\
+ \times - &= - \\
- \times + &= - \\
- \times - &= +
\end{align*}\]

We have, the second case where,

\[\begin{align*}
+ \times - &= -
\end{align*}\]

Thus using this rule we get,

\[6 \times (-5) = -30\]

Type in \(-30\)

8) Problem #PRABFBZ "PRABFBZ - Multiplication of Integers"

What is \(10 \times (-6)\)?

Algebraic Expression:

-60

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[10 \times 6\]
Algebraic Expression:

☐ 60

Hints:

Below are the multiplication tables of 10 and 6.

You can use them to compute 10*6.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 * 0 = 0</td>
<td>6 * 0 = 0</td>
</tr>
<tr>
<td>10 * 1 = 10</td>
<td>6 * 1 = 6</td>
</tr>
<tr>
<td>10 * 2 = 20</td>
<td>6 * 2 = 12</td>
</tr>
<tr>
<td>10 * 3 = 30</td>
<td>6 * 3 = 18</td>
</tr>
<tr>
<td>10 * 4 = 40</td>
<td>6 * 4 = 24</td>
</tr>
<tr>
<td>10 * 5 = 50</td>
<td>6 * 5 = 30</td>
</tr>
<tr>
<td>10 * 6 = 60</td>
<td>6 * 6 = 36</td>
</tr>
<tr>
<td>10 * 7 = 70</td>
<td>6 * 7 = 42</td>
</tr>
<tr>
<td>10 * 8 = 80</td>
<td>6 * 8 = 48</td>
</tr>
<tr>
<td>10 * 9 = 90</td>
<td>6 * 9 = 54</td>
</tr>
<tr>
<td>10 * 10 = 100</td>
<td>6 * 10 = 60</td>
</tr>
</tbody>
</table>

Look at the row in table 1 that shows, 10 * 6 = 60

And at the row in table 2 that shows, 6 * 10 = 60

Thus, type in 60.

Scaffold:

We know, 10 * 6 = 60
Now try the original problem again.

What is 10 * (-6)?

Algebraic Expression:

☐ -60

Hints:

We know, 10 * 6 = 60

We need to consider the signs of the factors as well.
Remember the rule of multiplying signs which says,

\[
\begin{align*}
+ \times + &= + \\
+ \times - &= - \\
- \times + &= - \\
- \times - &= +
\end{align*}
\]

We have, the second case where,

\[
+ \times - = -
\]

Thus using this rule we get,

\[
10 \times (-6)
\]

\[
= -60
\]

Type in \(-60\)

9) Problem #PRABFB5 "PRABFB5 - Multiplication of Integers"

What is \(4 \times (-2)\)?

Algebraic Expression:

\(\checkmark\) -8

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\(4 \times 2\)
Algebraic Expression:

✓ 8

Hints:

- Below are the multiplication tables of 4 and 2.

You can use them to compute 4×2.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 * 0 = 0</td>
<td>2 * 0 = 0</td>
</tr>
<tr>
<td>4 * 1 = 4</td>
<td>2 * 1 = 2</td>
</tr>
<tr>
<td>4 * 2 = 8</td>
<td>2 * 2 = 4</td>
</tr>
<tr>
<td>4 * 3 = 12</td>
<td>2 * 3 = 6</td>
</tr>
<tr>
<td>4 * 4 = 16</td>
<td>2 * 4 = 8</td>
</tr>
<tr>
<td>4 * 5 = 20</td>
<td>2 * 5 = 10</td>
</tr>
<tr>
<td>4 * 6 = 24</td>
<td>2 * 6 = 12</td>
</tr>
<tr>
<td>4 * 7 = 28</td>
<td>2 * 7 = 14</td>
</tr>
<tr>
<td>4 * 8 = 32</td>
<td>2 * 8 = 16</td>
</tr>
<tr>
<td>4 * 9 = 36</td>
<td>2 * 9 = 18</td>
</tr>
<tr>
<td>4 * 10 = 40</td>
<td>2 * 10 = 20</td>
</tr>
</tbody>
</table>

- Look at the row in table 1 that shows, $4 \times 2 = 8$

And at the row in table 2 that shows, $2 \times 4 = 8$

- $4 \times 2 = 8$

Thus, type in 8.

Scaffold:

We know, $4 \times 2 = 8$

Now try the original problem again.

What is $4 \times (-2)$?

Algebraic Expression:

✓ -8

Hints:

- We know, $4 \times 2 = 8$

We need to consider the signs of the factors as well.
Remember the rule of multiplying signs which says,

\[+ \times + = + \]
\[+ \times - = - \]
\[- \times + = - \]
\[- \times - = + \]

We have, the second case where,

\[+ \times - = - \]

Thus using this rule we get,

\[4 \times (-2) \]
\[= -8 \]

Type in \(-8\)

\[\square \] 10) Problem #PRABFDZ "PRABFDZ - Multiplication of Integers"
What is \((-10) \times (-6)\)?

Algebraic Expression:

\[60 \]

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[10 \times 6 \]
Algebraic Expression:
✓ 60

Hints:

Below are the multiplication tables of 10 and 6.

You can use them to compute 10*6.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 * 0 = 0</td>
<td>6 * 0 = 0</td>
</tr>
<tr>
<td>10 * 1 = 10</td>
<td>6 * 1 = 6</td>
</tr>
<tr>
<td>10 * 2 = 20</td>
<td>6 * 2 = 12</td>
</tr>
<tr>
<td>10 * 3 = 30</td>
<td>6 * 3 = 18</td>
</tr>
<tr>
<td>10 * 4 = 40</td>
<td>6 * 4 = 24</td>
</tr>
<tr>
<td>10 * 5 = 50</td>
<td>6 * 5 = 30</td>
</tr>
<tr>
<td>10 * 6 = 60</td>
<td>6 * 6 = 36</td>
</tr>
<tr>
<td>10 * 7 = 70</td>
<td>6 * 7 = 42</td>
</tr>
<tr>
<td>10 * 8 = 80</td>
<td>6 * 8 = 48</td>
</tr>
<tr>
<td>10 * 9 = 90</td>
<td>6 * 9 = 54</td>
</tr>
<tr>
<td>10 * 10 = 100</td>
<td>6 * 10 = 60</td>
</tr>
</tbody>
</table>

Look at the row in table 1 that shows,
10 * 6 = 60
And at the row in table 2 that shows,
6 * 10 = 60

Thus, type in 60.

Scaffold:
We know,
10 * 6 = 60
Now try the original problem again.

What is (-10) * (-6)?

Algebraic Expression:
✓ 60

Hints:

We know,
10 * 6 = 60

We need to consider the signs of the factors as well.
Our first factor, -10, is negative and our second factor, -6, is negative as well.

We are multiplying a negative number to a negative one.

We must consider the multiplication of the signs as well.

Remember the rule of multiplying signs which says,

\[
\begin{align*}
+ \times + &= + \\
+ \times - &= - \\
- \times + &= - \\
- \times - &= +
\end{align*}
\]

Thus using this rule we get,

\[
(-10) \times (-6) = 60
\]

Type in 60.

11) Problem #PRABFDR "PRABFDR - Multiplication of Integers"

What is (-4) * 5?

Algebraic Expression:

✓ -20

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.
Go ahead and compute,

4×5

Algebraic Expression:

✓ 20

Hints:

•

Below are the multiplication tables of 4 and 5.

You can use them to compute 4×5.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 * 0 = 0</td>
<td>5 * 0 = 0</td>
</tr>
<tr>
<td>4 * 1 = 4</td>
<td>5 * 1 = 5</td>
</tr>
<tr>
<td>4 * 2 = 8</td>
<td>5 * 2 = 10</td>
</tr>
<tr>
<td>4 * 3 = 12</td>
<td>5 * 3 = 15</td>
</tr>
<tr>
<td>4 * 4 = 16</td>
<td>5 * 4 = 20</td>
</tr>
<tr>
<td>4 * 5 = 20</td>
<td>5 * 5 = 25</td>
</tr>
<tr>
<td>4 * 6 = 24</td>
<td>5 * 6 = 30</td>
</tr>
<tr>
<td>4 * 7 = 28</td>
<td>5 * 7 = 35</td>
</tr>
<tr>
<td>4 * 8 = 32</td>
<td>5 * 8 = 40</td>
</tr>
<tr>
<td>4 * 9 = 36</td>
<td>5 * 9 = 45</td>
</tr>
<tr>
<td>4 * 10 = 40</td>
<td>5 * 10 = 50</td>
</tr>
</tbody>
</table>

•

Look at the row in table 1 that shows,

$4 \times 5 = 20$

And at the row in table 2 that shows,

$5 \times 4 = 20$

• $4 \times 5 = 20$

Thus, type in 20.

Scaffold:

We know,

$4 \times 5 = 20$

Now try the original problem again.

What is (-4) * 5?

Algebraic Expression:

✓ -20
Hints:

- We know,
 \[4 \times 5 = 20\]

We need to consider the signs of the factors as well.

- Remember the rule of multiplying signs which says,

 \[\begin{align*}
 \text{+} \times \text{+} &= \text{+} \\
 \text{+} \times \text{=} &= \text{=} \\
 \text{=} \times \text{=} &= \text{=} \\
 \text{=} \times \text{+} &= \text{=} \\
 \text{=} \times \text{=} &= \text{+} \\
 \text{=} \times \text{=} &= \text{=} \\
 \end{align*}\]

 Thus using this rule we get,

 \[(-4) \times 5 = -20\]

Type in -20

12) Problem #PRBFEP "PRBFEP - Multiplication of Integers"

What is (-10) * (-8)?

Algebraic Expression: 80

Scaffold:
Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

10×8

Algebraic Expression:

✔️ 80

Hints:

Below are the multiplication tables of 10 and 8.

You can use them to compute 10×8.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10 \times 0 = 0$</td>
<td>$8 \times 0 = 0$</td>
</tr>
<tr>
<td>$10 \times 1 = 10$</td>
<td>$8 \times 1 = 8$</td>
</tr>
<tr>
<td>$10 \times 2 = 20$</td>
<td>$8 \times 2 = 16$</td>
</tr>
<tr>
<td>$10 \times 3 = 30$</td>
<td>$8 \times 3 = 24$</td>
</tr>
<tr>
<td>$10 \times 4 = 40$</td>
<td>$8 \times 4 = 32$</td>
</tr>
<tr>
<td>$10 \times 5 = 50$</td>
<td>$8 \times 5 = 40$</td>
</tr>
<tr>
<td>$10 \times 6 = 60$</td>
<td>$8 \times 6 = 48$</td>
</tr>
<tr>
<td>$10 \times 7 = 70$</td>
<td>$8 \times 7 = 56$</td>
</tr>
<tr>
<td>$10 \times 8 = 80$</td>
<td>$8 \times 8 = 64$</td>
</tr>
<tr>
<td>$10 \times 9 = 90$</td>
<td>$8 \times 9 = 72$</td>
</tr>
<tr>
<td>$10 \times 10 = 100$</td>
<td>$8 \times 10 = 80$</td>
</tr>
</tbody>
</table>

Look at the row in table 1 that shows, $10 \times 8 = 80$

And at the row in table 2 that shows, $8 \times 10 = 80$

• $10 \times 8 = 80$

Thus, type in 80.

Scaffold:

We know,

$10 \times 8 = 80$

Now try the original problem again.

What is $(-10) \times (-8)$?

Algebraic Expression:

✔️ 80
Hints:
- We know,
 \[10 \times 8 = 80\]

We need to consider the signs of the factors as well.

- Our first factor, -10, is negative and our second factor, -8, is negative as well.

We are multiplying a negative number to a negative one.

We must consider the multiplication of the signs as well.

- Remember the rule of multiplying signs which says,

\[
\begin{align*}
+ \times + &= + \\
+ \times - &= - \\
- \times + &= - \\
- \times - &= +
\end{align*}
\]

- We have, the fourth case where,

\[
\begin{align*}
-10 \times -8 &= 80
\end{align*}
\]

Thus using this rule we get,

\[
(-10) \times (-8) = 80
\]

Type in 80.

13) Problem #PRABFDU "PRABFDU - Multiplication of Integers"
What is \((-9) \cdot 4\)?

Algebraic Expression:

✓ -36

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\(9 \cdot 4\)

Algebraic Expression:

✓ 36

Hints:

•

Below are the multiplication tables of 9 and 4.

You can use them to compute \(9 \cdot 4\).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(9 \cdot 0 = 0)</td>
<td>(4 \cdot 0 = 0)</td>
</tr>
<tr>
<td>(9 \cdot 1 = 9)</td>
<td>(4 \cdot 1 = 4)</td>
</tr>
<tr>
<td>(9 \cdot 2 = 18)</td>
<td>(4 \cdot 2 = 8)</td>
</tr>
<tr>
<td>(9 \cdot 3 = 27)</td>
<td>(4 \cdot 3 = 12)</td>
</tr>
<tr>
<td>(9 \cdot 4 = 36)</td>
<td>(4 \cdot 4 = 16)</td>
</tr>
<tr>
<td>(9 \cdot 5 = 45)</td>
<td>(4 \cdot 5 = 20)</td>
</tr>
<tr>
<td>(9 \cdot 6 = 54)</td>
<td>(4 \cdot 6 = 24)</td>
</tr>
<tr>
<td>(9 \cdot 7 = 63)</td>
<td>(4 \cdot 7 = 28)</td>
</tr>
<tr>
<td>(9 \cdot 8 = 72)</td>
<td>(4 \cdot 8 = 32)</td>
</tr>
<tr>
<td>(9 \cdot 9 = 81)</td>
<td>(4 \cdot 9 = 36)</td>
</tr>
<tr>
<td>(9 \cdot 10 = 90)</td>
<td>(4 \cdot 10 = 40)</td>
</tr>
</tbody>
</table>

• Look at the row in table 1 that shows, \(9 \cdot 4 = 36\)

And at the row in table 2 that shows, \(4 \cdot 9 = 36\)

• \(9 \cdot 4 = 36\)

Thus, type in 36.

Scaffold:

We know,

\(9 \cdot 4 = 36\)
Now try the original problem again.

What is \((-9) \times 4\)?

Algebraic Expression:

\[\checkmark -36\]

Hints:

- We know,

\[9 \times 4 = 36\]

We need to consider the signs of the factors as well.

Remember the rule of multiplying signs which says,

\[\begin{align*}
+ \times + &= + \\
+ \times - &= - \\
- \times + &= - \\
- \times - &= +
\end{align*}\]

We have, the third case where,

\[\begin{align*}
- \times + &= -
\end{align*}\]

Thus using this rule we get,

\[(-9) \times 4 = -36\]

Type in -36
14) Problem #PRABFDY "PRABFDY - Multiplication of Integers"

What is \((-1) \cdot (-2)\)?

Algebraic Expression:

\[\checkmark 2 \]

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[1 \cdot 2 \]

Algebraic Expression:

\[\checkmark 2 \]

Hints:

- Below are the multiplication tables of 1 and 2.

You can use them to compute \(1 \cdot 2\).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 * 0 = 0</td>
<td>2 * 0 = 0</td>
</tr>
<tr>
<td>1 * 1 = 1</td>
<td>2 * 1 = 2</td>
</tr>
<tr>
<td>1 * 2 = 2</td>
<td>2 * 2 = 4</td>
</tr>
<tr>
<td>1 * 3 = 3</td>
<td>2 * 3 = 6</td>
</tr>
<tr>
<td>1 * 4 = 4</td>
<td>2 * 4 = 8</td>
</tr>
<tr>
<td>1 * 5 = 5</td>
<td>2 * 5 = 10</td>
</tr>
<tr>
<td>1 * 6 = 6</td>
<td>2 * 6 = 12</td>
</tr>
<tr>
<td>1 * 7 = 7</td>
<td>2 * 7 = 14</td>
</tr>
<tr>
<td>1 * 8 = 8</td>
<td>2 * 8 = 16</td>
</tr>
<tr>
<td>1 * 9 = 9</td>
<td>2 * 9 = 18</td>
</tr>
<tr>
<td>1 * 10 = 10</td>
<td>2 * 10 = 20</td>
</tr>
</tbody>
</table>

- Look at the row in table 1 that shows, \(1 * 2 = 2\)

And at the row in table 2 that shows, \(2 * 1 = 2\)

- \(1 * 2 = 2\)

Thus, type in 2.

Scaffold:
We know,
1 * 2 = 2
Now try the original problem again.

What is (-1) * (-2)?

Algebraic Expression:

✅ 2

Hints:

- We know,

 1 * 2 = 2

We need to consider the signs of the factors as well.

- Our first factor, -1, is negative and our second factor, -2, is negative as well.
We are multiplying a negative number to a negative one.

We must consider the multiplication of the signs as well.

- Remember the rule of multiplying signs which says,

\[
\begin{align*}
+ \times + &= + \\
+ \times - &= - \\
- \times + &= - \\
- \times - &= +
\end{align*}
\]

We have, the fourth case where,

\[
- \times - = +
\]

Thus using this rule we get,

\((-1) \times (-2) = 2\)
Type in 2.

15) Problem #PRABFDW "PRABFDW - Multiplication of Integers"
What is (-6) * (-10)?

Algebraic Expression:

✓ 60

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

6 * 10

Algebraic Expression:

✓ 60

Hints:

Below are the multiplication tables of 6 and 10.

You can use them to compute 6*10.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 * 0 = 0</td>
<td>10 * 0 = 0</td>
</tr>
<tr>
<td>6 * 1 = 6</td>
<td>10 * 1 = 10</td>
</tr>
<tr>
<td>6 * 2 = 12</td>
<td>10 * 2 = 20</td>
</tr>
<tr>
<td>6 * 3 = 18</td>
<td>10 * 3 = 30</td>
</tr>
<tr>
<td>6 * 4 = 24</td>
<td>10 * 4 = 40</td>
</tr>
<tr>
<td>6 * 5 = 30</td>
<td>10 * 5 = 50</td>
</tr>
<tr>
<td>6 * 6 = 36</td>
<td>10 * 6 = 60</td>
</tr>
<tr>
<td>6 * 7 = 42</td>
<td>10 * 7 = 70</td>
</tr>
<tr>
<td>6 * 8 = 48</td>
<td>10 * 8 = 80</td>
</tr>
<tr>
<td>6 * 9 = 54</td>
<td>10 * 9 = 90</td>
</tr>
<tr>
<td>6 * 10 = 60</td>
<td>10 * 10 = 100</td>
</tr>
</tbody>
</table>

Look at the row in table 1 that shows,

6 * 10 = 60

And at the row in table 2 that shows,

10 * 6 = 60

• 6 * 10 = 60
Thus, type in 60.

Scaffold:
We know,
6 * 10 = 60
Now try the original problem again.

What is (-6) * (-10)?

Algebraic Expression:

✓ 60

Hints:
- We know,
 6 * 10 = 60

We need to consider the signs of the factors as well.

Our first factor, -6, is negative and our second factor, -10, is negative as well.

We are multiplying a negative number to a negative one.

We must consider the multiplication of the signs as well.

Remember the rule of multiplying signs which says,

- We have, the fourth case where,
 - - = +
Thus using this rule we get,

\((-6) \times (-10)\)

\[= 60\]

Type in 60.

16) Problem #PRABFD6 "PRABFD6 - Multiplication of Integers"
What is \((-9) \times (-9)\)?

Algebraic Expression:

\(\checkmark\) 81

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\(9 \times 9\)

Algebraic Expression:

\(\checkmark\) 81

Hints:

Below are the multiplication tables of 9 and 9.

You can use them to compute 9*9.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 * 0 = 0</td>
<td>9 * 0 = 0</td>
</tr>
<tr>
<td>9 * 1 = 9</td>
<td>9 * 1 = 9</td>
</tr>
<tr>
<td>9 * 2 = 18</td>
<td>9 * 2 = 18</td>
</tr>
<tr>
<td>9 * 3 = 27</td>
<td>9 * 3 = 27</td>
</tr>
<tr>
<td>9 * 4 = 36</td>
<td>9 * 4 = 36</td>
</tr>
<tr>
<td>9 * 5 = 45</td>
<td>9 * 5 = 45</td>
</tr>
<tr>
<td>9 * 6 = 54</td>
<td>9 * 6 = 54</td>
</tr>
<tr>
<td>9 * 7 = 63</td>
<td>9 * 7 = 63</td>
</tr>
<tr>
<td>9 * 8 = 72</td>
<td>9 * 8 = 72</td>
</tr>
<tr>
<td>9 * 9 = 81</td>
<td>9 * 9 = 81</td>
</tr>
<tr>
<td>9 * 10 = 90</td>
<td>9 * 10 = 90</td>
</tr>
</tbody>
</table>

...
Look at the row in table 1 that shows,
$9 \times 9 = 81$

And at the row in table 2 that shows,
$9 \times 9 = 81$
- $9 \times 9 = 81$

Thus, type in 81.

Scaffold:
We know,
$9 \times 9 = 81$
Now try the original problem again.

What is $(-9) \times (-9)$?

Algebraic Expression:

81

Hints:
- We know,
$9 \times 9 = 81$

We need to consider the signs of the factors as well.

- Our first factor, -9, is negative and our second factor, -9, is negative as well.
We are multiplying a negative number to a negative one.

We must consider the multiplication of the signs as well.

- Remember the rule of multiplying signs which says,
We have, the fourth case where,

\[\text{ } \times \text{ } = \text{ } + \text{ } \]

Thus using this rule we get,

\[(-9) \times (-9) \]

\[= 81 \]

Type in 81.

17) Problem #PRABFCV "PRABFCV - Multiplication of Integers"
What is \((-2) \times 5\)?

Algebraic Expression:

✓ -10

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[2 \times 5 \]

Algebraic Expression:

✓ 10

Hints:

https://www.assistments.org/build/print/sequence/803904?mode=debug&op_scaf=false&op_hint=false&op_answer_op=false&op_answer=false&op_name=false&op_buggies=false&op_sections=false&short_answers=false

Below are the multiplication tables of 2 and 5.

You can use them to compute \(2 \times 5\).

<table>
<thead>
<tr>
<th>Table 1</th>
<th></th>
<th>Table 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2 * 0</td>
<td>0</td>
<td>5 * 0</td>
<td>0</td>
</tr>
<tr>
<td>2 * 1</td>
<td>2</td>
<td>5 * 1</td>
<td>5</td>
</tr>
<tr>
<td>2 * 2</td>
<td>4</td>
<td>5 * 2</td>
<td>10</td>
</tr>
<tr>
<td>2 * 3</td>
<td>6</td>
<td>5 * 3</td>
<td>15</td>
</tr>
<tr>
<td>2 * 4</td>
<td>8</td>
<td>5 * 4</td>
<td>20</td>
</tr>
<tr>
<td>2 * 5</td>
<td>10</td>
<td>5 * 5</td>
<td>25</td>
</tr>
<tr>
<td>2 * 6</td>
<td>12</td>
<td>5 * 6</td>
<td>30</td>
</tr>
<tr>
<td>2 * 7</td>
<td>14</td>
<td>5 * 7</td>
<td>35</td>
</tr>
</tbody>
</table>
Look at the row in table 1 that shows,
\[2 \times 5 = 10 \]

And at the row in table 2 that shows,
\[5 \times 2 = 10 \]
- \[2 \times 5 = 10 \]

Thus, type in 10.

Scaffold:
- We know,
\[2 \times 5 = 10 \]
Now try the original problem again.

What is \((-2) \times 5\)?

Algebraic Expression:
-10

Hints:
- We know,
\[2 \times 5 = 10 \]

We need to consider the signs of the factors as well.

Remember the rule of multiplying signs which says,
We have, the third case where,

\[\times + = \]

Thus using this rule we get,
\[
(-2) \times 5
= -10
\]

Type in -10

18) Problem #PRABFC2 "PRABFC2 - Multiplication of Integers"
What is \(7 \times (-1)\)?

Algebraic Expression:

\[\checkmark -7 \]

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[7 \times 1 \]

Algebraic Expression:

\[\checkmark 7 \]

Hints:

Below are the multiplication tables of 7 and 1.

You can use them to compute \(7 \times 1\).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 \times 0 = 0</td>
<td>1 \times 0 = 0</td>
</tr>
<tr>
<td>7 \times 1 = 7</td>
<td>1 \times 1 = 1</td>
</tr>
<tr>
<td>7 \times 2 = 14</td>
<td>1 \times 2 = 2</td>
</tr>
<tr>
<td>7 \times 3 = 21</td>
<td>1 \times 3 = 3</td>
</tr>
<tr>
<td>7 \times 4 = 28</td>
<td>1 \times 4 = 4</td>
</tr>
<tr>
<td>7 \times 5 = 35</td>
<td>1 \times 5 = 5</td>
</tr>
</tbody>
</table>
Look at the row in table 1 that shows,
7 * 1 = 7

And at the row in table 2 that shows,
1 * 7 = 7

Thus, type in 7.

Scaffold:

We know,
7 * 1 = 7
Now try the original problem again.

What is 7 * (-1)?

Algebraic Expression:

✓ -7

Hints:

- We know,
 7 * 1 = 7

We need to consider the signs of the factors as well.

Remember the rule of multiplying signs which says,
We have, the second case where,

\[\boxed{\times} \ \boxed{=} \ \boxed{=} \]

Thus using this rule we get,
\[7 \times (-1) \]
\[= -7 \]

Type in -7

19) Problem #PRABFCZ "PRABFCZ - Multiplication of Integers"

What is \(8 \times (-8) \)?

Algebraic Expression:

\(-64\)

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\(8 \times 8 \)

Algebraic Expression:

\(64\)

Hints:

Below are the multiplication tables of 8 and 8.

You can use them to compute \(8 \times 8 \).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(8 \times 0 = 0)</td>
<td>(8 \times 0 = 0)</td>
</tr>
<tr>
<td>(8 \times 1 = 8)</td>
<td>(8 \times 1 = 8)</td>
</tr>
<tr>
<td>(8 \times 2 = 16)</td>
<td>(8 \times 2 = 16)</td>
</tr>
<tr>
<td>(8 \times 3 = 24)</td>
<td>(8 \times 3 = 24)</td>
</tr>
<tr>
<td>(8 \times 4 = 32)</td>
<td>(8 \times 4 = 32)</td>
</tr>
<tr>
<td>(8 \times 5 = 40)</td>
<td>(8 \times 5 = 40)</td>
</tr>
</tbody>
</table>
Look at the row in table 1 that shows,
8 * 8 = 64

And at the row in table 2 that shows,
8 * 8 = 64

Thus, type in 64.

Scaffold:

We know,
8 * 8 = 64
Now try the original problem again.

What is 8 * (-8)?

Algebraic Expression:

-64

Hints:

We know,
8 * 8 = 64

We need to consider the signs of the factors as well.

Remember the rule of multiplying signs, which says,
We have, the second case where,

\[\begin{array}{c}
 + \\
 \times \\
 =
 \end{array} \]

Thus using this rule we get,

\[8 \times (-8) = -64 \]

Type in \(-64\)

20) Problem #PRABFCX "PRABFCX - Multiplication of Integers"
What is \(2 \times (-6)\)?

Algebraic Expression:

-12

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[2 \times 6 \]

Algebraic Expression:

12

Hints:

Below are the multiplication tables of 2 and 6.

You can use them to compute \(2 \times 6\).
<table>
<thead>
<tr>
<th>2 * 6</th>
<th>12</th>
<th>6 * 6</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 * 7</td>
<td>14</td>
<td>6 * 7</td>
<td>42</td>
</tr>
<tr>
<td>2 * 8</td>
<td>16</td>
<td>6 * 8</td>
<td>48</td>
</tr>
<tr>
<td>2 * 9</td>
<td>18</td>
<td>6 * 9</td>
<td>54</td>
</tr>
<tr>
<td>2 * 10</td>
<td>20</td>
<td>6 * 10</td>
<td>60</td>
</tr>
</tbody>
</table>

Look at the row in table 1 that shows,
2 * 6 = 12

And at the row in table 2 that shows,
6 * 2 = 12
• 2 * 6 = 12

Thus, type in 12.

Scaffold:
- We know,
 2 * 6 = 12
- Now try the original problem again.

What is 2 * (-6)?

Algebraic Expression:
-12

Hints:
- We know,
 2 * 6 = 12

- We need to consider the signs of the factors as well.
-

Remember the rule of multiplying signs, which says,

\[
\begin{align*}
+ \times + &= + \\
+ \times - &= - \\
- \times + &= - \\
- \times - &= +
\end{align*}
\]
We have, the second case where,

\[\text{\textbf{x}} = \text{\textbf{x}} \]

Thus using this rule we get,

\[2 \times (-6) = -12 \]

Type in \(-12\)

21) **Problem #PRABFEA "PRABFEA - Multiplication of Integers"**

What is \((-9) \times (-6)\)?

Algebraic Expression:

\[54 \]

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[9 \times 6 \]

Algebraic Expression:

\[54 \]

Hints:

- Below are the multiplication tables of \(9\) and \(6\).

You can use them to compute \(9 \times 6\).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(9 \times 0 = 0)</td>
<td>(6 \times 0 = 0)</td>
</tr>
<tr>
<td>(9 \times 1 = 9)</td>
<td>(6 \times 1 = 6)</td>
</tr>
<tr>
<td>(9 \times 2 = 18)</td>
<td>(6 \times 2 = 12)</td>
</tr>
<tr>
<td>(9 \times 3 = 27)</td>
<td>(6 \times 3 = 18)</td>
</tr>
<tr>
<td>(9 \times 4 = 36)</td>
<td>(6 \times 4 = 24)</td>
</tr>
<tr>
<td>(9 \times 5 = 45)</td>
<td>(6 \times 5 = 30)</td>
</tr>
<tr>
<td>9 * 6</td>
<td>54</td>
</tr>
<tr>
<td>-------</td>
<td>----</td>
</tr>
<tr>
<td>9 * 7</td>
<td>63</td>
</tr>
<tr>
<td>9 * 8</td>
<td>72</td>
</tr>
<tr>
<td>9 * 9</td>
<td>81</td>
</tr>
<tr>
<td>9 * 10</td>
<td>90</td>
</tr>
</tbody>
</table>

- Look at the row in table 1 that shows, \(9 \times 6 = 54 \)

And at the row in table 2 that shows, \(6 \times 9 = 54 \)
- \(9 \times 6 = 54 \)

Thus, type in 54.

Scaffold:
- We know, \(9 \times 6 = 54 \)
- Now try the original problem again.

What is \((-9) \times (-6)\)?

Algebraic Expression:

\(\checkmark \) 54

Hints:
- We know, \(9 \times 6 = 54 \)

We need to consider the signs of the factors as well.

- Our first factor, -9, is negative and our second factor, -6, is negative as well.

We are multiplying a negative number to a negative one.

We must consider the multiplication of the signs as well.
Remember the rule of multiplying signs which says,

\[+ \times + = + \]

\[+ \times - = - \]

\[- \times + = - \]

\[- \times - = + \]

- We have, the fourth case where,

\[- \times - = + \]

Thus using this rule we get,

\[(-9) \times (-6) \]

\[= 54 \]

Type in 54.

22) Problem #PRABFEQ "PRABFEQ - Multiplication of Integers"

What is \((-3) \times (-3)\)?

Algebraic Expression:

\[\checkmark 9 \]

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[3 \times 3 \]

Algebraic Expression:

\[\checkmark 9 \]

Hints:
Below are the multiplication tables of 3 and 3.

You can use them to compute 3×3.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3 \times 0 = 0$</td>
<td>$3 \times 0 = 0$</td>
</tr>
<tr>
<td>$3 \times 1 = 3$</td>
<td>$3 \times 1 = 3$</td>
</tr>
<tr>
<td>$3 \times 2 = 6$</td>
<td>$3 \times 2 = 6$</td>
</tr>
<tr>
<td>$3 \times 3 = 9$</td>
<td>$3 \times 3 = 9$</td>
</tr>
<tr>
<td>$3 \times 4 = 12$</td>
<td>$3 \times 4 = 12$</td>
</tr>
<tr>
<td>$3 \times 5 = 15$</td>
<td>$3 \times 5 = 15$</td>
</tr>
<tr>
<td>$3 \times 6 = 18$</td>
<td>$3 \times 6 = 18$</td>
</tr>
<tr>
<td>$3 \times 7 = 21$</td>
<td>$3 \times 7 = 21$</td>
</tr>
<tr>
<td>$3 \times 8 = 24$</td>
<td>$3 \times 8 = 24$</td>
</tr>
<tr>
<td>$3 \times 9 = 27$</td>
<td>$3 \times 9 = 27$</td>
</tr>
<tr>
<td>$3 \times 10 = 30$</td>
<td>$3 \times 10 = 30$</td>
</tr>
</tbody>
</table>

Look at the row in table 1 that shows, $3 \times 3 = 9$

And at the row in table 2 that shows, $3 \times 3 = 9$

Thus, type in 9.

Scaffold:
We know, $3 \times 3 = 9$

Now try the original problem again.

What is $(-3) \times (-3)$?

Algebraic Expression:

9

Hints:
- We know, $3 \times 3 = 9$

We need to consider the signs of the factors as well.

- Our first factor, -3, is negative and our second factor, -3, is negative as well.

We are multiplying a negative number to a negative one.
We must consider the multiplication of the signs as well.

- Remember the rule of multiplying signs which says,

\[
\begin{align*}
+ \times + &= + \\
+ \times - &= - \\
- \times + &= - \\
- \times - &= +
\end{align*}
\]

- We have, the fourth case where,

\[
\begin{align*}
-3 \times -3 &= 9
\end{align*}
\]

Thus using this rule we get,

\[
(-3) \times (-3)
\]

\[
= 9
\]

Type in 9.

23) Problem #PRABFDK “PRABFDK - Multiplication of Integers”
What is (-8) * 6?
Algebraic Expression:

\[-48\]

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,
8 * 6

Algebraic Expression:

✓ 48

Hints:

- Below are the multiplication tables of 8 and 6.

You can use them to compute 8*6.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 * 0 = 0</td>
<td>6 * 0 = 0</td>
</tr>
<tr>
<td>8 * 1 = 8</td>
<td>6 * 1 = 6</td>
</tr>
<tr>
<td>8 * 2 = 16</td>
<td>6 * 2 = 12</td>
</tr>
<tr>
<td>8 * 3 = 24</td>
<td>6 * 3 = 18</td>
</tr>
<tr>
<td>8 * 4 = 32</td>
<td>6 * 4 = 24</td>
</tr>
<tr>
<td>8 * 5 = 40</td>
<td>6 * 5 = 30</td>
</tr>
<tr>
<td>8 * 6 = 48</td>
<td>6 * 6 = 36</td>
</tr>
<tr>
<td>8 * 7 = 56</td>
<td>6 * 7 = 42</td>
</tr>
<tr>
<td>8 * 8 = 64</td>
<td>6 * 8 = 48</td>
</tr>
<tr>
<td>8 * 9 = 72</td>
<td>6 * 9 = 54</td>
</tr>
<tr>
<td>8 * 10 = 80</td>
<td>6 * 10 = 60</td>
</tr>
</tbody>
</table>

- Look at the row in table 1 that shows, 8 * 6 = 48

And at the row in table 2 that shows, 6 * 8 = 48

Thus, type in 48.

Scaffold:

We know,

8 * 6 = 48

Now try the original problem again.

What is (-8) * 6?

Algebraic Expression:

✓ -48

Hints:

- We know,

8 * 6 = 48

We need to consider the signs of the factors as well.
Remember the rule of multiplying signs which says,

\[
\begin{align*}
(+) \times (+) &= (+) \\
(+) \times (-) &= (-) \\
(-) \times (+) &= (-) \\
(-) \times (-) &= (+)
\end{align*}
\]

We have, the third case where,

\[
(-) \times (+) = (-)
\]

Thus using this rule we get,

\[
(-8) \times 6 = -48
\]

Type in -48

24) Problem #PRABFDA "PRABFDA - Multiplication of Integers"
What is (-7) * 5?

Algebraic Expression:

-35

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.
Go ahead and compute,

\[7 \times 5 \]

Algebraic Expression:

\[35 \]

Hints:

Below are the multiplication tables of 7 and 5.

You can use them to compute \(7 \times 5\).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 * 0 = 0</td>
<td>5 * 0 = 0</td>
</tr>
<tr>
<td>7 * 1 = 7</td>
<td>5 * 1 = 5</td>
</tr>
<tr>
<td>7 * 2 = 14</td>
<td>5 * 2 = 10</td>
</tr>
<tr>
<td>7 * 3 = 21</td>
<td>5 * 3 = 15</td>
</tr>
<tr>
<td>7 * 4 = 28</td>
<td>5 * 4 = 20</td>
</tr>
<tr>
<td>7 * 5 = 35</td>
<td>5 * 5 = 25</td>
</tr>
<tr>
<td>7 * 6 = 42</td>
<td>5 * 6 = 30</td>
</tr>
<tr>
<td>7 * 7 = 49</td>
<td>5 * 7 = 35</td>
</tr>
<tr>
<td>7 * 8 = 56</td>
<td>5 * 8 = 40</td>
</tr>
<tr>
<td>7 * 9 = 63</td>
<td>5 * 9 = 45</td>
</tr>
<tr>
<td>7 * 10 = 70</td>
<td>5 * 10 = 50</td>
</tr>
</tbody>
</table>

Look at the row in table 1 that shows,

\[7 \times 5 = 35 \]

And at the row in table 2 that shows,

\[5 \times 7 = 35 \]

Thus, type in 35.

Scaffold:

We know,

\[7 \times 5 = 35 \]

Now try the original problem again.

What is \((-7) \times 5\)?

Algebraic Expression:

\[-35 \]

Hints:

- We know,

\[7 \times 5 = 35 \]
We need to consider the signs of the factors as well.

Remember the rule of multiplying signs which says,

\[+ \times + = + \]
\[+ \times - = - \]
\[- \times + = - \]
\[- \times - = + \]

We have, the third case where,

\[-\times + = - \]

Thus using this rule we get,

\[(-7) \times 5 = -35 \]

Type in \(-35\)

25) Problem #PRABFDQ "PRABFDQ - Multiplication of Integers"

What is \((-3) \times 6\)?

Algebraic Expression:

\[-18 \]

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.
Go ahead and compute,

\[3 \times 6 \]

Algebraic Expression:

\[\checkmark \quad 18 \]

Hints:

- Below are the multiplication tables of 3 and 6.

You can use them to compute \(3 \times 6 \).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3 \times 0 = 0)</td>
<td>(6 \times 0 = 0)</td>
</tr>
<tr>
<td>(3 \times 1 = 3)</td>
<td>(6 \times 1 = 6)</td>
</tr>
<tr>
<td>(3 \times 2 = 6)</td>
<td>(6 \times 2 = 12)</td>
</tr>
<tr>
<td>(3 \times 3 = 9)</td>
<td>(6 \times 3 = 18)</td>
</tr>
<tr>
<td>(3 \times 4 = 12)</td>
<td>(6 \times 4 = 24)</td>
</tr>
<tr>
<td>(3 \times 5 = 15)</td>
<td>(6 \times 5 = 30)</td>
</tr>
<tr>
<td>(3 \times 6 = 18)</td>
<td>(6 \times 6 = 36)</td>
</tr>
<tr>
<td>(3 \times 7 = 21)</td>
<td>(6 \times 7 = 42)</td>
</tr>
<tr>
<td>(3 \times 8 = 24)</td>
<td>(6 \times 8 = 48)</td>
</tr>
<tr>
<td>(3 \times 9 = 27)</td>
<td>(6 \times 9 = 54)</td>
</tr>
<tr>
<td>(3 \times 10 = 30)</td>
<td>(6 \times 10 = 60)</td>
</tr>
</tbody>
</table>

- Look at the row in table 1 that shows, \(3 \times 6 = 18 \)
- And at the row in table 2 that shows, \(6 \times 3 = 18 \)
- \(3 \times 6 = 18 \)

Thus, type in 18.

Scaffold:

We know,

\[3 \times 6 = 18 \]

Now try the original problem again.

What is \((-3) \times 6\)?

Algebraic Expression:

\[\checkmark \quad -18 \]
Hints:
- We know,
 \[3 \times 6 = 18 \]

We need to consider the signs of the factors as well.

Remember the rule of multiplying signs which says,

\[
\begin{align*}
+ \times + &= + \\
+ \times - &= - \\
- \times + &= - \\
- \times - &= +
\end{align*}
\]

Thus using this rule we get,

\[
(-3) \times 6 = -18
\]

Type in -18

26) Problem #PRABFD9 "PRABFD9 - Multiplication of Integers"

What is \((-2) \times (-2)\)?

Algebraic Expression:

\[4\]

Scaffold:
Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[2 \times 2 \]

Algebraic Expression:

\[4 \]

Hints:

-

Below are the multiplication tables of 2 and 2.

You can use them to compute \(2\times2\).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2 \times 0 = 0)</td>
<td>(2 \times 0 = 0)</td>
</tr>
<tr>
<td>(2 \times 1 = 2)</td>
<td>(2 \times 1 = 2)</td>
</tr>
<tr>
<td>(2 \times 2 = 4)</td>
<td>(2 \times 2 = 4)</td>
</tr>
<tr>
<td>(2 \times 3 = 6)</td>
<td>(2 \times 3 = 6)</td>
</tr>
<tr>
<td>(2 \times 4 = 8)</td>
<td>(2 \times 4 = 8)</td>
</tr>
<tr>
<td>(2 \times 5 = 10)</td>
<td>(2 \times 5 = 10)</td>
</tr>
<tr>
<td>(2 \times 6 = 12)</td>
<td>(2 \times 6 = 12)</td>
</tr>
<tr>
<td>(2 \times 7 = 14)</td>
<td>(2 \times 7 = 14)</td>
</tr>
<tr>
<td>(2 \times 8 = 16)</td>
<td>(2 \times 8 = 16)</td>
</tr>
<tr>
<td>(2 \times 9 = 18)</td>
<td>(2 \times 9 = 18)</td>
</tr>
<tr>
<td>(2 \times 10 = 20)</td>
<td>(2 \times 10 = 20)</td>
</tr>
</tbody>
</table>

-

Look at the row in table 1 that shows,

\[2 \times 2 = 4 \]

And at the row in table 2 that shows,

\[2 \times 2 = 4 \]

- \[2 \times 2 = 4 \]

Thus, type in 4.

Scaffold:

We know,

\[2 \times 2 = 4 \]

Now try the original problem again.

What is \((-2) \times (-2)\)?

Algebraic Expression:

\[4 \]
Hints:

- We know,
 \[2 \times 2 = 4 \]

We need to consider the signs of the factors as well.

- Our first factor, \(-2\), is negative and our second factor, \(-2\), is negative as well.

We are multiplying a negative number to a negative one.

We must consider the multiplication of the signs as well.

Remember the rule of multiplying signs which says,

\[+ \times + = + \]
\[+ \times - = - \]
\[- \times + = - \]
\[- \times - = + \]

We have, the fourth case where,

\[-2 \times -2 \]

Thus using this rule we get,

\[(-2) \times (-2) \]
\[= 4 \]

Type in 4.

27) Problem #PRABFC6 "PRABFC6 - Multiplication of Integers"
What is $1 \cdot (-3)$?

Algebraic Expression:

\[\checkmark -3 \]

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[1 \cdot 3 \]

Algebraic Expression:

\[\checkmark 3 \]

Hints:

- Below are the multiplication tables of 1 and 3.
 You can use them to compute $1 \cdot 3$.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1 \cdot 0 = 0$</td>
<td>$3 \cdot 0 = 0$</td>
</tr>
<tr>
<td>$1 \cdot 1 = 1$</td>
<td>$3 \cdot 1 = 3$</td>
</tr>
<tr>
<td>$1 \cdot 2 = 2$</td>
<td>$3 \cdot 2 = 6$</td>
</tr>
<tr>
<td>$1 \cdot 3 = 3$</td>
<td>$3 \cdot 3 = 9$</td>
</tr>
<tr>
<td>$1 \cdot 4 = 4$</td>
<td>$3 \cdot 4 = 12$</td>
</tr>
<tr>
<td>$1 \cdot 5 = 5$</td>
<td>$3 \cdot 5 = 15$</td>
</tr>
<tr>
<td>$1 \cdot 6 = 6$</td>
<td>$3 \cdot 6 = 18$</td>
</tr>
<tr>
<td>$1 \cdot 7 = 7$</td>
<td>$3 \cdot 7 = 21$</td>
</tr>
<tr>
<td>$1 \cdot 8 = 8$</td>
<td>$3 \cdot 8 = 24$</td>
</tr>
<tr>
<td>$1 \cdot 9 = 9$</td>
<td>$3 \cdot 9 = 27$</td>
</tr>
<tr>
<td>$1 \cdot 10 = 10$</td>
<td>$3 \cdot 10 = 30$</td>
</tr>
</tbody>
</table>

- Look at the row in table 1 that shows,
 $1 \cdot 3 = 3$

And at the row in table 2 that shows,

$3 \cdot 1 = 3$

- $1 \cdot 3 = 3$

Thus, type in 3.

Scaffold:

We know,

$1 \cdot 3 = 3$
Now try the original problem again.

What is 1 * (-3)?

Algebraic Expression:

✔️ -3

Hints:

- We know,
 1 * 3 = 3

We need to consider the signs of the factors as well.

Remember the rule of multiplying signs which says,

\[
\begin{align*}
+ \times + &= + \\
+ \times - &= - \\
- \times + &= - \\
- \times - &= +
\end{align*}
\]

We have, the second case where,

\[
\begin{align*}
+ \times - &= -
\end{align*}
\]

Thus using this rule we get,

\[
\begin{align*}
1 \times (-3) &= -3
\end{align*}
\]

Type in -3

28) Problem #PRABFDN "PRABFDN - Multiplication of Integers"
What is $(-3) \times 5$?

Algebraic Expression:

-15

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

3×5

Algebraic Expression:

15

Hints:

Below are the multiplication tables of 3 and 5.

You can use them to compute 3×5.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 * 0 = 0</td>
<td>5 * 0 = 0</td>
</tr>
<tr>
<td>3 * 1 = 3</td>
<td>5 * 1 = 5</td>
</tr>
<tr>
<td>3 * 2 = 6</td>
<td>5 * 2 = 10</td>
</tr>
<tr>
<td>3 * 3 = 9</td>
<td>5 * 3 = 15</td>
</tr>
<tr>
<td>3 * 4 = 12</td>
<td>5 * 4 = 20</td>
</tr>
<tr>
<td>3 * 5 = 15</td>
<td>5 * 5 = 25</td>
</tr>
<tr>
<td>3 * 6 = 18</td>
<td>5 * 6 = 30</td>
</tr>
<tr>
<td>3 * 7 = 21</td>
<td>5 * 7 = 35</td>
</tr>
<tr>
<td>3 * 8 = 24</td>
<td>5 * 8 = 40</td>
</tr>
<tr>
<td>3 * 9 = 27</td>
<td>5 * 9 = 45</td>
</tr>
<tr>
<td>3 * 10 = 30</td>
<td>5 * 10 = 50</td>
</tr>
</tbody>
</table>

Look at the row in table 1 that shows,

$3 \times 5 = 15$

And at the row in table 2 that shows,

$5 \times 3 = 15$

Thus, type in 15.

Scaffold:

We know,
\[3 \times 5 = 15 \]
Now try the original problem again.

What is \((-3) \times 5\)?

Algebraic Expression:

\[\checkmark -15 \]

Hints:

- We know,

 \[3 \times 5 = 15 \]

We need to consider the signs of the factors as well.

- Remember the rule of multiplying signs which says,

\[\begin{align*}
+ \times + &= + \\
+ \times - &= - \\
- \times + &= - \\
- \times - &= +
\end{align*} \]

We have, the third case where,

\[- \times + = - \]

Thus using this rule we get,

\[(-3) \times 5 \]

\[= -15 \]
Type in \(-15\)

29) Problem #PRABFDT "PRABFDT - Multiplication of Integers"

What is \((-7) \times 3\)?

Algebraic Expression:

\(\checkmark\) -21

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\(7 \times 3\)

Algebraic Expression:

\(\checkmark\) 21

Hints:

- Below are the multiplication tables of 7 and 3.

You can use them to compute \(7\times3\).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 \times 0 = 0</td>
<td>3 \times 0 = 0</td>
</tr>
<tr>
<td>7 \times 1 = 7</td>
<td>3 \times 1 = 3</td>
</tr>
<tr>
<td>7 \times 2 = 14</td>
<td>3 \times 2 = 6</td>
</tr>
<tr>
<td>7 \times 3 = 21</td>
<td>3 \times 3 = 9</td>
</tr>
<tr>
<td>7 \times 4 = 28</td>
<td>3 \times 4 = 12</td>
</tr>
<tr>
<td>7 \times 5 = 35</td>
<td>3 \times 5 = 15</td>
</tr>
<tr>
<td>7 \times 6 = 42</td>
<td>3 \times 6 = 18</td>
</tr>
<tr>
<td>7 \times 7 = 49</td>
<td>3 \times 7 = 21</td>
</tr>
<tr>
<td>7 \times 8 = 56</td>
<td>3 \times 8 = 24</td>
</tr>
<tr>
<td>7 \times 9 = 63</td>
<td>3 \times 9 = 27</td>
</tr>
<tr>
<td>7 \times 10 = 70</td>
<td>3 \times 10 = 30</td>
</tr>
</tbody>
</table>

- Look at the row in table 1 that shows, \(7 \times 3 = 21\)

And at the row in table 2 that shows, \(3 \times 7 = 21\)

- \(7 \times 3 = 21\)
Thus, type in 21.

Scaffold:

We know,
$7 \times 3 = 21$
Now try the original problem again.

What is $(-7) \times 3$?

Algebraic Expression:

✓ -21

Hints:

- We know,
$7 \times 3 = 21$

We need to consider the signs of the factors as well.

- Remember the rule of multiplying signs which says,

\[
\begin{align*}
\text{+} \times \text{+} &= \text{+} \\
\text{+} \times \text{-} &= \text{-} \\
\text{-} \times \text{+} &= \text{-} \\
\text{-} \times \text{-} &= \text{+}
\end{align*}
\]

We have, the third case where,

\[
\begin{align*}
\text{-} \times \text{+} &= \text{-}
\end{align*}
\]

Thus using this rule we get,

\[
\begin{align*}
(-7) \times 3 &= -21
\end{align*}
\]
Type in -21

30) Problem #PRABFC8 "PRABFC8 - Multiplication of Integers"
What is 6 * (-8)?

Algebraic Expression:
✓ -48

Scaffold:
Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

6 * 8

Algebraic Expression:
✓ 48

Hints:

Below are the multiplication tables of 6 and 8.

You can use them to compute 6*8.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 * 0 = 0</td>
<td>8 * 0 = 0</td>
</tr>
<tr>
<td>6 * 1 = 6</td>
<td>8 * 1 = 8</td>
</tr>
<tr>
<td>6 * 2 = 12</td>
<td>8 * 2 = 16</td>
</tr>
<tr>
<td>6 * 3 = 18</td>
<td>8 * 3 = 24</td>
</tr>
<tr>
<td>6 * 4 = 24</td>
<td>8 * 4 = 32</td>
</tr>
<tr>
<td>6 * 5 = 30</td>
<td>8 * 5 = 40</td>
</tr>
<tr>
<td>6 * 6 = 36</td>
<td>8 * 6 = 48</td>
</tr>
<tr>
<td>6 * 7 = 42</td>
<td>8 * 7 = 56</td>
</tr>
<tr>
<td>6 * 8 = 48</td>
<td>8 * 8 = 64</td>
</tr>
<tr>
<td>6 * 9 = 54</td>
<td>8 * 9 = 72</td>
</tr>
<tr>
<td>6 * 10 = 60</td>
<td>8 * 10 = 80</td>
</tr>
</tbody>
</table>

Look at the row in table 1 that shows,
6 * 8 = 48

And at the row in table 2 that shows,
8 * 6 = 48
• \[6 \times 8 = 48\]

Thus, type in 48.

Scaffold:

We know,
\[6 \times 8 = 48\]
Now try the original problem again.

What is \(6 \times (-8)\)?

Algebraic Expression:

\[\checkmark -48\]

Hints:

• We know,
\[6 \times 8 = 48\]

We need to consider the signs of the factors as well.

•

Remember the rule of multiplying signs which says,

\[\begin{align*}
+ \times + &= + \\
+ \times - &= - \\
- \times + &= - \\
- \times - &= +
\end{align*}\]

We have, the second case where,

\[+ \times - = -\]

Thus using this rule we get,

\[6 \times (-8)\]

\[= -48\]
31) Problem #PRABFCC "PRABFCC - Multiplication of Integers"

What is 1 * (-5)?

Algebraic Expression:

-5

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

1 * 5

Algebraic Expression:

5

Hints:

Below are the multiplication tables of 1 and 5.

You can use them to compute 1*5.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 * 0 = 0</td>
<td>5 * 0 = 0</td>
</tr>
<tr>
<td>1 * 1 = 1</td>
<td>5 * 1 = 5</td>
</tr>
<tr>
<td>1 * 2 = 2</td>
<td>5 * 2 = 10</td>
</tr>
<tr>
<td>1 * 3 = 3</td>
<td>5 * 3 = 15</td>
</tr>
<tr>
<td>1 * 4 = 4</td>
<td>5 * 4 = 20</td>
</tr>
<tr>
<td>1 * 5 = 5</td>
<td>5 * 5 = 25</td>
</tr>
<tr>
<td>1 * 6 = 6</td>
<td>5 * 6 = 30</td>
</tr>
<tr>
<td>1 * 7 = 7</td>
<td>5 * 7 = 35</td>
</tr>
<tr>
<td>1 * 8 = 8</td>
<td>5 * 8 = 40</td>
</tr>
<tr>
<td>1 * 9 = 9</td>
<td>5 * 9 = 45</td>
</tr>
<tr>
<td>1 * 10 = 10</td>
<td>5 * 10 = 50</td>
</tr>
</tbody>
</table>

Look at the row in table 1 that shows,

1 * 5 = 5

And at the row in table 2 that shows,

5 * 1 = 5
Thus, type in 5.

Scaffold:
We know,
1 * 5 = 5
Now try the original problem again.

What is 1 * -(-5)?

Algebraic Expression:

✓ -5

Hints:
- We know,
1 * 5 = 5

We need to consider the signs of the factors as well.

Remember the rule of multiplying signs which says,

\[
\begin{align*}
+ \times + &= + \\
+ \times - &= - \\
- \times + &= - \\
- \times - &= +
\end{align*}
\]

We have, the second case where,

\[
\begin{align*}
+ \times - &= -
\end{align*}
\]

Thus using this rule we get,

\[
1 \times (-5) = -5
\]
Type in -5

32) Problem #PRABFEE "PRABFEE - Multiplication of Integers"
What is (-4) * (-3)?

Algebraic Expression:

-12

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

4 * 3

Algebraic Expression:

12

Hints:

- Below are the multiplication tables of 4 and 3.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 * 0 = 0</td>
<td>3 * 0 = 0</td>
</tr>
<tr>
<td>4 * 1 = 4</td>
<td>3 * 1 = 3</td>
</tr>
<tr>
<td>4 * 2 = 8</td>
<td>3 * 2 = 6</td>
</tr>
<tr>
<td>4 * 3 = 12</td>
<td>3 * 3 = 9</td>
</tr>
<tr>
<td>4 * 4 = 16</td>
<td>3 * 4 = 12</td>
</tr>
<tr>
<td>4 * 5 = 20</td>
<td>3 * 5 = 15</td>
</tr>
<tr>
<td>4 * 6 = 24</td>
<td>3 * 6 = 18</td>
</tr>
<tr>
<td>4 * 7 = 28</td>
<td>3 * 7 = 21</td>
</tr>
<tr>
<td>4 * 8 = 32</td>
<td>3 * 8 = 24</td>
</tr>
<tr>
<td>4 * 9 = 36</td>
<td>3 * 9 = 27</td>
</tr>
<tr>
<td>4 * 10 = 40</td>
<td>3 * 10 = 30</td>
</tr>
</tbody>
</table>

- Look at the row in table 1 that shows,

4 * 3 = 12

And at the row in table 2 that shows,

3 * 4 = 12

- 4 * 3 = 12
Thus, type in 12.

Scaffold:

We know,

\[4 \times 3 = 12 \]

Now try the original problem again.

What is \((-4) \times (-3)\)?

Algebraic Expression:

✓ 12

Hints:

- We know,

 \[4 \times 3 = 12 \]

We need to consider the signs of the factors as well.

- Our first factor, -4, is negative and our second factor, -3, is negative as well.

We are multiplying a negative number to a negative one.

We must consider the multiplication of the signs as well.

- Remember the rule of multiplying signs which says,

\[+ \times + = + \]

\[+ \times - = - \]

\[- \times + = - \]

\[- \times - = + \]

- We have, the fourth case where,

\[- \times - = + \]
Thus using this rule we get,

\((-4) \times (-3)\)

= 12

Type in 12.

33) Problem #PRABFD8 "PRABFD8 - Multiplication of Integers"

What is \((-5) \times (-8)\)?

Algebraic Expression:

✓ 40

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

5 * 8

Algebraic Expression:

✓ 40

Hints:

•

Below are the multiplication tables of 5 and 8.

You can use them to compute 5*8.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 * 0 = 0</td>
<td>8 * 0 = 0</td>
</tr>
<tr>
<td>5 * 1 = 5</td>
<td>8 * 1 = 8</td>
</tr>
<tr>
<td>5 * 2 = 10</td>
<td>8 * 2 = 16</td>
</tr>
<tr>
<td>5 * 3 = 15</td>
<td>8 * 3 = 24</td>
</tr>
<tr>
<td>5 * 4 = 20</td>
<td>8 * 4 = 32</td>
</tr>
<tr>
<td>5 * 5 = 25</td>
<td>8 * 5 = 40</td>
</tr>
<tr>
<td>5 * 6 = 30</td>
<td>8 * 6 = 48</td>
</tr>
<tr>
<td>5 * 7 = 35</td>
<td>8 * 7 = 56</td>
</tr>
<tr>
<td>5 * 8 = 40</td>
<td>8 * 8 = 64</td>
</tr>
<tr>
<td>5 * 9 = 45</td>
<td>8 * 9 = 72</td>
</tr>
<tr>
<td>5 * 10 = 50</td>
<td>8 * 10 = 80</td>
</tr>
</tbody>
</table>
Look at the row in table 1 that shows,
\[5 \times 8 = 40\]

And at the row in table 2 that shows,
\[8 \times 5 = 40\]
\[5 \times 8 = 40\]

Thus, type in 40.

Scaffold:

We know,
\[5 \times 8 = 40\]

Now try the original problem again.

What is \((-5) \times (-8)\)?

Algebraic Expression:

\[\checkmark 40\]

Hints:

- We know,
\[5 \times 8 = 40\]

We need to consider the signs of the factors as well.

- Our first factor, -5, is negative and our second factor, -8, is negative as well.

We are multiplying a negative number to a negative one.

We must consider the multiplication of the signs as well.

- Remember the rule of multiplying signs which says,
\[+ \times + = +\]
\[+ \times - = -\]
\[\color{red}{-} \times + = -\]
\[\color{red}{-} \times \color{red}{-} = +\]
• We have, the fourth case where,

\[\text{ } \times \text{ } = \text{ } \]

Thus using this rule we get,

\((-5) \times (-8)\)

= 40

Type in 40.

34) Problem #PRABFCT "PRABFCT - Multiplication of Integers"
What is \((-2) \times 2\)?

Algebraic Expression:

\(-4\)

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\(2 \times 2\)

Algebraic Expression:

\(4\)

Hints:

- Below are the multiplication tables of 2 and 2.
- You can use them to compute \(2 \times 2\).
\[
\begin{array}{c|c|c}
2 \times 8 & 2 \times 9 & 2 \times 10 \\
16 & 18 & 20 \\
\end{array}
\]

- Look at the row in table 1 that shows, \(2 \times 2 = 4\)

- And at the row in table 2 that shows, \(2 \times 2 = 4\)
- \(2 \times 2 = 4\)

Thus, type in 4.

Scaffold:
- We know, \(2 \times 2 = 4\)
- Now try the original problem again.

What is \((-2) \times 2?\)

Algebraic Expression:

\[\checkmark \ -4\]

Hints:
- We know, \(2 \times 2 = 4\)
- We need to consider the signs of the factors as well.
- Remember the rule of multiplying signs which says,
We have, the third case where,

\[\times + = \]

Thus using this rule we get,

\[(-2) \times 2 = -4 \]

Type in -4

35) Problem #PRABFDS "PRABFDS - Multiplication of Integers"
What is \((-2) \times 10\)?

Algebraic Expression:

✓ -20

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[2 \times 10 \]

Algebraic Expression:

✓ 20

Hints:

Below are the multiplication tables of 2 and 10.

You can use them to compute \(2 \times 10\).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 * 0 = 0</td>
<td>10 * 0 = 0</td>
</tr>
<tr>
<td>2 * 1 = 2</td>
<td>10 * 1 = 10</td>
</tr>
<tr>
<td>2 * 2 = 4</td>
<td>10 * 2 = 20</td>
</tr>
<tr>
<td>2 * 3 = 6</td>
<td>10 * 3 = 30</td>
</tr>
<tr>
<td>2 * 4 = 8</td>
<td>10 * 4 = 40</td>
</tr>
<tr>
<td>2 * 5 = 10</td>
<td>10 * 5 = 50</td>
</tr>
</tbody>
</table>
Look at the row in table 1 that shows,
2 * 10 = 20

And at the row in table 2 that shows,
10 * 2 = 20

Thus, type in 20.

Scaffold:

We know,
2 * 10 = 20
Now try the original problem again.

What is (-2) * 10?

Algebraic Expression:

✓ -20

Hints:

- We know,
 2 * 10 = 20

We need to consider the signs of the factors as well.

Remember the rule of multiplying signs which says,

+ x + = +

+ x - = -

- x + = -

- x - = +
We have, the third case where,

\[\text{X} \quad + \quad = \quad \text{X} \]

Thus using this rule we get,

\((-2) \times 10\)

\[= -20\]

Type in \(-20\)

36) Problem #PRABFD2 "PRABFD2 - Multiplication of Integers"

What is \((-10) \times (-4)\)?

Algebraic Expression:

\[\checkmark 40\]

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[10 \times 4\]

Algebraic Expression:

\[\checkmark 40\]

Hints:

Below are the multiplication tables of 10 and 4.

You can use them to compute \(10 \times 4\).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 * 0 = 0</td>
<td>4 * 0 = 0</td>
</tr>
<tr>
<td>10 * 1 = 10</td>
<td>4 * 1 = 4</td>
</tr>
<tr>
<td>10 * 2 = 20</td>
<td>4 * 2 = 8</td>
</tr>
<tr>
<td>10 * 3 = 30</td>
<td>4 * 3 = 12</td>
</tr>
<tr>
<td>10 * 4 = 40</td>
<td>4 * 4 = 16</td>
</tr>
</tbody>
</table>
Look at the row in table 1 that shows,
10 * 4 = 40

And at the row in table 2 that shows,
4 * 10 = 40

Thus, type in 40.

Scaffold:
We know,
10 * 4 = 40
Now try the original problem again.

What is (-10) * (-4)?

Algebraic Expression:
✓ 40

Hints:
• We know,
10 * 4 = 40

We need to consider the signs of the factors as well.

Our first factor, -10, is negative and our second factor, -4, is negative as well.

We are multiplying a negative number to a negative one.

We must consider the multiplication of the signs as well.
Remember the rule of multiplying signs which says,

\[+ \times + = + \]
\[+ \times - = - \]
\[- \times + = - \]
\[- \times - = + \]

- We have, the fourth case where,

\[- \times - = + \]

Thus using this rule we get,

\[(-10) \times (-4) \]
\[= 40 \]

Type in 40.

37) Problem #PRABFCF "PRABFCF - Multiplication of Integers"

What is \(2 \times (-5)\)?

Algebraic Expression:

\[-10 \]

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[2 \times 5 \]

Algebraic Expression:

\[10 \]
Hints:

Below are the multiplication tables of 2 and 5.
You can use them to compute 2×5.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2 \times 0 = 0$</td>
<td>$5 \times 0 = 0$</td>
</tr>
<tr>
<td>$2 \times 1 = 2$</td>
<td>$5 \times 1 = 5$</td>
</tr>
<tr>
<td>$2 \times 2 = 4$</td>
<td>$5 \times 2 = 10$</td>
</tr>
<tr>
<td>$2 \times 3 = 6$</td>
<td>$5 \times 3 = 15$</td>
</tr>
<tr>
<td>$2 \times 4 = 8$</td>
<td>$5 \times 4 = 20$</td>
</tr>
<tr>
<td>$2 \times 5 = 10$</td>
<td>$5 \times 5 = 25$</td>
</tr>
<tr>
<td>$2 \times 6 = 12$</td>
<td>$5 \times 6 = 30$</td>
</tr>
<tr>
<td>$2 \times 7 = 14$</td>
<td>$5 \times 7 = 35$</td>
</tr>
<tr>
<td>$2 \times 8 = 16$</td>
<td>$5 \times 8 = 40$</td>
</tr>
<tr>
<td>$2 \times 9 = 18$</td>
<td>$5 \times 9 = 45$</td>
</tr>
<tr>
<td>$2 \times 10 = 20$</td>
<td>$5 \times 10 = 50$</td>
</tr>
</tbody>
</table>

Look at the row in table 1 that shows, $2 \times 5 = 10$

And at the row in table 2 that shows, $5 \times 2 = 10$

Thus, type in 10.

Scaffold:
We know,
$2 \times 5 = 10$
Now try the original problem again.

What is $2 \times (-5)$?

Algebraic Expression:
✓ -10

Hints:
- We know,
$2 \times 5 = 10$

We need to consider the signs of the factors as well.
Remember the rule of multiplying signs which says,

\[+ \times + = + \]
\[+ \times - = - \]
\[- \times + = - \]
\[- \times - = + \]

We have, the second case where,

\[+ \times - = - \]

Thus using this rule we get,

\[2 \times (-5) \]
\[= -10 \]

Type in \(-10\)

38) Problem #PRABFCN "PRABFCN - Multiplication of Integers"
What is \((-3) \times 1\)?

Algebraic Expression:

✓ -3

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[3 \times 1 \]
Algebraic Expression:

✓ 3

Hints:

• Below are the multiplication tables of 3 and 1.

You can use them to compute 3*1.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 * 0 = 0</td>
<td>1 * 0 = 0</td>
</tr>
<tr>
<td>3 * 1 = 3</td>
<td>1 * 1 = 1</td>
</tr>
<tr>
<td>3 * 2 = 6</td>
<td>1 * 2 = 2</td>
</tr>
<tr>
<td>3 * 3 = 9</td>
<td>1 * 3 = 3</td>
</tr>
<tr>
<td>3 * 4 = 12</td>
<td>1 * 4 = 4</td>
</tr>
<tr>
<td>3 * 5 = 15</td>
<td>1 * 5 = 5</td>
</tr>
<tr>
<td>3 * 6 = 18</td>
<td>1 * 6 = 6</td>
</tr>
<tr>
<td>3 * 7 = 21</td>
<td>1 * 7 = 7</td>
</tr>
<tr>
<td>3 * 8 = 24</td>
<td>1 * 8 = 8</td>
</tr>
<tr>
<td>3 * 9 = 27</td>
<td>1 * 9 = 9</td>
</tr>
<tr>
<td>3 * 10 = 30</td>
<td>1 * 10 = 10</td>
</tr>
</tbody>
</table>

• Look at the row in table 1 that shows,
 3 * 1 = 3

And at the row in table 2 that shows,
 1 * 3 = 3

• 3 * 1 = 3

Thus, type in 3.

Scaffold:

We know,
3 * 1 = 3
Now try the original problem again.

What is (-3) * 1?

Algebraic Expression:

✓ -3

Hints:

• We know,
 3 * 1 = 3

We need to consider the signs of the factors as well.

•
Remember the rule of multiplying signs which says,

\[+ \times + = + \]
\[+ \times - = - \]
\[- \times + = - \]
\[- \times - = + \]

We have, the third case where,

\[- \times + = - \]

Thus using this rule we get,

\[(-3) \times 1 = -3 \]

Type in \(-3\)

39) Problem #PRABFCD "PRABFCD - Multiplication of Integers"

What is \(7 \times (-7)\)?

Algebraic Expression:

\[7 \times (-7) = -49\]

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,
7 * 7

Algebraic Expression:
✓ 49

Hints:
•

Below are the multiplication tables of 7 and 7.

You can use them to compute 7*7.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 * 0 = 0</td>
<td>7 * 0 = 0</td>
</tr>
<tr>
<td>7 * 1 = 7</td>
<td>7 * 1 = 7</td>
</tr>
<tr>
<td>7 * 2 = 14</td>
<td>7 * 2 = 14</td>
</tr>
<tr>
<td>7 * 3 = 21</td>
<td>7 * 3 = 21</td>
</tr>
<tr>
<td>7 * 4 = 28</td>
<td>7 * 4 = 28</td>
</tr>
<tr>
<td>7 * 5 = 35</td>
<td>7 * 5 = 35</td>
</tr>
<tr>
<td>7 * 6 = 42</td>
<td>7 * 6 = 42</td>
</tr>
<tr>
<td>7 * 7 = 49</td>
<td>7 * 7 = 49</td>
</tr>
<tr>
<td>7 * 8 = 56</td>
<td>7 * 8 = 56</td>
</tr>
<tr>
<td>7 * 9 = 63</td>
<td>7 * 9 = 63</td>
</tr>
<tr>
<td>7 * 10 = 70</td>
<td>7 * 10 = 70</td>
</tr>
</tbody>
</table>

•

Look at the row in table 1 that shows,
7 * 7 = 49

And at the row in table 2 that shows,
7 * 7 = 49

Thus, type in 49.

Scaffold:
We know,
7 * 7 = 49
Now try the original problem again.

What is 7 * (-7)?

Algebraic Expression:
✓ -49

Hints:
• We know,
7 * 7 = 49

We need to consider the signs of the factors as well.
Remember the rule of multiplying signs which says,

\[
\begin{align*}
+ \times + &= + \\
+ \times - &= - \\
- \times + &= - \\
- \times - &= +
\end{align*}
\]

We have, the second case where,

\[
+ \times - = -
\]

Thus using this rule we get,

\[
7 \times (-7)
\]

= -49

Type in -49

40) Problem #PRABFEM "PRABFEM - Multiplication of Integers"
What is \((-4) \times (-2)\)?

Algebraic Expression:

8

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,
4 * 2

Algebraic Expression:

✓ 8

Hints:

- Below are the multiplication tables of 4 and 2.

You can use them to compute 4*2.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 * 0 = 0</td>
<td>2 * 0 = 0</td>
</tr>
<tr>
<td>4 * 1 = 4</td>
<td>2 * 1 = 2</td>
</tr>
<tr>
<td>4 * 2 = 8</td>
<td>2 * 2 = 4</td>
</tr>
<tr>
<td>4 * 3 = 12</td>
<td>2 * 3 = 6</td>
</tr>
<tr>
<td>4 * 4 = 16</td>
<td>2 * 4 = 8</td>
</tr>
<tr>
<td>4 * 5 = 20</td>
<td>2 * 5 = 10</td>
</tr>
<tr>
<td>4 * 6 = 24</td>
<td>2 * 6 = 12</td>
</tr>
<tr>
<td>4 * 7 = 28</td>
<td>2 * 7 = 14</td>
</tr>
<tr>
<td>4 * 8 = 32</td>
<td>2 * 8 = 16</td>
</tr>
<tr>
<td>4 * 9 = 36</td>
<td>2 * 9 = 18</td>
</tr>
<tr>
<td>4 * 10 = 40</td>
<td>2 * 10 = 20</td>
</tr>
</tbody>
</table>

Look at the row in table 1 that shows, 4 * 2 = 8

And at the row in table 2 that shows, 2 * 4 = 8

- 4 * 2 = 8

Thus, type in 8.

Scaffold:

We know,

4 * 2 = 8

Now try the original problem again.

What is (-4) * (-2)?

Algebraic Expression:

✓ 8

Hints:

- We know,

4 * 2 = 8

We need to consider the signs of the factors as well.
Our first factor, \(-4\), is negative and our second factor, \(-2\), is negative as well. We are multiplying a negative number to a negative one.

We must consider the multiplication of the signs as well.

Remember the rule of multiplying signs which says,

\[+ \times + = + \]
\[+ \times - = - \]
\[- \times + = - \]
\[- \times - = + \]

Thus using this rule we get,

\[(4) \times (-2)\]
\[= 8\]

Type in 8.

41) Problem #PRABFEH "PRABFEH - Multiplication of Integers"
What is \((-1) \times (-4)\)?

Algebraic Expression:
\(\checkmark\) 4

Scaffold:
Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[1 \times 4 \]

Algebraic Expression:

\[\checkmark 4 \]

Hints:

- Below are the multiplication tables of 1 and 4.

You can use them to compute \(1 \times 4\).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 \times 0 = 0</td>
<td>4 \times 0 = 0</td>
</tr>
<tr>
<td>1 \times 1 = 1</td>
<td>4 \times 1 = 4</td>
</tr>
<tr>
<td>1 \times 2 = 2</td>
<td>4 \times 2 = 8</td>
</tr>
<tr>
<td>1 \times 3 = 3</td>
<td>4 \times 3 = 12</td>
</tr>
<tr>
<td>1 \times 4 = 4</td>
<td>4 \times 4 = 16</td>
</tr>
<tr>
<td>1 \times 5 = 5</td>
<td>4 \times 5 = 20</td>
</tr>
<tr>
<td>1 \times 6 = 6</td>
<td>4 \times 6 = 24</td>
</tr>
<tr>
<td>1 \times 7 = 7</td>
<td>4 \times 7 = 28</td>
</tr>
<tr>
<td>1 \times 8 = 8</td>
<td>4 \times 8 = 32</td>
</tr>
<tr>
<td>1 \times 9 = 9</td>
<td>4 \times 9 = 36</td>
</tr>
<tr>
<td>1 \times 10 = 10</td>
<td>4 \times 10 = 40</td>
</tr>
</tbody>
</table>

- Look at the row in table 1 that shows, \(1 \times 4 = 4\)

And at the row in table 2 that shows,
\[4 \times 1 = 4 \]

- \(1 \times 4 = 4\)

Thus, type in 4.

Scaffold:

We know,
\[1 \times 4 = 4 \]

Now try the original problem again.

What is \((-1) \times (-4)\)?

Algebraic Expression:

\[\checkmark 4 \]
Hints:
- We know,
 \(1 \times 4 = 4 \)

We need to consider the signs of the factors as well.

- Our first factor, \(-1\), is negative and our second factor, \(-4\), is negative as well.

We are multiplying a negative number to a negative one.

We must consider the multiplication of the signs as well.

- Remember the rule of multiplying signs which says,

\[
\begin{align*}
\text{+} \times \text{+} &= \text{+} \\
\text{+} \times \text{-} &= \text{-} \\
\text{-} \times \text{+} &= \text{-} \\
\text{-} \times \text{-} &= \text{+}
\end{align*}
\]

- We have, the fourth case where,

\[
\text{-} \times \text{-} = \text{+}
\]

Thus using this rule we get,

\[
(-1) \times (-4) = 4
\]

Type in 4.
What is $1 \times (-7)$?

Algebraic Expression:

$\checkmark -7$

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

1×7

Algebraic Expression:

$\checkmark 7$

Hints:

- Below are the multiplication tables of 1 and 7.

You can use them to compute 1×7.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1 \times 0 = 0$</td>
<td>$7 \times 0 = 0$</td>
</tr>
<tr>
<td>$1 \times 1 = 1$</td>
<td>$7 \times 1 = 7$</td>
</tr>
<tr>
<td>$1 \times 2 = 2$</td>
<td>$7 \times 2 = 14$</td>
</tr>
<tr>
<td>$1 \times 3 = 3$</td>
<td>$7 \times 3 = 21$</td>
</tr>
<tr>
<td>$1 \times 4 = 4$</td>
<td>$7 \times 4 = 28$</td>
</tr>
<tr>
<td>$1 \times 5 = 5$</td>
<td>$7 \times 5 = 35$</td>
</tr>
<tr>
<td>$1 \times 6 = 6$</td>
<td>$7 \times 6 = 42$</td>
</tr>
<tr>
<td>$1 \times 7 = 7$</td>
<td>$7 \times 7 = 49$</td>
</tr>
<tr>
<td>$1 \times 8 = 8$</td>
<td>$7 \times 8 = 56$</td>
</tr>
<tr>
<td>$1 \times 9 = 9$</td>
<td>$7 \times 9 = 63$</td>
</tr>
<tr>
<td>$1 \times 10 = 10$</td>
<td>$7 \times 10 = 70$</td>
</tr>
</tbody>
</table>

- Look at the row in table 1 that shows, $1 \times 7 = 7$

And at the row in table 2 that shows, $7 \times 1 = 7$

$1 \times 7 = 7$

Thus, type in 7.

Scaffold:

We know,

$1 \times 7 = 7$
Now try the original problem again.

What is $1 \times (-7)$?

Algebraic Expression:

\checkmark -7

Hints:

- We know,

 \[1 \times 7 = 7 \]

We need to consider the signs of the factors as well.

Remember the rule of multiplying signs which says,

\[
\begin{align*}
+ \times + &= + \\
+ \times - &= - \\
- \times + &= - \\
- \times - &= +
\end{align*}
\]

We have, the second case where,

\[
\begin{align*}
+ \times - &= -
\end{align*}
\]

Thus using this rule we get,

\[
\begin{align*}
1 \times (-7) &= -7
\end{align*}
\]

Type in -7

43) Problem #PRABFCR "PRABFCR - Multiplication of Integers"
What is \((-4) \times 4\)?

Algebraic Expression:

\[\checkmark -16\]

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[4 \times 4\]

Algebraic Expression:

\[\checkmark 16\]

Hints:

- Below are the multiplication tables of 4 and 4.

 You can use them to compute 4*4.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 * 0 = 0</td>
<td>4 * 0 = 0</td>
</tr>
<tr>
<td>4 * 1 = 4</td>
<td>4 * 1 = 4</td>
</tr>
<tr>
<td>4 * 2 = 8</td>
<td>4 * 2 = 8</td>
</tr>
<tr>
<td>4 * 3 = 12</td>
<td>4 * 3 = 12</td>
</tr>
<tr>
<td>4 * 4 = 16</td>
<td>4 * 4 = 16</td>
</tr>
<tr>
<td>4 * 5 = 20</td>
<td>4 * 5 = 20</td>
</tr>
<tr>
<td>4 * 6 = 24</td>
<td>4 * 6 = 24</td>
</tr>
<tr>
<td>4 * 7 = 28</td>
<td>4 * 7 = 28</td>
</tr>
<tr>
<td>4 * 8 = 32</td>
<td>4 * 8 = 32</td>
</tr>
<tr>
<td>4 * 9 = 36</td>
<td>4 * 9 = 36</td>
</tr>
<tr>
<td>4 * 10 = 40</td>
<td>4 * 10 = 40</td>
</tr>
</tbody>
</table>

- Look at the row in table 1 that shows,

 \[4 \times 4 = 16\]

 And at the row in table 2 that shows,

 \[4 \times 4 = 16\]

- \[4 \times 4 = 16\]

 Thus, type in 16.

Scaffold:

We know,
4 * 4 = 16
Now try the original problem again.

What is (-4) * 4?

Algebraic Expression:

✓ -16

Hints:

• We know,
 4 * 4 = 16

We need to consider the signs of the factors as well.

• Remember the rule of multiplying signs which says,

 + x + = +

 + x - = -

 - x + = -

 - x - = +

We have, the third case where,

 - x + = -

Thus using this rule we get,

(-4) * 4

= -16
44) Problem #PRABFDJ "PRABFDJ - Multiplication of Integers"

What is \((-1) \times 9\)?

Algebraic Expression:

\(-9\)

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[1 \times 9\]

Algebraic Expression:

\(9\)

Hints:

- Below are the multiplication tables of 1 and 9.

You can use them to compute \(1 \times 9\).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 \times 0 = 0)</td>
<td>(9 \times 0 = 0)</td>
</tr>
<tr>
<td>(1 \times 1 = 1)</td>
<td>(9 \times 1 = 9)</td>
</tr>
<tr>
<td>(1 \times 2 = 2)</td>
<td>(9 \times 2 = 18)</td>
</tr>
<tr>
<td>(1 \times 3 = 3)</td>
<td>(9 \times 3 = 27)</td>
</tr>
<tr>
<td>(1 \times 4 = 4)</td>
<td>(9 \times 4 = 36)</td>
</tr>
<tr>
<td>(1 \times 5 = 5)</td>
<td>(9 \times 5 = 45)</td>
</tr>
<tr>
<td>(1 \times 6 = 6)</td>
<td>(9 \times 6 = 54)</td>
</tr>
<tr>
<td>(1 \times 7 = 7)</td>
<td>(9 \times 7 = 63)</td>
</tr>
<tr>
<td>(1 \times 8 = 8)</td>
<td>(9 \times 8 = 72)</td>
</tr>
<tr>
<td>(1 \times 9 = 9)</td>
<td>(9 \times 9 = 81)</td>
</tr>
<tr>
<td>(1 \times 10 = 10)</td>
<td>(9 \times 10 = 90)</td>
</tr>
</tbody>
</table>

- Look at the row in table 1 that shows, \(1 \times 9 = 9\)

And at the row in table 2 that shows, \(9 \times 1 = 9\)

- \(1 \times 9 = 9\)
Thus, type in 9.

Scaffold:

We know,

\[1 \times 9 = 9 \]

Now try the original problem again.

What is \((-1) \times 9\)?

Algebraic Expression:

\[-9 \]

Hints:

- We know,
 \[1 \times 9 = 9 \]

We need to consider the signs of the factors as well.

Remember the rule of multiplying signs which says,

\[
\begin{align*}
+ \times + &= + \\
+ \times - &= - \\
- \times + &= - \\
- \times - &= +
\end{align*}
\]

We have, the third case where,

\[
\begin{align*}
- \times + &= -
\end{align*}
\]

Thus using this rule we get,

\[(-1) \times 9 \]

\[= -9 \]
Type in -9

45) Problem #PRABFCP "PRABFCP - Multiplication of Integers"
What is (-4) * 8?

Algebraic Expression:

✓ -32

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

4 * 8

Algebraic Expression:

✓ 32

Hints:

* Below are the multiplication tables of 4 and 8.

You can use them to compute 4*8.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 * 0 = 0</td>
<td>8 * 0 = 0</td>
</tr>
<tr>
<td>4 * 1 = 4</td>
<td>8 * 1 = 8</td>
</tr>
<tr>
<td>4 * 2 = 8</td>
<td>8 * 2 = 16</td>
</tr>
<tr>
<td>4 * 3 = 12</td>
<td>8 * 3 = 24</td>
</tr>
<tr>
<td>4 * 4 = 16</td>
<td>8 * 4 = 32</td>
</tr>
<tr>
<td>4 * 5 = 20</td>
<td>8 * 5 = 40</td>
</tr>
<tr>
<td>4 * 6 = 24</td>
<td>8 * 6 = 48</td>
</tr>
<tr>
<td>4 * 7 = 28</td>
<td>8 * 7 = 56</td>
</tr>
<tr>
<td>4 * 8 = 32</td>
<td>8 * 8 = 64</td>
</tr>
<tr>
<td>4 * 9 = 36</td>
<td>8 * 9 = 72</td>
</tr>
<tr>
<td>4 * 10 = 40</td>
<td>8 * 10 = 80</td>
</tr>
</tbody>
</table>

* Look at the row in table 1 that shows,

4 * 8 = 32

And at the row in table 2 that shows,

8 * 4 = 32
4 * 8 = 32

Thus, type in 32.

Scaffold:
We know,
4 * 8 = 32
Now try the original problem again.

What is (-4) * 8?

Algebraic Expression:
-32

Hints:
- We know,
 4 * 8 = 32

We need to consider the signs of the factors as well.

Remember the rule of multiplying signs which says,

\[
\begin{align*}
+ \times + &= + \\
+ \times - &= - \\
- \times + &= - \\
- \times - &= +
\end{align*}
\]

We have, the third case where,

\[
- \times + = -
\]

Thus using this rule we get,

\[
(-4) \times 8 = -32
\]

= -32
46) Problem #PRABFED "PRABFED - Multiplication of Integers"

What is (-10) * (-10)?

Algebraic Expression:

✓ 100

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

10 * 10

Algebraic Expression:

✓ 100

Hints:

Below are the multiplication tables of 10 and 10.

You can use them to compute 10*10.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 * 0 = 0</td>
<td>10 * 0 = 0</td>
</tr>
<tr>
<td>10 * 1 = -10</td>
<td>10 * 1 = -10</td>
</tr>
<tr>
<td>10 * 2 = 20</td>
<td>10 * 2 = 20</td>
</tr>
<tr>
<td>10 * 3 = 30</td>
<td>10 * 3 = 30</td>
</tr>
<tr>
<td>10 * 4 = 40</td>
<td>10 * 4 = 40</td>
</tr>
<tr>
<td>10 * 5 = 50</td>
<td>10 * 5 = 50</td>
</tr>
<tr>
<td>10 * 6 = 60</td>
<td>10 * 6 = 60</td>
</tr>
<tr>
<td>10 * 7 = 70</td>
<td>10 * 7 = 70</td>
</tr>
<tr>
<td>10 * 8 = 80</td>
<td>10 * 8 = 80</td>
</tr>
<tr>
<td>10 * 9 = 90</td>
<td>10 * 9 = 90</td>
</tr>
<tr>
<td>10 * 10 = 100</td>
<td>10 * 10 = 100</td>
</tr>
</tbody>
</table>

Look at the row in table 1 that shows,

10 * 10 = 100
And at the row in table 2 that shows,
10 * 10 = 100
• 10 * 10 = 100

Thus, type in 100.

Scaffold:
We know,
10 * 10 = 100
Now try the original problem again.

What is (-10) * (-10)?

Algebraic Expression:

✓ 100

Hints:
• We know,
10 * 10 = 100

We need to consider the signs of the factors as well.

Our first factor, -10, is negative and our second factor, -10, is negative as well.

We are multiplying a negative number to a negative one.

We must consider the multiplication of the signs as well.

Remember the rule of multiplying signs which says,

- We have, the fourth case where,
Thus using this rule we get,

\((-10) \times (-10)\)

= 100

Type in 100.

47) Problem #PRABFCU "PRABFCU - Multiplication of Integers"

What is \((-10) \times 3\)?

Algebraic Expression:

\(-30\)

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\(10 \times 3\)

Algebraic Expression:

\(30\)

Hints:

Below are the multiplication tables of 10 and 3.

You can use them to compute \(10 \times 3\).

<table>
<thead>
<tr>
<th>Table 1</th>
<th></th>
<th>Table 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(10)</td>
<td>(0)</td>
<td>(3)</td>
<td>(0)</td>
</tr>
<tr>
<td>(10)</td>
<td>(1)</td>
<td>(3)</td>
<td>(1)</td>
</tr>
<tr>
<td>(10)</td>
<td>(2)</td>
<td>(3)</td>
<td>(2)</td>
</tr>
<tr>
<td>(10)</td>
<td>(3)</td>
<td>(3)</td>
<td>(3)</td>
</tr>
<tr>
<td>(10)</td>
<td>(4)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>(10)</td>
<td>(5)</td>
<td>(3)</td>
<td>(5)</td>
</tr>
<tr>
<td>(10)</td>
<td>(6)</td>
<td>(3)</td>
<td>(6)</td>
</tr>
<tr>
<td>(10)</td>
<td>(7)</td>
<td>(3)</td>
<td>(7)</td>
</tr>
<tr>
<td>(10)</td>
<td>(8)</td>
<td>(3)</td>
<td>(8)</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Look at the row in table 1 that shows, \(10 \times 3 = 30\)

And at the row in table 2 that shows, \(3 \times 10 = 30\)

Thus, type in \(30\).

Scaffold:

We know,
\(10 \times 3 = 30\)

Now try the original problem again.

What is \((-10) \times 3\)?

Algebraic Expression:

\(\checkmark -30\)

Hints:

- We know,
\(10 \times 3 = 30\)

We need to consider the signs of the factors as well.

- Remember the rule of multiplying signs which says,
We have, the third case where,

![Image of multiplication symbol]

Thus using this rule we get,

\((-10) \times 3 = -30\)

Type in -30

48) Problem #PRABFCQ "PRABFCQ - Multiplication of Integers"

What is \((-5) \times 1\)?

Algebraic Expression:

\(\checkmark -5\)

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\(5 \times 1\)

Algebraic Expression:

\(\checkmark 5\)

Hints:

Below are the multiplication tables of \(5\) and \(1\).

You can use them to compute \(5\times 1\).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5 \times 0 = 0)</td>
<td>(1 \times 0 = 0)</td>
</tr>
<tr>
<td>(5 \times 1 = 5)</td>
<td>(1 \times 1 = 1)</td>
</tr>
<tr>
<td>(5 \times 2 = 10)</td>
<td>(1 \times 2 = 2)</td>
</tr>
<tr>
<td>(5 \times 3 = 15)</td>
<td>(1 \times 3 = 3)</td>
</tr>
<tr>
<td>(5 \times 4 = 20)</td>
<td>(1 \times 4 = 4)</td>
</tr>
<tr>
<td>(5 \times 5 = 25)</td>
<td>(1 \times 5 = 5)</td>
</tr>
</tbody>
</table>
5 * 6 = 30 1 * 6 = 6
5 * 7 = 35 1 * 7 = 7
5 * 8 = 40 1 * 8 = 8
5 * 9 = 45 1 * 9 = 9
5 * 10 = 50 1 * 10 = 10

Look at the row in table 1 that shows,
5 * 1 = 5

And at the row in table 2 that shows,
1 * 5 = 5
• 5 * 1 = 5

Thus, type in 5.

Scaffold:

We know,
5 * 1 = 5
Now try the original problem again.

What is (-5) * 1?

Algebraic Expression:

✔ -5

Hints:

• We know,
5 * 1 = 5

We need to consider the signs of the factors as well.

•

Remember the rule of multiplying signs which says,
• We have, the third case where,

\[(-5) \times 1 = -5 \]

Thus using this rule we get,

\[(-5) \times 1 = -5 \]

Type in -5

49) Problem #PRABFDC "PRABFDC - Multiplication of Integers"

What is \((-1) \times 9\)?

Algebraic Expression:

-9

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[1 \times 9 = 9 \]

Algebraic Expression:

9

Hints:

- Below are the multiplication tables of 1 and 9.

You can use them to compute \(1 \times 9\).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 * 0 = 0</td>
<td>9 * 0 = 0</td>
</tr>
<tr>
<td>1 * 1 = 1</td>
<td>9 * 1 = 9</td>
</tr>
<tr>
<td>1 * 2 = 2</td>
<td>9 * 2 = 18</td>
</tr>
<tr>
<td>1 * 3 = 3</td>
<td>9 * 3 = 27</td>
</tr>
</tbody>
</table>
Look at the row in table 1 that shows,
\[1 \times 9 = 9 \]

And at the row in table 2 that shows,
\[9 \times 1 = 9 \]

Thus, type in 9.

Scaffold:
We know,
\[1 \times 9 = 9 \]
Now try the original problem again.

What is \((-1) \times 9\)?

Algebraic Expression:
\[-9 \]

Hints:
- We know,
\[1 \times 9 = 9 \]

We need to consider the signs of the factors as well.

https://www.assistments.org/build/print/sequence/803904?mode=debug&op_scaf=false&op_hint=false&op_answer_op=false&op_answer=false&op_name=false&op_buggies=false&op_sections=false&short_answers=false
Remember the rule of multiplying signs which says,

\[
\begin{align*}
+ \times + &= + \\
+ \times - &= - \\
- \times + &= - \\
- \times - &= +
\end{align*}
\]

We have, the third case where,

\[
- \times + = -
\]

Thus using this rule we get,

\[
(-1) \times 9
\]

\[
= -9
\]

Type in \(-9\)

50) Problem #PRABFEN "PRABFEN - Multiplication of Integers"

What is \((-9) \times (-4)\)?

Algebraic Expression:

\[
36
\]

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,
9 * 4

Algebraic Expression:

✓ 36

Hints:

- Below are the multiplication tables of 9 and 4.

You can use them to compute 9*4.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 * 0 = 0</td>
<td>4 * 0 = 0</td>
</tr>
<tr>
<td>9 * 1 = 9</td>
<td>4 * 1 = 4</td>
</tr>
<tr>
<td>9 * 2 = 18</td>
<td>4 * 2 = 8</td>
</tr>
<tr>
<td>9 * 3 = 27</td>
<td>4 * 3 = 12</td>
</tr>
<tr>
<td>9 * 4 = 36</td>
<td>4 * 4 = 16</td>
</tr>
<tr>
<td>9 * 5 = 45</td>
<td>4 * 5 = 20</td>
</tr>
<tr>
<td>9 * 6 = 54</td>
<td>4 * 6 = 24</td>
</tr>
<tr>
<td>9 * 7 = 63</td>
<td>4 * 7 = 28</td>
</tr>
<tr>
<td>9 * 8 = 72</td>
<td>4 * 8 = 32</td>
</tr>
<tr>
<td>9 * 9 = 81</td>
<td>4 * 9 = 36</td>
</tr>
<tr>
<td>9 * 10 = 90</td>
<td>4 * 10 = 40</td>
</tr>
</tbody>
</table>

- Look at the row in table 1 that shows,
 9 * 4 = 36

 And at the row in table 2 that shows,
 4 * 9 = 36

 - 9 * 4 = 36

Thus, type in 36.

Scaffold:

We know,

9 * 4 = 36

Now try the original problem again.

What is (-9) * (-4)?

Algebraic Expression:

✓ 36

Hints:

- We know,
 9 * 4 = 36

 We need to consider the signs of the factors as well.
Our first factor, -9, is negative and our second factor, -4, is negative as well.

We are multiplying a negative number to a negative one.

We must consider the multiplication of the signs as well.

Remember the rule of multiplying signs which says,

\[
\begin{align*}
+ \times + &= + \\
+ \times - &= - \\
- \times + &= - \\
- \times - &= +
\end{align*}
\]

We have, the fourth case where,

\[
- \times - = +
\]

Thus using this rule we get,

\[
(-9) \times (-4) = 36
\]

Type in 36.

51) Problem #PRABFEB "PRABFEB - Multiplication of Integers"
What is (-3) * (-8)?

Algebraic Expression:

\[
\checkmark 24
\]

Scaffold:
Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[3 \times 8 \]

Algebraic Expression:

\[\checkmark \ 24 \]

Hints:

-

Below are the multiplication tables of 3 and 8.

You can use them to compute \(3 \times 8\).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3 \times 0 = 0)</td>
<td>(8 \times 0 = 0)</td>
</tr>
<tr>
<td>(3 \times 1 = 3)</td>
<td>(8 \times 1 = 8)</td>
</tr>
<tr>
<td>(3 \times 2 = 6)</td>
<td>(8 \times 2 = 16)</td>
</tr>
<tr>
<td>(3 \times 3 = 9)</td>
<td>(8 \times 3 = 24)</td>
</tr>
<tr>
<td>(3 \times 4 = 12)</td>
<td>(8 \times 4 = 32)</td>
</tr>
<tr>
<td>(3 \times 5 = 15)</td>
<td>(8 \times 5 = 40)</td>
</tr>
<tr>
<td>(3 \times 6 = 18)</td>
<td>(8 \times 6 = 48)</td>
</tr>
<tr>
<td>(3 \times 7 = 21)</td>
<td>(8 \times 7 = 56)</td>
</tr>
<tr>
<td>(3 \times 8 = 24)</td>
<td>(8 \times 8 = 64)</td>
</tr>
<tr>
<td>(3 \times 9 = 27)</td>
<td>(8 \times 9 = 72)</td>
</tr>
<tr>
<td>(3 \times 10 = 30)</td>
<td>(8 \times 10 = 80)</td>
</tr>
</tbody>
</table>

Look at the row in table 1 that shows,

\(3 \times 8 = 24\)

And at the row in table 2 that shows,

\(8 \times 3 = 24\)

- \(3 \times 8 = 24\)

Thus, type in 24.

Scaffold:

*We know,

\[3 \times 8 = 24 \]

Now try the original problem again.

What is \((-3) \times (-8)\)?

Algebraic Expression:

\[\checkmark \ 24 \]
Hints:

- We know,
 \[3 \times 8 = 24\]

We need to consider the signs of the factors as well.

- Our first factor, \(-3\), is negative and our second factor, \(-8\), is negative as well.

We are multiplying a negative number to a negative one.

We must consider the multiplication of the signs as well.

- Remember the rule of multiplying signs which says,

\[\begin{align*}
 + \times + &= + \\
 + \times - &= - \\
 - \times + &= - \\
 - \times - &= +
\end{align*}\]

- We have, the fourth case where,

\[\begin{align*}
 - \times - &= +
\end{align*}\]

Thus using this rule we get,

\[\begin{align*}
 (-3) \times (-8) &= 24
\end{align*}\]

Type in 24.
What is \((-6) \times 3\)?

Algebraic Expression:

✓ -18

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\(6 \times 3\)

Algebraic Expression:

✓ 18

Hints:

- Below are the multiplication tables of 6 and 3.

You can use them to compute \(6 \times 3\).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 * 0 = 0</td>
<td>3 * 0 = 0</td>
</tr>
<tr>
<td>6 * 1 = 6</td>
<td>3 * 1 = 3</td>
</tr>
<tr>
<td>6 * 2 = 12</td>
<td>3 * 2 = 6</td>
</tr>
<tr>
<td>6 * 3 = 18</td>
<td>3 * 3 = 9</td>
</tr>
<tr>
<td>6 * 4 = 24</td>
<td>3 * 4 = 12</td>
</tr>
<tr>
<td>6 * 5 = 30</td>
<td>3 * 5 = 15</td>
</tr>
<tr>
<td>6 * 6 = 36</td>
<td>3 * 6 = 18</td>
</tr>
<tr>
<td>6 * 7 = 42</td>
<td>3 * 7 = 21</td>
</tr>
<tr>
<td>6 * 8 = 48</td>
<td>3 * 8 = 24</td>
</tr>
<tr>
<td>6 * 9 = 54</td>
<td>3 * 9 = 27</td>
</tr>
<tr>
<td>6 * 10 = 60</td>
<td>3 * 10 = 30</td>
</tr>
</tbody>
</table>

- Look at the row in table 1 that shows,
 \(6 \times 3 = 18\)

And at the row in table 2 that shows,
\(3 \times 6 = 18\)

- \(6 \times 3 = 18\)

Thus, type in 18.

Scaffold:

We know,

\(6 \times 3 = 18\)
Now try the original problem again.

What is \((-6) \times 3\)?

Algebraic Expression:

✓ -18

Hints:

- We know,
 \(6 \times 3 = 18\)

We need to consider the signs of the factors as well.

Remember the rule of multiplying signs which says,

\[
\begin{align*}
+ \times + &= + \\
+ \times - &= - \\
- \times + &= - \\
- \times - &= +
\end{align*}
\]

We have, the third case where,

\[- \times + = -\]

Thus using this rule we get,

\((-6) \times 3\)

\[= -18\]

Type in -18
53) Problem #PRABEF "PRABEF - Multiplication of Integers"
What is \((-6) \times (-2)\)?

Algebraic Expression:

\[\checkmark \ 12 \]

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[6 \times 2 \]

Algebraic Expression:

\[\checkmark \ 12 \]

Hints:

Below are the multiplication tables of 6 and 2.

You can use them to compute \(6 \times 2\).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 \times 0 = 0</td>
<td>2 \times 0 = 0</td>
</tr>
<tr>
<td>6 \times 1 = 6</td>
<td>2 \times 1 = 2</td>
</tr>
<tr>
<td>6 \times 2 = 12</td>
<td>2 \times 2 = 4</td>
</tr>
<tr>
<td>6 \times 3 = 18</td>
<td>2 \times 3 = 6</td>
</tr>
<tr>
<td>6 \times 4 = 24</td>
<td>2 \times 4 = 8</td>
</tr>
<tr>
<td>6 \times 5 = 30</td>
<td>2 \times 5 = 10</td>
</tr>
<tr>
<td>6 \times 6 = 36</td>
<td>2 \times 6 = 12</td>
</tr>
<tr>
<td>6 \times 7 = 42</td>
<td>2 \times 7 = 14</td>
</tr>
<tr>
<td>6 \times 8 = 48</td>
<td>2 \times 8 = 16</td>
</tr>
<tr>
<td>6 \times 9 = 54</td>
<td>2 \times 9 = 18</td>
</tr>
<tr>
<td>6 \times 10 = 60</td>
<td>2 \times 10 = 20</td>
</tr>
</tbody>
</table>

Look at the row in table 1 that shows, \(6 \times 2 = 12\)

And at the row in table 2 that shows, \(2 \times 6 = 12\)

\[\checkmark \ 6 \times 2 = 12 \]

Thus, type in 12.

Scaffold:
We know,
\[6 \times 2 = 12\]
Now try the original problem again.

What is \((-6) \times (-2)\)?

Algebraic Expression:

\[\checkmark \quad 12\]

Hints:

- We know,
 \[6 \times 2 = 12\]

We need to consider the signs of the factors as well.

- Our first factor, \(-6\), is negative and our second factor, \(-2\), is negative as well.

We are multiplying a negative number to a negative one.

We must consider the multiplication of the signs as well.

Remember the rule of multiplying signs which says,

![Sign multiplication rules](https://www.assistments.org/build/print/sequence/803904?mode=debug&op_scaf=false&op_hint=false&op_answer_op=false&op_answer=false&op_name=false&op_buggies=false&op_sections=false&short_answers=false)

- We have, the fourth case where,

\[\boxed{- \times - = +}\]

Thus using this rule we get,

\[\boxed{(-6) \times (-2) = 12}\]
Type in 12.

54) Problem #PRABFEK “PRABFEK - Multiplication of Integers"
What is \((-7) \times (-3)\)?

Algebraic Expression:

\[\checkmark \ 21 \]

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[7 \times 3\]

Algebraic Expression:

\[\checkmark \ 21\]

Hints:

- Below are the multiplication tables of 7 and 3.

You can use them to compute \(7 \times 3\).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(7 \times 0 = 0)</td>
<td>(3 \times 0 = 0)</td>
</tr>
<tr>
<td>(7 \times 1 = 7)</td>
<td>(3 \times 1 = 3)</td>
</tr>
<tr>
<td>(7 \times 2 = 14)</td>
<td>(3 \times 2 = 6)</td>
</tr>
<tr>
<td>(7 \times 3 = 21)</td>
<td>(3 \times 3 = 9)</td>
</tr>
<tr>
<td>(7 \times 4 = 28)</td>
<td>(3 \times 4 = 12)</td>
</tr>
<tr>
<td>(7 \times 5 = 35)</td>
<td>(3 \times 5 = 15)</td>
</tr>
<tr>
<td>(7 \times 6 = 42)</td>
<td>(3 \times 6 = 18)</td>
</tr>
<tr>
<td>(7 \times 7 = 49)</td>
<td>(3 \times 7 = 21)</td>
</tr>
<tr>
<td>(7 \times 8 = 56)</td>
<td>(3 \times 8 = 24)</td>
</tr>
<tr>
<td>(7 \times 9 = 63)</td>
<td>(3 \times 9 = 27)</td>
</tr>
<tr>
<td>(7 \times 10 = 70)</td>
<td>(3 \times 10 = 30)</td>
</tr>
</tbody>
</table>

- Look at the row in table 1 that shows,
 \(7 \times 3 = 21\)

And at the row in table 2 that shows,

\[3 \times 7 = 21\]

- \(7 \times 3 = 21\)
Thus, type in 21.

Scaffold:

- We know, 7 * 3 = 21

Now try the original problem again.

What is (-7) * (-3)?

Algebraic Expression:

- 21

Hints:

- We know, 7 * 3 = 21

We need to consider the signs of the factors as well.

- Our first factor, -7, is negative and our second factor, -3, is negative as well.

We are multiplying a negative number to a negative one.

We must consider the multiplication of the signs as well.

- Remember the rule of multiplying signs which says,

```plaintext
+ x + = +
+ x - = -
- x + = -
- x - = +
```

- We have, the fourth case where,

```plaintext
- x - = +
```
Thus using this rule we get,

\((-7) \times (-3)\)

= 21

Type in 21.

55) Problem #PRABFC4 "PRABFC4 - Multiplication of Integers"
What is \(2 \times (-5)\)?

Algebraic Expression:

-10

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\(2 \times 5\)

Algebraic Expression:

10

Hints:

Below are the multiplication tables of 2 and 5.

You can use them to compute 2*5.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 * 0 = 0</td>
<td>5 * 0 = 0</td>
</tr>
<tr>
<td>2 * 1 = 2</td>
<td>5 * 1 = 5</td>
</tr>
<tr>
<td>2 * 2 = 4</td>
<td>5 * 2 = 10</td>
</tr>
<tr>
<td>2 * 3 = 6</td>
<td>5 * 3 = 15</td>
</tr>
<tr>
<td>2 * 4 = 8</td>
<td>5 * 4 = 20</td>
</tr>
<tr>
<td>2 * 5 = 10</td>
<td>5 * 5 = 25</td>
</tr>
<tr>
<td>2 * 6 = 12</td>
<td>5 * 6 = 30</td>
</tr>
<tr>
<td>2 * 7 = 14</td>
<td>5 * 7 = 35</td>
</tr>
<tr>
<td>2 * 8 = 16</td>
<td>5 * 8 = 40</td>
</tr>
<tr>
<td>2 * 9 = 18</td>
<td>5 * 9 = 45</td>
</tr>
<tr>
<td>2 * 10 = 20</td>
<td>5 * 10 = 50</td>
</tr>
</tbody>
</table>
Look at the row in table 1 that shows,
\[2 \times 5 = 10\]

And at the row in table 2 that shows,
\[5 \times 2 = 10\]
\[2 \times 5 = 10\]

Thus, type in 10.

Scaffold:

We know,
\[2 \times 5 = 10\]
Now try the original problem again.

What is \(2 \times (-5)\)?

Algebraic Expression:

✓ -10

Hints:

• We know,
\[2 \times 5 = 10\]

We need to consider the signs of the factors as well.

•

Remember the rule of multiplying signs which says,

\[+ \times + = +\]
\[+ \times - = -\]
\[- \times + = -\]
\[- \times - = +\]

We have, the second case where,

\[+ \times - = -\]

Thus using this rule we get,
56) Problem #PRABFCM “PRABFCM - Multiplication of Integers”

What is \((-2) \times 9\)?

Algebraic Expression:

\[-18\]

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[2 \times 9\]

Algebraic Expression:

\[18\]

Hints:

Below are the multiplication tables of 2 and 9.

You can use them to compute \(2 \times 9\).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>9 * 0 = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 * 0 = 0</td>
<td>9 * 1 = 9</td>
</tr>
<tr>
<td>2 * 1 = 2</td>
<td>9 * 2 = 18</td>
</tr>
<tr>
<td>2 * 2 = 4</td>
<td>9 * 3 = 27</td>
</tr>
<tr>
<td>2 * 3 = 6</td>
<td>9 * 4 = 36</td>
</tr>
<tr>
<td>2 * 4 = 8</td>
<td>9 * 5 = 45</td>
</tr>
<tr>
<td>2 * 5 = 10</td>
<td>9 * 6 = 54</td>
</tr>
<tr>
<td>2 * 6 = 12</td>
<td>9 * 7 = 63</td>
</tr>
<tr>
<td>2 * 7 = 14</td>
<td>9 * 8 = 72</td>
</tr>
<tr>
<td>2 * 8 = 16</td>
<td>9 * 9 = 81</td>
</tr>
<tr>
<td>2 * 9 = 18</td>
<td>9 * 10 = 90</td>
</tr>
</tbody>
</table>

•
Look at the row in table 1 that shows,
$$2 \times 9 = 18$$

And at the row in table 2 that shows,
$$9 \times 2 = 18$$
- $$2 \times 9 = 18$$

Thus, type in 18.

Scaffold:
We know,
$$2 \times 9 = 18$$

Now try the original problem again.

What is \((-2) \times 9\)?

Algebraic Expression:

✓ -18

Hints:
- We know,
 $$2 \times 9 = 18$$

We need to consider the signs of the factors as well.

Remember the rule of multiplying signs which says,

- **Adding** two **positive** numbers:
 $$\begin{array}{c}
 + \\
 + \\
 = \\
 +
 \end{array}$$

- **Adding** two **negative** numbers:
 $$\begin{array}{c}
 + \\
 - \\
 = \\
 -
 \end{array}$$

- **Multiplying** a **positive** and a **negative** numbers:
 $$\begin{array}{c}
 - \\
 + \\
 = \\
 -
 \end{array}$$

We have, the third case where,

$$\begin{array}{c}
- \\
+ \\
= \\
-
\end{array}$$

Thus using this rule we get,
Type in \(-18\)

57) Problem #PRABFCY "PRABFCY - Multiplication of Integers"

What is $7 \times (-9)$?

Algebraic Expression:

✓ \(-63\)

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

7×9

Algebraic Expression:

✓ \(63\)

Hints:

- Below are the multiplication tables of 7 and 9.

You can use them to compute 7×9.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$7 \times 0 = 0$</td>
<td>$9 \times 0 = 0$</td>
</tr>
<tr>
<td>$7 \times 1 = 7$</td>
<td>$9 \times 1 = 9$</td>
</tr>
<tr>
<td>$7 \times 2 = 14$</td>
<td>$9 \times 2 = 18$</td>
</tr>
<tr>
<td>$7 \times 3 = 21$</td>
<td>$9 \times 3 = 27$</td>
</tr>
<tr>
<td>$7 \times 4 = 28$</td>
<td>$9 \times 4 = 36$</td>
</tr>
<tr>
<td>$7 \times 5 = 35$</td>
<td>$9 \times 5 = 45$</td>
</tr>
<tr>
<td>$7 \times 6 = 42$</td>
<td>$9 \times 6 = 54$</td>
</tr>
<tr>
<td>$7 \times 7 = 49$</td>
<td>$9 \times 7 = 63$</td>
</tr>
<tr>
<td>$7 \times 8 = 56$</td>
<td>$9 \times 8 = 72$</td>
</tr>
<tr>
<td>$7 \times 9 = 63$</td>
<td>$9 \times 9 = 81$</td>
</tr>
<tr>
<td>$7 \times 10 = 70$</td>
<td>$9 \times 10 = 90$</td>
</tr>
</tbody>
</table>
Look at the row in table 1 that shows,
7 * 9 = 63

And at the row in table 2 that shows,
9 * 7 = 63
7 * 9 = 63

Thus, type in 63.

Scaffold:
We know,
7 * 9 = 63
Now try the original problem again.

What is 7 * (-9)?

Algebraic Expression:
✓ -63

Hints:
• We know,
7 * 9 = 63

We need to consider the signs of the factors as well.
•

Remember the rule of multiplying signs which says,

+ x + = +

+ x - = -

- x + = -

- x - = +

We have, the second case where,
Thus using this rule we get,

\[7 \times (-9) \]

\[= -63 \]

Type in \(-63\)

58) Problem #PRABFES "PRABFES - Multiplication of Integers"

What is \((-5) \times (-3)\)?

Algebraic Expression:

\[15 \]

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[5 \times 3 \]

Algebraic Expression:

\[15 \]

Hints:

- Below are the multiplication tables of 5 and 3.

You can use them to compute 5*3.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Table 2</td>
</tr>
<tr>
<td>5 * 0 = 0</td>
<td>3 * 0 = 0</td>
</tr>
<tr>
<td>5 * 1 = 5</td>
<td>3 * 1 = 3</td>
</tr>
<tr>
<td>5 * 2 = 10</td>
<td>3 * 2 = 6</td>
</tr>
<tr>
<td>5 * 3 = 15</td>
<td>3 * 3 = 9</td>
</tr>
<tr>
<td>5 * 4 = 20</td>
<td>3 * 4 = 12</td>
</tr>
<tr>
<td>5 * 5 = 25</td>
<td>3 * 5 = 15</td>
</tr>
<tr>
<td>5 * 6 = 30</td>
<td>3 * 6 = 18</td>
</tr>
<tr>
<td>5 * 7 = 35</td>
<td>3 * 7 = 21</td>
</tr>
<tr>
<td>5 * 8 = 40</td>
<td>3 * 8 = 24</td>
</tr>
<tr>
<td>5 * 9 = 45</td>
<td>3 * 9 = 27</td>
</tr>
<tr>
<td>5 * 10 = 50</td>
<td>3 * 10 = 30</td>
</tr>
</tbody>
</table>

-
Look at the row in table 1 that shows,
\[5 \times 3 = 15 \]

And at the row in table 2 that shows,
\[3 \times 5 = 15 \]
\[5 \times 3 = 15 \]

Thus, type in 15.

Scaffold:

We know,
\[5 \times 3 = 15 \]
Now try the original problem again.

What is \((-5) \times (-3)\)?

Algebraic Expression:

\[\checkmark 15 \]

Hints:

- We know,
\[5 \times 3 = 15 \]

We need to consider the signs of the factors as well.

- Our first factor, \(-5\), is negative and our second factor, \(-3\), is negative as well.

 We are multiplying a negative number to a negative one.

 We must consider the multiplication of the signs as well.

 Remember the rule of multiplying signs which says,

 \[(+) \times (+) = (+) \]
 \[(+) \times (-) = (-) \]
 \[(-) \times (+) = (-) \]
 \[(-) \times (-) = (+) \]
We have, the fourth case where,

![multiplication symbol]

Thus using this rule we get,

\((-5) \times (-3)\)

\[= 15\]

Type in 15.

59) Problem #PRABFD4 "PRABFD4 - Multiplication of Integers"

What is \((-2) \times (-8)\)?

Algebraic Expression:

\[\checkmark 16\]

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[2 \times 8\]

Algebraic Expression:

\[\checkmark 16\]

Hints:

Below are the multiplication tables of 2 and 8.

You can use them to compute 2*8.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 * 0 = 0</td>
<td>8 * 0 = 0</td>
</tr>
<tr>
<td>2 * 1 = 2</td>
<td>8 * 1 = 8</td>
</tr>
<tr>
<td>2 * 2 = 4</td>
<td>8 * 2 = 16</td>
</tr>
<tr>
<td>2 * 3 = 6</td>
<td>8 * 3 = 24</td>
</tr>
<tr>
<td>2 * 4 = 8</td>
<td>8 * 4 = 32</td>
</tr>
<tr>
<td>2 * 5 = 10</td>
<td>8 * 5 = 40</td>
</tr>
<tr>
<td>2 * 6 = 12</td>
<td>8 * 6 = 48</td>
</tr>
<tr>
<td>2 * 7 = 14</td>
<td>8 * 7 = 56</td>
</tr>
<tr>
<td>2 * 8 = 16</td>
<td>8 * 8 = 64</td>
</tr>
</tbody>
</table>
Look at the row in table 1 that shows,
\[2 \times 8 = 16 \]

And at the row in table 2 that shows,
\[8 \times 2 = 16 \]
\[2 \times 8 = 16 \]

Thus, type in \(16 \).

Scaffold:
- We know,
 \[2 \times 8 = 16 \]
 Now try the original problem again.

What is \((-2) \times (-8)\)?

Algebraic Expression:

\[\checkmark 16 \]

Hints:
- We know,
 \[2 \times 8 = 16 \]

We need to consider the signs of the factors as well.

- Our first factor, \(-2\), is negative and our second factor, \(-8\), is negative as well.

We are multiplying a negative number to a negative one.

We must consider the multiplication of the signs as well.
Remember the rule of multiplying signs which says,

\[\begin{align*}
+ \times + &= + \\
+ \times - &= - \\
- \times + &= - \\
- \times - &= +
\end{align*}\]

- We have, the fourth case where,

\[\begin{align*}
- \times - &= +
\end{align*}\]

Thus using this rule we get,

\[(-2) \times (-8) = 16\]

Type in 16.

Problem #PRABFET "PRABFET - Multiplication of Integers"

What is \((-9) \times (-4)\)?

Algebraic Expression:

\[\checkmark 36\]

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[9 \times 4\]

Algebraic Expression:

\[\checkmark 36\]

Hints:
Below are the multiplication tables of 9 and 4.

You can use them to compute 9×4.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$9 \times 0 = 0$</td>
<td>$4 \times 0 = 0$</td>
</tr>
<tr>
<td>$9 \times 1 = 9$</td>
<td>$4 \times 1 = 4$</td>
</tr>
<tr>
<td>$9 \times 2 = 18$</td>
<td>$4 \times 2 = 8$</td>
</tr>
<tr>
<td>$9 \times 3 = 27$</td>
<td>$4 \times 3 = 12$</td>
</tr>
<tr>
<td>$9 \times 4 = 36$</td>
<td>$4 \times 4 = 16$</td>
</tr>
<tr>
<td>$9 \times 5 = 45$</td>
<td>$4 \times 5 = 20$</td>
</tr>
<tr>
<td>$9 \times 6 = 54$</td>
<td>$4 \times 6 = 24$</td>
</tr>
<tr>
<td>$9 \times 7 = 63$</td>
<td>$4 \times 7 = 28$</td>
</tr>
<tr>
<td>$9 \times 8 = 72$</td>
<td>$4 \times 8 = 32$</td>
</tr>
<tr>
<td>$9 \times 9 = 81$</td>
<td>$4 \times 9 = 36$</td>
</tr>
<tr>
<td>$9 \times 10 = 90$</td>
<td>$4 \times 10 = 40$</td>
</tr>
</tbody>
</table>

Look at the row in table 1 that shows, $9 \times 4 = 36$

And at the row in table 2 that shows, $4 \times 9 = 36$

Thus, type in 36.

Scaffold:

We know, $9 \times 4 = 36$

Now try the original problem again.

What is $(-9) \times (-4)$?

Algebraic Expression:

36

Hints:

- We know, $9 \times 4 = 36$

We need to consider the signs of the factors as well.

Our first factor, -9, is negative and our second factor, -4, is negative as well.

We are multiplying a negative number to a negative one.
We must consider the multiplication of the signs as well.

• Remember the rule of multiplying signs which says,

\[\begin{align*}
 + \times + &= + \\
 + \times - &= - \\
 - \times + &= - \\
 - \times - &= +
\end{align*} \]

• We have, the fourth case where,

\[\begin{align*}
 - \times - &= +
\end{align*} \]

Thus using this rule we get,

\((-9) \times (-4) = 36\]

Type in \(36\).

61) Problem #PRABFDB "PRABFDB - Multiplication of Integers"

What is \((-2) \times 7\)?

Algebraic Expression:

-14

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,
2 * 7

Algebraic Expression:
✓ 14

Hints:

Below are the multiplication tables of 2 and 7.
You can use them to compute 2*7.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 * 0 = 0</td>
<td>7 * 0 = 0</td>
</tr>
<tr>
<td>2 * 1 = 2</td>
<td>7 * 1 = 7</td>
</tr>
<tr>
<td>2 * 2 = 4</td>
<td>7 * 2 = 14</td>
</tr>
<tr>
<td>2 * 3 = 6</td>
<td>7 * 3 = 21</td>
</tr>
<tr>
<td>2 * 4 = 8</td>
<td>7 * 4 = 28</td>
</tr>
<tr>
<td>2 * 5 = 10</td>
<td>7 * 5 = 35</td>
</tr>
<tr>
<td>2 * 6 = 12</td>
<td>7 * 6 = 42</td>
</tr>
<tr>
<td>2 * 7 = 14</td>
<td>7 * 7 = 49</td>
</tr>
<tr>
<td>2 * 8 = 16</td>
<td>7 * 8 = 56</td>
</tr>
<tr>
<td>2 * 9 = 18</td>
<td>7 * 9 = 63</td>
</tr>
<tr>
<td>2 * 10 = 20</td>
<td>7 * 10 = 70</td>
</tr>
</tbody>
</table>

Look at the row in table 1 that shows,
2 * 7 = 14

And at the row in table 2 that shows,
7 * 2 = 14

Thus, type in 14.

Scaffold:
We know,
2 * 7 = 14
Now try the original problem again.

What is (-2) * 7?

Algebraic Expression:
✓ -14

Hints:

We know,
2 * 7 = 14

We need to consider the signs of the factors as well.
Remember the rule of multiplying signs which says,

\[+ \times + = + \]
\[+ \times - = - \]
\[- \times + = - \]
\[- \times - = + \]

We have, the third case where,

\[- \times + = - \]

Thus using this rule we get,

\[(-2) \times 7 \]
\[= -14 \]

Type in \(-14\)

62) Problem #PRABFCS "PRABFCS - Multiplication of Integers"
What is \((-9) \times 3\) ?

Algebraic Expression:

\(-27\)

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.
Go ahead and compute,

\[9 \times 3 \]

Algebraic Expression:

✓ 27

Hints:

•

Below are the multiplication tables of 9 and 3.

You can use them to compute \(9 \times 3\).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 \times 0 = 0</td>
<td>3 \times 0 = 0</td>
</tr>
<tr>
<td>9 \times 1 = 9</td>
<td>3 \times 1 = 3</td>
</tr>
<tr>
<td>9 \times 2 = 18</td>
<td>3 \times 2 = 6</td>
</tr>
<tr>
<td>9 \times 3 = 27</td>
<td>3 \times 3 = 9</td>
</tr>
<tr>
<td>9 \times 4 = 36</td>
<td>3 \times 4 = 12</td>
</tr>
<tr>
<td>9 \times 5 = 45</td>
<td>3 \times 5 = 15</td>
</tr>
<tr>
<td>9 \times 6 = 54</td>
<td>3 \times 6 = 18</td>
</tr>
<tr>
<td>9 \times 7 = 63</td>
<td>3 \times 7 = 21</td>
</tr>
<tr>
<td>9 \times 8 = 72</td>
<td>3 \times 8 = 24</td>
</tr>
<tr>
<td>9 \times 9 = 81</td>
<td>3 \times 9 = 27</td>
</tr>
<tr>
<td>9 \times 10 = 90</td>
<td>3 \times 10 = 30</td>
</tr>
</tbody>
</table>

•

Look at the row in table 1 that shows,

\[9 \times 3 = 27 \]

And at the row in table 2 that shows,

\[3 \times 9 = 27 \]

• \(9 \times 3 = 27 \)

Thus, type in 27.

Scaffold:

We know,

\[9 \times 3 = 27 \]

Now try the original problem again.

What is \((-9) \times 3\)?

Algebraic Expression:

✓ -27

Hints:

• We know,

\[9 \times 3 = 27 \]
We need to consider the signs of the factors as well.

Remember the rule of multiplying signs which says,

\[
\begin{align*}
+ \times + &= + \\
+ \times - &= - \\
- \times + &= - \\
- \times - &= +
\end{align*}
\]

Thus using this rule we get,

\[
(-9) \times 3 = -27
\]

Type in -27

63) Problem #PRABFEC "PRABFEC - Multiplication of Integers"
What is \((-3) \times (-3)?\)

Algebraic Expression:

\[\checkmark 9\]

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.
Go ahead and compute,

\[3 \times 3 \]

Algebraic Expression:

✓ 9

Hints:

- Below are the multiplication tables of 3 and 3.

You can use them to compute 3*3.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 \times 0 = 0</td>
<td>3 \times 0 = 0</td>
</tr>
<tr>
<td>3 \times 1 = 3</td>
<td>3 \times 1 = 3</td>
</tr>
<tr>
<td>3 \times 2 = 6</td>
<td>3 \times 2 = 6</td>
</tr>
<tr>
<td>3 \times 3 = 9</td>
<td>3 \times 3 = 9</td>
</tr>
<tr>
<td>3 \times 4 = 12</td>
<td>3 \times 4 = 12</td>
</tr>
<tr>
<td>3 \times 5 = 15</td>
<td>3 \times 5 = 15</td>
</tr>
<tr>
<td>3 \times 6 = 18</td>
<td>3 \times 6 = 18</td>
</tr>
<tr>
<td>3 \times 7 = 21</td>
<td>3 \times 7 = 21</td>
</tr>
<tr>
<td>3 \times 8 = 24</td>
<td>3 \times 8 = 24</td>
</tr>
<tr>
<td>3 \times 9 = 27</td>
<td>3 \times 9 = 27</td>
</tr>
<tr>
<td>3 \times 10 = 30</td>
<td>3 \times 10 = 30</td>
</tr>
</tbody>
</table>

- Look at the row in table 1 that shows, 3 \times 3 = 9
- And at the row in table 2 that shows, 3 \times 3 = 9
 - 3 \times 3 = 9

Thus, type in 9.

Scaffold:

We know,

3 \times 3 = 9

Now try the original problem again.

What is (-3) * (-3)?

Algebraic Expression:

✓ 9

Hints:
We know,
\[3 \times 3 = 9 \]

We need to consider the signs of the factors as well.

Our first factor, \(-3\), is negative and our second factor, \(-3\), is negative as well.

We are multiplying a negative number to a negative one.

We must consider the multiplication of the signs as well.

Remember the rule of multiplying signs which says,

\[+ \times + = + \]
\[+ \times - = - \]
\[- \times + = - \]
\[- \times - = + \]

We have, the fourth case where,

\[-3 \times -3 = 9 \]

Thus using this rule we get,

\[(-3) \times (-3) = 9 \]

Type in 9.
Algebraic Expression:
-12

Scaffold:
Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[3 \times 4 \]

Algebraic Expression:
12

Hints:

Below are the multiplication tables of 3 and 4.

You can use them to compute \(3 \times 4 \).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 \times 0 = 0</td>
<td>4 \times 0 = 0</td>
</tr>
<tr>
<td>3 \times 1 = 3</td>
<td>4 \times 1 = 4</td>
</tr>
<tr>
<td>3 \times 2 = 6</td>
<td>4 \times 2 = 8</td>
</tr>
<tr>
<td>3 \times 3 = 9</td>
<td>4 \times 3 = 12</td>
</tr>
<tr>
<td>3 \times 4 = 12</td>
<td>4 \times 4 = 16</td>
</tr>
<tr>
<td>3 \times 5 = 15</td>
<td>4 \times 5 = 20</td>
</tr>
<tr>
<td>3 \times 6 = 18</td>
<td>4 \times 6 = 24</td>
</tr>
<tr>
<td>3 \times 7 = 21</td>
<td>4 \times 7 = 28</td>
</tr>
<tr>
<td>3 \times 8 = 24</td>
<td>4 \times 8 = 32</td>
</tr>
<tr>
<td>3 \times 9 = 27</td>
<td>4 \times 9 = 36</td>
</tr>
<tr>
<td>3 \times 10 = 30</td>
<td>4 \times 10 = 40</td>
</tr>
</tbody>
</table>

Look at the row in table 1 that shows,

\[3 \times 4 = 12 \]

And at the row in table 2 that shows,

\[4 \times 3 = 12 \]

\[3 \times 4 = 12 \]

Thus, type in 12.

Scaffold:
We know,
\[3 \times 4 = 12 \]
Now try the original problem again.
What is $3 \times (-4)$?

Algebraic Expression:

✓ -12

Hints:

- We know, $3 \times 4 = 12$

We need to consider the signs of the factors as well.

Remember the rule of multiplying signs which says,

\[\begin{align*}
+ \times + &= + \\
+ \times - &= - \\
- \times + &= - \\
- \times - &= +
\end{align*}\]

We have, the second case where,

\[\begin{align*}
+ \times - &= -
\end{align*}\]

Thus using this rule we get,

\[3 \times (-4) = -12\]

Type in -12

65) Problem #PRABFCW "PRABFCW - Multiplication of Integers"
What is \(-9 \times 9\)?

Algebraic Expression:

✅ -81

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\(9 \times 9\)

Algebraic Expression:

✅ 81

Hints:

- Below are the multiplication tables of 9 and 9.

You can use them to compute \(9 \times 9\).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 * 0 = 0</td>
<td>9 * 0 = 0</td>
</tr>
<tr>
<td>9 * 1 = 9</td>
<td>9 * 1 = 9</td>
</tr>
<tr>
<td>9 * 2 = 18</td>
<td>9 * 2 = 18</td>
</tr>
<tr>
<td>9 * 3 = 27</td>
<td>9 * 3 = 27</td>
</tr>
<tr>
<td>9 * 4 = 36</td>
<td>9 * 4 = 36</td>
</tr>
<tr>
<td>9 * 5 = 45</td>
<td>9 * 5 = 45</td>
</tr>
<tr>
<td>9 * 6 = 54</td>
<td>9 * 6 = 54</td>
</tr>
<tr>
<td>9 * 7 = 63</td>
<td>9 * 7 = 63</td>
</tr>
<tr>
<td>9 * 8 = 72</td>
<td>9 * 8 = 72</td>
</tr>
<tr>
<td>9 * 9 = 81</td>
<td>9 * 9 = 81</td>
</tr>
<tr>
<td>9 * 10 = 90</td>
<td>9 * 10 = 90</td>
</tr>
</tbody>
</table>

Look at the row in table 1 that shows,

\(9 \times 9 = 81\)

And at the row in table 2 that shows,

\(9 \times 9 = 81\)

- \(9 \times 9 = 81\)

Thus, type in 81.

Scaffold:

We know,

\(9 \times 9 = 81\)
Now try the original problem again.

What is \((-9) \times 9\)?

Algebraic Expression:

-81

Hints:

- We know,
 \(9 \times 9 = 81\)

We need to consider the signs of the factors as well.

Remember the rule of multiplying signs which says,

\[
\begin{align*}
+ \times + &= + \\
+ \times - &= - \\
- \times + &= - \\
- \times - &= +
\end{align*}
\]

We have, the third case where,

\[
\begin{align*}
-9 \times + &= -
\end{align*}
\]

Thus using this rule we get,

\[
\begin{align*}
(-9) \times 9 &= -81
\end{align*}
\]

Type in **-81**
66) Problem #PRABFCH "PRABFCH - Multiplication of Integers"
What is $7 \times (-3)$?

Algebraic Expression:

-21

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

7×3

Algebraic Expression:

21

Hints:

- Below are the multiplication tables of 7 and 3.

You can use them to compute 7×3.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 * 0 = 0</td>
<td>3 * 0 = 0</td>
</tr>
<tr>
<td>7 * 1 = 7</td>
<td>3 * 1 = 3</td>
</tr>
<tr>
<td>7 * 2 = 14</td>
<td>3 * 2 = 6</td>
</tr>
<tr>
<td>7 * 3 = 21</td>
<td>3 * 3 = 9</td>
</tr>
<tr>
<td>7 * 4 = 28</td>
<td>3 * 4 = 12</td>
</tr>
<tr>
<td>7 * 5 = 35</td>
<td>3 * 5 = 15</td>
</tr>
<tr>
<td>7 * 6 = 42</td>
<td>3 * 6 = 18</td>
</tr>
<tr>
<td>7 * 7 = 49</td>
<td>3 * 7 = 21</td>
</tr>
<tr>
<td>7 * 8 = 56</td>
<td>3 * 8 = 24</td>
</tr>
<tr>
<td>7 * 9 = 63</td>
<td>3 * 9 = 27</td>
</tr>
<tr>
<td>7 * 10 = 70</td>
<td>3 * 10 = 30</td>
</tr>
</tbody>
</table>

- Look at the row in table 1 that shows, $7 \times 3 = 21$

And at the row in table 2 that shows, $3 \times 7 = 21$

- $7 \times 3 = 21$

Thus, type in 21.
Scaffold:

We know,

7 * 3 = 21

Now try the original problem again.

What is 7 * (-3)?

Algebraic Expression:

✓ -21

Hints:

- We know,
 7 * 3 = 21

We need to consider the signs of the factors as well.

- Remember the rule of multiplying signs which says,

\[
\begin{align*}
+ \times + & = + \\
+ \times - & = - \\
- \times + & = - \\
- \times - & = +
\end{align*}
\]

We have, the second case where,

\[
+ \times - = -
\]

Thus using this rule we get,

7 * (-3)

= -21
67) Problem #PRABFDX "PRABFDX - Multiplication of Integers"

What is \((-8) \times (-7)\)?

Algebraic Expression:

\[\checkmark 56\]

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[8 \times 7\]

Algebraic Expression:

\[\checkmark 56\]

Hints:

- Below are the multiplication tables of 8 and 7.

You can use them to compute \(8 \times 7\).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(8 \times 0 = 0)</td>
<td>(7 \times 0 = 0)</td>
</tr>
<tr>
<td>(8 \times 1 = 8)</td>
<td>(7 \times 1 = 7)</td>
</tr>
<tr>
<td>(8 \times 2 = 16)</td>
<td>(7 \times 2 = 14)</td>
</tr>
<tr>
<td>(8 \times 3 = 24)</td>
<td>(7 \times 3 = 21)</td>
</tr>
<tr>
<td>(8 \times 4 = 32)</td>
<td>(7 \times 4 = 28)</td>
</tr>
<tr>
<td>(8 \times 5 = 40)</td>
<td>(7 \times 5 = 35)</td>
</tr>
<tr>
<td>(8 \times 6 = 48)</td>
<td>(7 \times 6 = 42)</td>
</tr>
<tr>
<td>(8 \times 7 = 56)</td>
<td>(7 \times 7 = 49)</td>
</tr>
<tr>
<td>(8 \times 8 = 64)</td>
<td>(7 \times 8 = 56)</td>
</tr>
<tr>
<td>(8 \times 9 = 72)</td>
<td>(7 \times 9 = 63)</td>
</tr>
<tr>
<td>(8 \times 10 = 80)</td>
<td>(7 \times 10 = 70)</td>
</tr>
</tbody>
</table>

Look at the row in table 1 that shows,

\[8 \times 7 = 56\]

And at the row in table 2 that shows,

\[7 \times 8 = 56\]

\[8 \times 7 = 56\]

Thus, type in \(56\).
Scaffold:
We know,
\(8 \times 7 = 56 \)
Now try the original problem again.

What is \((-8) \times (-7)\)?

Algebraic Expression:

\(56 \)

Hints:

- We know,
 \(8 \times 7 = 56 \)

We need to consider the signs of the factors as well.

- Our first factor, \(-8\), is negative and our second factor, \(-7\), is negative as well.

We are multiplying a negative number to a negative one.

We must consider the multiplication of the signs as well.

- Remember the rule of multiplying signs which says,

\[+ \times + = + \]
\[+ \times - = - \]
\[- \times + = - \]
\[- \times - = + \]

- We have, the fourth case where,

\[- \times - = + \]

Thus using this rule we get,

\((-8) \times (-7)\)
68) Problem #PRABFDH "PRABFDH - Multiplication of Integers"

What is \((-2) \times 7\)?

Algebraic Expression:

\(\checkmark\) 14

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\(2 \times 7\)

Algebraic Expression:

\(\checkmark\) 14

Hints:

•

Below are the multiplication tables of 2 and 7.

You can use them to compute \(2 \times 7\).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2 \times 0 = 0)</td>
<td>(7 \times 0 = 0)</td>
</tr>
<tr>
<td>(2 \times 1 = 2)</td>
<td>(7 \times 1 = 7)</td>
</tr>
<tr>
<td>(2 \times 2 = 4)</td>
<td>(7 \times 2 = 14)</td>
</tr>
<tr>
<td>(2 \times 3 = 6)</td>
<td>(7 \times 3 = 21)</td>
</tr>
<tr>
<td>(2 \times 4 = 8)</td>
<td>(7 \times 4 = 28)</td>
</tr>
<tr>
<td>(2 \times 5 = 10)</td>
<td>(7 \times 5 = 35)</td>
</tr>
<tr>
<td>(2 \times 6 = 12)</td>
<td>(7 \times 6 = 42)</td>
</tr>
<tr>
<td>(2 \times 7 = 14)</td>
<td>(7 \times 7 = 49)</td>
</tr>
<tr>
<td>(2 \times 8 = 16)</td>
<td>(7 \times 8 = 56)</td>
</tr>
<tr>
<td>(2 \times 9 = 18)</td>
<td>(7 \times 9 = 63)</td>
</tr>
<tr>
<td>(2 \times 10 = 20)</td>
<td>(7 \times 10 = 70)</td>
</tr>
</tbody>
</table>

•

Look at the row in table 1 that shows, \(2 \times 7 = 14\)
And at the row in table 2 that shows,
- \(7 \times 2 = 14\)
- \(2 \times 7 = 14\)

Thus, type in 14.

Scaffold:

We know,
\(2 \times 7 = 14\)
Now try the original problem again.

What is \((-2) \times 7\)?

Algebraic Expression:

✓ -14

Hints:

- We know,
 \(2 \times 7 = 14\)

We need to consider the signs of the factors as well.

Remember the rule of multiplying signs which says,

\[\begin{align*}
+ \times + &= + \\
+ \times - &= - \\
- \times + &= - \\
- \times - &= + \\
\end{align*}\]

We have, the third case where,

\[\begin{align*}
- & \times + = - \\
\end{align*}\]

Thus using this rule we get,

\((-2) \times 7\)
69) Problem #PRABFC3 "PRABFC3 - Multiplication of Integers"

What is 7 * (-2)?

Algebraic Expression:

-14

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

7 * 2

Algebraic Expression:

14

Hints:

Below are the multiplication tables of 7 and 2.

You can use them to compute 7*2.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 * 0 = 0</td>
<td>2 * 0 = 0</td>
</tr>
<tr>
<td>7 * 1 = 7</td>
<td>2 * 1 = 2</td>
</tr>
<tr>
<td>7 * 2 = 14</td>
<td>2 * 2 = 4</td>
</tr>
<tr>
<td>7 * 3 = 21</td>
<td>2 * 3 = 6</td>
</tr>
<tr>
<td>7 * 4 = 28</td>
<td>2 * 4 = 8</td>
</tr>
<tr>
<td>7 * 5 = 35</td>
<td>2 * 5 = 10</td>
</tr>
<tr>
<td>7 * 6 = 42</td>
<td>2 * 6 = 12</td>
</tr>
<tr>
<td>7 * 7 = 49</td>
<td>2 * 7 = 14</td>
</tr>
<tr>
<td>7 * 8 = 56</td>
<td>2 * 8 = 16</td>
</tr>
<tr>
<td>7 * 9 = 63</td>
<td>2 * 9 = 18</td>
</tr>
<tr>
<td>7 * 10 = 70</td>
<td>2 * 10 = 20</td>
</tr>
</tbody>
</table>

*
Look at the row in table 1 that shows,
7 * 2 = 14

And at the row in table 2 that shows,
2 * 7 = 14
• 7 * 2 = 14

Thus, type in 14.

Scaffold:
We know,
7 * 2 = 14
Now try the original problem again.

What is 7 * (-2)?
Algebraic Expression:
✓ -14

Hints:
• We know,
7 * 2 = 14

We need to consider the signs of the factors as well.
•
Remember the rule of multiplying signs which says,

+ x + = +

+ x - = -

- x + = -

- x - = +

We have, the second case where,

+ x - = -

Thus using this rule we get,
7 * (-2)

= -14

Type in -14

70) Problem #PRABFD3 "PRABFD3 - Multiplication of Integers"

What is (-6) * (-1)?

Algebraic Expression:
✓ 6

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

6 * 1

Algebraic Expression:
✓ 6

Hints:

Below are the multiplication tables of 6 and 1.

You can use them to compute 6 * 1.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 * 1 = 6</td>
<td>1 * 1 = 1</td>
</tr>
<tr>
<td>6 * 2 = 12</td>
<td>1 * 2 = 2</td>
</tr>
<tr>
<td>6 * 3 = 18</td>
<td>1 * 3 = 3</td>
</tr>
<tr>
<td>6 * 4 = 24</td>
<td>1 * 4 = 4</td>
</tr>
<tr>
<td>6 * 5 = 30</td>
<td>1 * 5 = 5</td>
</tr>
<tr>
<td>6 * 6 = 36</td>
<td>1 * 6 = 6</td>
</tr>
<tr>
<td>6 * 7 = 42</td>
<td>1 * 7 = 7</td>
</tr>
<tr>
<td>6 * 8 = 48</td>
<td>1 * 8 = 8</td>
</tr>
<tr>
<td>6 * 9 = 54</td>
<td>1 * 9 = 9</td>
</tr>
<tr>
<td>6 * 10 = 60</td>
<td>1 * 10 = 10</td>
</tr>
</tbody>
</table>

•
Look at the row in table 1 that shows,
6 * 1 = 6

And at the row in table 2 that shows,
1 * 6 = 6
• 6 * 1 = 6

Thus, type in 6.

Scaffold:
We know,
6 * 1 = 6
Now try the original problem again.

What is (-6) * (-1)?

Algebraic Expression:

6

Hints:
• We know,
6 * 1 = 6

We need to consider the signs of the factors as well.

•

Our first factor, -6, is negative and our second factor, -1, is negative as well.

We are multiplying a negative number to a negative one.

We must consider the multiplication of the signs as well.

•

Remember the rule of multiplying signs which says,

\[\begin{align*}
+ \times + &= + \\
+ \times - &= - \\
- \times + &= - \\
- \times - &= +
\end{align*} \]
We have, the fourth case where,

\[(-6) \times (-1) = 6 \]

Thus using this rule we get,

\[(-6) \times (-1) = 6 \]

Type in 6.

71) Problem #PRABFDG "PRABFDG - Multiplication of Integers"

What is \((-7) \times 10\)?

Algebraic Expression:

\[-70 \]

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[7 \times 10 \]

Algebraic Expression:

\[70 \]

Hints:

https://www.assistments.org/build/print/sequence/803904?mode=debug&op_scaf=false&op_hint=false&op_answer_op=false&op_answer=false&op_name=false&op_buggies=false&op_sections=false&short_answers=false

Below are the multiplication tables of 7 and 10.

You can use them to compute \(7 \times 10\).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 * 0 = 0</td>
<td>10 * 0 = 0</td>
</tr>
<tr>
<td>7 * 1 = 7</td>
<td>10 * 1 = 10</td>
</tr>
<tr>
<td>7 * 2 = 14</td>
<td>10 * 2 = 20</td>
</tr>
<tr>
<td>7 * 3 = 21</td>
<td>10 * 3 = 30</td>
</tr>
<tr>
<td>7 * 4 = 28</td>
<td>10 * 4 = 40</td>
</tr>
<tr>
<td>7 * 5 = 35</td>
<td>10 * 5 = 50</td>
</tr>
<tr>
<td>7 * 6 = 42</td>
<td>10 * 6 = 60</td>
</tr>
<tr>
<td>7 * 7 = 49</td>
<td>10 * 7 = 70</td>
</tr>
<tr>
<td>7 * 8</td>
<td>10 * 8</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>56</td>
<td>80</td>
</tr>
<tr>
<td>7 * 9</td>
<td>10 * 9</td>
</tr>
<tr>
<td>63</td>
<td>90</td>
</tr>
<tr>
<td>7 * 10</td>
<td>10 * 10</td>
</tr>
<tr>
<td>70</td>
<td>100</td>
</tr>
</tbody>
</table>

- Look at the row in table 1 that shows,
 \(7 \times 10 = 70\)

And at the row in table 2 that shows,
\(10 \times 7 = 70\)
- \(7 \times 10 = 70\)

Thus, type in \(70\).

Scaffold:
We know,
\(7 \times 10 = 70\)

Now try the original problem again.

What is \((-7) \times 10\)?

Algebraic Expression:
-70

Hints:
- We know,
\(7 \times 10 = 70\)

We need to consider the signs of the factors as well.

Remember the rule of multiplying signs which says,

\[
\begin{align*}
\text{+} \times \text{+} &= \text{+} \\
\text{+} \times \text{=} &= \text{=} \\
\text{=} \times \text{+} &= \text{=} \\
\text{=} \times \text{=} &= \text{+}
\end{align*}
\]
We have, the third case where,

\[\text{X} + \text{=} \]

Thus using this rule we get,

\((-7) \times 10\)

\[= -70\]

Type in -70

72) Problem #PRABFCA "PRABFCA - Multiplication of Integers"

What is \(4 \times (-3)\)?

Algebraic Expression:

✓ -12

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\(4 \times 3\)

Algebraic Expression:

✓ 12

Hints:

Below are the multiplication tables of 4 and 3.

You can use them to compute 4*3.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 * 0 = 0</td>
<td>3 * 0 = 0</td>
</tr>
<tr>
<td>4 * 1 = 4</td>
<td>3 * 1 = 3</td>
</tr>
<tr>
<td>4 * 2 = 8</td>
<td>3 * 2 = 6</td>
</tr>
<tr>
<td>4 * 3 = 12</td>
<td>3 * 3 = 9</td>
</tr>
<tr>
<td>4 * 4 = 16</td>
<td>3 * 4 = 12</td>
</tr>
<tr>
<td>4 * 5 = 20</td>
<td>3 * 5 = 15</td>
</tr>
</tbody>
</table>
\[
\begin{array}{ccc}
4 \times 6 &=& 24 \\
3 \times 6 &=& 18 \\
4 \times 7 &=& 28 \\
3 \times 7 &=& 21 \\
4 \times 8 &=& 32 \\
3 \times 8 &=& 24 \\
4 \times 9 &=& 36 \\
3 \times 9 &=& 27 \\
4 \times 10 &=& 40 \\
3 \times 10 &=& 30 \\
\end{array}
\]

Look at the row in table 1 that shows,
\[4 \times 3 = 12\]

And at the row in table 2 that shows,
\[3 \times 4 = 12\]

\[4 \times 3 = 12\]

Thus, type in 12.

Scaffold:

We know,
\[4 \times 3 = 12\]

Now try the original problem again.

What is \[4 \times (\text{-}3)\]?

Algebraic Expression:

\[\checkmark \text{-12}\]

Hints:

- We know,
\[4 \times 3 = 12\]

We need to consider the signs of the factors as well.

Remember the rule of multiplying signs which says,
We have, the second case where,

4 \times (-3) = -12

Thus using this rule we get,

4 \times (-3) = -12

Type in -12

73) Problem #PRABFDM "PRABFDM - Multiplication of Integers"
What is (-3) \times 6?

Algebraic Expression:
-18

Scaffold:
Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

3 \times 6

Algebraic Expression:
18

Hints:
Below are the multiplication tables of 3 and 6.

<table>
<thead>
<tr>
<th>Table 1</th>
<th></th>
<th>Table 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3 \times 0 = 0</td>
<td>6 \times 0 = 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 \times 1 = 3</td>
<td>6 \times 1 = 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 \times 2 = 6</td>
<td>6 \times 2 = 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 \times 3 = 9</td>
<td>6 \times 3 = 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 \times 4 = 12</td>
<td>6 \times 4 = 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 \times 5 = 15</td>
<td>6 \times 5 = 30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

https://www.assistments.org/build/print/sequence/803904?mode=debug&op_scaf=false&op_hint=false&op_answer_op=false&op_answer=false&op_name=false&op_buggies=false&op_sections=false&short_answers=false
$3 \times 6 = 18$
$6 \times 6 = 36$
$3 \times 7 = 21$
$6 \times 7 = 42$
$3 \times 8 = 24$
$6 \times 8 = 48$
$3 \times 9 = 27$
$6 \times 9 = 54$
$3 \times 10 = 30$
$6 \times 10 = 60$

Look at the row in table 1 that shows,
$3 \times 6 = 18$

And at the row in table 2 that shows,
$6 \times 3 = 18$

Thus, type in 18.

Scaffold:

We know,
$3 \times 6 = 18$
Now try the original problem again.

What is \((-3) \times 6\)?

Algebraic Expression:

-18

Hints:

- We know,
$3 \times 6 = 18$

We need to consider the signs of the factors as well.

Remember the rule of multiplying signs which says,
We have, the third case where,

\[-3 \times 6 = -18 \]

Thus using this rule we get,

\[(-3) \times 6 = -18 \]

Type in -18

74) Problem #PRABFEJ "PRABFEJ - Multiplication of Integers"
What is \((-3) \times (-7)\)?

Algebraic Expression:

\[21 \]

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[3 \times 7 = 21 \]

Hints:

Below are the multiplication tables of 3 and 7.

You can use them to compute 3*7.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 * 0 = 0</td>
<td>7 * 0 = 0</td>
</tr>
<tr>
<td>3 * 1 = 3</td>
<td>7 * 1 = 7</td>
</tr>
<tr>
<td>3 * 2 = 6</td>
<td>7 * 2 = 14</td>
</tr>
<tr>
<td>3 * 3 = 9</td>
<td>7 * 3 = 21</td>
</tr>
<tr>
<td>3 * 4 = 12</td>
<td>7 * 4 = 28</td>
</tr>
</tbody>
</table>
Look at the row in table 1 that shows,
\[3 \times 7 = 21 \]

And at the row in table 2 that shows,
\[7 \times 3 = 21 \]
\[3 \times 7 = 21 \]

Thus, type in 21.

Scaffold:

We know,
\[3 \times 7 = 21 \]

Now try the original problem again.

What is \((-3) \times (-7)?\)

Algebraic Expression:

\[21 \]

Hints:

- We know,
\[3 \times 7 = 21 \]

We need to consider the signs of the factors as well.

Our first factor, \(-3\), is negative and our second factor, \(-7\), is negative as well.

We are multiplying a negative number to a negative one.

We must consider the multiplication of the signs as well.
Remember the rule of multiplying signs which says,

\[+ \times + = + \]
\[+ \times - = - \]
\[- \times + = - \]
\[- \times - = + \]

- We have, the fourth case where,

\[- \times - = + \]

Thus using this rule we get,

\[(-3) \times (-7) = 21 \]

Type in 21.

75) Problem #PRABFDP "PRABFDP - Multiplication of Integers"

What is \((-6) \times 2\)?

Algebraic Expression:
-12

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[6 \times 2 \]

Algebraic Expression:
12
Hints:

* Below are the multiplication tables of 6 and 2.

You can use them to compute 6*2.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 * 0 = 0</td>
<td>2 * 0 = 0</td>
</tr>
<tr>
<td>6 * 1 = 6</td>
<td>2 * 1 = 2</td>
</tr>
<tr>
<td>6 * 2 = 12</td>
<td>2 * 2 = 4</td>
</tr>
<tr>
<td>6 * 3 = 18</td>
<td>2 * 3 = 6</td>
</tr>
<tr>
<td>6 * 4 = 24</td>
<td>2 * 4 = 8</td>
</tr>
<tr>
<td>6 * 5 = 30</td>
<td>2 * 5 = 10</td>
</tr>
<tr>
<td>6 * 6 = 36</td>
<td>2 * 6 = 12</td>
</tr>
<tr>
<td>6 * 7 = 42</td>
<td>2 * 7 = 14</td>
</tr>
<tr>
<td>6 * 8 = 48</td>
<td>2 * 8 = 16</td>
</tr>
<tr>
<td>6 * 9 = 54</td>
<td>2 * 9 = 18</td>
</tr>
<tr>
<td>6 * 10 = 60</td>
<td>2 * 10 = 20</td>
</tr>
</tbody>
</table>

* Look at the row in table 1 that shows, 6 * 2 = 12

And at the row in table 2 that shows, 2 * 6 = 12

* 6 * 2 = 12

Thus, type in 12.

Scaffold:

We know,

6 * 2 = 12
Now try the original problem again.

What is (-6) * 2?

Algebraic Expression:

-12

Hints:

* We know,

6 * 2 = 12

We need to consider the signs of the factors as well.
Remember the rule of multiplying signs which says,

\[
\begin{align*}
+ \times + &= + \\
+ \times - &= - \\
- \times + &= - \\
- \times - &= +
\end{align*}
\]

We have, the third case where,

\[
- \times + = -
\]

Thus using this rule we get,

\[
(-6) \times 2 = -12
\]

Type in -12

76) Problem #PRABFB9 "PRABFB9 - Multiplication of Integers"
What is \(3 \times (-5)\)?

Algebraic Expression:

\[3 \times (-5) = -15\]

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,
3 * 5

Algebraic Expression:
✓ 15

Hints:

Below are the multiplication tables of 3 and 5.
You can use them to compute 3*5.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 * 0 = 0</td>
<td>5 * 0 = 0</td>
</tr>
<tr>
<td>3 * 1 = 3</td>
<td>5 * 1 = 5</td>
</tr>
<tr>
<td>3 * 2 = 6</td>
<td>5 * 2 = 10</td>
</tr>
<tr>
<td>3 * 3 = 9</td>
<td>5 * 3 = 15</td>
</tr>
<tr>
<td>3 * 4 = 12</td>
<td>5 * 4 = 20</td>
</tr>
<tr>
<td>3 * 5 = 15</td>
<td>5 * 5 = 25</td>
</tr>
<tr>
<td>3 * 6 = 18</td>
<td>5 * 6 = 30</td>
</tr>
<tr>
<td>3 * 7 = 21</td>
<td>5 * 7 = 35</td>
</tr>
<tr>
<td>3 * 8 = 24</td>
<td>5 * 8 = 40</td>
</tr>
<tr>
<td>3 * 9 = 27</td>
<td>5 * 9 = 45</td>
</tr>
<tr>
<td>3 * 10 = 30</td>
<td>5 * 10 = 50</td>
</tr>
</tbody>
</table>

Thus, type in 15.

Scaffold:
We know,
3 * 5 = 15
Now try the original problem again.

What is 3 * (-5)?

Algebraic Expression:
✓ -15

Hints:
• We know,
3 * 5 = 15

We need to consider the signs of the factors as well.
Remember the rule of multiplying signs which says,

\[+ \times + = + \]
\[+ \times - = - \]
\[- \times + = - \]
\[- \times - = + \]

We have, the second case where,

\[+ \times - = - \]

Thus using this rule we get,

\[3 \times (-5) \]
\[= -15 \]

Type in -15

77) Problem #PRABFCJ "PRABFCJ - Multiplication of Integers"
What is \(8 \times (-6)\)?

Algebraic Expression:

\[-48 \]

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,
8 * 6

Algebraic Expression:

✓ 48

Hints:

- Below are the multiplication tables of 8 and 6.

You can use them to compute 8*6.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 * 0 = 0</td>
<td>6 * 0 = 0</td>
</tr>
<tr>
<td>8 * 1 = 8</td>
<td>6 * 1 = 6</td>
</tr>
<tr>
<td>8 * 2 = 16</td>
<td>6 * 2 = 12</td>
</tr>
<tr>
<td>8 * 3 = 24</td>
<td>6 * 3 = 18</td>
</tr>
<tr>
<td>8 * 4 = 32</td>
<td>6 * 4 = 24</td>
</tr>
<tr>
<td>8 * 5 = 40</td>
<td>6 * 5 = 30</td>
</tr>
<tr>
<td>8 * 6 = 48</td>
<td>6 * 6 = 36</td>
</tr>
<tr>
<td>8 * 7 = 56</td>
<td>6 * 7 = 42</td>
</tr>
<tr>
<td>8 * 8 = 64</td>
<td>6 * 8 = 48</td>
</tr>
<tr>
<td>8 * 9 = 72</td>
<td>6 * 9 = 54</td>
</tr>
<tr>
<td>8 * 10 = 80</td>
<td>6 * 10 = 60</td>
</tr>
</tbody>
</table>

- Look at the row in table 1 that shows,
 8 * 6 = 48

 And at the row in table 2 that shows,
 6 * 8 = 48

Thus, type in 48.

Scaffold:

We know,

8 * 6 = 48

Now try the original problem again.

What is 8 * (-6)?

Algebraic Expression:

✓ -48

Hints:

- We know,

8 * 6 = 48

We need to consider the signs of the factors as well.
Remember the rule of multiplying signs which says,

\[
\begin{align*}
+ \times + &= + \\
+ \times - &= - \\
- \times + &= - \\
- \times - &= +
\end{align*}
\]

We have, the second case where,

\[
+ \times - = -
\]

Thus using this rule we get,

\[
8 \times (-6) = -48
\]

Type in \(-48\)

78) Problem #PRABFDV "PRABFDV - Multiplication of Integers"

What is (-8) * 7?

Algebraic Expression:

-56

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,
8 \times 7

Algebraic Expression:

\checkmark 56

Hints:

- Below are the multiplication tables of 8 and 7.

You can use them to compute 8\times7.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 \times 0 = 0</td>
<td>7 \times 0 = 0</td>
</tr>
<tr>
<td>8 \times 1 = 8</td>
<td>7 \times 1 = 7</td>
</tr>
<tr>
<td>8 \times 2 = 16</td>
<td>7 \times 2 = 14</td>
</tr>
<tr>
<td>8 \times 3 = 24</td>
<td>7 \times 3 = 21</td>
</tr>
<tr>
<td>8 \times 4 = 32</td>
<td>7 \times 4 = 28</td>
</tr>
<tr>
<td>8 \times 5 = 40</td>
<td>7 \times 5 = 35</td>
</tr>
<tr>
<td>8 \times 6 = 48</td>
<td>7 \times 6 = 42</td>
</tr>
<tr>
<td>8 \times 7 = 56</td>
<td>7 \times 7 = 49</td>
</tr>
<tr>
<td>8 \times 8 = 64</td>
<td>7 \times 8 = 56</td>
</tr>
<tr>
<td>8 \times 9 = 72</td>
<td>7 \times 9 = 63</td>
</tr>
<tr>
<td>8 \times 10 = 80</td>
<td>7 \times 10 = 70</td>
</tr>
</tbody>
</table>

- Look at the row in table 1 that shows, $8 \times 7 = 56$

 And at the row in table 2 that shows, $7 \times 8 = 56$

Thus, type in 56.

Scaffold:

We know, $8 \times 7 = 56$

Now try the original problem again.

What is (-8) \times 7?

Algebraic Expression:

\checkmark -56

Hints:

- We know, $8 \times 7 = 56$

We need to consider the signs of the factors as well.
Remember the rule of multiplying signs which says,

\[\begin{align*}
+ & \times + = + \\
+ & \times - = - \\
- & \times + = - \\
- & \times - = +
\end{align*}\]

We have, the third case where,

\[- & \times + = -
\]

Thus using this rule we get,

\((-8) \times 7 = -56\)

Type in \(-56\)

79) Problem #PRABFDD “PRABFDD - Multiplication of Integers”

What is \((-7) \times 10\) ?

Algebraic Expression:

\(-70\)

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.
Go ahead and compute,

\[7 \times 10 \]

Algebraic Expression:

\[70 \]

Hints:

- Below are the multiplication tables of 7 and 10.

You can use them to compute \(7 \times 10 \).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>[7 \times 0 = 0]</td>
<td>[10 \times 0 = 0]</td>
</tr>
<tr>
<td>[7 \times 1 = 7]</td>
<td>[10 \times 1 = 10]</td>
</tr>
<tr>
<td>[7 \times 2 = 14]</td>
<td>[10 \times 2 = 20]</td>
</tr>
<tr>
<td>[7 \times 3 = 21]</td>
<td>[10 \times 3 = 30]</td>
</tr>
<tr>
<td>[7 \times 4 = 28]</td>
<td>[10 \times 4 = 40]</td>
</tr>
<tr>
<td>[7 \times 5 = 35]</td>
<td>[10 \times 5 = 50]</td>
</tr>
<tr>
<td>[7 \times 6 = 42]</td>
<td>[10 \times 6 = 60]</td>
</tr>
<tr>
<td>[7 \times 7 = 49]</td>
<td>[10 \times 7 = 70]</td>
</tr>
<tr>
<td>[7 \times 8 = 56]</td>
<td>[10 \times 8 = 80]</td>
</tr>
<tr>
<td>[7 \times 9 = 63]</td>
<td>[10 \times 9 = 90]</td>
</tr>
<tr>
<td>[7 \times 10 = 70]</td>
<td>[10 \times 10 = 100]</td>
</tr>
</tbody>
</table>

- Look at the row in table 1 that shows, \[7 \times 10 = 70 \]

And at the row in table 2 that shows, \[10 \times 7 = 70 \]

\[7 \times 10 = 70 \]

Thus, type in 70.

Scaffold:

- We know,
- \[7 \times 10 = 70 \]
- Now try the original problem again.

What is \((-7) \times 10\)?

Algebraic Expression:

\[-70 \]

Hints:

- We know,
- \[7 \times 10 = 70 \]
We need to consider the signs of the factors as well.

Remember the rule of multiplying signs which says,

\[\begin{align*}
+ & \times + = + \\
+ & \times - = - \\
- & \times + = - \\
- & \times - = +
\end{align*} \]

Thus using this rule we get,

\[(-7) \times 10 = -70 \]

Type in \(-70\)

80) Problem #PRABFEG "PRABFEG - Multiplication of Integers"
What is \((-4) \times (-4)\)?

Algebraic Expression:

\[16 \]

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.
Go ahead and compute,

\[4 \times 4\]

Algebraic Expression:

✓ 16

Hints:

- Below are the multiplication tables of 4 and 4.

You can use them to compute \(4 \times 4\).

<table>
<thead>
<tr>
<th>Table 1</th>
<th></th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 \times 0 = 0</td>
<td></td>
<td>4 \times 0 = 0</td>
</tr>
<tr>
<td>4 \times 1 = 4</td>
<td></td>
<td>4 \times 1 = 4</td>
</tr>
<tr>
<td>4 \times 2 = 8</td>
<td></td>
<td>4 \times 2 = 8</td>
</tr>
<tr>
<td>4 \times 3 = 12</td>
<td></td>
<td>4 \times 3 = 12</td>
</tr>
<tr>
<td>4 \times 4 = 16</td>
<td></td>
<td>4 \times 4 = 16</td>
</tr>
<tr>
<td>4 \times 5 = 20</td>
<td></td>
<td>4 \times 5 = 20</td>
</tr>
<tr>
<td>4 \times 6 = 24</td>
<td></td>
<td>4 \times 6 = 24</td>
</tr>
<tr>
<td>4 \times 7 = 28</td>
<td></td>
<td>4 \times 7 = 28</td>
</tr>
<tr>
<td>4 \times 8 = 32</td>
<td></td>
<td>4 \times 8 = 32</td>
</tr>
<tr>
<td>4 \times 9 = 36</td>
<td></td>
<td>4 \times 9 = 36</td>
</tr>
<tr>
<td>4 \times 10 = 40</td>
<td></td>
<td>4 \times 10 = 40</td>
</tr>
</tbody>
</table>

- Look at the row in table 1 that shows,

\[4 \times 4 = 16\]

And at the row in table 2 that shows,

\[4 \times 4 = 16\]

Thus, type in 16.

Scaffold:

We know,

\[4 \times 4 = 16\]

Now try the original problem again.

What is \((-4) \times (-4)\)?

Algebraic Expression:

✓ 16

Hints:
We know,
\[4 \times 4 = 16 \]

We need to consider the signs of the factors as well.

Our first factor, \(-4\), is negative and our second factor, \(-4\), is negative as well.
We are multiplying a negative number to a negative one.

We must consider the multiplication of the signs as well.

Remember the rule of multiplying signs which says,

\[+ \times + = + \]
\[+ \times - = - \]
\[- \times + = - \]
\[- \times - = + \]

We have, the fourth case where,

\[\begin{array}{c}
\text{\(-4\)} \times \text{\(-4\)} \\
\end{array} \]

Thus using this rule we get,

\[(-4) \times (-4) \]
\[= 16 \]

Type in 16.
Algebraic Expression:

\[-8 \]

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[8 \times 1 \]

Algebraic Expression:

\[8 \]

Hints:

Below are the multiplication tables of 8 and 1.

You can use them to compute 8\times 1.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 \times 0 = 0</td>
<td>1 \times 0 = 0</td>
</tr>
<tr>
<td>8 \times 1 = 8</td>
<td>1 \times 1 = 1</td>
</tr>
<tr>
<td>8 \times 2 = 16</td>
<td>1 \times 2 = 2</td>
</tr>
<tr>
<td>8 \times 3 = 24</td>
<td>1 \times 3 = 3</td>
</tr>
<tr>
<td>8 \times 4 = 32</td>
<td>1 \times 4 = 4</td>
</tr>
<tr>
<td>8 \times 5 = 40</td>
<td>1 \times 5 = 5</td>
</tr>
<tr>
<td>8 \times 6 = 48</td>
<td>1 \times 6 = 6</td>
</tr>
<tr>
<td>8 \times 7 = 56</td>
<td>1 \times 7 = 7</td>
</tr>
<tr>
<td>8 \times 8 = 64</td>
<td>1 \times 8 = 8</td>
</tr>
<tr>
<td>8 \times 9 = 72</td>
<td>1 \times 9 = 9</td>
</tr>
<tr>
<td>8 \times 10 = 80</td>
<td>1 \times 10 = 10</td>
</tr>
</tbody>
</table>

Look at the row in table 1 that shows,

\[8 \times 1 = 8 \]

And at the row in table 2 that shows,

\[1 \times 8 = 8 \]

\[8 \times 1 = 8 \]

Thus, type in 8.

Scaffold:

We know,

\[8 \times 1 = 8 \]

Now try the original problem again.
What is $8 \times (-1)$?

Algebraic Expression:

$\checkmark -8$

Hints:

- We know, $8 \times 1 = 8$

We need to consider the signs of the factors as well.

- Remember the rule of multiplying signs which says,

 $\begin{align*}
 + \times + &= + \\
 + \times - &= - \\
 - \times + &= - \\
 - \times - &= +
 \end{align*}$

We have, the second case where,

$\begin{align*}
+ \times - &= -
\end{align*}$

Thus using this rule we get,

$8 \times (-1)$

$= -8$

Type in -8

82) Problem #PRABFD5 "PRABFD5 - Multiplication of Integers"
What is \((-9) \times (-8)\)?

Algebraic Expression:

\[\checkmark 72 \]

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[9 \times 8 \]

Algebraic Expression:

\[\checkmark 72 \]

Hints:

Below are the multiplication tables of 9 and 8.

You can use them to compute \(9 \times 8\).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 * 0 = 0</td>
<td>8 * 0 = 0</td>
</tr>
<tr>
<td>9 * 1 = 9</td>
<td>8 * 1 = 8</td>
</tr>
<tr>
<td>9 * 2 = 18</td>
<td>8 * 2 = 16</td>
</tr>
<tr>
<td>9 * 3 = 27</td>
<td>8 * 3 = 24</td>
</tr>
<tr>
<td>9 * 4 = 36</td>
<td>8 * 4 = 32</td>
</tr>
<tr>
<td>9 * 5 = 45</td>
<td>8 * 5 = 40</td>
</tr>
<tr>
<td>9 * 6 = 54</td>
<td>8 * 6 = 48</td>
</tr>
<tr>
<td>9 * 7 = 63</td>
<td>8 * 7 = 56</td>
</tr>
<tr>
<td>9 * 8 = 72</td>
<td>8 * 8 = 64</td>
</tr>
<tr>
<td>9 * 9 = 81</td>
<td>8 * 9 = 72</td>
</tr>
<tr>
<td>9 * 10 = 90</td>
<td>8 * 10 = 80</td>
</tr>
</tbody>
</table>

Look at the row in table 1 that shows,

\[9 \times 8 = 72 \]

And at the row in table 2 that shows,

\[8 \times 9 = 72 \]

\[\checkmark 9 \times 8 = 72 \]

Thus, type in 72.

Scaffold:

We know,

\[9 \times 8 = 72 \]

Now try the original problem again.
What is \((-9) \times (-8)\)?

Algebraic Expression:

\[\checkmark \ 72 \]

Hints:

- We know,
 \[9 \times 8 = 72 \]

We need to consider the signs of the factors as well.

- Our first factor, \(-9\), is negative and our second factor, \(-8\), is negative as well.

 We are multiplying a negative number to a negative one.

 We must consider the multiplication of the signs as well.

 - Remember the rule of multiplying signs which says,

 \[
 \begin{align*}
 + \times + &= + \\
 + \times - &= - \\
 - \times + &= - \\
 - \times - &= +
 \end{align*}
 \]

 - We have, the fourth case where,

 \[
 \begin{align*}
 - \times - &= +
 \end{align*}
 \]

 Thus using this rule we get,

 \[
 (-9) \times (-8) = 72
 \]
Type in 72.

83) Problem #PRABFCB "PRABFCB - Multiplication of Integers"
What is $2 \times (-4)$?

Algebraic Expression:
✓ -8

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

2×4

Algebraic Expression:
✓ 8

Hints:

Below are the multiplication tables of 2 and 4.

You can use them to compute 2×4.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2 \times 0 = 0$</td>
<td>$4 \times 0 = 0$</td>
</tr>
<tr>
<td>$2 \times 1 = 2$</td>
<td>$4 \times 1 = 4$</td>
</tr>
<tr>
<td>$2 \times 2 = 4$</td>
<td>$4 \times 2 = 8$</td>
</tr>
<tr>
<td>$2 \times 3 = 6$</td>
<td>$4 \times 3 = 12$</td>
</tr>
<tr>
<td>$2 \times 4 = 8$</td>
<td>$4 \times 4 = 16$</td>
</tr>
<tr>
<td>$2 \times 5 = 10$</td>
<td>$4 \times 5 = 20$</td>
</tr>
<tr>
<td>$2 \times 6 = 12$</td>
<td>$4 \times 6 = 24$</td>
</tr>
<tr>
<td>$2 \times 7 = 14$</td>
<td>$4 \times 7 = 28$</td>
</tr>
<tr>
<td>$2 \times 8 = 16$</td>
<td>$4 \times 8 = 32$</td>
</tr>
<tr>
<td>$2 \times 9 = 18$</td>
<td>$4 \times 9 = 36$</td>
</tr>
<tr>
<td>$2 \times 10 = 20$</td>
<td>$4 \times 10 = 40$</td>
</tr>
</tbody>
</table>

Look at the row in table 1 that shows,
$2 \times 4 = 8$

And at the row in table 2 that shows,
$4 \times 2 = 8$

• $2 \times 4 = 8$
Thus, type in 8.

Scaffold:

We know,
2 * 4 = 8
Now try the original problem again.

What is 2 * (-4)?

Algebraic Expression:

✓ -8

Hints:

- We know,
2 * 4 = 8

We need to consider the signs of the factors as well.

Remember the rule of multiplying signs which says,

\[+ \times + = + \]
\[+ \times - = - \]
\[- \times + = - \]
\[- \times - = + \]

We have, the second case where,

\[+ \times - = - \]

Thus using this rule we get,

\[2 \times (-4) \]
\[= -8 \]
Type in -8

84) Problem #PRABFC7 "PRABFC7 - Multiplication of Integers"
What is $8 \times (-2)$?

Algebraic Expression:
✓ -16

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

8×2

Algebraic Expression:
✓ 16

Hints:

Below are the multiplication tables of 8 and 2.

You can use them to compute 8×2.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 * 0 = 0</td>
<td>2 * 0 = 0</td>
</tr>
<tr>
<td>8 * 1 = 8</td>
<td>2 * 1 = 2</td>
</tr>
<tr>
<td>8 * 2 = 16</td>
<td>2 * 2 = 4</td>
</tr>
<tr>
<td>8 * 3 = 24</td>
<td>2 * 3 = 6</td>
</tr>
<tr>
<td>8 * 4 = 32</td>
<td>2 * 4 = 8</td>
</tr>
<tr>
<td>8 * 5 = 40</td>
<td>2 * 5 = 10</td>
</tr>
<tr>
<td>8 * 6 = 48</td>
<td>2 * 6 = 12</td>
</tr>
<tr>
<td>8 * 7 = 56</td>
<td>2 * 7 = 14</td>
</tr>
<tr>
<td>8 * 8 = 64</td>
<td>2 * 8 = 16</td>
</tr>
<tr>
<td>8 * 9 = 72</td>
<td>2 * 9 = 18</td>
</tr>
<tr>
<td>8 * 10 = 80</td>
<td>2 * 10 = 20</td>
</tr>
</tbody>
</table>

Look at the row in table 1 that shows,
8 * 2 = 16

And at the row in table 2 that shows,
2 * 8 = 16
• \(8 \times 2 = 16 \)

Thus, type in 16.

Scaffold:

We know,
\(8 \times 2 = 16\)

Now try the original problem again.

What is \(8 \times (-2)\)?

Algebraic Expression:

✓ -16

Hints:

• *We know,*
\(8 \times 2 = 16\)

We need to consider the signs of the factors as well.

•

Remember the rule of multiplying signs which says,

\[+ \times + = + \]
\[+ \times - = - \]
\[- \times + = - \]
\[- \times - = + \]

We have, the second case where,

\[+ \times - = - \]

Thus using this rule we get,

\(8 \times (-2)\)

= -16
Type in -16

85) Problem #PRABFEU “PRABFEU - Multiplication of Integers”
What is (-7) * (-6)?

Algebraic Expression:

\[(-7) \times (-6) = 42 \]

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[7 \times 6 \]

Algebraic Expression:

\[42 \]

Hints:

Below are the multiplication tables of 7 and 6.

You can use them to compute \(7 \times 6\).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 * 0 = 0</td>
<td>6 * 0 = 0</td>
</tr>
<tr>
<td>7 * 1 = 7</td>
<td>6 * 1 = 6</td>
</tr>
<tr>
<td>7 * 2 = 14</td>
<td>6 * 2 = 12</td>
</tr>
<tr>
<td>7 * 3 = 21</td>
<td>6 * 3 = 18</td>
</tr>
<tr>
<td>7 * 4 = 28</td>
<td>6 * 4 = 24</td>
</tr>
<tr>
<td>7 * 5 = 35</td>
<td>6 * 5 = 30</td>
</tr>
<tr>
<td>7 * 6 = 42</td>
<td>6 * 6 = 36</td>
</tr>
<tr>
<td>7 * 7 = 49</td>
<td>6 * 7 = 42</td>
</tr>
<tr>
<td>7 * 8 = 56</td>
<td>6 * 8 = 48</td>
</tr>
<tr>
<td>7 * 9 = 63</td>
<td>6 * 9 = 54</td>
</tr>
<tr>
<td>7 * 10 = 70</td>
<td>6 * 10 = 60</td>
</tr>
</tbody>
</table>

Look at the row in table 1 that shows,

\[7 \times 6 = 42 \]

And at the row in table 2 that shows,

\[6 \times 7 = 42 \]

\[7 \times 6 = 42 \]
Thus, type in 42.

Scaffold:
We know,
7 * 6 = 42
Now try the original problem again.

What is (-7) * (-6)?

Algebraic Expression:
✓ 42

Hints:
- We know,
7 * 6 = 42

We need to consider the signs of the factors as well.

Our first factor, -7, is negative and our second factor, -6, is negative as well.

We are multiplying a negative number to a negative one.

We must consider the multiplication of the signs as well.

Remember the rule of multiplying signs which says,

![Image of multiplication signs]

- We have, the fourth case where,
Thus using this rule we get,

\((-7) \times (-6)\)

\[= 42\]

Type in 42.

86) Problem #PRABFDE "PRABFDE - Multiplication of Integers"

What is \((-8) \times 9\)?

Algebraic Expression:

\[\checkmark -72\]

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[8 \times 9\]

Algebraic Expression:

\[\checkmark 72\]

Hints:

Below are the multiplication tables of 8 and 9.

You can use them to compute \(8 \times 9\).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(8 \times 0 = 0)</td>
<td>(9 \times 0 = 0)</td>
</tr>
<tr>
<td>(8 \times 1 = 8)</td>
<td>(9 \times 1 = 9)</td>
</tr>
<tr>
<td>(8 \times 2 = 16)</td>
<td>(9 \times 2 = 18)</td>
</tr>
<tr>
<td>(8 \times 3 = 24)</td>
<td>(9 \times 3 = 27)</td>
</tr>
<tr>
<td>(8 \times 4 = 32)</td>
<td>(9 \times 4 = 36)</td>
</tr>
<tr>
<td>(8 \times 5 = 40)</td>
<td>(9 \times 5 = 45)</td>
</tr>
<tr>
<td>(8 \times 6 = 48)</td>
<td>(9 \times 6 = 54)</td>
</tr>
<tr>
<td>(8 \times 7 = 56)</td>
<td>(9 \times 7 = 63)</td>
</tr>
<tr>
<td>(8 \times 8 = 64)</td>
<td>(9 \times 8 = 72)</td>
</tr>
<tr>
<td>(8 \times 9 = 72)</td>
<td>(9 \times 9 = 81)</td>
</tr>
<tr>
<td>(8 \times 10 = 80)</td>
<td>(9 \times 10 = 90)</td>
</tr>
</tbody>
</table>
Look at the row in table 1 that shows,
8 \times 9 = 72

And at the row in table 2 that shows,
9 \times 8 = 72
- 8 \times 9 = 72

Thus, type in 72.

Scaffold:
We know,
8 \times 9 = 72
Now try the original problem again.

What is (-8) \times 9?

Algebraic Expression:

\checkmark -72

Hints:
- We know,
8 \times 9 = 72

We need to consider the signs of the factors as well.

Remember the rule of multiplying signs which says,

\begin{align*}
+ \times + &= + \\
+ \times - &= - \\
- \times + &= - \\
- \times - &= + \\
\end{align*}

We have, the third case where,

\[\begin{array}{c}
\begin{align*}
\text{- & \text{+}} &= \text{-} \\
\end{align*}
\end{array} \]

Thus using this rule we get,
(−8) * 9
= −72

Type in −72

87) Problem #PRABFC5 "PRABFC5 - Multiplication of Integers"
What is 7 * (−10)?

Algebraic Expression:
✓ −70

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,
7 * 10

Algebraic Expression:
✓ 70

Hints:

Below are the multiplication tables of 7 and 10.

You can use them to compute 7×10.
Look at the row in table 1 that shows,
\[7 \times 10 = 70 \]

And at the row in table 2 that shows,
\[10 \times 7 = 70 \]
\[7 \times 10 = 70 \]

Thus, type in **70**.

Scaffold:

We know,
\[7 \times 10 = 70 \]

Now try the original problem again.

What is \(7 \times (-10) \)?

Algebraic Expression:

\[-70 \]

Hints:

- We know,
\[7 \times 10 = 70 \]

We need to consider the signs of the factors as well.

Remember the rule of multiplying signs which says,

\[\begin{align*}
+ \times + & = + \\
+ \times - & = - \\
- \times + & = - \\
- \times - & = +
\end{align*} \]
Thus using this rule we get,

\[7 \times (-10)\]
\[= -70\]

Type in -70

88) Problem #PRABFD7 "PRABFD7 - Multiplication of Integers"

What is \((-2) \times (-7)\)?

Algebraic Expression:
✓ 14

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[2 \times 7\]

Algebraic Expression:
✓ 14

Hints:

Below are the multiplication tables of 2 and 7.

You can use them to compute 2*7.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 * 0 = 0</td>
<td>7 * 0 = 0</td>
</tr>
<tr>
<td>2 * 1 = 2</td>
<td>7 * 1 = 7</td>
</tr>
<tr>
<td>2 * 2 = 4</td>
<td>7 * 2 = 14</td>
</tr>
<tr>
<td>2 * 3 = 6</td>
<td>7 * 3 = 21</td>
</tr>
<tr>
<td>2 * 4 = 8</td>
<td>7 * 4 = 28</td>
</tr>
<tr>
<td>2 * 5 = 10</td>
<td>7 * 5 = 35</td>
</tr>
<tr>
<td>2 * 6 = 12</td>
<td>7 * 6 = 42</td>
</tr>
<tr>
<td>2 * 7 = 14</td>
<td>7 * 7 = 49</td>
</tr>
<tr>
<td>2 * 8 = 16</td>
<td>7 * 8 = 56</td>
</tr>
<tr>
<td>2 * 9 = 18</td>
<td>7 * 9 = 63</td>
</tr>
<tr>
<td>2 * 10 = 20</td>
<td>7 * 10 = 70</td>
</tr>
</tbody>
</table>
Look at the row in table 1 that shows,
$2 \times 7 = 14$

And at the row in table 2 that shows,
$7 \times 2 = 14$
- $2 \times 7 = 14$

Thus, type in 14.

Scaffold:
- We know,
 $2 \times 7 = 14$

Now try the original problem again.

What is $(-2) \times (-7)$?

Algebraic Expression:
- 14

Hints:
- We know,
 $2 \times 7 = 14$

We need to consider the signs of the factors as well.

- Our first factor, -2, is negative and our second factor, -7, is negative as well.

We are multiplying a negative number to a negative one.

We must consider the multiplication of the signs as well.

- Remember the rule of multiplying signs which says,

 \begin{align*}
 (+) \times (+) &= (+) \\
 (+) \times (-) &= (-) \\
 (-) \times (+) &= (-) \\
 (-) \times (-) &= (+)
 \end{align*}
• We have, the fourth case where,

\[
\begin{array}{cc}
\text{X} & = \\
\text{X} & = \\
\text{X} & = \\
\text{X} & = \\
\end{array}
\]

Thus using this rule we get,

\[
(-2) \times (-7) = 14
\]

Type in 14.

89) Problem #PRABFER "PRABFER - Multiplication of Integers"

What is \((-3) \times (-10)\)?

Algebraic Expression:

\(\checkmark\) 30

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\(3 \times 10\)

Algebraic Expression:

\(\checkmark\) 30

Hints:

Below are the multiplication tables of 3 and 10.

You can use them to compute 3*10.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 * 0 = 0</td>
<td>10 * 0 = 0</td>
</tr>
<tr>
<td>3 * 1 = 3</td>
<td>10 * 1 = 10</td>
</tr>
<tr>
<td>3 * 2 = 6</td>
<td>10 * 2 = 20</td>
</tr>
<tr>
<td>3 * 3 = 9</td>
<td>10 * 3 = 30</td>
</tr>
<tr>
<td>3 * 4 = 12</td>
<td>10 * 4 = 40</td>
</tr>
<tr>
<td>3 * 5 = 15</td>
<td>10 * 5 = 50</td>
</tr>
<tr>
<td>3 * 6 = 18</td>
<td>10 * 6 = 60</td>
</tr>
<tr>
<td>3 * 7 = 21</td>
<td>10 * 7 = 70</td>
</tr>
<tr>
<td>3 * 8 = 24</td>
<td>10 * 8 = 80</td>
</tr>
</tbody>
</table>
\[
\begin{array}{c|c|c}
3 \times 9 & 10 \times 9 & \hline
27 & 90 \\
3 \times 10 & 10 \times 10 & \hline
30 & 100 \\
\end{array}
\]

Look at the row in table 1 that shows,
\[3 \times 10 = 30\]

And at the row in table 2 that shows,
\[10 \times 3 = 30\]

\[3 \times 10 = 30\]

Thus, type in \[30\].

Scaffold:

We know,
\[3 \times 10 = 30\]

Now try the original problem again.

What is \((-3) \times (-10)?\)

Algebraic Expression:

\[\checkmark 30\]

Hints:

- We know,
\[3 \times 10 = 30\]

We need to consider the signs of the factors as well.

- Our first factor, \(-3\), is negative and our second factor, \(-10\), is negative as well.

We are multiplying a negative number to a negative one.

We must consider the multiplication of the signs as well.
Remember the rule of multiplying signs which says,

\[+ \times + = + \]
\[+ \times - = - \]
\[- \times + = - \]
\[- \times - = + \]

- We have, the fourth case where,

\[- \times - = + \]

Thus using this rule we get,

\((-3) \times (-10)\)

\[= 30\]

Type in 30.

90) Problem #PRABFDF "PRABFDF - Multiplication of Integers"

What is \((-6) \times 2\) ?

Algebraic Expression:

\[-12\]

Scaffold:

Let us first ignore the signs of the factors and try to perform the multiplication.

Go ahead and compute,

\[6 \times 2\]

Algebraic Expression:

\[12\]
Hints:

Below are the multiplication tables of 6 and 2.
You can use them to compute 6×2.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$6 \times 0 = 0$</td>
<td>$2 \times 0 = 0$</td>
</tr>
<tr>
<td>$6 \times 1 = 6$</td>
<td>$2 \times 1 = 2$</td>
</tr>
<tr>
<td>$6 \times 2 = 12$</td>
<td>$2 \times 2 = 4$</td>
</tr>
<tr>
<td>$6 \times 3 = 18$</td>
<td>$2 \times 3 = 6$</td>
</tr>
<tr>
<td>$6 \times 4 = 24$</td>
<td>$2 \times 4 = 8$</td>
</tr>
<tr>
<td>$6 \times 5 = 30$</td>
<td>$2 \times 5 = 10$</td>
</tr>
<tr>
<td>$6 \times 6 = 36$</td>
<td>$2 \times 6 = 12$</td>
</tr>
<tr>
<td>$6 \times 7 = 42$</td>
<td>$2 \times 7 = 14$</td>
</tr>
<tr>
<td>$6 \times 8 = 48$</td>
<td>$2 \times 8 = 16$</td>
</tr>
<tr>
<td>$6 \times 9 = 54$</td>
<td>$2 \times 9 = 18$</td>
</tr>
<tr>
<td>$6 \times 10 = 60$</td>
<td>$2 \times 10 = 20$</td>
</tr>
</tbody>
</table>

Look at the row in table 1 that shows,
$6 \times 2 = 12$

And at the row in table 2 that shows,
$2 \times 6 = 12$

Thus, type in 12.

Scaffold:
We know,
$6 \times 2 = 12$
Now try the original problem again.

What is $(-6) \times 2$?

Algebraic Expression:

✓ -12

Hints:

- We know,
 $6 \times 2 = 12$

We need to consider the signs of the factors as well.

•
Remember the rule of multiplying signs which says,

\[\begin{align*}
+ \times + &= + \\
+ \times - &= - \\
- \times + &= - \\
- \times - &= +
\end{align*} \]

We have, the third case where,

\[\begin{align*}
- &\times + = -
\end{align*} \]

Thus using this rule we get,

\[(-6) \times 2 \]

\[= -12 \]

Type in -12
Problem Set "Explain in Words How to Solve 8.EE.C.7b" id:[PSAHQW]

1) Problem #PRAB4R5 "PRAB4R5 - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation

\[-7 + 5z = 33\]

Multiple Choice:
- ✔ Add 7 to both sides and then divide both sides by 5
- ✗ Subtract 7 to both sides and then divide both sides by 5
- ✗ Divide both sides by 5 and then add 7 to both sides
- ✗ Divide both sides by 5 and then subtract 7 to both sides

Hints:
- **The first step to solve is to add or subtract on both sides of the equation.**

PSAHQW 2.1

- This is how to solve this problem.

\[-7 + 5z = 33\]

\[+7 \quad +7\] Add 7 to both sides

\[5z = 40\]

\[5 \quad 5\] Divide both sides by 5
Select the answer: Add 7 to both sides and then divide both sides by 5

PSAHQW 2.2

2) Problem #PRAB4R7 "PRAB4R7 - Explaining How to Solve an Equation"

Which of the following statements explains the correct method to solve the equation

\[-4 + 2x = 4\]

Multiple Choice:

- ✓ Add 4 to both sides and then divide both sides by 2
- ✗ Subtract 4 to both sides and then divide both sides by 2
- ✗ Divide both sides by 2 and then add 4 to both sides
- ✗ Divide both sides by 2 and then subtract 4 to both sides

Hints:

- Here is how to solve a similar problem.

\[
\begin{align*}
-8 + 5x &= 52 \\
+8 &+8 \\
5x &= 60 \\
5 &5 \\
x &= 12
\end{align*}
\]

- The first step to solve is to **add or subtract on both sides of the equation**.
- This is how to solve this problem.

\[
\begin{align*}
-4 + 2x &= 4 \\
+4 &+4 \text{ Add 4 to both sides} \\
2x &= 8 \\
2 &2 \text{ Divide both sides by 2}
\end{align*}
\]
Select the answer: Add 4 to both sides and then divide both sides by 2

3) Problem #PRAB4R4 "PRAB4R4 - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation

\[-2 + 8b = 46\]

Multiple Choice:

- ✓ Add 2 to both sides and then divide both sides by 8
- ✗ Subtract 2 to both sides and then divide both sides by 8
- ✗ Divide both sides by 8 and then add 2 to both sides
- ✗ Divide both sides by 8 and then subtract 2 to both sides

Hints:

- The first step to solve is to add or subtract on both sides of the equation.

This is how to solve this problem.

\[-2 + 8b = 46\]

\[+2 \quad +2\] Add 2 to both sides

\[8b = 48\]

\[8 \quad 8\] Divide both sides by 8
Select the answer: Add 2 to both sides and then divide both sides by 8

4) Problem #PRAB4R9 "PRAB4R9 - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation

\(-7 + 4x = 9\)

Multiple Choice:
- \(\checkmark\) Add 7 to both sides and then divide both sides by 4
- \(\xmark\) Subtract 7 to both sides and then divide both sides by 4
- \(\xmark\) Divide both sides by 4 and then add 7 to both sides
- \(\xmark\) Divide both sides by 4 and then subtract 7 to both sides

Hints:
- Here is how to solve a similar problem.

\[
\begin{align*}
-8 + 5x & = 52 \\
+8 & +8 \\
5x & = 60 \\
5 & 5 \\
x & = 12
\end{align*}
\]

- The first step to solve is to add or subtract on both sides of the equation.
- This is how to solve this problem.

\[
\begin{align*}
-7 + 4x & = 9 \\
+7 & +7 \quad \text{Add 7 to both sides} \\
4x & = 16 \\
4 & 4 \quad \text{Divide both sides by 4}
\end{align*}
\]
Select the answer: Add 7 to both sides and then divide both sides by 4

5) Problem #PRAB4SA "PRAB4SA - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation

\[-5 + 3y = 16\]

Multiple Choice:

- ✔ Add 5 to both sides and then divide both sides by 3
- ❌ Subtract 5 to both sides and then divide both sides by 3
- ❌ Divide both sides by 3 and then add 5 to both sides
- ❌ Divide both sides by 3 and then subtract 5 to both sides

Hints:
- Here is how to solve a similar problem.

\[
\begin{align*}
-8 + 5x &= 52 \\
+8 &+8 \\
5x &= 60 \\
5 &5 \\
x &= 12
\end{align*}
\]
- The first step to solve is to add or subtract on both sides of the equation.
- This is how to solve this problem.

\[-5 + 3y = 16\]

\[
\begin{align*}
+5 &+5 \quad \text{Add 5 to both sides} \\
3y &= 21 \\
3 &3 \quad \text{Divide both sides by 3}
\end{align*}
\]

Select the answer: Add 5 to both sides and then divide both sides by 3

6) Problem #PRAB4SB "PRAB4SB - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation

\[-3 + 5x = 17\]

Multiple Choice:

- ✔ Add 3 to both sides and then divide both sides by 5
- ❌ Subtract 3 to both sides and then divide both sides by 5
- ❌ Divide both sides by 5 and then add 3 to both sides
- ❌ Divide both sides by 5 and then subtract 3 to both sides

Hints:
Here is how to solve a similar problem.

\[-8 + 5x = 52\]

\[+8 \quad +8\]

\[5x = 60\]

\[\frac{5x}{5} = \frac{60}{5}\]

\[x = 12\]

The first step to solve is to add or subtract on both sides of the equation.

This is how to solve this problem.

\[-3 + 5x = 17\]

\[\underline{+3} \quad +3 \quad \text{Add 3 to both sides}\]

\[5x = 20\]

\[\frac{5x}{5} = \frac{20}{5}\]

\[x = 4\]

Select the answer: Add 3 to both sides and then divide both sides by 5

7) Problem #PRAB4R6 "PRAB4R6 - Explaining How to Solve an Equation"

Which of the following statements explains the correct method to solve the equation

\[-7 + 5x = 3?\]

Multiple Choice:

- ✔️ Add 7 to both sides and then divide both sides by 5
- ❎ Subtract 7 to both sides and then divide both sides by 5
- ❎ Divide both sides by 5 and then add 7 to both sides
- ❎ Divide both sides by 5 and then subtract 7 to both sides

Hints:

- The first step to solve is to add or subtract on both sides of the equation.
PSAHQW 3.1

- This is how to solve this problem.

\[-7 + 5x = 3\]

\[+7 \quad +7 \quad \text{Add 7 to both sides}\]

\[\frac{5x}{5} = \frac{10}{5} \quad \text{Divide both sides by 5}\]

Select the answer: Add 7 to both sides and then divide both sides by 5

PSAHQW 3.2

8) Problem #PRAB4SC "PRAB4SC - Explaining How to Solve an Equation"

Which of the following statements explains the correct method to solve the equation

\[-7 + 3y = 14?\]

Multiple Choice:

✓ Add 7 to both sides and then divide both sides by 3
Subtract 7 to both sides and then divide both sides by 3
Divide both sides by 3 and then add 7 to both sides
Divide both sides by 3 and then subtract 7 to both sides

Hints:
- Here is how to solve a similar problem.

\[-8 + 5x = 52\]
\[+8 \quad +8\]

\[5x = 60\]
\[5 \quad 5\]

\[x = 12\]

The first step to solve is to add or subtract on both sides of the equation.
This is how to solve this problem.

\[-7 + 3y = 14\]
\[+7 \quad +7 \quad \text{Add 7 to both sides}\]

\[3y = 21\]
\[3 \quad 3 \quad \text{Divide both sides by 3}\]

Select the answer: Add 7 to both sides and then divide both sides by 3

9) Problem #PRAB4R8 "PRAB4R8 - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation

\[-6 + 6x = 30?\]

Multiple Choice:
- Add 6 to both sides and then divide both sides by 6
- Subtract 6 to both sides and then divide both sides by 6
- Divide both sides by 6 and then add 6 to both sides
- Divide both sides by 6 and then subtract 6 to both sides

Hints:
- Here is how to solve a similar problem.

\[-8 + 5x = 52\]
\[+8 \quad +8\]

\[5x = 60\]
\[5 \quad 5\]

\[x = 12\]
• The first step to solve is to add or subtract on both sides of the equation.
• This is how to solve this problem.

\[-6 + 6x = 30\]
\[+6 \quad +6 \quad \text{Add 6 to both sides}\]

\[6x = 36\]
\[\frac{6x}{6} = \frac{36}{6} \quad \text{Divide both sides by 6}\]

Select the answer: Add 6 to both sides and then divide both sides by 6

10) Problem #PRAB4VR "PRAB4VR - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation \(7x - 5 = 51\)?

Multiple Choice:
✓ Add 5 to both sides and then divide both sides by 7
✗ Subtract 5 to both sides and then divide both sides by 7
✗ Divide both sides by 7 and then add 5 to both sides
✗ Divide both sides by 7 and then subtract 5 to both sides

Hints:
• Here is how to solve a similar problem.

\[5x - 8 = 52\]
\[+8 \quad +8\]

\[5x = 60\]
\[5 \quad 5\]

\[x = 12\]

• The first step to solve is to add or subtract on both sides of the equation.
• You should do the opposite of whatever sign is showing.
• This is how to solve this problem.

\[7x - 5 = 51\]
\[+5 \quad +5 \quad \text{Add 5 to both sides}\]

\[7x = 56\]
\[\frac{7x}{7} = \frac{56}{7} \quad \text{Divide both sides by 7}\]

Select the answer: Add 5 to both sides and then divide both sides by 7

11) Problem #PRAB4UZ "PRAB4UZ - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation

\[-5 + 7x = 9?\]

Multiple Choice:

- Add 5 to both sides and then divide both sides by 7
- Subtract 5 to both sides and then divide both sides by 7
- Divide both sides by 7 and then add 5 to both sides
- Divide both sides by 7 and then subtract 5 to both sides

Hints:

- Here is how to solve a similar problem.

\[-8 + 5x = 52\]

\[+8 \quad +8\]

\[5x = 60\]

\[5 \quad 5\]

\[x = 12\]

- The first step to solve is to add or subtract on both sides of the equation.
- This is how to solve this problem.

\[-5 + 7x = 9\]

\[+5 \quad +5\] Add 5 to both sides

\[7x = 14\]

\[7 \quad 7\] Divide both sides by 7

Select the answer: Add 5 to both sides and then divide both sides by 7

12) Problem #PRAB4US "PRAB4US - Explaining How to Solve an Equation"

Which of the following statements explains the correct method to solve the equation

\[-4 + 5y = 31?\]

Multiple Choice:

- Add 4 to both sides and then divide both sides by 5
- Subtract 4 to both sides and then divide both sides by 5
- Divide both sides by 5 and then add 4 to both sides
- Divide both sides by 5 and then subtract 4 to both sides

Hints:

- Here is how to solve a similar problem.

\[-8 + 5x = 52\]

\[+8 \quad +8\]
5x = 60
5 5

x = 12

- The first step to solve is to add or subtract on both sides of the equation.
- This is how to solve this problem.

-4 + 5y = 31
+4 +4 Add 4 to both sides

5y = 35
5 5 Divide both sides by 5

Select the answer: Add 4 to both sides and then divide both sides by 5

13) Problem #PRAB4VK "PRAB4VK - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation 5c - 6 = 14?

Multiple Choice:
- ✓ Add 6 to both sides and then divide both sides by 5
- ✗ Subtract 6 to both sides and then divide both sides by 5
- ✗ Divide both sides by 5 and then add 6 to both sides
- ✗ Divide both sides by 5 and then subtract 6 to both sides

Hints:
- Here is how to solve a similar problem.

5x - 8 = 52
+ 8 +8

5x = 60
5 5

x = 12

- The first step to solve is to add or subtract on both sides of the equation.
- You should do the opposite of whatever sign is showing.
- This is how to solve this problem.

5c - 6 = 14
+ 6 +6 Add 6 to both sides

5c = 20
\[5 \quad 5 \quad \text{Divide both sides by 5} \]

Select the answer: Add 6 to both sides and then divide both sides by 5

14) Problem #PRAB4UN "PRAB4UN - Explaining How to Solve an Equation"

Which of the following statements explains the correct method to solve the equation

\[-4 + 3x = 5?\]

Multiple Choice:

- ✓ Add 4 to both sides and then divide both sides by 3
- ✗ Subtract 4 to both sides and then divide both sides by 3
- ✗ Divide both sides by 3 and then add 4 to both sides
- ✗ Divide both sides by 3 and then subtract 4 to both sides

Hints:

- Here is how to solve a similar problem.

\[
\begin{align*}
-8 + 5x &= 52 \\
+8 & \quad +8
\end{align*}
\]

\[
\begin{align*}
5x &= 60 \\
\quad & \quad 5 \\
x &= 12
\end{align*}
\]

- The first step to solve is to add or subtract on both sides of the equation.
- This is how to solve this problem.

\[
\begin{align*}
-4 + 3x &= 5 \\
+4 & \quad +4 \quad \text{Add 4 to both sides}
\end{align*}
\]

\[
\begin{align*}
3x &= 9 \\
\quad & \quad 3 \\
\text{Divide both sides by 3}
\end{align*}
\]

Select the answer: Add 4 to both sides and then divide both sides by 3

15) Problem #PRAB4RW "PRAB4RW - Explaining How to Solve an Equation"

Which of the following statements explains the correct method to solve the equation \(5z - 5 = 30?\)

Multiple Choice:

- ✓ Add 5 to both sides and then divide both sides by 5
- ✗ Subtract 5 to both sides and then divide both sides by 5
- ✗ Divide both sides by 5 and then add 5 to both sides
- ✗ Divide both sides by 5 and then subtract 5 to both sides

Hints:
Here is how to solve a similar problem.

\[
5x - 8 = 52 \\
+ 8 \quad +8 \\
5x = 60 \\
5 \quad 5 \\
\]

\[
x = 12
\]

The first step to solve is to add or subtract on both sides of the equation.

You should do the opposite of whatever sign is showing.

This is how to solve this problem.

\[
5z - 5 = 30 \\
+ 5 \quad +5 \quad \text{Add 5 to both sides} \\
5z = 35 \\
5 \quad 5 \quad \text{Divide both sides by 5}
\]

Select the answer: Add 5 to both sides and then divide both sides by 5

16) Problem #PRAB4VW "PRAB4VW - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation \(8x - 6 = 26\)?

Multiple Choice:

- Add 6 to both sides and then divide both sides by 8
- Subtract 6 to both sides and then divide both sides by 8
- Divide both sides by 8 and then add 6 to both sides
- Divide both sides by 8 and then subtract 6 to both sides

Hints:

- Here is how to solve a similar problem.

\[
5x - 8 = 52 \\
+ 8 \quad +8 \\
5x = 60 \\
5 \quad 5 \\
\]

\[
x = 12
\]

The first step to solve is to add or subtract on both sides of the equation.

You should do the opposite of whatever sign is showing.

This is how to solve this problem.
8x - 6 = 26
+ 6 +6 Add 6 to both sides

8x = 32
8 8 Divide both sides by 8

Select the answer: Add 6 to both sides and then divide both sides by 8

17) Problem #PRAB4U4 "PRAB4U4 - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation
-8 + 2y = 8?

Multiple Choice:
✓ Add 8 to both sides and then divide both sides by 2
✗ Subtract 8 to both sides and then divide both sides by 2
✗ Divide both sides by 2 and then add 8 to both sides
✗ Divide both sides by 2 and then subtract 8 to both sides

Hints:
- Here is how to solve a similar problem.

-8 + 5x = 52
+8 +8

5x = 60
5 5

x = 12

✓ The first step to solve is to add or subtract on both sides of the equation.
✓ This is how to solve this problem.

-8 + 2y = 8
+8 +8 Add 8 to both sides

2y = 16
2 2 Divide both sides by 2

Select the answer: Add 8 to both sides and then divide both sides by 2

18) Problem #PRAB4VB "PRAB4VB - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation
-3 + 7x = 53?

Multiple Choice:
Add 3 to both sides and then divide both sides by 7

Subtract 3 to both sides and then divide both sides by 7

Divide both sides by 7 and then add 3 to both sides

Divide both sides by 7 and then subtract 3 to both sides

Hints:
- Here is how to solve a similar problem.

\[-8 + 5x = 52\]

\[
\begin{align*}
+8 & \\
5x & = 60 \\
5 & 5 \\
\end{align*}
\]

\[x = 12\]

- The first step to solve is to add or subtract on both sides of the equation.
- This is how to solve this problem.

\[-3 + 7x = 53\]

\[
\begin{align*}
+3 & \\
7x & = 56 \\
7 & 7 \\
\end{align*}
\]

Select the answer: Add 3 to both sides and then divide both sides by 7

19) Problem #PRAB4WH "PRAB4WH - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation \(4y - 8 = 20\)?

Multiple Choice:
- Add 8 to both sides and then divide both sides by 4
- Subtract 8 to both sides and then divide both sides by 4
- Divide both sides by 4 and then add 8 to both sides
- Divide both sides by 4 and then subtract 8 to both sides

Hints:
- Here is how to solve a similar problem.

\[5x - 8 = 52\]

\[
\begin{align*}
+8 & \\
5x & = 60 \\
5 & 5 \\
\end{align*}
\]

\[x = 12\]
- The first step to solve is to add or subtract on both sides of the equation.
- You should do the opposite of whatever sign is showing.
- This is how to solve this problem.

\[4y - 8 = 20 \]
\[+8 \quad +8 \quad \text{Add 8 to both sides} \]

\[4y = 28 \]
\[4 \quad 4 \quad \text{Divide both sides by 4} \]

Select the answer: Add 8 to both sides and then divide both sides by 4

20) Problem #PRAB4RT "PRAB4RT - Explaining How to Solve an Equation"

Which of the following statements explains the correct method to solve the equation \(2z - 7 = 5\)?

Multiple Choice:
- ✔ Add 7 to both sides and then divide both sides by 2
- ✗ Subtract 7 to both sides and then divide both sides by 2
- ✗ Divide both sides by 2 and then add 7 to both sides
- ✗ Divide both sides by 2 and then subtract 7 to both sides

Hints:
- Here is how to solve a similar problem.

\[5x - 8 = 52 \]
\[+8 \quad +8 \]

\[5x = 60 \]
\[5 \quad 5 \]

\[x = 12 \]

- The first step to solve is to add or subtract on both sides of the equation.
- You should do the opposite of whatever sign is showing.
- This is how to solve this problem.

\[2z - 7 = 5 \]
\[+7 \quad +7 \quad \text{Add 7 to both sides} \]

\[2z = 12 \]
\[2 \quad 2 \quad \text{Divide both sides by 2} \]

Select the answer: Add 7 to both sides and then divide both sides by 2
21) Problem #PRAB4U9 "PRAB4U9 - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation

\[-6 + 8z = 42?\]

Multiple Choice:
- ✔ Add 6 to both sides and then divide both sides by 8
- ❌ Subtract 6 to both sides and then divide both sides by 8
- ❌ Divide both sides by 8 and then add 6 to both sides
- ❌ Divide both sides by 8 and then subtract 6 to both sides

Hints:
- Here is how to solve a similar problem.

\[
\begin{align*}
-8 + 5x &= 52 \\
+8 &+8 \\
5x &= 60 \\
5 &5 \\
x &= 12
\end{align*}
\]

- The first step to solve is to **add or subtract on both sides of the equation**.
- This is how to solve this problem.

\[
\begin{align*}
-6 + 8z &= 42 \\
+6 &+6 \text{ Add 6 to both sides} \\
8z &= 48 \\
8 &8 \text{ Divide both sides by 8}
\end{align*}
\]

Select the answer: Add 6 to both sides and then divide both sides by 8

22) Problem #PRAB4UP "PRAB4UP - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation

\[-5 + 8a = 51?\]

Multiple Choice:
- ✔ Add 5 to both sides and then divide both sides by 8
- ❌ Subtract 5 to both sides and then divide both sides by 8
- ❌ Divide both sides by 8 and then add 5 to both sides
- ❌ Divide both sides by 8 and then subtract 5 to both sides

Hints:
- Here is how to solve a similar problem.

\[
\begin{align*}
-8 + 5x &= 52
\end{align*}
\]
+8
\[5x = 60\]
5 5

\[x = 12\]

- The first step to solve is to add or subtract on both sides of the equation.
- This is how to solve this problem.

-5 + 8a = 51
+5
\[8a = 56\]
8 8 Divide both sides by 8

Select the answer: Add 5 to both sides and then divide both sides by 8

23) Problem #PRAB4UR "PRAB4UR - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation

\[-8 + 6z = 40\]

Multiple Choice:
- ✔ Add 8 to both sides and then divide both sides by 6
- ✗ Subtract 8 to both sides and then divide both sides by 6
- ✗ Divide both sides by 6 and then add 8 to both sides
- ✗ Divide both sides by 6 and then subtract 8 to both sides

Hints:
- Here is how to solve a similar problem.

\[-8 + 5x = 52\]
+8
\[5x = 60\]
5 5

\[x = 12\]

- The first step to solve is to add or subtract on both sides of the equation.
- This is how to solve this problem.

-8 + 6z = 40
+8
\[Add 8 to both sides\]
\[
6z = 48
\]
\[
6 \quad 6 \quad \text{Divide both sides by 6}
\]

Select the answer: Add 8 to both sides and then divide both sides by 6

24) Problem #PRAB4VV "PRAB4VV - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation \(5x - 6 = 14\)?

Multiple Choice:
- ✅ Add 6 to both sides and then divide both sides by 5
- ❌ Subtract 6 to both sides and then divide both sides by 5
- ❌ Divide both sides by 5 and then add 6 to both sides
- ❌ Divide both sides by 5 and then subtract 6 to both sides

Hints:
- Here is how to solve a similar problem.

\[
5x - 8 = 52
\]
\[
\begin{align*}
8 & \quad \quad +8 \\
5x & = 60 \\
5 & \quad 5 \\
\end{align*}
\]
\[
x = 12
\]
- The first step to solve is to add or subtract on both sides of the equation.
- You should do the opposite of whatever sign is showing.
- This is how to solve this problem.

\[
5x - 6 = 14
\]
\[
\begin{align*}
+6 & \quad +6 \quad \text{Add 6 to both sides} \\
5x & = 20 \\
5 & \quad 5 \\
\end{align*}
\]

Select the answer: Add 6 to both sides and then divide both sides by 5

25) Problem #PRAB4UH "PRAB4UH - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation \(-6 + 4x = 14\)?

Multiple Choice:
- ✅ Add 6 to both sides and then divide both sides by 4
- ❌ Subtract 6 to both sides and then divide both sides by 4
- ❌ Divide both sides by 4 and then add 6 to both sides
Divide both sides by 4 and then subtract 6 to both sides

Hints:
- Here is how to solve a similar problem.

\[-8 + 5x = 52\]
\[+8 \quad +8\]

\[5x = 60\]
\[5 \quad 5\]

\[x = 12\]

- The first step to solve is to add or subtract on both sides of the equation.
- This is how to solve this problem.

\[-6 + 4x = 14\]
\[+6 \quad +6 \quad \text{Add 6 to both sides}\]

\[4x = 20\]
\[4 \quad 4 \quad \text{Divide both sides by 4}\]

Select the answer: Add 6 to both sides and then divide both sides by 4

26) Problem #PRAB4RZ "PRAB4RZ - Explaining How to Solve an Equation"

Which of the following statements explains the correct method to solve the equation \(6z - 6 = 18\)?

Multiple Choice:
- Add 6 to both sides and then divide both sides by 6
- Subtract 6 to both sides and then divide both sides by 6
- Divide both sides by 6 and then add 6 to both sides
- Divide both sides by 6 and then subtract 6 to both sides

Hints:
- Here is how to solve a similar problem.

\[5x - 8 = 52\]
\[+ 8 \quad +8\]

\[5x = 60\]
\[5 \quad 5\]

\[x = 12\]

- The first step to solve is to add or subtract on both sides of the equation.
- You should do the opposite of whatever sign is showing.
This is how to solve this problem.

\[6z - 6 = 18 \]
\[+ 6 \quad +6 \quad \text{Add 6 to both sides} \]

\[6z = 24 \]
\[6 \quad 6 \quad \text{Divide both sides by 6} \]

Select the answer: Add 6 to both sides and then divide both sides by 6

27) Problem #PRAB4V8 "PRAB4V8 - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation \(4z - 7 = 13 \)?

Multiple Choice:

- ✔️ Add 7 to both sides and then divide both sides by 4
- ✗ Subtract 7 to both sides and then divide both sides by 4
- ✗ Divide both sides by 4 and then add 7 to both sides
- ✗ Divide both sides by 4 and then subtract 7 to both sides

Hints:

- Here is how to solve a similar problem.

\[5x - 8 = 52 \]
\[+ 8 \quad +8 \]

\[5x = 60 \]
\[5 \quad 5 \]

\[x = 12 \]

- The first step to solve is to add or subtract on both sides of the equation.
- You should do the opposite of whatever sign is showing.
- This is how to solve this problem.

\[4z - 7 = 13 \]
\[+ 7 \quad +7 \quad \text{Add 7 to both sides} \]

\[4z = 20 \]
\[4 \quad 4 \quad \text{Divide both sides by 4} \]

Select the answer: Add 7 to both sides and then divide both sides by 4

28) Problem #PRAB4VP "PRAB4VP - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation \(4c - 2 = 26 \)?

Multiple Choice:
Add 2 to both sides and then divide both sides by 4

Subtract 2 to both sides and then divide both sides by 4

Divide both sides by 4 and then add 2 to both sides

Divide both sides by 4 and then subtract 2 to both sides

Hints:

- Here is how to solve a similar problem.

\[5x - 8 = 52\]
\[+ 8 \quad +8\]
\[5x = 60\]
\[5 \quad 5\]

\[x = 12\]

- The first step to solve is to add or subtract on both sides of the equation.
- You should do the opposite of whatever sign is showing.
- This is how to solve this problem.

\[4c - 2 = 26\]
\[+ 2 \quad +2\quad \text{Add 2 to both sides}\]
\[4c = 28\]
\[4 \quad 4\quad \text{Divide both sides by 4}\]

Select the answer: Add 2 to both sides and then divide both sides by 4

29) Problem #PRAB4U8 "PRAB4U8 - Explaining How to Solve an Equation"

Which of the following statements explains the correct method to solve the equation

\[-3 + 5c = 32?\]

Multiple Choice:

- Add 3 to both sides and then divide both sides by 5
- Subtract 3 to both sides and then divide both sides by 5
- Divide both sides by 5 and then add 3 to both sides
- Divide both sides by 5 and then subtract 3 to both sides

Hints:

- Here is how to solve a similar problem.

\[-8 + 5x = 52\]
\[+8 \quad +8\]
\[5x = 60\]
\[5 \quad 5\]
\[x = 12 \]

- The first step to solve is to add or subtract on both sides of the equation.
- This is how to solve this problem.

\[-3 + 5c = 32\]
\[+3 \quad +3 \quad \text{Add 3 to both sides}\]

\[5c = 35\]
\[5 \quad 5 \quad \text{Divide both sides by 5}\]

Select the answer: Add 3 to both sides and then divide both sides by 5

30) Problem #PRAB4WK "PRAB4WK - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation \(7y - 3 = 32\)?

Multiple Choice:
- Add 3 to both sides and then divide both sides by 7
- Subtract 3 to both sides and then divide both sides by 7
- Divide both sides by 7 and then add 3 to both sides
- Divide both sides by 7 and then subtract 3 to both sides

Hints:
- Here is how to solve a similar problem.

\[5x - 8 = 52\]
\[+8 \quad +8\]

\[5x = 60\]
\[5 \quad 5\]

\[x = 12\]

- The first step to solve is to add or subtract on both sides of the equation.
- You should do the opposite of whatever sign is showing.
- This is how to solve this problem.

\[7y - 3 = 32\]
\[+3 \quad +3 \quad \text{Add 3 to both sides}\]

\[7y = 35\]
\[7 \quad 7 \quad \text{Divide both sides by 7}\]

Select the answer: Add 3 to both sides and then divide both sides by 7
31) Problem #PRAB4UC "PRAB4UC - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation

\[-3 + 7y = 32?\]

Multiple Choice:
- ✔ Add 3 to both sides and then divide both sides by 7
- ✗ Subtract 3 to both sides and then divide both sides by 7
- ✗ Divide both sides by 7 and then add 3 to both sides
- ✗ Divide both sides by 7 and then subtract 3 to both sides

Hints:
- Here is how to solve a similar problem.

\[-8 + 5x = 52\]
\[+8\]
\[5x = 60\]
\[5\]
\[x = 12\]

- The first step to solve is to add or subtract on both sides of the equation.
- This is how to solve this problem.

\[-3 + 7y = 32\]
\[+3\]
\[+3\] Add 3 to both sides

\[7y = 35\]
\[7\] Divide both sides by 7

Select the answer: Add 3 to both sides and then divide both sides by 7

32) Problem #PRAB4V7 "PRAB4V7 - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation \(6c - 2 = 34?\)

Multiple Choice:
- ✔ Add 2 to both sides and then divide both sides by 6
- ✗ Subtract 2 to both sides and then divide both sides by 6
- ✗ Divide both sides by 6 and then add 2 to both sides
- ✗ Divide both sides by 6 and then subtract 2 to both sides

Hints:
- Here is how to solve a similar problem.

\[5x - 8 = 52\]
\[+8\]
\[+8\]
The first step to solve is to add or subtract on both sides of the equation.

You should do the opposite of whatever sign is showing.

This is how to solve this problem.

\[
6c - 2 = 34 \\
+ 2 \quad +2 \quad \text{Add 2 to both sides} \\

6c = 36 \\
6 \quad 6 \quad \text{Divide both sides by 6}
\]

Select the answer: Add 2 to both sides and then divide both sides by 6

33) Problem #PRAB4VM "PRAB4VM - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation \(8x - 7 = 49\)?

Multiple Choice:
- ✓ Add 7 to both sides and then divide both sides by 8
- ✗ Subtract 7 to both sides and then divide both sides by 8
- ✗ Divide both sides by 8 and then add 7 to both sides
- ✗ Divide both sides by 8 and then subtract 7 to both sides

Hints:
- Here is how to solve a similar problem.

\[
5x - 8 = 52 \\
+ 8 \quad +8
\]

\[
5x = 60 \\
5 \quad 5
\]

\[
 x = 12
\]

- The first step to solve is to add or subtract on both sides of the equation.
- You should do the opposite of whatever sign is showing.
- This is how to solve this problem.

\[
8x - 7 = 49 \\
+ 7 \quad +7 \quad \text{Add 7 to both sides}
\]
\[
8x = 56 \\
8 \quad 8 \quad \text{Divide both sides by 8}
\]

Select the answer: Add 7 to both sides and then divide both sides by 8

34) Problem #PRAB4WB "PRAB4WB - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation \(8x - 6 = 50\)?

Multiple Choice:

- Add 6 to both sides and then divide both sides by 8
- Subtract 6 to both sides and then divide both sides by 8
- Divide both sides by 8 and then add 6 to both sides
- Divide both sides by 8 and then subtract 6 to both sides

Hints:

- Here is how to solve a similar problem.

\[
5x - 8 = 52 \\
+ 8 \quad + 8
\]

\[
5x = 60 \\
5 \quad 5
\]

\[
x = 12
\]

- The first step to solve is to add or subtract on both sides of the equation.
- You should do the opposite of whatever sign is showing.
- This is how to solve this problem.

\[
8x - 6 = 50 \\
+ 6 \quad + 6 \quad \text{Add 6 to both sides}
\]

\[
8x = 56 \\
8 \quad 8 \quad \text{Divide both sides by 8}
\]

Select the answer: Add 6 to both sides and then divide both sides by 8

35) Problem #PRAB4VY "PRAB4VY - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation \(4z - 2 = 26\)?

Multiple Choice:

- Add 2 to both sides and then divide both sides by 4
- Subtract 2 to both sides and then divide both sides by 4
- Divide both sides by 4 and then add 2 to both sides
- Divide both sides by 4 and then subtract 2 to both sides

Hints:

- Here is how to solve a similar problem.
Here is how to solve a similar problem.

\[\begin{align*}
5x - 8 &= 52 \\
+ 8 &\quad +8 \\
5x &= 60 \\
5 &\quad 5 \\
x &= 12
\end{align*}\]

The first step to solve is to add or subtract on both sides of the equation.

You should do the opposite of whatever sign is showing.

This is how to solve this problem.

\[\begin{align*}
4z - 2 &= 26 \\
+ 2 &\quad +2 \quad \text{Add 2 to both sides} \\
4z &= 28 \\
4 &\quad 4 \quad \text{Divide both sides by 4}
\end{align*}\]

Select the answer: Add 2 to both sides and then divide both sides by 4

36) Problem #PRAB4VD "PRAB4VD - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation

\[-7 + 8y = 9\]

Multiple Choice:

- ✔ Add 7 to both sides and then divide both sides by 8
- ✗ Subtract 7 to both sides and then divide both sides by 8
- ✗ Divide both sides by 8 and then add 7 to both sides
- ✗ Divide both sides by 8 and then subtract 7 to both sides

Hints:

- Here is how to solve a similar problem.

\[\begin{align*}
-8 + 5x &= 52 \\
+8 &\quad +8 \\
5x &= 60 \\
5 &\quad 5 \\
x &= 12
\end{align*}\]

The first step to solve is to add or subtract on both sides of the equation.

This is how to solve this problem.
-7 + 8y = 9
+7 +7 Add 7 to both sides

8y = 16
8 8 Divide both sides by 8

Select the answer: Add 7 to both sides and then divide both sides by 8

37) Problem #PRAB4VF "PRAB4VF - Explaining How to Solve an Equation"

Which of the following statements explains the correct method to solve the equation

\[-8 + 5x = 12\]

Multiple Choice:

- ✓ Add 8 to both sides and then divide both sides by 5
- ✗ Subtract 8 to both sides and then divide both sides by 5
- ✗ Divide both sides by 5 and then add 8 to both sides
- ✗ Divide both sides by 5 and then subtract 8 to both sides

Hints:

- Here is how to solve a similar problem.

\[-8 + 5x = 52\]
+8 +8

\[5x = 60\]
5 5

\[x = 12\]

- The first step to solve is to add or subtract on both sides of the equation.
- This is how to solve this problem.

\[-8 + 5x = 12\]
+8 +8 Add 8 to both sides

\[5x = 20\]
5 5 Divide both sides by 5

Select the answer: Add 8 to both sides and then divide both sides by 5

38) Problem #PRAB4V6 "PRAB4V6 - Explaining How to Solve an Equation"

Which of the following statements explains the correct method to solve the equation \[6z - 4 = 20?\]

Multiple Choice:
Add 4 to both sides and then divide both sides by 6

Subtract 4 to both sides and then divide both sides by 6

Divide both sides by 6 and then add 4 to both sides

Divide both sides by 6 and then subtract 4 to both sides

Hints:

- Here is how to solve a similar problem.

\[5x - 8 = 52\]
\[+8 +8\]
\[5x = 60\]
\[5 5\]
\[x = 12\]

- The first step to solve is to add or subtract on both sides of the equation.
- You should do the opposite of whatever sign is showing.
- This is how to solve this problem.

\[6z - 4 = 20\]
\[+4 +4\] Add 4 to both sides

\[6z = 24\]
\[6 6\] Divide both sides by 6

Select the answer: Add 4 to both sides and then divide both sides by 6

39) Problem #PRAB4UT "PRAB4UT - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation -3 + 6a = 27?

Multiple Choice:

- Add 3 to both sides and then divide both sides by 6
- Subtract 3 to both sides and then divide both sides by 6
- Divide both sides by 6 and then add 3 to both sides
- Divide both sides by 6 and then subtract 3 to both sides

Hints:

- Here is how to solve a similar problem.

\[-8 + 5x = 52\]
\[+8 +8\]
\[5x = 60\]
\[5 5\]
\[x = 12 \]

- The first step to solve is to add or subtract on both sides of the equation.
- This is how to solve this problem.

\[-3 + 6a = 27\]
\[+3 \quad +3 \quad \text{Add 3 to both sides}\]
\[6a = 30\]
\[6 \quad \div \quad 6 \quad \text{Divide both sides by 6}\]

Select the answer: Add 3 to both sides and then divide both sides by 6

40) Problem #PRAB4U3 "PRAB4U3 - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation

\[-7 + 3z = 5?\]

Multiple Choice:
- ✔ Add 7 to both sides and then divide both sides by 3
- ✗ Subtract 7 to both sides and then divide both sides by 3
- ✗ Divide both sides by 3 and then add 7 to both sides
- ✗ Divide both sides by 3 and then subtract 7 to both sides

Hints:
- Here is how to solve a similar problem.

\[-8 + 5x = 52\]
\[+8 \quad +8\]
\[5x = 60\]
\[5 \quad \div \quad 5\]
\[x = 12\]

- The first step to solve is to add or subtract on both sides of the equation.
- This is how to solve this problem.

\[-7 + 3z = 5\]
\[+7 \quad +7 \quad \text{Add 7 to both sides}\]
\[3z = 12\]
\[3 \quad \div \quad 3 \quad \text{Divide both sides by 3}\]
Select the answer: Add 7 to both sides and then divide both sides by 3

41) Problem #PRAB4VS "PRAB4VS - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation $2x - 7 = 3$?

Multiple Choice:

- ✔ Add 7 to both sides and then divide both sides by 2
- ✗ Subtract 7 to both sides and then divide both sides by 2
- ✗ Divide both sides by 2 and then add 7 to both sides
- ✗ Divide both sides by 2 and then subtract 7 to both sides

Hints:
- Here is how to solve a similar problem.

\[
\begin{align*}
5x - 8 &= 52 \\
+8 &+8
\end{align*}
\]

\[
\begin{align*}
5x &= 60 \\
5 &= 5
\end{align*}
\]

\[
x = 12
\]

- The first step to solve is to add or subtract on both sides of the equation.
- You should do the opposite of whatever sign is showing.
- This is how to solve this problem.

\[
\begin{align*}
2x - 7 &= 3 \\
+7 &+7 \text{ Add 7 to both sides}
\end{align*}
\]

\[
\begin{align*}
2x &= 10 \\
2 &= 2 \text{ Divide both sides by 2}
\end{align*}
\]

Select the answer: Add 7 to both sides and then divide both sides by 2

42) Problem #PRAB4RV "PRAB4RV - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation $3x - 5 = 4$?

Multiple Choice:

- ✔ Add 5 to both sides and then divide both sides by 3
- ✗ Subtract 5 to both sides and then divide both sides by 3
- ✗ Divide both sides by 3 and then add 5 to both sides
- ✗ Divide both sides by 3 and then subtract 5 to both sides

Hints:
- Here is how to solve a similar problem.

\[
\begin{align*}
5x &= 52
\end{align*}
\]
The first step to solve is to add or subtract on both sides of the equation.
You should do the opposite of whatever sign is showing.
This is how to solve this problem.

\[3x - 5 = 4\]
\[+5 \quad \text{Add 5 to both sides}\]
\[3x = 9\]
\[3 \quad \text{Divide both sides by 3}\]

Select the answer: Add 5 to both sides and then divide both sides by 3

43) Problem #PRAB4VX "PRAB4VX - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation \(4c - 2 = 6\)?

Multiple Choice:
- Add 2 to both sides and then divide both sides by 4
- Subtract 2 to both sides and then divide both sides by 4
- Divide both sides by 4 and then add 2 to both sides
- Divide both sides by 4 and then subtract 2 to both sides

Hints:
- Here is how to solve a similar problem.

\[5x - 8 = 52\]
\[+8 \quad +8\]
\[5x = 60\]
\[5 \quad \text{Divide both sides by 5}\]
\[x = 12\]

- The first step to solve is to add or subtract on both sides of the equation.
- You should do the opposite of whatever sign is showing.
- This is how to solve this problem.

\[4c - 2 = 6\]
\[+2 \quad +2 \quad \text{Add 2 to both sides}\]
4c = 8
4 4 Divide both sides by 4

Select the answer: Add 2 to both sides and then divide both sides by 4

44) Problem #PRAB4UA "PRAB4UA - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation

-2 + 2b = 14?

Multiple Choice:
✓ Add 2 to both sides and then divide both sides by 2
✗ Subtract 2 to both sides and then divide both sides by 2
✗ Divide both sides by 2 and then add 2 to both sides
✗ Divide both sides by 2 and then subtract 2 to both sides

Hints:
• Here is how to solve a similar problem.

-8 + 5x = 52
+8

5x = 60
5 5

x = 12

• The first step to solve is to add or subtract on both sides of the equation.
• This is how to solve this problem.

2 + 2b = 14
+2 +2 Add 2 to both sides

2b = 16
2 2 Divide both sides by 2

Select the answer: Add 2 to both sides and then divide both sides by 2

45) Problem #PRAB4UB "PRAB4UB - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation

-8 + 2a = 2?

Multiple Choice:
✓ Add 8 to both sides and then divide both sides by 2
✗ Subtract 8 to both sides and then divide both sides by 2
Hints:

- Here is how to solve a similar problem.

\[-8 + 5x = 52\]
\[+8 \quad +8\]

\[5x = 60\]
\[5 \quad 5\]

\[x = 12\]

- The first step to solve is to add or subtract on both sides of the equation.
- This is how to solve this problem.

\[-8 + 2a = 2\]
\[+8 \quad +8 \quad \text{Add 8 to both sides}\]

\[2a = 10\]
\[2 \quad 2 \quad \text{Divide both sides by 2}\]

Select the answer: Add 8 to both sides and then divide both sides by 2

Multiple Choice:

- Add 7 to both sides and then divide both sides by 3
- Subtract 7 to both sides and then divide both sides by 3
- Divide both sides by 3 and then add 7 to both sides
- Divide both sides by 3 and then subtract 7 to both sides

Hints:

- Here is how to solve a similar problem.

\[-8 + 5x = 52\]
\[+8 \quad +8\]

\[5x = 60\]
\[5 \quad 5\]

\[x = 12\]
The first step to solve is to add or subtract on both sides of the equation.

This is how to solve this problem.

\[-7 + 3c = 2\]

\[+7\quad +7\quad \text{Add 7 to both sides}\]

\[3c = 9\]

\[
\begin{array}{c}
3c \\
3
\end{array}
\quad \begin{array}{c}
3
\end{array}
\quad \text{Divide both sides by 3}
\]

Select the answer: Add 7 to both sides and then divide both sides by 3

47) Problem #PRAB4WA "PRAB4WA - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation \(7a - 5 = 9\)?

Multiple Choice:

- Add 5 to both sides and then divide both sides by 7
- Subtract 5 to both sides and then divide both sides by 7
- Divide both sides by 7 and then add 5 to both sides
- Divide both sides by 7 and then subtract 5 to both sides

Hints:

- Here is how to solve a similar problem.

\[5x - 8 = 52\]

\[+8\quad +8\]

\[5x = 60\]

\[
\begin{array}{c}
5x \\
5
\end{array}\quad \begin{array}{c}
5
\end{array}
\]

\[x = 12\]

The first step to solve is to add or subtract on both sides of the equation.

You should do the opposite of whatever sign is showing.

This is how to solve this problem.

\[7a - 5 = 9\]

\[+5\quad +5\quad \text{Add 5 to both sides}\]

\[7a = 14\]

\[
\begin{array}{c}
7a \\
7
\end{array}\quad \begin{array}{c}
7
\end{array}
\quad \text{Divide both sides by 7}\]

Select the answer: Add 5 to both sides and then divide both sides by 7

48) Problem #PRAB4VU "PRAB4VU - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation \(3a - 4 = 20\)?
Multiple Choice:

✓ Add 4 to both sides and then divide both sides by 3
✓ Subtract 4 to both sides and then divide both sides by 3
✓ Divide both sides by 3 and then add 4 to both sides
✓ Divide both sides by 3 and then subtract 4 to both sides

Hints:

- Here is how to solve a similar problem.

\[
5x - 8 = 52 \\
+8 +8 \\
5x = 60 \\
5 5 \\
x = 12
\]

- The first step to solve is to add or subtract on both sides of the equation.
- You should do the opposite of whatever sign is showing.
- This is how to solve this problem.

\[
3a - 4 = 20 \\
+4 +4 Add 4 to both sides \\
3a = 24 \\
3 3 Divide both sides by 3
\]

Select the answer: Add 4 to both sides and then divide both sides by 3

Multiple Choice:

✓ Add 2 to both sides and then divide both sides by 3
✓ Subtract 2 to both sides and then divide both sides by 3
✓ Divide both sides by 3 and then add 2 to both sides
✓ Divide both sides by 3 and then subtract 2 to both sides

Hints:

- Here is how to solve a similar problem.

\[
5x - 8 = 52 \\
+8 +8 \\
5x = 60 \\
5 5
\]
x = 12

- The first step to solve is to add or subtract on both sides of the equation.
- You should do the opposite of whatever sign is showing.
- This is how to solve this problem.

3y - 2 = 13
+2 +2 Add 2 to both sides

3y = 15
3 3 Divide both sides by 3

Select the answer: Add 2 to both sides and then divide both sides by 3

50) Problem #PRAB4U6 "PRAB4U6 - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation

-5 + 2b = 5?

Multiple Choice:
✓ Add 5 to both sides and then divide both sides by 2
✗ Subtract 5 to both sides and then divide both sides by 2
✗ Divide both sides by 2 and then add 5 to both sides
✗ Divide both sides by 2 and then subtract 5 to both sides

Hints:
- Here is how to solve a similar problem.

-8 + 5x = 52
+8 +8

5x = 60
5 5

x = 12

- The first step to solve is to add or subtract on both sides of the equation.
- This is how to solve this problem.

-5 + 2b = 5
+5 +5 Add 5 to both sides

2b = 10
2 2 Divide both sides by 2
Select the answer: Add 5 to both sides and then divide both sides by 2

51) Problem #PRAB4UD "PRAB4UD - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation

\[-6 + 6c = 36\]

Multiple Choice:
- ✓ Add 6 to both sides and then divide both sides by 6
- ✗ Subtract 6 to both sides and then divide both sides by 6
- ✗ Divide both sides by 6 and then add 6 to both sides
- ✗ Divide both sides by 6 and then subtract 6 to both sides

Hints:
- Here is how to solve a similar problem.

\[
\begin{align*}
-8 + 5x &= 52 \\
+8 &
\end{align*}
\]

\[
\begin{align*}
5x &= 60 \\
5 &
\end{align*}
\]

\[
x = 12
\]

- The first step to solve is to add or subtract on both sides of the equation.
- This is how to solve this problem.

\[
\begin{align*}
-6 + 6c &= 36 \\
+6 &
\end{align*}
\]

\[
\begin{align*}
6c &= 42 \\
6 &
\end{align*}
\]

Select the answer: Add 6 to both sides and then divide both sides by 6

52) Problem #PRAB4RS "PRAB4RS - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation \(7c - 7 = 14\)?

Multiple Choice:
- ✓ Add 7 to both sides and then divide both sides by 7
- ✗ Subtract 7 to both sides and then divide both sides by 7
- ✗ Divide both sides by 7 and then add 7 to both sides
- ✗ Divide both sides by 7 and then subtract 7 to both sides

Hints:
- Here is how to solve a similar problem.
The first step to solve is to add or subtract on both sides of the equation.

You should do the opposite of whatever sign is showing.

This is how to solve this problem.

\[
7c - 7 = 14
\]

Add 7 to both sides

\[
7c = 21
\]

Divide both sides by 7

Select the answer: Add 7 to both sides and then divide both sides by 7

53) Problem #PRAB4VZ "PRAB4VZ - Explaining How to Solve an Equation"

Which of the following statements explains the correct method to solve the equation \(2b - 7 = 9\)?

Multiple Choice:

- Add 7 to both sides and then divide both sides by 2
- Subtract 7 to both sides and then divide both sides by 2
- Divide both sides by 2 and then add 7 to both sides
- Divide both sides by 2 and then subtract 7 to both sides

Hints:

- Here is how to solve a similar problem.

\[
5x - 8 = 52
\]

Add 8

\[
5x = 60
\]

Divide by 5

\[
x = 12
\]
+ 7 +7 Add 7 to both sides

2b = 16
2 2 Divide both sides by 2

Select the answer: Add 7 to both sides and then divide both sides by 2

54) Problem #PRAB4WD "PRAB4WD - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation 8b - 5 = 43?

Multiple Choice:
✓ Add 5 to both sides and then divide both sides by 8
✗ Subtract 5 to both sides and then divide both sides by 8
✗ Divide both sides by 8 and then add 5 to both sides
✗ Divide both sides by 8 and then subtract 5 to both sides

Hints:
• Here is how to solve a similar problem.

5x - 8 = 52
+ 8 +8

5x = 60
5 5

x = 12

• The first step to solve is to add or subtract on both sides of the equation.
• You should do the opposite of whatever sign is showing.
• This is how to solve this problem.

8b - 5 = 43
+ 5 +5 Add 5 to both sides

8b = 48
8 8 Divide both sides by 8

Select the answer: Add 5 to both sides and then divide both sides by 8

55) Problem #PRAB4T8 "PRAB4T8 - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation -5 + 5x = 15?

Multiple Choice:
✓ Add 5 to both sides and then divide both sides by 5
Subtract 5 to both sides and then divide both sides by 5
Divide both sides by 5 and then add 5 to both sides
Divide both sides by 5 and then subtract 5 to both sides

Hints:

- Here is how to solve a similar problem.

\[-8 + 5x = 52\]
\[+8 \quad +8\]

\[5x = 60\]
\[5 \quad 5\]

\[x = 12\]

- The first step to solve is to add or subtract on both sides of the equation.
- This is how to solve this problem.

\[-5 + 5x = 15\]
\[+5 \quad +5 \quad \text{Add 5 to both sides}\]

\[5x = 20\]
\[5 \quad 5 \quad \text{Divide both sides by 5}\]

Select the answer: Add 5 to both sides and then divide both sides by 5

56) Problem #PRAB4WJ "PRAB4WJ - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation \(8y - 4 = 44\)?

Multiple Choice:

- Add 4 to both sides and then divide both sides by 8
- Subtract 4 to both sides and then divide both sides by 8
- Divide both sides by 8 and then add 4 to both sides
- Divide both sides by 8 and then subtract 4 to both sides

Hints:

- Here is how to solve a similar problem.

\[5x - 8 = 52\]
\[+8 \quad +8\]

\[5x = 60\]
\[5 \quad 5\]

\[x = 12\]
The first step to solve is to add or subtract on both sides of the equation.
You should do the opposite of whatever sign is showing.
This is how to solve this problem.

\[8y - 4 = 44 \]
\[+4\quad +4 \quad \text{Add 4 to both sides} \]

\[8y = 48 \]
\[8\quad 8 \quad \text{Divide both sides by 8} \]

Select the answer: Add 4 to both sides and then divide both sides by 8

57) Problem #PRAB4RY "PRAB4RY - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation \(4x - 2 = 6 \)?

Multiple Choice:
- ✅ Add 2 to both sides and then divide both sides by 4
- ❌ Subtract 2 to both sides and then divide both sides by 4
- ❌ Divide both sides by 4 and then add 2 to both sides
- ❌ Divide both sides by 4 and then subtract 2 to both sides

Hints:
- Here is how to solve a similar problem.

\[5x - 8 = 52 \]
\[+8\quad +8 \]

\[5x = 60 \]
\[5\quad 5 \]

\[x = 12 \]

- The first step to solve is to add or subtract on both sides of the equation.
- You should do the opposite of whatever sign is showing.
- This is how to solve this problem.

\[4x - 2 = 6 \]
\[+2\quad +2 \quad \text{Add 2 to both sides} \]

\[4x = 8 \]
\[4\quad 4 \quad \text{Divide both sides by 4} \]

Select the answer: Add 2 to both sides and then divide both sides by 4

58) Problem #PRAB4WC "PRAB4WC - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation $8c - 4 = 44$?

Multiple Choice:

- ✓ Add 4 to both sides and then divide both sides by 8
- ❌ Subtract 4 to both sides and then divide both sides by 8
- ❌ Divide both sides by 8 and then add 4 to both sides
- ❌ Divide both sides by 8 and then subtract 4 to both sides

Hints:

- Here is how to solve a similar problem.

\[
5x - 8 = 52 \\
+ 8 \quad +8 \\
5x = 60 \\
5 \quad 5 \\
\]

\[
x = 12
\]

- The first step to solve is to add or subtract on both sides of the equation.
- You should do the opposite of whatever sign is showing.
- This is how to solve this problem.

\[
8c - 4 = 44 \\
+ 4 \quad +4 \quad \text{Add 4 to both sides} \\
8c = 48 \\
8 \quad 8 \quad \text{Divide both sides by 8}
\]

Select the answer: Add 4 to both sides and then divide both sides by 8

59) Problem #PRAB4U2 "PRAB4U2 - Explaining How to Solve an Equation"

Which of the following statements explains the correct method to solve the equation $-8 + 8a = 24$?

Multiple Choice:

- ✓ Add 8 to both sides and then divide both sides by 8
- ❌ Subtract 8 to both sides and then divide both sides by 8
- ❌ Divide both sides by 8 and then add 8 to both sides
- ❌ Divide both sides by 8 and then subtract 8 to both sides

Hints:

- Here is how to solve a similar problem.

\[
-8 + 8a = 24 \\
+8 \\
+8
\]
\[5x = 60 \]
\[\frac{5}{5} \]
\[x = 12 \]

- The first step to solve is to add or subtract on both sides of the equation.
- This is how to solve this problem.

\[-8 + 8a = 24\]
\[+8 \quad +8 \quad \text{Add 8 to both sides}\]

\[8a = 32 \]
\[\frac{8}{8} \quad \text{Divide both sides by 8} \]

Select the answer: Add 8 to both sides and then divide both sides by 8

60) Problem #PRAB4U5 "PRAB4U5 - Explaining How to Solve an Equation"

Which of the following statements explains the correct method to solve the equation

\[-6 + 5x = 29?\]

Multiple Choice:

- ✓ Add 6 to both sides and then divide both sides by 5
- ✗ Subtract 6 to both sides and then divide both sides by 5
- ✗ Divide both sides by 5 and then add 6 to both sides
- ✗ Divide both sides by 5 and then subtract 6 to both sides

Hints:

- Here is how to solve a similar problem.

\[-8 + 5x = 52\]
\[+8 \quad \underline{+8} \]

\[5x = 60 \]
\[\frac{5}{5} \]
\[x = 12 \]

- The first step to solve is to add or subtract on both sides of the equation.
- This is how to solve this problem.

\[-6 + 5x = 29\]
\[+6 \quad +6 \quad \text{Add 6 to both sides}\]

\[5x = 35 \]
\[\frac{5}{5} \quad \text{Divide both sides by 5} \]
Select the answer: Add 6 to both sides and then divide both sides by 5

61) Problem #PRAB4UJ "PRAB4UJ - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation

-3 + 3x = 9?

Multiple Choice:
✓ Add 3 to both sides and then divide both sides by 3
✗ Subtract 3 to both sides and then divide both sides by 3
✗ Divide both sides by 3 and then add 3 to both sides
✗ Divide both sides by 3 and then subtract 3 to both sides

Hints:
- Here is how to solve a similar problem.

-8 + 5x = 52
+8 +8

5x = 60
5 5

x = 12

- The first step to solve is to add or subtract on both sides of the equation.
- This is how to solve this problem.

-3 + 3x = 9
+3 +3 Add 3 to both sides

3x = 12
3 3 Divide both sides by 3

Select the answer: Add 3 to both sides and then divide both sides by 3

62) Problem #PRAB4VE "PRAB4VE - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation

-3 + 3b = 21?

Multiple Choice:
✓ Add 3 to both sides and then divide both sides by 3
✗ Subtract 3 to both sides and then divide both sides by 3
✗ Divide both sides by 3 and then add 3 to both sides
✗ Divide both sides by 3 and then subtract 3 to both sides

Hints:
-8 + 5x = 52
+8 +8

5x = 60
5 5

x = 12

The first step to solve is to add or subtract on both sides of the equation.

This is how to solve this problem.

-3 + 3b = 21
+3 +3 Add 3 to both sides

3b = 24
3 3 Divide both sides by 3

Select the answer: Add 3 to both sides and then divide both sides by 3

63) Problem #PRAB4VQ "PRAB4VQ - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation 7b - 3 = 32?

Multiple Choice:

✓ Add 3 to both sides and then divide both sides by 7
✗ Subtract 3 to both sides and then divide both sides by 7
✗ Divide both sides by 7 and then add 3 to both sides
✗ Divide both sides by 7 and then subtract 3 to both sides

Hints:

- Here is how to solve a similar problem.

5x - 8 = 52
+ 8 +8

5x = 60
5 5

x = 12

The first step to solve is to add or subtract on both sides of the equation.

You should do the opposite of whatever sign is showing.

This is how to solve this problem.

7b - 3 = 32
+ 3 Add 3 to both sides

7b = 35
7 7 Divide both sides by 7

Select the answer: Add 3 to both sides and then divide both sides by 7

64) Problem #PRAB4UY "PRAB4UY - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation

\[-3 + 8x = 45\]

Multiple Choice:
- ✓ Add 3 to both sides and then divide both sides by 8
- ✗ Subtract 3 to both sides and then divide both sides by 8
- ✗ Divide both sides by 8 and then add 3 to both sides
- ✗ Divide both sides by 8 and then subtract 3 to both sides

Hints:
- Here is how to solve a similar problem.

\[-8 + 5x = 52\]

\[+8 \quad +8\]

\[5x = 60\]
\[5 5\]

\[x = 12\]

- The first step to solve is to add or subtract on both sides of the equation.
- This is how to solve this problem.

\[-3 + 8x = 45\]

\[+3 \quad +3\] Add 3 to both sides

\[8x = 48\]
\[8 8\] Divide both sides by 8

Select the answer: Add 3 to both sides and then divide both sides by 8

65) Problem #PRAB4VN "PRAB4VN - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation \(2c - 7 = 5\)?

Multiple Choice:
- ✓ Add 7 to both sides and then divide both sides by 2
- ✗ Subtract 7 to both sides and then divide both sides by 2
Divide both sides by 2 and then add 7 to both sides
Divide both sides by 2 and then subtract 7 to both sides

Hints:
- Here is how to solve a similar problem.

\[
\begin{align*}
5x - 8 &= 52 \\
+8 &+8 \\
5x &= 60 \\
5 &5 \\
x &= 12
\end{align*}
\]

- The first step to solve is to add or subtract on both sides of the equation.
- You should do the opposite of whatever sign is showing.
- This is how to solve this problem.

\[
\begin{align*}
2c - 7 &= 5 \\
+7 &+7 \quad \text{Add 7 to both sides} \\
2c &= 12 \\
2 &2 \quad \text{Divide both sides by 2}
\end{align*}
\]

Select the answer: Add 7 to both sides and then divide both sides by 2

66) Problem #PRAB4V3 "PRAB4V3 - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation \(2z - 3 = 9\)?

Multiple Choice:
- Add 3 to both sides and then divide both sides by 2 ✔
- Subtract 3 to both sides and then divide both sides by 2 ✗
- Divide both sides by 2 and then add 3 to both sides ✗
- Divide both sides by 2 and then subtract 3 to both sides ✗

Hints:
- Here is how to solve a similar problem.

\[
\begin{align*}
5x - 8 &= 52 \\
+8 &+8 \\
5x &= 60 \\
5 &5 \\
x &= 12
\end{align*}
\]
The first step to solve is to add or subtract on both sides of the equation.
You should do the opposite of whatever sign is showing.
This is how to solve this problem.

\[2z - 3 = 9 \]
\[+3 \quad +3 \quad \text{Add 3 to both sides} \]

\[2z = 12 \]
\[\frac{2z}{2} = \frac{12}{2} \quad \text{Divide both sides by 2} \]

Select the answer: Add 3 to both sides and then divide both sides by 2

67) Problem #PRAB4VH "PRAB4VH - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation \(7z - 6 = 43\)?

Multiple Choice:
- [x] Add 6 to both sides and then divide both sides by 7
- [x] Subtract 6 to both sides and then divide both sides by 7
- [x] Divide both sides by 7 and then add 6 to both sides
- [x] Divide both sides by 7 and then subtract 6 to both sides

Hints:
- Here is how to solve a similar problem.

\[5x - 8 = 52 \]
\[+8 \quad +8 \]

\[5x = 60 \]
\[\frac{5x}{5} = \frac{60}{5} \]

\[x = 12 \]

- The first step to solve is to add or subtract on both sides of the equation.
- You should do the opposite of whatever sign is showing.
- This is how to solve this problem.

\[7z - 6 = 43 \]
\[+6 \quad +6 \quad \text{Add 6 to both sides} \]

\[7z = 49 \]
\[\frac{7z}{7} = \frac{49}{7} \quad \text{Divide both sides by 7} \]

Select the answer: Add 6 to both sides and then divide both sides by 7

68) Problem #PRAB4T9 "PRAB4T9 - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation

-8 + 3b = -2?

Multiple Choice:
- ✓ Add 8 to both sides and then divide both sides by 3
- ❌ Subtract 8 to both sides and then divide both sides by 3
- ❌ Divide both sides by 3 and then add 8 to both sides
- ❌ Divide both sides by 3 and then subtract 8 to both sides

Hints:
- Here is how to solve a similar problem.

```
-8 + 5x = 52
+8 +8

5x = 60
5 5

x = 12
```

- The first step to solve is to add or subtract on both sides of the equation.
- This is how to solve this problem.

```
-8 + 3b = -2
+8 +8 Add 8 to both sides

3b = 6
3 3 Divide both sides by 3
```

Select the answer: Add 8 to both sides and then divide both sides by 3

69) Problem #PRAB4VC "PRAB4VC - Explaining How to Solve an Equation"

Which of the following statements explains the correct method to solve the equation

-2 + 3c = 10?

Multiple Choice:
- ✓ Add 2 to both sides and then divide both sides by 3
- ❌ Subtract 2 to both sides and then divide both sides by 3
- ❌ Divide both sides by 3 and then add 2 to both sides
- ❌ Divide both sides by 3 and then subtract 2 to both sides

Hints:
- Here is how to solve a similar problem.

```
-8 + 5x = 52
+8 +8
```
The first step to solve is to add or subtract on both sides of the equation.

This is how to solve this problem.

\[-2 + 3c = 10\]
Add 2 to both sides

\[3c = 12\]
Divide both sides by 3

Select the answer: Add 2 to both sides and then divide both sides by 3

70) Problem #PRAB4UK "PRAB4UK - Explaining How to Solve an Equation"

Which of the following statements explains the correct method to solve the equation

\[-4 + 2z = 4\]?

Multiple Choice:

- ✔ Add 4 to both sides and then divide both sides by 2
- ✗ Subtract 4 to both sides and then divide both sides by 2
- ✗ Divide both sides by 2 and then add 4 to both sides
- ✗ Divide both sides by 2 and then subtract 4 to both sides

Hints:

- Here is how to solve a similar problem.

\[-8 + 5x = 52\]
Add 2 to both sides

\[5x = 60\]
Divide both sides by 5

\[x = 12\]

The first step to solve is to add or subtract on both sides of the equation.

This is how to solve this problem.

\[-4 + 2z = 4\]
Add 4 to both sides

\[2z = 8\]
2 2 Divide both sides by 2

Select the answer: Add 4 to both sides and then divide both sides by 2

71) Problem #PRAB4UG "PRAB4UG - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation

\[-6 + 5a = 34?\]

Multiple Choice:
✓ Add 6 to both sides and then divide both sides by 5
✗ Subtract 6 to both sides and then divide both sides by 5
✗ Divide both sides by 5 and then add 6 to both sides
✗ Divide both sides by 5 and then subtract 6 to both sides

Hints:
• Here is how to solve a similar problem.

\[-8 + 5x = 52\]

\[+8 \quad +8\]

\[5x = 60\]

\[5 \quad 5\]

\[x = 12\]

• The first step to solve is to add or subtract on both sides of the equation.
• This is how to solve this problem.

\[-6 \quad +5a = 34\]

\[+6 \quad +6 \quad \text{Add 6 to both sides}\]

\[5a = 40\]

\[5 \quad 5\quad \text{Divide both sides by 5}\]

Select the answer: Add 6 to both sides and then divide both sides by 5

72) Problem #PRAB4VJ "PRAB4VJ - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation \(2b - 7 = 5?\)

Multiple Choice:
✓ Add 7 to both sides and then divide both sides by 2
✗ Subtract 7 to both sides and then divide both sides by 2
✗ Divide both sides by 2 and then add 7 to both sides
✗ Divide both sides by 2 and then subtract 7 to both sides

Hints:
• Here is how to solve a similar problem.

5x - 8 = 52

\[
+8\quad +8
\]

5x = 60

\[
5\quad 5
\]

x = 12

• The first step to solve is to add or subtract on both sides of the equation.
• You should do the opposite of whatever sign is showing.
• This is how to solve this problem.

2b - 7 = 5

\[
+7\quad +7\quad \text{Add 7 to both sides}
\]

2b = 12

\[
2\quad 2\quad \text{Divide both sides by 2}
\]

Select the answer: Add 7 to both sides and then divide both sides by 2

73) Problem #PRAB4U7 "PRAB4U7 - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation -2 + 8z = 14?

Multiple Choice:

✓ Add 2 to both sides and then divide both sides by 8

✗ Subtract 2 to both sides and then divide both sides by 8

✗ Divide both sides by 8 and then add 2 to both sides

✗ Divide both sides by 8 and then subtract 2 to both sides

Hints:

• Here is how to solve a similar problem.

-8 + 5x = 52

\[
+8\quad +8
\]

5x = 60

\[
5\quad 5
\]

x = 12

• The first step to solve is to add or subtract on both sides of the equation.
• This is how to solve this problem.
-2 + 8z = 14
+2 6z = 16
8 8 Divide both sides by 8

Select the answer: Add 2 to both sides and then divide both sides by 8

74) Problem #PRAB4V4 "PRAB4V4 - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation 8y - 4 = 12?

Multiple Choice:
✓ Add 4 to both sides and then divide both sides by 8
✗ Subtract 4 to both sides and then divide both sides by 8
✗ Divide both sides by 8 and then add 4 to both sides
✗ Divide both sides by 8 and then subtract 4 to both sides

Hints:
• Here is how to solve a similar problem.

5x - 8 = 52
+ 8 6x = 60
5 5
x = 12

• The first step to solve is to add or subtract on both sides of the equation.
• You should do the opposite of whatever sign is showing.
• This is how to solve this problem.

8y - 4 = 12
+ 4 8y = 16
8 8 Divide both sides by 8

Select the answer: Add 4 to both sides and then divide both sides by 8

75) Problem #PRAB4WM "PRAB4WM - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation 6x - 6 = 36?

Multiple Choice:
✓ Add 6 to both sides and then divide both sides by 6
Subtract 6 to both sides and then divide both sides by 6
Divide both sides by 6 and then add 6 to both sides
Divide both sides by 6 and then subtract 6 to both sides

Hints:
- Here is how to solve a similar problem.

5x - 8 = 52
+ 8 +8

5x = 60
5 5

x = 12

The first step to solve is to add or subtract on both sides of the equation.
You should do the opposite of whatever sign is showing.
This is how to solve this problem.

6x - 6 = 36
+ 6 +6 Add 6 to both sides

6x = 42
6 6 Divide both sides by 6

Select the answer: Add 6 to both sides and then divide both sides by 6

76) Problem #PRAB4WE "PRAB4WE - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation 7x - 8 = 48?

Multiple Choice:

Add 8 to both sides and then divide both sides by 7
Subtract 8 to both sides and then divide both sides by 7
Divide both sides by 7 and then add 8 to both sides
Divide both sides by 7 and then subtract 8 to both sides

Hints:
- Here is how to solve a similar problem.

5x - 8 = 52
+ 8 +8

5x = 60
5 5

x = 12
- The first step to solve is to add or subtract on both sides of the equation.
- You should do the opposite of whatever sign is showing.
- This is how to solve this problem.

\[7x - 8 = 48\]
\[\begin{align*}
+8 & +8 \quad \text{Add 8 to both sides} \\
7x & = 56 \\
7 & 7 \quad \text{Divide both sides by 7}
\end{align*}\]

Select the answer: Add 8 to both sides and then divide both sides by 7

77) Problem #PRAB4UW "PRAB4UW - Explaining How to Solve an Equation"

Which of the following statements explains the correct method to solve the equation

\[-3 + 6y = 33\]

Multiple Choice:

- ✔ Add 3 to both sides and then divide both sides by 6
- ✗ Subtract 3 to both sides and then divide both sides by 6
- ✗ Divide both sides by 6 and then add 3 to both sides
- ✗ Divide both sides by 6 and then subtract 3 to both sides

Hints:

- Here is how to solve a similar problem.

\[-8 + 5x = 52\]
\[\begin{align*}
+8 & +8 \\
5x & = 60 \\
5 & 5
\end{align*}\]
\[x = 12\]

- The first step to solve is to add or subtract on both sides of the equation.
- This is how to solve this problem.

\[-3 + 6y = 33\]
\[\begin{align*}
+3 & +3 \quad \text{Add 3 to both sides} \\
6y & = 36 \\
6 & 6 \quad \text{Divide both sides by 6}
\end{align*}\]

Select the answer: Add 3 to both sides and then divide both sides by 6
78) Problem #PRAB4RQ "PRAB4RQ - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation \(2z - 7 = -3\)?

Multiple Choice:
- ✔ Add 7 to both sides and then divide both sides by 2
- ✗ Subtract 7 to both sides and then divide both sides by 2
- ✗ Divide both sides by 2 and then add 7 to both sides
- ✗ Divide both sides by 2 and then subtract 7 to both sides

Hints:
- Here is how to solve a similar problem.

\[
\begin{align*}
5x - 8 &= 52 \\
+8 &+8 \\
5x &= 60 \\
5 &5 \\
x &= 12
\end{align*}
\]
- The first step to solve is to add or subtract on both sides of the equation.
- You should do the opposite of whatever sign is showing.
- This is how to solve this problem.

\[
\begin{align*}
2z - 7 &= -3 \\
+7 &+7 \quad \text{Add 7 to both sides} \\
2z &= 4 \\
2 &2 \quad \text{Divide both sides by 2}
\end{align*}
\]

Select the answer: Add 7 to both sides and then divide both sides by 2

79) Problem #PRAB4WR "PRAB4WR - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation \(5x - 4 = 11\)?

Multiple Choice:
- ✔ Add 4 to both sides and then divide both sides by 5
- ✗ Subtract 4 to both sides and then divide both sides by 5
- ✗ Divide both sides by 5 and then add 4 to both sides
- ✗ Divide both sides by 5 and then subtract 4 to both sides

Hints:
- Here is how to solve a similar problem.

\[
\begin{align*}
5x - 8 &= 52 \\
+8 &+8 \\
5x &= 60 \\
5 &5 \\
x &= 12
\end{align*}
\]
\[5x = 60\]
\[\frac{5x}{5} = \frac{60}{5}\]
\[x = 12\]

- The first step to solve is to add or subtract on both sides of the equation.
- You should do the opposite of whatever sign is showing.
- This is how to solve this problem.

\[5x - 4 = 11\]
\[+4 \quad +4\quad \text{Add 4 to both sides}\]
\[5x = 15\]
\[\frac{5x}{5} = \frac{15}{5}\]
\[x = 3\]

Select the answer: Add 4 to both sides and then divide both sides by 5

80) Problem #PRAB4WP "PRAB4WP - Explaining How to Solve an Equation"

Which of the following statements explains the correct method to solve the equation \(7a - 4 = 24\)?

Multiple Choice:

- ✓ Add 4 to both sides and then divide both sides by 7
- ❌ Subtract 4 to both sides and then divide both sides by 7
- ❌ Divide both sides by 7 and then add 4 to both sides
- ❌ Divide both sides by 7 and then subtract 4 to both sides

Hints:

- Here is how to solve a similar problem.

\[5x - 8 = 52\]
\[+8 \quad +8\]
\[5x = 60\]
\[\frac{5x}{5} = \frac{60}{5}\]
\[x = 12\]

- The first step to solve is to add or subtract on both sides of the equation.
- You should do the opposite of whatever sign is showing.
- This is how to solve this problem.

\[7a - 4 = 24\]
\[+4 \quad +4\quad \text{Add 4 to both sides}\]
\[7a = 28\]
Divide both sides by 7

Select the answer: Add 4 to both sides and then divide both sides by 7

81) Problem #PRAB4V2 "PRAB4V2 - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation $4y - 4 = 16$?

Multiple Choice:
- ✔ Add 4 to both sides and then divide both sides by 4
- ✗ Subtract 4 to both sides and then divide both sides by 4
- ✗ Divide both sides by 4 and then add 4 to both sides
- ✗ Divide both sides by 4 and then subtract 4 to both sides

Hints:
- Here is how to solve a similar problem.

5x - 8 = 52

Add 4 to both sides

5x = 60

Divide both sides by 4

x = 12

The first step to solve is to add or subtract on both sides of the equation.
You should do the opposite of whatever sign is showing.
This is how to solve this problem.

82) Problem #PRAB4RX "PRAB4RX - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation $8b - 2 = 46$?

Multiple Choice:
- ✔ Add 2 to both sides and then divide both sides by 8
- ✗ Subtract 2 to both sides and then divide both sides by 8
- ✗ Divide both sides by 8 and then add 2 to both sides
- ✗ Divide both sides by 8 and then subtract 2 to both sides

Hints:
- Here is how to solve a similar problem.
\[
5x - 8 = 52
+ 8 \quad +8
\]

\[
5x = 60
5 \quad 5
\]

\[x = 12\]

- The first step to solve is to add or subtract on both sides of the equation.
- You should do the opposite of whatever sign is showing.
- This is how to solve this problem.

\[
8b - 2 = 46
+ 2 \quad +2 \quad \text{Add 2 to both sides}
\]

\[
8b = 48
8 \quad 8 \quad \text{Divide both sides by 8}
\]

Select the answer: Add 2 to both sides and then divide both sides by 8

83) Problem #PRAB4WF "PRAB4WF - Explaining How to Solve an Equation"

Which of the following statements explains the correct method to solve the equation \(7a - 4 = 52\)?

Multiple Choice:

- Add 4 to both sides and then divide both sides by 7
- Subtract 4 to both sides and then divide both sides by 7
- Divide both sides by 7 and then add 4 to both sides
- Divide both sides by 7 and then subtract 4 to both sides

Hints:

- Here is how to solve a similar problem.

\[
5x - 8 = 52
+ 8 \quad +8
\]

\[
5x = 60
5 \quad 5
\]

\[x = 12\]

- The first step to solve is to add or subtract on both sides of the equation.
- You should do the opposite of whatever sign is showing.
- This is how to solve this problem.
5a - 4 = 52
+ 4 +4 Add 4 to both sides

7a = 56
7 7 Divide both sides by 7

Select the answer: Add 4 to both sides and then divide both sides by 7

84) Problem #PRAB4RU "PRAB4RU - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation 5a - 3 = 32?

Multiple Choice:
✓ Add 3 to both sides and then divide both sides by 5
✗ Subtract 3 to both sides and then divide both sides by 5
✗ Divide both sides by 5 and then add 3 to both sides
✗ Divide both sides by 5 and then subtract 3 to both sides

Hints:
- Here is how to solve a similar problem.

5x - 8 = 52
+ 8 +8

5x = 60
5 5

x = 12

- The first step to solve is to add or subtract on both sides of the equation.
- You should do the opposite of whatever sign is showing.
- This is how to solve this problem.

5a - 3 = 32
+ 3 +3 Add 3 to both sides

5a = 35
5 5 Divide both sides by 5

Select the answer: Add 3 to both sides and then divide both sides by 5

85) Problem #PRAB4VG "PRAB4VG - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation -3 + 2a = 1?

Multiple Choice:
Hints:
- Here is how to solve a similar problem.

\[-8 + 5x = 52\]

\[
\begin{align*}
+8 & +8 \\
5x & = 60 \\
5 & 5
\end{align*}
\]

\[x = 12\]

- The first step to solve is to add or subtract on both sides of the equation.
- This is how to solve this problem.

\[-3 + 2a = 1\]

\[
\begin{align*}
+3 & +3 \quad \text{Add 3 to both sides} \\
2a & = 4 \\
2 & 2 \quad \text{Divide both sides by 2}
\end{align*}
\]

Select the answer: Add 3 to both sides and then divide both sides by 2

86) Problem #PRAB4UX “PRAB4UX - Explaining How to Solve an Equation”

Which of the following statements explains the correct method to solve the equation

\[-3 + 8a = 37?\]

Multiple Choice:
- Add 3 to both sides and then divide both sides by 8
 - Subtract 3 to both sides and then divide both sides by 8
 - Divide both sides by 8 and then add 3 to both sides
 - Divide both sides by 8 and then subtract 3 to both sides

Hints:
- Here is how to solve a similar problem.

\[-8 + 5x = 52\]

\[
\begin{align*}
+8 & +8 \\
5x & = 60 \\
5 & 5
\end{align*}
\]
The first step to solve is to add or subtract on both sides of the equation.

This is how to solve this problem.

\[-3 + 8a = 37\]

Add 3 to both sides

\[8a = 40\]

Divide both sides by 8

Select the answer: Add 3 to both sides and then divide both sides by 8

87) Problem #PRAB4RR "PRAB4RR - Explaining How to Solve an Equation"

Which of the following statements explains the correct method to solve the equation \(3a - 5 = 4\)?

Multiple Choice:

✓ Add 5 to both sides and then divide both sides by 3

✗ Subtract 5 to both sides and then divide both sides by 3

✗ Divide both sides by 3 and then add 5 to both sides

✗ Divide both sides by 3 and then subtract 5 to both sides

Hints:

✓ Here is how to solve a similar problem.

\[5x - 8 = 52\]

Add 8 to both sides

\[5x = 60\]

Divide both sides by 5

\[x = 12\]

The first step to solve is to add or subtract on both sides of the equation.

You should do the opposite of whatever sign is showing.

This is how to solve this problem.

\[3a - 5 = 4\]

Add 5 to both sides

\[3a = 9\]

Divide both sides by 3

Select the answer: Add 5 to both sides and then divide both sides by 3
88) Problem #PRAB4SD "PRAB4SD - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation

-7 + 2z = 9?

Multiple Choice:
- ✔ Add 7 to both sides and then divide both sides by 2
- ✗ Subtract 7 to both sides and then divide both sides by 2
- ✗ Divide both sides by 2 and then add 7 to both sides
- ✗ Divide both sides by 2 and then subtract 7 to both sides

Hints:
- Here is how to solve a similar problem.

\[-8 + 5x = 52\]
\[+8 +8\]
\[5x = 60\]
\[5 \div 5\]
\[x = 12\]

- The first step to solve is to add or subtract on both sides of the equation.
- This is how to solve this problem.

\[-7 + 2z = 9\]
\[+7 +7 \text{ Add 7 to both sides}\]
\[2z = 16\]
\[2 \div 2 \text{ Divide both sides by 2}\]

Select the answer: Add 7 to both sides and then divide both sides by 2

89) Problem #PRAB4WS "PRAB4WS - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation \(5a - 8 = 12?\)

Multiple Choice:
- ✔ Add 8 to both sides and then divide both sides by 5
- ✗ Subtract 8 to both sides and then divide both sides by 5
- ✗ Divide both sides by 5 and then add 8 to both sides
- ✗ Divide both sides by 5 and then subtract 8 to both sides

Hints:
- Here is how to solve a similar problem.

\[5x - 8 = 52\]
\[+8 +8\]
$5x = 60$

$5 \hspace{1cm} 5$

$x = 12$

- The first step to solve is to add or subtract on both sides of the equation.
- You should do the opposite of whatever sign is showing.
- This is how to solve this problem.

$5a - 8 = 12$

$+ 8 \hspace{1cm} +8 \hspace{1cm} \text{Add 8 to both sides}$

$5a = 20$

$5 \hspace{1cm} 5 \hspace{1cm} \text{Divide both sides by 5}$

Select the answer: Add 8 to both sides and then divide both sides by 5

90) Problem #PRAB4UF "PRAB4UF - Explaining How to Solve an Equation"

Which of the following statements explains the correct method to solve the equation

$-7 + 3y = 17$?

Multiple Choice:

✅ Add 7 to both sides and then divide both sides by 3
❌ Subtract 7 to both sides and then divide both sides by 3
❌ Divide both sides by 3 and then add 7 to both sides
❌ Divide both sides by 3 and then subtract 7 to both sides

Hints:

- Here is how to solve a similar problem.

http://avers=false

$-8 + 5x = 52$

$+8 \hspace{1cm} +8$

$5x = 60$

$5 \hspace{1cm} 5$

$x = 12$

- The first step to solve is to add or subtract on both sides of the equation.
- This is how to solve this problem.

$-7 + 3y = 17$

$+7 \hspace{1cm} +7 \hspace{1cm} \text{Add 7 to both sides}$

$3y = 24$
91) Problem #PRAB4WN "PRAB4WN - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation $3z - 7 = 8$?

Multiple Choice:
- ✔ Add 7 to both sides and then divide both sides by 3
- ✗ Subtract 7 to both sides and then divide both sides by 3
- ✗ Divide both sides by 3 and then add 7 to both sides
- ✗ Divide both sides by 3 and then subtract 7 to both sides

Hints:
- Here is how to solve a similar problem.

$$5x - 8 = 52$$

$$+8 +8$$

$$5x = 60$$
$$5 \quad 5$$

$$x = 12$$

- The first step to solve is to add or subtract on both sides of the equation.
- You should do the opposite of whatever sign is showing.
- This is how to solve this problem.

$$3z - 7 = 8$$

$$+7 +7 \quad \text{Add 7 to both sides}$$

$$3z = 15$$
$$3 \quad 3 \quad \text{Divide both sides by 3}$$

Select the answer: Add 7 to both sides and then divide both sides by 3

92) Problem #PRAB4UU "PRAB4UU - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation $-4 + 7y = 24$?

Multiple Choice:
- ✔ Add 4 to both sides and then divide both sides by 7
- ✗ Subtract 4 to both sides and then divide both sides by 7
- ✗ Divide both sides by 7 and then add 4 to both sides
- ✗ Divide both sides by 7 and then subtract 4 to both sides
Hints:

- Here is how to solve a similar problem.

\[-8 + 5x = 52\]
\[+8 \quad +8\]

\[5x = 60\]
\[5 \quad 5\]

\[x = 12\]

- The first step to solve is to add or subtract on both sides of the equation.

- This is how to solve this problem.

\[-8 + 7y = 24\]
\[+4 \quad +4 \quad \text{Add 4 to both sides}\]

\[7y = 28\]
\[7 \quad 7 \quad \text{Divide both sides by 7}\]

Select the answer: Add 4 to both sides and then divide both sides by 7

93) Problem #PRAB4UV "PRAB4UV - Explaining How to Solve an Equation"

Which of the following statements explains the correct method to solve the equation

\[-5 + 6y = 19?\]

Multiple Choice:

- ✔ Add 5 to both sides and then divide both sides by 6
- ✗ Subtract 5 to both sides and then divide both sides by 6
- ✗ Divide both sides by 6 and then add 5 to both sides
- ✗ Divide both sides by 6 and then subtract 5 to both sides

Hints:

- Here is how to solve a similar problem.

\[-8 + 5x = 52\]
\[+8 \quad +8\]

\[5x = 60\]
\[5 \quad 5\]

\[x = 12\]

- The first step to solve is to add or subtract on both sides of the equation.

- This is how to solve this problem.
-5 + 6y = 19
+5 +5 \text{ Add 5 to both sides}

6y = 24
6 6 \text{ Divide both sides by 6}

Select the answer: Add 5 to both sides and then divide both sides by 6

94) Problem #PRAB4UE "PRAB4UE - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation

-7 + 3z = 8

Multiple Choice:
✓ Add 7 to both sides and then divide both sides by 3
✗ Subtract 7 to both sides and then divide both sides by 3
✗ Divide both sides by 3 and then add 7 to both sides
✗ Divide both sides by 3 and then subtract 7 to both sides

Hints:
• Here is how to solve a similar problem.

-8 + 5x = 52
+8 +8

5x = 60
5 5

x = 12

• The first step to solve is to add or subtract on both sides of the equation.
• This is how to solve this problem.

-7 + 3z = 8
+7 +7 \text{ Add 7 to both sides}

3z = 15
3 3 \text{ Divide both sides by 3}

Select the answer: Add 7 to both sides and then divide both sides by 3

95) Problem #PRAB4V9 "PRAB4V9 - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation 5b - 2 = 13?

Multiple Choice:
Add 2 to both sides and then divide both sides by 5

Subtract 2 to both sides and then divide both sides by 5

Divide both sides by 5 and then add 2 to both sides

Divide both sides by 5 and then subtract 2 to both sides

Hints:
- Here is how to solve a similar problem.

5x - 8 = 52
+ 8
5x = 60
5 5

x = 12

- The first step to solve is to add or subtract on both sides of the equation.
- You should do the opposite of whatever sign is showing.
- This is how to solve this problem.

5b - 2 = 13
+ 2
5b = 15
5 5

Select the answer: Add 2 to both sides and then divide both sides by 5

Which of the following statements explains the correct method to solve the equation -5 + 5b = 5?

Multiple Choice:
- Add 5 to both sides and then divide both sides by 5
- Subtract 5 to both sides and then divide both sides by 5
- Divide both sides by 5 and then add 5 to both sides
- Divide both sides by 5 and then subtract 5 to both sides

Hints:
- Here is how to solve a similar problem.

-8 + 5x = 52
+8
5x = 60
5 5
\[x = 12 \]

- The first step to solve is to add or subtract on both sides of the equation.
- This is how to solve this problem.

\[-5 + 5b = 5 \quad \text{Add 5 to both sides}\]

\[
\begin{align*}
5b & = 10 \\
5 & \quad 5 \quad \text{Divide both sides by 5}
\end{align*}
\]

Select the answer: Add 5 to both sides and then divide both sides by 5

97) Problem #PRAB4WQ "PRAB4WQ - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation \(5z - 8 = 2\)?

Multiple Choice:
- Add 8 to both sides and then divide both sides by 5
- Subtract 8 to both sides and then divide both sides by 5
- Divide both sides by 5 and then add 8 to both sides
- Divide both sides by 5 and then subtract 8 to both sides

Hints:
- Here is how to solve a similar problem.

\[
\begin{align*}
5x - 8 & = 52 \\
+8 & \\
5x & = 60 \\
5 & \quad 5 \\
x & = 12
\end{align*}
\]

- The first step to solve is to add or subtract on both sides of the equation.
- You should do the opposite of whatever sign is showing.
- This is how to solve this problem.

\[
\begin{align*}
5z - 8 & = 2 \\
+8 & \quad \text{Add 8 to both sides}
\end{align*}
\]

\[
\begin{align*}
5z & = 10 \\
5 & \quad 5 \quad \text{Divide both sides by 5}
\end{align*}
\]

Select the answer: Add 8 to both sides and then divide both sides by 5
98) Problem #PRAB4WG "PRAB4WG - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation $8z - 7 = 17$?

Multiple Choice:
- ✔ Add 7 to both sides and then divide both sides by 8
- ✖ Subtract 7 to both sides and then divide both sides by 8
- ✖ Divide both sides by 8 and then add 7 to both sides
- ✖ Divide both sides by 8 and then subtract 7 to both sides

Hints:
- Here is how to solve a similar problem.

\[
5x - 8 = 52
\]
\[
\begin{align*}
+8 & & +8 \\
5x & = 60 \\
5 & \quad 5 \\
\end{align*}
\]
\[
x = 12
\]

- The first step to solve is to add or subtract on both sides of the equation.
- You should do the opposite of whatever sign is showing.
- This is how to solve this problem.

\[
8z - 7 = 17
\]
\[
\begin{align*}
+7 & & +7 \quad \text{Add 7 to both sides} \\
8z & = 24 \\
8 & \quad 8 \quad \text{Divide both sides by 8}
\end{align*}
\]

Select the answer: Add 7 to both sides and then divide both sides by 8

99) Problem #PRAB4UQ "PRAB4UQ - Explaining How to Solve an Equation"
Which of the following statements explains the correct method to solve the equation $-5 + 3b = 1$?

Multiple Choice:
- ✔ Add 5 to both sides and then divide both sides by 3
- ✖ Subtract 5 to both sides and then divide both sides by 3
- ✖ Divide both sides by 3 and then add 5 to both sides
- ✖ Divide both sides by 3 and then subtract 5 to both sides

Hints:
- Here is how to solve a similar problem.

\[
-8 + 5x = 52
\]
The first step to solve is to add or subtract on both sides of the equation.

This is how to solve this problem.

\[-5 + 3b = 1\]

Add 5 to both sides

\[3b = 6\]

Divide both sides by 3

Select the answer: Add 5 to both sides and then divide both sides by 3
Problem Set "Solving 1-Step Addition & Subtraction Equations 7.EE.B.4a" id:[PSAKKV]

Select All

1) Problem #PRABW3C "PRABW3C - Solving 1-Step Addition Equations"
Solve for c:

c + 13 = -17

Algebraic Expression:

✓ -30

Hints:

This is how to solve a problem similar to your problem.

m + 4 = -25
-4
m = -29
To solve you need to do the opposite of the sign in front of 13. Therefore, you must subtract 13 from both sides of the equation.

This is what it should look like:

\[c + 13 = -17 \]
\[-13 \]
\[c = -30 \]

Type in -30

2) Problem #PRABW3D "PRABW3D - Solving 1-Step Addition Equations"
Solve for y:

\[y + 5 = -16 \]

Algebraic Expression:
Hints:

PSAHRE 0.1

This is how to solve a problem similar to your problem.

\[m + 4 = -25 \]
\[-4 \quad -4 \]
\[m = -29 \]

PSAHRE 2.1

To solve you need to do the opposite of the sign in front of 5. Therefore, you must subtract 5 from both sides of the equation.
This is what it should look like:

\[y + 5 = -16 \]
\[-5 \]
\[y = -21 \]

Type in \(-21\)

3) Problem #PRABW3A "PRABW3A - Solving 1-Step Addition Equations"

Solve for c:

\[c + 9 = -13 \]

Algebraic Expression:

\[-22 \]

Hints:
This is how to solve a problem similar to your problem.

\[m + 4 = -25 \]
\[\quad -4 \quad \]
\[m = -29 \]

To solve you need to do the opposite of the sign in front of 9. Therefore, you must subtract 9 from both sides of the equation.
This is what it should look like:

\[
\begin{align*}
c + 9 &= -13 \\
-9 &= -9
\end{align*}
\]

c = -22

Type in \(-22\)

4) Problem #PRABW29 "PRABW29 - Solving 1-Step Addition Equations"

Solve for b:

\[b + 9 = -18\]

Algebraic Expression:

\[\text{✓ } -27\]

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m + 4 &= -25 \\
-4 &= -4
\end{align*}
\]

\[m = -29\]

- To solve you need to do the opposite of the sign in front of 9. Therefore, you must subtract 9 from both sides of the equation.

- This is what it should look like:

\[
\begin{align*}
b + 9 &= -18 \\
-9 &= -9
\end{align*}
\]
5/25/2018

b = -27

Type in -27

5) Problem #PRABW3G "PRABW3G - Solving 1-Step Addition Equations"
Solve for a:

a + 7 = -13

Algebraic Expression:
✓ -20

Hints:
• This is how to solve a problem similar to your problem.

 \[m + 4 = -25 \]
 \[-4 \]

 \[m = -29 \]

• To solve you need to do the opposite of the sign in front of 7. Therefore, you must subtract 7 from both sides of the equation.
• This is what it should look like:

 \[a + 7 = -13 \]
 \[-7 \]

 \[a = -20 \]

Type in -20

6) Problem #PRABW3E "PRABW3E - Solving 1-Step Addition Equations"
Solve for x:

x + 14 = -12

Algebraic Expression:
✓ -26

Hints:
• This is how to solve a problem similar to your problem.

 \[m + 4 = -25 \]
 \[-4 \]

 \[m = -29 \]
To solve you need to do the opposite of the sign in front of 14. Therefore, you must subtract 14 from both sides of the equation.

This is what it should look like:

\[
\begin{align*}
 x + 14 &= -12 \\
 -14 & \quad \text{--14} \\
 \hline \\
 x &= -26
\end{align*}
\]

Type in -26

7) Problem #PRABW3F "PRABW3F - Solving 1-Step Addition Equations"

Solve for y:

\[y + 10 = -15 \]

Algebraic Expression:

\[y = -25 \]

Hints:

This is how to solve a problem similar to your problem.

\[
\begin{align*}
 m + 4 &= -25 \\
 -4 & \quad -4 \\
 \hline \\
 m &= -29
\end{align*}
\]

To solve you need to do the opposite of the sign in front of 10. Therefore, you must subtract 10 from both sides of the equation.

This is what it should look like:

\[
\begin{align*}
 y + 10 &= -15 \\
 -10 & \quad -10 \\
 \hline \\
 y &= -25
\end{align*}
\]

Type in -25

8) Problem #PRABW3B "PRABW3B - Solving 1-Step Addition Equations"

Solve for c:

\[c + 11 = -19 \]

Algebraic Expression:

\[c = -30 \]

Hints:
This is how to solve a problem similar to your problem.

\[
\begin{align*}
m + 4 &= -25 \\
- 4 &= -4 \\
m &= -29
\end{align*}
\]

To solve you need to do the opposite of the sign in front of 11. Therefore, you must subtract 11 from both sides of the equation.

This is what it should look like:

\[
\begin{align*}
c + 11 &= -19 \\
- 11 &= -11 \\
c &= -30
\end{align*}
\]

Type in -30

9) Problem #PRABW28 "PRABW28 - Solving 1-Step Addition Equations"
Solve for b:

\[
b + 11 = -12
\]

Algebraic Expression:

\[
-23
\]

Hints:

This is how to solve a problem similar to your problem.

\[
\begin{align*}
m + 4 &= -25 \\
- 4 &= -4 \\
m &= -29
\end{align*}
\]

To solve you need to do the opposite of the sign in front of 11. Therefore, you must subtract 11 from both sides of the equation.

This is what it should look like:

\[
\begin{align*}
b + 11 &= -12 \\
- 11 &= -11 \\
b &= -23
\end{align*}
\]

Type in -23
10) Problem #PRABW3T "PRABW3T - Solving 1-Step Addition Equations"

Solve for x:

\[x + 12 = -14 \]

Algebraic Expression:

\[-26 \]

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
 m + 4 &= -25 \\
 -4 &= -4 \\
 m &= -29
\end{align*}
\]

- To solve you need to do the opposite of the sign in front of 12. Therefore, you must subtract 12 from both sides of the equation.

\[
\begin{align*}
 x + 12 &= -14 \\
 -12 &= -12 \\
 x &= -26
\end{align*}
\]

Type in -26

11) Problem #PRABW7K "PRABW7K - Solving 1-Step Addition Equations"

Solve for y:

\[y + (-20) = -19 \]

Algebraic Expression:

\[1 \]

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
 m + (-4) &= -25 \\
 +4 &= +4 \\
 m &= -21
\end{align*}
\]

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.

\[
\begin{align*}
 y + (-20) &= -19 \\
 +20 &= +20
\end{align*}
\]
12) Problem #PRABW8C "PRABW8C - Solving 1-Step Addition Equations"
Solve for a:

\[a + (-20) = -17\]

Algebraic Expression:

✔️ 3

Hints:
- This is how to solve a problem similar to your problem.

\[
m + (-4) = -25
\]
\[+ 4\]
\[m = -21\]

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.
- This is what it should look like:

\[
a + (-20) = -17
\]
\[+ 20\]
\[a = 3\]

13) Problem #PRABW4A "PRABW4A - Solving 1-Step Addition Equations"
Solve for c:

\[c + 11 = -16\]

Algebraic Expression:

✔️ -27

Hints:
- This is how to solve a problem similar to your problem.

\[
m + 4 = -25
\]
\[- 4\]
\[m = -29\]
To solve you need to do the opposite of the sign in front of 11. Therefore, you must subtract 11 from both sides of the equation.

This is what it should look like:

\[
\begin{align*}
c + 11 &= -16 \\
 &- 11 \\
\end{align*}
\]

\[
c = -27
\]

Type in -27

14) Problem #PRABW3W "PRABW3W - Solving 1-Step Addition Equations"

Solve for b:

\[
b + 7 = -14
\]

Algebraic Expression:

\[\checkmark -21\]

Hints:
- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m + 4 &= -25 \\
 &- 4 \\
\end{align*}
\]

\[
m = -29
\]

- To solve you need to do the opposite of the sign in front of 7. Therefore, you must subtract 7 from both sides of the equation.

- This is what it should look like:

\[
\begin{align*}
b + 7 &= -14 \\
 &- 7 \\
\end{align*}
\]

\[
b = -21
\]

Type in -21

15) Problem #PRABW8A "PRABW8A - Solving 1-Step Addition Equations"

Solve for y:

\[
y + (-20) = -20
\]

Algebraic Expression:

\[\checkmark 0\]
Hints:

1. This is how to solve a problem similar to your problem.

\[m + (-4) = -25 \]
\[\quad + 4 \quad + 4 \]
\[m = -21 \]

2. To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.

3. This is what it should look like:

\[y + (-20) = -20 \]
\[\quad + 20 \quad + 20 \]
\[y = 0 \]

Type in 0

16) Problem #PRBW5S "PRBW5S - Solving 1-Step Addition Equations"

Solve for c:

c + (-20) = -15

Algebraic Expression:

\[c = 5 \]

Hints:

1. This is how to solve a problem similar to your problem.

\[m + (-4) = -25 \]
\[\quad + 4 \quad + 4 \]
\[m = -21 \]

2. To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.

3. This is what it should look like:

\[c + (-20) = -15 \]
\[\quad + 20 \quad + 20 \]
\[c = 5 \]

Type in 5
17) Problem #PRABW7N "PRABW7N - Solving 1-Step Addition Equations"
Solve for b:

\[b + (-20) = -13 \]

Algebraic Expression: \(\checkmark 7 \)

Hints:
- This is how to solve a problem similar to your problem.

\[
\begin{align*}
 m + (-4) &= -25 \\
 +4 & +4 \\
 m &= -21 \\
\end{align*}
\]

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.
- This is what it should look like:

\[
\begin{align*}
 b + (-20) &= -13 \\
 +20 & +20 \\
 b &= 7 \\
\end{align*}
\]

Type in 7

18) Problem #PRABW3X "PRABW3X - Solving 1-Step Addition Equations"
Solve for c:

\[c + 8 = -12 \]

Algebraic Expression: \(\checkmark -20 \)

Hints:
- This is how to solve a problem similar to your problem.

\[
\begin{align*}
 m + 4 &= -25 \\
 -4 & -4 \\
 m &= -29 \\
\end{align*}
\]

- To solve you need to do the opposite of the sign in front of 8. Therefore, you must subtract 8 from both sides of the equation.
- This is what it should look like:

\[c + 8 = -12 \]
- 8 -8

\[c = -20 \]

Type in -20

19) Problem #PRABW78 "PRABW78 - Solving 1-Step Addition Equations"

Solve for c:

\[c + (-20) = -12 \]

Algebraic Expression:

✓ 8

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m + (-4) &= -25 \\
+ 4 &\quad + 4
\end{align*}
\]

\[m = -21 \]

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.

- This is what it should look like:

\[
\begin{align*}
c + (-20) &= -12 \\
+ 20 &\quad + 20
\end{align*}
\]

\[c = 8 \]

Type in 8

20) Problem #PRABW4B "PRABW4B - Solving 1-Step Addition Equations"

Solve for c:

\[c + 16 = -14 \]

Algebraic Expression:

✓ -30

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m + 4 &= -25 \\
- 4 &\quad - 4
\end{align*}
\]
m = -29

- To solve you need to do the opposite of the sign in front of 16. Therefore, you must subtract 16 from both sides of the equation.
- This is what it should look like:

\[
\begin{align*}
c + 16 &= -14 \\
- 16 &= -16 \\
\hline
c &= -30
\end{align*}
\]

Type in \(-30\)

21) Problem #PRABW7X "PRABW7X - Solving 1-Step Addition Equations"
Solve for b:

\[b + (-20) = -19\]

Algebraic Expression:

✓ 1

Hints:
- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m + (-4) &= -25 \\
+ 4 &= +4 \\
\hline
m &= -21
\end{align*}
\]

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.
- This is what it should look like:

\[
\begin{align*}
b + (-20) &= -19 \\
+ 20 &= +20 \\
\hline
b &= 1
\end{align*}
\]

Type in 1

22) Problem #PRABW4F "PRABW4F - Solving 1-Step Addition Equations"
Solve for c:

\[c + 4 = -18\]

Algebraic Expression:

-22
Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
 m + 4 &= -25 \\
 -4 &= -4
\end{align*}
\]

\[
 m = -29
\]

- To solve you need to do the opposite of the sign in front of 4. Therefore, you must subtract 4 from both sides of the equation.
- This is what it should look like:

\[
\begin{align*}
 c + 4 &= -18 \\
 -4 &= -4
\end{align*}
\]

\[
 c = -22
\]

Type in -22

23) Problem #PRABW39 "PRABW39 - Solving 1-Step Addition Equations"

Solve for y:

\[
y + 9 = -13
\]

Algebraic Expression:

\[
\checkmark -22
\]

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
 m + 4 &= -25 \\
 -4 &= -4
\end{align*}
\]

\[
 m = -29
\]

- To solve you need to do the opposite of the sign in front of 9. Therefore, you must subtract 9 from both sides of the equation.
- This is what it should look like:

\[
\begin{align*}
 y + 9 &= -13 \\
 -9 &= -9
\end{align*}
\]

\[
 y = -22
\]
24) Problem #PRABW7W "PRABW7W - Solving 1-Step Addition Equations"
Solve for a:

\[a + (-20) = -13 \]

Algebraic Expression:

\[\checkmark 7 \]

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m + (-4) &= -25 \\
+4 &+ 4 \\
m &= -21
\end{align*}
\]

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.

- This is what it should look like:

\[
\begin{align*}
a + (-20) &= -13 \\
+20 &+ 20 \\
a &= 7
\end{align*}
\]

Type in 7

25) Problem #PRABW4C "PRABW4C - Solving 1-Step Addition Equations"
Solve for y:

\[y + 18 = -15 \]

Algebraic Expression:

\[\checkmark -33 \]

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m + 4 &= -25 \\
-4 &-4 \\
m &= -29
\end{align*}
\]

- To solve you need to do the opposite of the sign in front of 18. Therefore, you must subtract 18 from both sides of the equation.

- This is what it should look like:
\[
y + 18 = -15
- 18\quad -18
\]
\[
y = -33
\]

Type in -33

26) Problem #PRABW3Z "PRABW3Z - Solving 1-Step Addition Equations"

Solve for x:

\[
x + 5 = -15
\]

Algebraic Expression:

\[
\checkmark -20
\]

Hints:

- This is how to solve a problem similar to your problem.

\[
m + 4 = -25
- 4\quad -4
\]
\[
m = -29
\]

- To solve you need to do the opposite of the sign in front of 5. Therefore, you must subtract 5 from both sides of the equation.

- This is what it should look like:

\[
x + 5 = -15
- 5\quad -5
\]
\[
x = -20
\]

Type in -20

27) Problem #PRABW6H "PRABW6H - Solving 1-Step Addition Equations"

Solve for x:

\[
x + (-20) = -20
\]

Algebraic Expression:

\[
\checkmark 0
\]

Hints:

- This is how to solve a problem similar to your problem.

\[
m + (-4) = -25
\]
\[m = -21 \]

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.
- This is what it should look like:

\[
\begin{align*}
x + (-20) &= -20 \\
+20 &= +20
\end{align*}
\]

\[x = 0 \]

Type in 0

28) Problem #PRABW3S "PRABW3S - Solving 1-Step Addition Equations"

Solve for a:

\[a + 3 = -20 \]

Algebraic Expression:

\[-23 \]

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m + 4 &= -25 \\
-4 &= -4
\end{align*}
\]

\[m = -29 \]

- To solve you need to do the opposite of the sign in front of 3. Therefore, you must **subtract 3** from both sides of the equation.
- This is what it should look like:

\[
\begin{align*}
a + 3 &= -20 \\
-3 &= -3
\end{align*}
\]

\[a = -23 \]

Type in -23

29) Problem #PRABW3K "PRABW3K - Solving 1-Step Addition Equations"

Solve for c:
c + 9 = -17

Algebraic Expression:
✓ -26

Hints:
- This is how to solve a problem similar to your problem.

 \[
 \begin{align*}
 m + 4 &= -25 \\
 -4 &\quad -4 \\
 m &= -29
 \end{align*}
 \]

- To solve you need to do the opposite of the sign in front of 9. Therefore, you must subtract 9 from both sides of the equation.
- This is what it should look like:

 \[
 \begin{align*}
 c + 9 &= -17 \\
 -9 &\quad -9 \\
 c &= -26
 \end{align*}
 \]

Type in -26

30) Problem #PRABW32 "PRABW32 - Solving 1-Step Addition Equations"

Solve for b:

b + 11 = -17

Algebraic Expression:
✓ -28

Hints:
- This is how to solve a problem similar to your problem.

 \[
 \begin{align*}
 m + 4 &= -25 \\
 -4 &\quad -4 \\
 m &= -29
 \end{align*}
 \]

- To solve you need to do the opposite of the sign in front of 11. Therefore, you must subtract 11 from both sides of the equation.
- This is what it should look like:

 \[
 \begin{align*}
 b + 11 &= -17 \\
 -11 &\quad -11 \\
 b &= -28
 \end{align*}
 \]
31) Problem #PRABW7Q "PRABW7Q - Solving 1-Step Addition Equations"
Solve for a:

\[a + (-20) = -20 \]

Algebraic Expression:

\[a = 0 \]

Hints:
- This is how to solve a problem similar to your problem.

 \[
 m + (-4) = -25 \\
 + 4 + 4 \\
 m = -21
 \]

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.
- This is what it should look like:

 \[
 a + (-20) = -20 \\
 + 20 + 20 \\
 a = 0
 \]

32) Problem #PRABW34 "PRABW34 - Solving 1-Step Addition Equations"
Solve for b:

\[b + 7 = -20 \]

Algebraic Expression:

\[b = -27 \]

Hints:
- This is how to solve a problem similar to your problem.

 \[
 m + 4 = -25 \\
 - 4 -4 \\
 m = -29
 \]

- To solve you need to do the opposite of the sign in front of 7. Therefore, you must subtract 7 from
both sides of the equation.

- This is what it should look like:

\[
\begin{align*}
b + 7 &= -20 \\
- 7 &= -7 \\
b &= -27
\end{align*}
\]

Type in -27

33) Problem #PRABW37 "PRABW37 - Solving 1-Step Addition Equations"

Solve for x:

\[
x + 16 = -13
\]

Algebraic Expression: ✔ -29

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m + 4 &= -25 \\
- 4 &= -4 \\
m &= -29
\end{align*}
\]

- To solve you need to do the opposite of the sign in front of 16. Therefore, you must subtract 16 from both sides of the equation.

- This is what it should look like:

\[
\begin{align*}
x + 16 &= -13 \\
- 16 &= -16 \\
x &= -29
\end{align*}
\]

Type in -29

34) Problem #PRABW6G "PRABW6G - Solving 1-Step Addition Equations"

Solve for b:

\[
b + (-20) = -17
\]

Algebraic Expression: ✔ 3

Hints:

- This is how to solve a problem similar to your problem.
\[m + (-4) = -25 \]
\[+ 4 \quad + 4 \]
\[m = -21 \]

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.
- This is what it should look like:

\[b + (-20) = -17 \]
\[+ 20 \quad + 20 \]
\[b = 3 \]

Type in 3

35) Problem #PRABW6F "PRABW6F - Solving 1-Step Addition Equations"
Solve for x:

\[x + (-20) = -16 \]

Algebraic Expression:

\[3 \]

Hints:
- This is how to solve a problem similar to your problem.

\[m + (-4) = -25 \]
\[+ 4 \quad + 4 \]
\[m = -21 \]

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.
- This is what it should look like:

\[x + (-20) = -16 \]
\[+ 20 \quad + 20 \]
\[x = 4 \]

Type in 4

36) Problem #PRABW7M "PRABW7M - Solving 1-Step Addition Equations"
Solve for x:

x + (-20) = -13

Algebraic Expression:

7

Hints:

- This is how to solve a problem similar to your problem.

\[
m + (-4) = -25 \\
+ 4 \quad + 4 \\
\]

m = -21

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.

This is what it should look like:

\[
x + (-20) = -13 \\
+ 20 \quad + 20 \\
\]

x = 7

Type in 7

37) Problem #PRBW7P "PRBW7P - Solving 1-Step Addition Equations"

Solve for x:

x + (-20) = -11

Algebraic Expression:

9

Hints:

- This is how to solve a problem similar to your problem.

\[
m + (-4) = -25 \\
+ 4 \quad + 4 \\
\]

m = -21

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.

This is what it should look like:

\[
x + (-20) = -11 \\
+ 20 \quad + 20 \\n\]
x = 9

Type in 9

38) Problem #PRABW35 "PRABW35 - Solving 1-Step Addition Equations"
Solve for a:

a + 8 = -19

Algebraic Expression:

\[
-27
\]

Hints:
- This is how to solve a problem similar to your problem.

\[
m + 4 = -25 \\
- 4 -4 \\
\]

m = -29

- To solve you need to do the opposite of the sign in front of 8. Therefore, you must subtract 8 from both sides of the equation.
- This is what it should look like:

\[
a + 8 = -19 \\
- 8 -8 \\
a = -27
\]

Type in -27

39) Problem #PRABW4V "PRABW4V - Solving 1-Step Addition Equations"
Solve for b:

b + 18 = -16

Algebraic Expression:

\[
-34
\]

Hints:
- This is how to solve a problem similar to your problem.

\[
m + 4 = -25 \\
- 4 -4 \\
\]

m = -29
To solve you need to do the opposite of the sign in front of 18. Therefore, you must subtract 18 from both sides of the equation.

This is what it should look like:

\[
\begin{align*}
b + 18 &= -16 \\
-18 &= -18
\end{align*}
\]

\[
b = -34
\]

Type in -34

40) Problem #PRABW4U "PRABW4U - Solving 1-Step Addition Equations"
Solve for b:

\[
b + 8 = -19
\]

Algebraic Expression:

-27

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m + 4 &= -25 \\
-4 &= -4
\end{align*}
\]

\[
m = -29
\]

- To solve you need to do the opposite of the sign in front of 8. Therefore, you must subtract 8 from both sides of the equation.

- This is what it should look like:

\[
\begin{align*}
b + 8 &= -19 \\
-8 &= -8
\end{align*}
\]

\[
b = -27
\]

Type in -27

41) Problem #PRABW36 "PRABW36 - Solving 1-Step Addition Equations"
Solve for x:

\[
x + 9 = -12
\]

Algebraic Expression:

-21

Hints:
• This is how to solve a problem similar to your problem.

\[m + 4 = -25 \]

\[-4 \]

\[m = -29 \]

• To solve you need to do the opposite of the sign in front of 9. Therefore, you must subtract 9 from both sides of the equation.

• This is what it should look like:

\[x + 9 = -12 \]

\[-9 \]

\[x = -21 \]

Type in -21

42) Problem #PRABW3U "PRABW3U - Solving 1-Step Addition Equations"

Solve for x:

\[x + 17 = -11 \]

Algebraic Expression:

✓ -28

Hints:

• This is how to solve a problem similar to your problem.

\[m + 4 = -25 \]

\[-4 \]

\[m = -29 \]

• To solve you need to do the opposite of the sign in front of 17. Therefore, you must subtract 17 from both sides of the equation.

• This is what it should look like:

\[x + 17 = -11 \]

\[-17 \]

\[x = -28 \]

Type in -28
43) Problem #PRABW7H "PRABW7H - Solving 1-Step Addition Equations"
Solve for c:

\[c + (-20) = -14 \]

Algebraic Expression:

✓ 6

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
 m + (-4) &= -25 \\
 +4 &+4 \\
 m &= -21 \\
\end{align*}
\]

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.

- This is what it should look like:

\[
\begin{align*}
 c + (-20) &= -14 \\
 +20 &+20 \\
 c &= 6 \\
\end{align*}
\]

Type in 6

44) Problem #PRABW3R "PRABW3R - Solving 1-Step Addition Equations"
Solve for a:

\[a + 4 = -12 \]

Algebraic Expression:

✓ -16

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
 m + 4 &= -25 \\
 -4 &-4 \\
 m &= -29 \\
\end{align*}
\]

- To solve you need to do the opposite of the sign in front of 4. Therefore, you must subtract 4 from both sides of the equation.

- This is what it should look like:

\[
\begin{align*}
 a + 4 &= -12 \\
 -4 &-4 \\
\end{align*}
\]
a = -16

Type in -16

45) Problem #PRABW77 "PRABW77 - Solving 1-Step Addition Equations"
Solve for y:

\(y + (-20) = -16 \)

Algebraic Expression:

\(y + (-20) = -16 \)

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m + (-4) &= -25 \\
+ 4 & \\
+ 4 & \\
m &= -21
\end{align*}
\]

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.
- This is what it should look like:

\[
\begin{align*}
y + (-20) &= -16 \\
+ 20 & \\
+ 20 & \\
y &= 4
\end{align*}
\]

Type in 4

46) Problem #PRABW7S "PRABW7S - Solving 1-Step Addition Equations"
Solve for y:

\(y + (-20) = -12 \)

Algebraic Expression:

\(y + (-20) = -12 \)

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m + (-4) &= -25 \\
+ 4 & \\
+ 4 & \\
m &= -21
\end{align*}
\]
To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.

This is what it should look like:

\[
y + (-20) = -12
\]
\[
+ 20 \quad + 20
\]

\[y = 8\]

Type in 8

47) Problem #PRABW3P "PRABW3P - Solving 1-Step Addition Equations"

Solve for x:

\[x + 5 = -15\]

Algebraic Expression:

-20

Hints:

- This is how to solve a problem similar to your problem.

\[m + 4 = -25\]
\[- 4 \quad -4\]

\[m = -29\]

- To solve you need to do the opposite of the sign in front of 5. Therefore, you must subtract 5 from both sides of the equation.

- This is what it should look like:

\[x + 5 = -15\]
\[- 5 \quad -5\]

\[x = -20\]

Type in -20

48) Problem #PRABW33 "PRABW33 - Solving 1-Step Addition Equations"

Solve for a:

\[a + 8 = -14\]

Algebraic Expression:

-22
Hints:

- This is how to solve a problem similar to your problem.

\[
m + 4 = -25 \\
-4 \quad -4
\]

\[m = -29\]

- To solve you need to do the opposite of the sign in front of 8. Therefore, you must subtract 8 from both sides of the equation.
- This is what it should look like:

\[
a + 8 = -14 \\
-8 \quad -8
\]

\[a = -22\]

Type in -22

49) Problem #PRABW44 "PRABW44 - Solving 1-Step Addition Equations"

Solve for y:

\[y + 14 = -16\]

Algebraic Expression:

\[\checkmark -30\]

Hints:

- This is how to solve a problem similar to your problem.

\[
m + 4 = -25 \\
-4 \quad -4
\]

\[m = -29\]

- To solve you need to do the opposite of the sign in front of 14. Therefore, you must subtract 14 from both sides of the equation.
- This is what it should look like:

\[
y + 14 = -16 \\
-14 \quad -14
\]

\[y = -30\]

Type in -30
50) Problem #PRABW4X "PRABW4X - Solving 1-Step Addition Equations"
Solve for x:

\[x + 3 = -13 \]

Algebraic Expression:

\[\checkmark -16 \]

Hints:

- This is how to solve a problem similar to your problem.

 \[
 \begin{align*}
 m + 4 &= -25 \\
 -4 &\quad -4 \\
 m &= -29
 \end{align*}
 \]

- To solve you need to do the opposite of the sign in front of 3. Therefore, you must subtract 3 from both sides of the equation.
- This is what it should look like:

 \[
 \begin{align*}
 x + 3 &= -13 \\
 -3 &\quad -3 \\
 x &= -16
 \end{align*}
 \]

Type in -16

51) Problem #PRABW75 "PRABW75 - Solving 1-Step Addition Equations"
Solve for c:

\[c + (-20) = -18 \]

Algebraic Expression:

\[\checkmark 2 \]

Hints:

- This is how to solve a problem similar to your problem.

 \[
 \begin{align*}
 m + (-4) &= -25 \\
 +4 &\quad +4 \\
 m &= -21
 \end{align*}
 \]

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.
- This is what it should look like:

 \[
 \begin{align*}
 c + (-20) &= -18
 \end{align*}
 \]
+ 20 + 20

\[c = 2 \]

Type in 2

52) Problem #PRABW3H "PRABW3H - Solving 1-Step Addition Equations"

Solve for b:

\[b + 18 = -15 \]

Algebraic Expression:

\[\checkmark -33 \]

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m + 4 &= -25 \\
- 4 &= -4 \\
m &= -29
\end{align*}
\]

- To solve you need to do the opposite of the sign in front of 18. Therefore, you must subtract 18 from both sides of the equation.
- This is what it should look like:

\[
\begin{align*}
b + 18 &= -15 \\
- 18 &= -18 \\
b &= -33
\end{align*}
\]

Type in -33

53) Problem #PRABW43 "PRABW43 - Solving 1-Step Addition Equations"

Solve for a:

\[a + 17 = -16 \]

Algebraic Expression:

\[\checkmark -33 \]

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m + 4 &= -25 \\
- 4 &= -4
\end{align*}
\]
m = -29

- To solve you need to do the opposite of the sign in front of 17. Therefore, you must subtract 17 from both sides of the equation.
- This is what it should look like:

\[
\begin{align*}
 a + 17 &= -16 \\
 -17 &= -17
\end{align*}
\]

\[a = -33\]

Type in -33

54) Problem #PRABW7G "PRABW7G - Solving 1-Step Addition Equations"

Solve for b:

\[b + (-20) = -14\]

Algebraic Expression:

✓ 6

Hints:
- This is how to solve a problem similar to your problem.

\[
\begin{align*}
 m + (-4) &= -25 \\
 +4 &= +4
\end{align*}
\]

\[m = -21\]

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.
- This is what it should look like:

\[
\begin{align*}
 b + (-20) &= -14 \\
 +20 &= +20
\end{align*}
\]

\[b = 6\]

Type in 6

55) Problem #PRABW5K "PRABW5K - Solving 1-Step Addition Equations"

Solve for a:

\[a + (-20) = -15\]

Algebraic Expression:
Hints:

- This is how to solve a problem similar to your problem.

\[
m + (-4) = -25 \\
\quad + 4 \quad + 4 \\
\hline
m \quad = \quad -21
\]

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.

- This is what it should look like:

\[
a + (-20) = -15 \\
\quad + 20 \quad + 20 \\
\hline
a \quad = \quad 5
\]

Type in 5

56) Problem #PRABW8B "PRABW8B - Solving 1-Step Addition Equations"

Solve for c:

\[
c + (-20) = -15
\]

Algebraic Expression:

\[\checkmark\]

Hints:

- This is how to solve a problem similar to your problem.

\[
m + (-4) = -25 \\
\quad + 4 \quad + 4 \\
\hline
m \quad = \quad -21
\]

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.

- This is what it should look like:

\[
c + (-20) = -15 \\
\quad + 20 \quad + 20 \\
\hline
c \quad = \quad 5
\]
Type in 5

57) Problem #PRABW7V "PRABW7V - Solving 1-Step Addition Equations"
Solve for y:

\[y + (-20) = -11 \]

Algebraic Expression:

\(y = 9 \)

Hints:

- This is how to solve a problem similar to your problem.

\[
m + (-4) = -25
\]
\[
+ 4 \quad + 4
\]
\[
m = -21
\]

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.

- This is what it should look like:

\[
y + (-20) = -11
\]
\[
+ 20 \quad + 20
\]
\[
y = 9
\]

Type in 9

58) Problem #PRABW7R "PRABW7R - Solving 1-Step Addition Equations"
Solve for c:

\[c + (-20) = -14 \]

Algebraic Expression:

\(c = 6 \)

Hints:

- This is how to solve a problem similar to your problem.

\[
m + (-4) = -25
\]
\[
+ 4 \quad + 4
\]
\[
m = -21
\]

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.

- This is what it should look like:
\[c + (-20) = -14 \]
\[+ 20 + 20 \]
\[c = 6 \]

Type in 6

59) **Problem #PRABW4G "PRABW4G - Solving 1-Step Addition Equations"

Solve for b:

\[b + 14 = -15 \]

Algebraic Expression:

\[\checkmark -29 \]

Hints:

- This is how to solve a problem similar to your problem.

\[m + 4 = -25 \]
\[- 4 -4 \]
\[m = -29 \]

- To solve you need to do the opposite of the sign in front of 14. Therefore, you must subtract 14 from both sides of the equation.
- This is what it should look like:

\[b + 14 = -15 \]
\[- 14 -14 \]
\[b = -29 \]

Type in -29

60) **Problem #PRABW3N "PRABW3N - Solving 1-Step Addition Equations"

Solve for a:

\[a + 8 = -13 \]

Algebraic Expression:

\[\checkmark -21 \]

Hints:

- This is how to solve a problem similar to your problem.

\[m + 4 = -25 \]
- 4 -4

\[m = -29 \]

- To solve you need to do the opposite of the sign in front of 8. Therefore, you must subtract 8 from both sides of the equation.
- This is what it should look like:

\[
\begin{align*}
a + 8 &= -13 \\
-8 &= -8 \\
a &= -21
\end{align*}
\]

Type in -21

61) Problem #PRABW5G "PRABW5G - Solving 1-Step Addition Equations"
Solve for c:

\[c + (-20) = -20 \]

Algebraic Expression:

\[c = 0 \]

Hints:
- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m + (-4) &= -25 \\
+4 &= +4 \\
m &= -21
\end{align*}
\]

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.
- This is what it should look like:

\[
\begin{align*}
c + (-20) &= -20 \\
+20 &= +20 \\
c &= 0
\end{align*}
\]

Type in 0

62) Problem #PRABW72 "PRABW72 - Solving 1-Step Addition Equations"
Solve for y:
\[y + (-20) = -20 \]

Algebraic Expression:

\[\checkmark \quad 0 \]

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m + (-4) &= -25 \\
+ 4 &\quad + 4 \\
m &= -21
\end{align*}
\]

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.

- This is what it should look like:

\[
\begin{align*}
y + (-20) &= -20 \\
+ 20 &\quad + 20 \\
y &= 0
\end{align*}
\]

Type in 0

63) Problem #PRABW5H "PRABW5H - Solving 1-Step Addition Equations"

Solve for c:

\[c + (-20) = -12 \]

Algebraic Expression:

\[\checkmark \quad 8 \]

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m + (-4) &= -25 \\
+ 4 &\quad + 4 \\
m &= -21
\end{align*}
\]

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.

- This is what it should look like:

\[
\begin{align*}
c + (-20) &= -12 \\
+ 20 &\quad + 20 \\
c &= 8
\end{align*}
\]
Type in 8

64) Problem #PRABW7Z "PRABW7Z - Solving 1-Step Addition Equations"
Solve for b:

\[b + (-20) = -12 \]

Algebraic Expression:

\[b = 8 \]

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m + (-4) &= -25 \\
+ 4 &\quad + 4 \\
m &= -21
\end{align*}
\]

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.
- This is what it should look like:

\[
\begin{align*}
b + (-20) &= -12 \\
+ 20 &\quad + 20 \\
b &= 8
\end{align*}
\]

Type in 8

65) Problem #PRABW3M "PRABW3M - Solving 1-Step Addition Equations"
Solve for y:

\[y + 13 = -19 \]

Algebraic Expression:

\[y = -32 \]

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m + 4 &= -25 \\
- 4 &\quad -4 \\
m &= -29
\end{align*}
\]

- To solve you need to do the opposite of the sign in front of 13. Therefore, you must subtract 13 from
both sides of the equation.

- This is what it should look like:

\[
\begin{align*}
y + 13 &= -19 \\
-13 &= -13 \\
y &= -32
\end{align*}
\]

Type in -32

66) Problem #PRABW7F "PRABW7F - Solving 1-Step Addition Equations"

Solve for y:

\[y + (-20) = -17 \]

Algebraic Expression:

✓ 3

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m + (-4) &= -25 \\
+4 &= +4 \\
m &= -21
\end{align*}
\]

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.
- This is what it should look like:

\[
\begin{align*}
y + (-20) &= -17 \\
-20 &= -20 \\
y &= 3
\end{align*}
\]

Type in 3

67) Problem #PRABW6N "PRABW6N - Solving 1-Step Addition Equations"

Solve for y:

\[y + (-20) = -16 \]

Algebraic Expression:

✓ 4

Hints:

- This is how to solve a problem similar to your problem.
\[m + (-4) = -25 \]
\[+ 4 \quad + 4 \]
\[m = -21 \]

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.
- This is what it should look like:

\[y + (-20) = -16 \]
\[+ 20 \quad + 20 \]
\[y = 4 \]

Type in 4

68) Problem #PRABW3Y "PRABW3Y - Solving 1-Step Addition Equations"
Solve for b:

\[b + 4 = -18 \]

Algebraic Expression:

\[\checkmark -22 \]

Hints:
- This is how to solve a problem similar to your problem.

\[m + 4 = -25 \]
\[- 4 \quad -4 \]
\[m = -29 \]

- To solve you need to do the opposite of the sign in front of 4. Therefore, you must subtract 4 from both sides of the equation.
- This is what it should look like:

\[b + 4 = -18 \]
\[- 4 \quad -4 \]
\[b = -22 \]

Type in -22

69) Problem #PRABW76 "PRABW76 - Solving 1-Step Addition Equations"
Solve for a:

\[a + (-20) = -15\]

Algebraic Expression:

\[\checkmark 5\]

Hints:

- This is how to solve a problem similar to your problem.

\[
m + (-4) = -25
\]

\[+ 4 \quad + 4\]

\[m = -21\]

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.

- This is what it should look like:

\[
a + (-20) = -15
\]

\[+ 20 \quad + 20\]

\[a = 5\]

Type in 5

70) Problem #PRABW6M "PRABW6M - Solving 1-Step Addition Equations"

Solve for a:

\[a + (-20) = -13\]

Algebraic Expression:

\[\checkmark 7\]

Hints:

- This is how to solve a problem similar to your problem.

\[
m + (-4) = -25
\]

\[+ 4 \quad + 4\]

\[m = -21\]

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.

- This is what it should look like:

\[
a + (-20) = -13
\]

\[+ 20 \quad + 20\]
a = 7

Type in 7

71) Problem #PRABW5Z "PRABW5Z - Solving 1-Step Addition Equations"
Solve for b:

\[b + (-20) = -20 \]

Algebraic Expression:

\[0 \]

Hints:

- This is how to solve a problem similar to your problem.
 \[
 m + (-4) = -25 \\
 + 4 \quad + 4 \\
 m = -21
 \]

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.
- This is what it should look like:
 \[
 b + (-20) = -20 \\
 + 20 \quad +20 \\
 b = 0
 \]

Type in 0

72) Problem #PRABW4D "PRABW4D - Solving 1-Step Addition Equations"
Solve for b:

\[b + 11 = -17 \]

Algebraic Expression:

\[-28 \]

Hints:

- This is how to solve a problem similar to your problem.
 \[
 m + 4 = -25 \\
 - 4 \quad -4 \\
 m = -29
 \]
To solve you need to do the opposite of the sign in front of 11. Therefore, you must subtract 11 from both sides of the equation.

This is what it should look like:

\[b + 11 = -17 \]
\[-11 \]
\[b = -28 \]

Type in -28

73) Problem #PRABW5N "PRABW5N - Solving 1-Step Addition Equations"
Solve for b:

\[b + (-20) = -18 \]

Algebraic Expression:

\(m + (-4) = -25 \)
\[+4 \quad +4 \]
\[m = -21 \]

Hints:

- This is how to solve a problem similar to your problem.

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.

This is what it should look like:

\[b + (-20) = -18 \]
\[+20 \quad +20 \]
\[b = 2 \]

Type in 2

74) Problem #PRABW7E "PRABW7E - Solving 1-Step Addition Equations"
Solve for y:

\[y + (-20) = -19 \]

Algebraic Expression:

\(y + (-20) = -19 \)

Hints:
- This is how to solve a problem similar to your problem.

\[m + (-4) = -25 \]
\[+ 4 \quad +4 \]
\[m = -21 \]

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.

- This is what it should look like:

\[y + (-20) = -19 \]
\[+ 20 \quad +20 \]
\[y = 1 \]

Type in 1

75) Problem #PRABW7U "PRABW7U - Solving 1-Step Addition Equations"
Solve for x:

\[x + (-20) = -15 \]

Algebraic Expression:

✓ 5

Hints:

- This is how to solve a problem similar to your problem.

\[m + (-4) = -25 \]
\[+ 4 \quad +4 \]
\[m = -21 \]

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.

- This is what it should look like:

\[x + (-20) = -15 \]
\[+ 20 \quad +20 \]
\[x = 5 \]

Type in 5
76) Problem #PRABW6Q "PRABW6Q - Solving 1-Step Addition Equations"
Solve for a:
\[a + (-20) = -16 \]

Algebraic Expression:
✓ 4

Hints:
- This is how to solve a problem similar to your problem.

 \[
 m + (-4) = -25 \\
 + 4 \quad +4 \\
 \hline
 m = -21
 \]
- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.
- This is what it should look like:

 \[
 a + (-20) = -16 \\
 + 20 \quad +20 \\
 \hline
 a = 4
 \]

Type in 4

77) Problem #PRABW4W "PRABW4W - Solving 1-Step Addition Equations"
Solve for a:
\[a + 11 = -11 \]

Algebraic Expression:
✓ -22

Hints:
- This is how to solve a problem similar to your problem.

 \[
 m + 4 = -25 \\
 - 4 \quad -4 \\
 \hline
 m = -29
 \]
- To solve you need to do the opposite of the sign in front of 11. Therefore, you must subtract 11 from both sides of the equation.
- This is what it should look like:

 \[
 a + 11 = -11 \\
 - 11 \quad -11 \\
 \hline
 \]
a = -22

Type in -22

78) Problem #PRABW3Q "PRABW3Q - Solving 1-Step Addition Equations"
Solve for x:

x + 8 = -18

Algebraic Expression:

\[x + 8 = -18 \]

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m + 4 &= -25 \\
-4 &= -4 \\

to solve you need to do the opposite of the sign in front of 8. Therefore, you must subtract 8 from both sides of the equation.
\end{align*}
\]

This is what it should look like:

\[
\begin{align*}
x + 8 &= -18 \\
-8 &= -8 \\
x &= -26
\end{align*}
\]

Type in -26

79) Problem #PRABW42 "PRABW42 - Solving 1-Step Addition Equations"
Solve for c:

c + 4 = -13

Algebraic Expression:

\[c + 4 = -13 \]

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m + 4 &= -25 \\
-4 &= -4 \\

to solve you need to do the opposite of the sign in front of 8. Therefore, you must subtract 8 from both sides of the equation.
\end{align*}
\]

This is what it should look like:

\[
\begin{align*}
c + 4 &= -13 \\
-4 &= -8 \\
c &= -17
\end{align*}
\]
To solve you need to do the opposite of the sign in front of 4. Therefore, you must subtract 4 from both sides of the equation.

This is what it should look like:

\[c + 4 = -13 \]
\[-4 \quad \rightarrow \quad c = -17 \]

Type in -17

80) Problem #PRABW5Q "PRABW5Q - Solving 1-Step Addition Equations"

Solve for b:

\[b + (-20) = -16 \]

Algebraic Expression:

\[b + (-20) = -16 \]

Hints:

This is how to solve a problem similar to your problem.

\[m + (-4) = -25 \]
\[+4 \quad +4 \]
\[m = -21 \]

To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.

This is what it should look like:

\[b + (-20) = -16 \]
\[+20 \quad +20 \]
\[b = 4 \]

Type in 4

81) Problem #PRABW3V "PRABW3V - Solving 1-Step Addition Equations"

Solve for b:

\[b + 5 = -13 \]

Algebraic Expression:

\[b + 5 = -13 \]

Hints:

-18
Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m + 4 &= -25 \\
-4 &= -4 \\
m &= -29
\end{align*}
\]

- To solve you need to do the opposite of the sign in front of 5. Therefore, you must subtract 5 from both sides of the equation.

- This is what it should look like:

\[
\begin{align*}
b + 5 &= -13 \\
-5 &= -5 \\
b &= -18
\end{align*}
\]

Type in -18

82) Problem #PRABW4E "PRABW4E - Solving 1-Step Addition Equations"

Solve for x:

\[x + 10 = -12\]

Algebraic Expression:

✔ -22

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m + 4 &= -25 \\
-4 &= -4 \\
m &= -29
\end{align*}
\]

- To solve you need to do the opposite of the sign in front of 10. Therefore, you must subtract 10 from both sides of the equation.

- This is what it should look like:

\[
\begin{align*}
x + 10 &= -12 \\
-10 &= -10 \\
x &= -22
\end{align*}
\]

Type in -22
83) Problem #PRABW7J "PRABW7J - Solving 1-Step Addition Equations"
Solve for a:

\[a + (-20) = -15 \]

Algebraic Expression:

\[\checkmark \ 5 \]

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m + (-4) &= -25 \\
+4 & \quad +4 \\
m &= -21
\end{align*}
\]

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.

- This is what it should look like:

\[
\begin{align*}
a + (-20) &= -15 \\
+20 & \quad +20 \\
a &= 5
\end{align*}
\]

Type in 5

84) Problem #PRABW74 "PRABW74 - Solving 1-Step Addition Equations"
Solve for a:

\[a + (-20) = -20 \]

Algebraic Expression:

\[\checkmark \ 0 \]

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m + (-4) &= -25 \\
+4 & \quad +4 \\
m &= -21
\end{align*}
\]

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.

- This is what it should look like:

\[
\begin{align*}
a + (-20) &= -20
\end{align*}
\]
+ 20 + 20
a = 0

Type in 0

85) Problem #PRABW45 "PRABW45 - Solving 1-Step Addition Equations"
Solve for x:

x + 16 = -18

Algebraic Expression:

\(x + 16 = -18 \)

Hints:

- This is how to solve a problem similar to your problem.

\[
m + 4 = -25
\]

\[
- 4 \quad -4
\]

\[
m = -29
\]

- To solve you need to do the opposite of the sign in front of 16. Therefore, you must subtract 16 from both sides of the equation.

- This is what it should look like:

\[
x + 16 = -18
\]

\[
- 16 \quad -16
\]

\[
x = -34
\]

Type in -34

86) Problem #PRABW5X "PRABW5X - Solving 1-Step Addition Equations"
Solve for a:

a + (-20) = -17

Algebraic Expression:

\(a + (-20) = -17 \)

Hints:

- This is how to solve a problem similar to your problem.

\[
m + (-4) = -25
\]

\[
+ 4 \quad + 4
\]
m = -21

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.
- This is what it should look like:

 \[
 a + (-20) = -17 \\
 + 20 \quad + 20 \\
 \]

 \[
 a = 3
 \]

Type in 3

87) Problem #PRABW6R "PRABW6R - Solving 1-Step Addition Equations"
Solve for b:

b + (-20) = -11

Algebraic Expression: 9

Hints:
- This is how to solve a problem similar to your problem.

 \[
 m + (-4) = -25 \\
 + 4 \quad + 4 \\
 \]

 \[
 m = -21
 \]

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.
- This is what it should look like:

 \[
 b + (-20) = -11 \\
 + 20 \quad + 20 \\
 \]

 \[
 b = 9
 \]

Type in 9

88) Problem #PRABW6P "PRABW6P - Solving 1-Step Addition Equations"
Solve for a:
a + (-20) = -16

Algebraic Expression: 4
Hints:

- This is how to solve a problem similar to your problem.

 \[m + (-4) = -25 \]
 \[+4 \quad +4 \]
 \[m = -21 \]

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.

- This is what it should look like:

 \[a + (-20) = -16 \]
 \[+20 \quad +20 \]
 \[a = 4 \]

Type in 4

89) Problem #PRABW6J "PRABW6J - Solving 1-Step Addition Equations"

Solve for x:

\[x + (-20) = -20 \]

Algebraic Expression:

✓ 0

Hints:

- This is how to solve a problem similar to your problem.

 \[m + (-4) = -25 \]
 \[+4 \quad +4 \]
 \[m = -21 \]

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.

- This is what it should look like:

 \[x + (-20) = -20 \]
 \[+20 \quad +20 \]
 \[x = 0 \]
Type in 0

90) Problem #PRABW4Z "PRABW4Z - Solving 1-Step Addition Equations"
Solve for \(a\):

\[a + 12 = -19\]

Algebraic Expression:

\[
\checkmark -31
\]

Hints:

- This is how to solve a problem similar to your problem.

\[
m + 4 = -25
\]

\[
-4
\]

\[
m = -29
\]

- To solve you need to do the opposite of the sign in front of 12. Therefore, you must subtract 12 from both sides of the equation.

- This is what it should look like:

\[
a + 12 = -19
\]

\[
-12
\]

\[
a = -31
\]

Type in -31

91) Problem #PRABW6K "PRABW6K - Solving 1-Step Addition Equations"
Solve for \(b\):

\[b + (-20) = -12\]

Algebraic Expression:

\[
\checkmark 8
\]

Hints:

- This is how to solve a problem similar to your problem.

\[
m + (-4) = -25
\]

\[
+4
\]

\[
m = -21
\]

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.

- This is what it should look like:
\[
\begin{align*}
b + (-20) & = -12 \\
+ 20 & + 20 \\
b & = 8
\end{align*}
\]

Type in 8

92) Problem #PRABW7Y "PRABW7Y - Solving 1-Step Addition Equations"
Solve for \(b\):
\[b + (-20) = -13\]

Algebraic Expression:

\[\checkmark \; 7\]

Hints:
- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m + (-4) & = -25 \\
+ 4 & + 4 \\
m & = -21
\end{align*}
\]
- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.
- This is what it should look like:

\[
\begin{align*}
b + (-20) & = -13 \\
+ 20 & + 20 \\
b & = 7
\end{align*}
\]

Type in 7

93) Problem #PRABW79 "PRABW79 - Solving 1-Step Addition Equations"
Solve for \(b\):
\[b + (-20) = -11\]

Algebraic Expression:

\[\checkmark \; 9\]

Hints:
- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m + (-4) & = -25
\end{align*}
\]
To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.

This is what it should look like:

\[b + (-20) = -11 \]
\[\quad + 20 \quad + 20 \]

\[b = 9 \]

Type in 9

94) Problem #PRABW4Y "PRABW4Y - Solving 1-Step Addition Equations"
Solve for a:

\[a + 18 = -19 \]

Algebraic Expression:

\[-37 \]

Hints:

This is how to solve a problem similar to your problem.

\[m + 4 = -25 \]
\[\quad - 4 \quad -4 \]

\[m = -29 \]

To solve you need to do the opposite of the sign in front of 18. Therefore, you must subtract 18 from both sides of the equation.

This is what it should look like:

\[a + 18 = -19 \]
\[\quad - 18 \quad -18 \]

\[a = -37 \]

Type in -37

95) Problem #PRABW7T "PRABW7T - Solving 1-Step Addition Equations"
Solve for y:
y + (-20) = -19

Algebraic Expression:

1

Hints:

- This is how to solve a problem similar to your problem.

\[
m + (-4) = -25
+ 4 \quad + 4
\]

\[
m = -21
\]

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.

- This is what it should look like:

\[
y + (-20) = -19
+ 20 \quad + 20
\]

\[
y = 1
\]

Type in 1

96) Problem #PRABW73 "PRABW73 - Solving 1-Step Addition Equations"

Solve for c:

c + (-20) = -13

Algebraic Expression:

7

Hints:

- This is how to solve a problem similar to your problem.

\[
m + (-4) = -25
+ 4 \quad + 4
\]

\[
m = -21
\]

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.

- This is what it should look like:

\[
c + (-20) = -13
+ 20 \quad + 20
\]

\[
c = 7
\]
97) Problem #PRABW38 "PRABW38 - Solving 1-Step Addition Equations"
Solve for x:

\[x + 16 = -14 \]

Algebraic Expression:

\[x + 16 = -14 \]

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m + 4 & = -25 \\
-4 & = -4 \\
\hline
m & = -29
\end{align*}
\]

- To solve you need to do the opposite of the sign in front of 16. Therefore, you must subtract 16 from both sides of the equation.

- This is what it should look like:

\[
\begin{align*}
x + 16 & = -14 \\
-16 & = -16 \\
\hline
x & = -30
\end{align*}
\]

Type in -30

98) Problem #PRABW5W "PRABW5W - Solving 1-Step Addition Equations"
Solve for c:

\[c + (-20) = -11 \]

Algebraic Expression:

\[c + (-20) = -11 \]

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m + (-4) & = -25 \\
+4 & = +4 \\
\hline
m & = -21
\end{align*}
\]

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both
sides of the equation.

- This is what it should look like:

\[
\begin{align*}
c + (-20) &= -11 \\
+ 20 &= 20 \\
\hline
\\
c &= 9
\end{align*}
\]

Type in 9

99) Problem #PRABW5U "PRABW5U - Solving 1-Step Addition Equations"

Solve for \(a\):

\[a + (-20) = -19\]

Algebraic Expression:

1

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m + (-4) &= -25 \\
+ 4 &= 4 \\
\hline
m &= -21
\end{align*}
\]

- To solve you need to do the opposite of the sign in front of 20. Therefore, you must add 20 from both sides of the equation.

- This is what it should look like:

\[
\begin{align*}
a + (-20) &= -19 \\
+ 20 &= 20 \\
\hline
a &= 1
\end{align*}
\]

Type in 1

100) Problem #PRABW3J "PRABW3J - Solving 1-Step Addition Equations"

Solve for \(y\):

\[y + 6 = -20\]

Algebraic Expression:

-26

Hints:

- This is how to solve a problem similar to your problem.
m + 4 = -25
- 4 -4

m = -29

- To solve you need to do the opposite of the sign in front of 6. Therefore, you must subtract 6 from both sides of the equation.
- This is what it should look like:

 y + 6 = -20
 - 6 -6

 y = -26

Type in -26

101) Problem #PRAVCZ5 "PRAVCZ5 - Solving 1-Step Subtraction Equations"

Solve for x:

x - (-20) = -14

Algebraic Expression:

✓ -34

Hints:

This is how to solve a problem similar to your problem.

m - (-4) = -25
m + (+4) = -25
- 4 -4
The first step to solve is to change the subtraction sign and negative sign in front of 20 to plus signs.

Next, you need to do the opposite of the sign in front of 20. Therefore, you must subtract 20 from both sides of the equation.
This is what it should look like:

\[
\begin{align*}
\text{x - (-20)} &= -14 \\
\text{x + (+ 20)} &= -20 \\
\text{- 20} - 20 &= -34 \\
\text{x} &= -34 \\
\end{align*}
\]

Type in -34

102) Problem #PRAVCZX "PRAVCZX - Solving 1-Step Subtraction Equations"
Solve for a:

a - (-19) = -16

Algebraic Expression:

Hints:
This is how to solve a problem similar to your problem.

\[
m - (\text{-4}) = -25 \\
m + (+4) = -25 \\
\quad - 4 \quad - 4
\]

\[
m = -29
\]

The first step to solve is to change the subtraction sign and negative sign in front of 19 to plus signs.
Next, you need to do the opposite of the sign in front of 19. Therefore, you must subtract 19 from both sides of the equation.

This is what it should look like:

\[
\begin{align*}
 a - (-19) & = -16 \\
 a + (+19) & = -19 \\
 -19 & -19 \\
 a & = -35
\end{align*}
\]

Type in -35

103) Problem #PRAVCZ2 "PRAVCZ2 - Solving 1-Step Subtraction Equations"
Solve for y:

\[y - (-11) = -13\]
Algebraic Expression:

-24

Hints:

PSAHRF 0.1

This is how to solve a problem similar to your problem.

\[
\begin{align*}
m - (-4) &= -25 \\
m + (+4) &= -25 \\
-4 &- 4 \\
m &= -29
\end{align*}
\]

PSAHRF 3.1

The first step to solve is to change the subtraction sign and negative sign in front of 11 to plus signs.
Next, you need to do the opposite of the sign in front of 11. Therefore, you must subtract 11 from both sides of the equation.

This is what it should look like:

\[
\begin{align*}
 y - (-11) &= -13 \\
 y + (+11) &= 0 \\
 -11 &-11
\end{align*}
\]

\[y = -24\]

Type in -24
Algebraic Expression:

-30

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
 m - (-4) &= -25 \\
 m + (+4) &= -25 \\
 -4 &= -4 \\
 m &= -29
\end{align*}
\]

- The first step to solve is to change the subtraction sign and negative sign in front of 18 to plus signs.
- Next, you need to do the opposite of the sign in front of 18. Therefore, you must subtract 18 from both sides of the equation.
- This is what it should look like:

\[
\begin{align*}
 c - (-18) &= -12 \\
 c + (+18) &= -18 \\
 -18 &= -18 \\
 c &= -30
\end{align*}
\]

Type in -30

105) Problem #PRAVCZ7 "PRAVCZ7 - Solving 1-Step Subtraction Equations"

Solve for y:

\[y - (-18) = -12\]

Algebraic Expression:

-30

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
 m - (-4) &= -25 \\
 m + (+4) &= -25 \\
 -4 &= -4 \\
 m &= -29
\end{align*}
\]

- The first step to solve is to change the subtraction sign and negative sign in front of 18 to plus signs.
- Next, you need to do the opposite of the sign in front of 18. Therefore, you must subtract 18 from both sides of the equation.
- This is what it should look like:
y - (-18) = -12
y + (+18)
- 18 -18

y = -30

Type in -30

106) Problem #PRAVCZ4 "PRAVCZ4 - Solving 1-Step Subtraction Equations"
Solve for y:
y - (-19) = -18

Algebraic Expression:
✓ -37

Hints:
- This is how to solve a problem similar to your problem.

m - (-4) = -25
m + (+4) = -25
- 4 - 4

m = -29

- The first step to solve is to change the subtraction sign and negative sign in front of 19 to plus signs.
- Next, you need to do the opposite of the sign in front of 19. Therefore, you must subtract 19 from both sides of the equation.
- This is what it should look like:

y - (-19) = -18
y + (+19)
- 19 - 19

y = -37

Type in -37

107) Problem #PRAVCZZ "PRAVCZZ - Solving 1-Step Subtraction Equations"
Solve for y:
y - (-18) = -19

Algebraic Expression:
✓ -37

Hints:
• This is how to solve a problem similar to your problem.

\[
\begin{align*}
m - (-4) &= -25 \\
m + (+4) &= -25 \\
-4 &= -4 \\

m &= -29
\end{align*}
\]

• The first step to solve is to change the subtraction sign and negative sign in front of 18 to plus signs.

• Next, you need to do the opposite of the sign in front of 18. Therefore, you must subtract 18 from both sides of the equation.

• This is what it should look like:

\[
\begin{align*}
y - (-18) &= -19 \\
y + (+18) &= -18 \\
-18 &= -18 \\

y &= -37
\end{align*}
\]

Type in -37

108) Problem #PRAVCZY "PRAVCZY - Solving 1-Step Subtraction Equations"

Solve for y:

\[
y - (-12) = -18
\]

Algebraic Expression:

✓ -30

Hints:

• This is how to solve a problem similar to your problem.

\[
\begin{align*}
m - (-4) &= -25 \\
m + (+4) &= -25 \\
-4 &= -4 \\

m &= -29
\end{align*}
\]

• The first step to solve is to change the subtraction sign and negative sign in front of 12 to plus signs.

• Next, you need to do the opposite of the sign in front of 12. Therefore, you must subtract 12 from both sides of the equation.

• This is what it should look like:

\[
\begin{align*}
y - (-12) &= -18 \\
y + (+12) &= -18 \\
-12 &= -12
\end{align*}
\]
\[y = -30 \]

Type in \(-30\)

109) Problem #PRAVCZ3 "PRAVCZ3 - Solving 1-Step Subtraction Equations"
Solve for \(y\):

\[y - (-11) = -14 \]

Algebraic Expression:

\(\sqrt{25}\)

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
 m - (-4) &= -25 \\
 m + (+4) &= -25 \\
 -4 - 4 &= -29
\end{align*}
\]

- The first step to solve is to change the subtraction sign and negative sign in front of 11 to plus signs.
- Next, you need to do the opposite of the sign in front of 11. Therefore, you must subtract 11 from both sides of the equation.
- This is what it should look like:

\[
\begin{align*}
 y - (-11) &= -14 \\
 y + (+11) &= 25 \\
 -11 - 11 &= -25
\end{align*}
\]

Type in \(-25\)

110) Problem #PRAVC24 "PRAVC24 - Solving 1-Step Subtraction Equations"
Solve for \(y\):

\[y - (-16) = -18 \]

Algebraic Expression:

\(\sqrt{34}\)

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
 m - (-4) &= -25
\end{align*}
\]
\[
\begin{align*}
m + (+4) &= -25 \\
-4 &= -4
\end{align*}
\]
\[m = -29\]

- The first step to solve is to change the subtraction sign and negative sign in front of 16 to plus signs.
- Next, you need to do the opposite of the sign in front of 16. Therefore, you must subtract 16 from both sides of the equation.
- This is what it should look like:

\[
\begin{align*}
y - (-16) &= -18 \\
y + (+16) &= -16
\end{align*}
\]
\[y = -34\]

Type in -34

111) Problem #PRAVC2B "PRAVC2B - Solving 1-Step Subtraction Equations"
Solve for x:

\[
x - (-16) = -19
\]

Algebraic Expression:
✓ -35

Hints:
- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m - (-4) &= -25 \\
m + (+4) &= -25 \\
-4 &= -4
\end{align*}
\]
\[m = -29\]

- The first step to solve is to change the subtraction sign and negative sign in front of 16 to plus signs.
- Next, you need to do the opposite of the sign in front of 16. Therefore, you must subtract 16 from both sides of the equation.
- This is what it should look like:

\[
\begin{align*}
x - (-16) &= -19 \\
x + (+16) &= -16
\end{align*}
\]
\[x = -35\]
112) Problem #PRAVC2X "PRAVC2X - Solving 1-Step Subtraction Equations"
Solve for c:

c - (-20) = -14

Algebraic Expression:
✓ -34

Hints:
• This is how to solve a problem similar to your problem.

\[
\begin{align*}
 m - (-4) &= -25 \\
 m + (+4) &= -25 \\
- 4 & \quad - 4 \\
\end{align*}
\]

\[m = -29 \]

• The first step to solve is to change the subtraction sign and negative sign in front of 20 to plus signs.
• Next, you need to do the opposite of the sign in front of 20. Therefore, you must subtract 20 from both sides of the equation.
• This is what it should look like:

\[
\begin{align*}
 c - (-20) &= -14 \\
 c + (+20) &= -14 \\
- 20 & \quad - 20 \\
\end{align*}
\]

\[c = -34 \]

Type in -34

113) Problem #PRAVC2M "PRAVC2M - Solving 1-Step Subtraction Equations"
Solve for y:
y - (-19) = -13

Algebraic Expression:
✓ -32

Hints:
• This is how to solve a problem similar to your problem.

\[
\begin{align*}
 m - (-4) &= -25 \\
 m + (+4) &= -25 \\
- 4 & \quad - 4 \\
\end{align*}
\]
m = -29

- The first step to solve is to change the subtraction sign and negative sign in front of 19 to plus signs.
- Next, you need to do the opposite of the sign in front of 19. Therefore, you must subtract 19 from both sides of the equation.
- This is what it should look like:

\[
\begin{align*}
y - (-19) &= -13 \\
y + (+19) - 19 &= -19 \\
y &= -32
\end{align*}
\]

Type in -32

114) Problem #PRAVC2V "PRAVC2V - Solving 1-Step Subtraction Equations"

Solve for x:

\[
x - (-18) = -11
\]

Algebraic Expression:

-29

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m - (-4) &= -25 \\
m + (+4) &= -25 \\
-4 - 4 &= -29
\end{align*}
\]

- The first step to solve is to change the subtraction sign and negative sign in front of 18 to plus signs.
- Next, you need to do the opposite of the sign in front of 18. Therefore, you must subtract 18 from both sides of the equation.
- This is what it should look like:

\[
\begin{align*}
x - (-18) &= -11 \\
x + (+18) - 18 &= -18 \\
x &= -29
\end{align*}
\]

Type in -29
115) Problem #PRAVC22 "PRAVC22 - Solving 1-Step Subtraction Equations"

Solve for x:

x - (-13) = -18

Algebraic Expression:
✓ -31

Hints:
- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m - (-4) &= -25 \\
m + (+4) &= -25 \\
-4 &\quad -4
\end{align*}
\]

m = -29

- The first step to solve is to change the subtraction sign and negative sign in front of 13 to plus signs.
- Next, you need to do the opposite of the sign in front of 13. Therefore, you must subtract 13 from both sides of the equation.
- This is what it should look like:

\[
\begin{align*}
x - (-13) &= -18 \\
x + (+13) &= -18 \\
-13 &\quad -13
\end{align*}
\]

x = -31

Type in -31

116) Problem #PRAVC2W "PRAVC2W - Solving 1-Step Subtraction Equations"

Solve for a:

a - (-12) = -17

Algebraic Expression:
✓ -29

Hints:
- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m - (-4) &= -25 \\
m + (+4) &= -25 \\
-4 &\quad -4
\end{align*}
\]

m = -29
The first step to solve is to change the subtraction sign and negative sign in front of 12 to plus signs.

Next, you need to do the opposite of the sign in front of 12. Therefore, you must subtract 12 from both sides of the equation.

This is what it should look like:

\[
a - (12) = -17 \\
(a + (12)) - 12 = -12 \\
a = -29
\]

Type in -29

17) Problem #PRAVC2P "PRAVC2P - Solving 1-Step Subtraction Equations"
Solve for c:

c - (-14) = -14

Algebraic Expression:

-28

Hints:

This is how to solve a problem similar to your problem.

\[
m - (-4) = -25 \\
m + (+4) = -25 \\
-4 -4 \\
m = -29
\]

The first step to solve is to change the subtraction sign and negative sign in front of 14 to plus signs.

Next, you need to do the opposite of the sign in front of 14. Therefore, you must subtract 14 from both sides of the equation.

This is what it should look like:

\[
c - (-14) = -14 \\
c + (+14) - 14 = -14 \\
c = -28
\]

Type in -28

18) Problem #PRAVC2U "PRAVC2U - Solving 1-Step Subtraction Equations"
Solve for x:
x - (-13) = -20

Algebraic Expression:

✓ -33

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m - (-4) &= -25 \\
m + (+4) &= -25 \\
-4 &- 4 \\
m &= -29
\end{align*}
\]

- The first step to solve is to change the subtraction sign and negative sign in front of 13 to plus signs.

- Next, you need to do the opposite of the sign in front of 13. Therefore, you must subtract 13 from both sides of the equation.

This is what it should look like:

\[
\begin{align*}
x - (-13) &= -20 \\
+13 &- 13 \\
x &= -33
\end{align*}
\]

Type in -33

☐ 119) Problem #PRAVC2Y "PRAVC2Y - Solving 1-Step Subtraction Equations"

Solve for a:

\[
a - (-14) = -18
\]

Algebraic Expression:

✓ -32

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m - (-4) &= -25 \\
m + (+4) &= -25 \\
-4 &- 4 \\
m &= -29
\end{align*}
\]

- The first step to solve is to change the subtraction sign and negative sign in front of 14 to plus signs.

- Next, you need to do the opposite of the sign in front of 14. Therefore, you must subtract 14 from both sides of the equation.
5/25/2018 Assistment - Printing Content

- This is what it should look like:

\[a - (-14) = -18 \]
\[a + (+14) \]
\[-14 \quad -14 \]
\[a = -32 \]

Type in -32

120) Problem #PRAVC2D "PRAVC2D - Solving 1-Step Subtraction Equations"

Solve for y:

\[y - (-20) = -18 \]

Algebraic Expression:

\[-38 \]

Hints:

- This is how to solve a problem similar to your problem.

\[m - (-4) = -25 \]
\[m + (+4) = -25 \]
\[-4 \quad -4 \]
\[m = -29 \]

- The first step to solve is to change the subtraction sign and negative sign in front of 20 to plus signs.
- Next, you need to do the opposite of the sign in front of 20. Therefore, you must subtract 20 from both sides of the equation.

This is what it should look like:

\[y - (-20) = -18 \]
\[y + (+20) \]
\[-20 \quad -20 \]
\[y = -38 \]

Type in -38

121) Problem #PRAVC2G "PRAVC2G - Solving 1-Step Subtraction Equations"

Solve for a:

\[a - (-15) = -14 \]

Algebraic Expression:
HINTS:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
 m - (-4) &= -25 \\
 m + (+4) &= -25 \\
 -4 &+ (-4)
\end{align*}
\]

\[m = -29\]

- The first step to solve is to change the subtraction sign and negative sign in front of 15 to plus signs.
- Next, you need to do the opposite of the sign in front of 15. Therefore, you must subtract 15 from both sides of the equation.
- This is what it should look like:

\[
\begin{align*}
 a - (-15) &= -14 \\
 a + (+15) &= -15 \\
 -15 &+ (-15)
\end{align*}
\]

\[a = -29\]

Type in \(-29\)

122) Problem #PRAVC2Q "PRAVC2Q - Solving 1-Step Subtraction Equations"

Solve for b:

\[b - (-15) = -12\]

Algebraic Expression:

\[b - (-15) = -12\]

HINTS:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
 m - (-4) &= -25 \\
 m + (+4) &= -25 \\
 -4 &+ (-4)
\end{align*}
\]

\[m = -29\]

- The first step to solve is to change the subtraction sign and negative sign in front of 15 to plus signs.
- Next, you need to do the opposite of the sign in front of 15. Therefore, you must subtract 15 from both sides of the equation.
- This is what it should look like:

\[b - (-15) = -12\]
b + (+15)
-15 -15

b = -27

Type in -27

☐ 123) Problem #PRAVC2C "PRAVC2C - Solving 1-Step Subtraction Equations"
Solve for x:

x - (-19) = -11

Algebraic Expression:

✔ -30

Hints:

• This is how to solve a problem similar to your problem.

m - (-4) = -25
m + (+4) = -25
-4 -4

m = -29

• The first step to solve is to change the subtraction sign and negative sign in front of 19 to plus signs.
• Next, you need to do the opposite of the sign in front of 19. Therefore, you must subtract 19 from both sides of the equation.
• This is what it should look like:

x - (-19) = -11
x + (+19)
-19 -19

x = -30

Type in -30

☐ 124) Problem #PRAVC2T "PRAVC2T - Solving 1-Step Subtraction Equations"
Solve for c:

c - (-16) = -18

Algebraic Expression:

✔ -34

Hints:

• This is how to solve a problem similar to your problem.
\[
\begin{align*}
m - (-4) &= -25 \\
m + (+4) &= -25 \\
-4 -4 &\quad -4 \\
m &= -29
\end{align*}
\]

- The first step to solve is to change the subtraction sign and negative sign in front of 16 to plus signs.
- Next, you need to do the opposite of the sign in front of 16. Therefore, you must subtract 16 from both sides of the equation.
- This is what it should look like:

\[
\begin{align*}
c - (-16) &= -18 \\
c + (+16) &= -18 \\
-16 -16 &\quad -16 \\
c &= -34
\end{align*}
\]

Type in -34

☐ 125) Problem #PRAVC2F "PRAVC2F - Solving 1-Step Subtraction Equations"

Solve for \(a \):

\[a - (-14) = -18\]

Algebraic Expression:

✓ -32

Hints:
- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m - (-4) &= -25 \\
m + (+4) &= -25 \\
-4 -4 &\quad -4 \\
m &= -29
\end{align*}
\]

- The first step to solve is to change the subtraction sign and negative sign in front of 14 to plus signs.
- Next, you need to do the opposite of the sign in front of 14. Therefore, you must subtract 14 from both sides of the equation.
- This is what it should look like:

\[
\begin{align*}
a - (-14) &= -18 \\
a + (+14) &= -18 \\
-14 -14 &\quad -14
\end{align*}
\]
a = -32

Type in -32

☐ 126) Problem #PRAVC2E "PRAVC2E - Solving 1-Step Subtraction Equations"
Solve for a:

a - (-12) = -17

Algebraic Expression:
✓ -29

Hints:
• This is how to solve a problem similar to your problem.

m - (-4) = -25
m + (+4) = -25

- 4

m = -29

• The first step to solve is to change the subtraction sign and negative sign in front of 12 to plus signs.
• Next, you need to do the opposite of the sign in front of 12. Therefore, you must subtract 12 from both sides of the equation.
• This is what it should look like:

a - (-12) = -17
a + (+12)
- 12

a = -29

Type in -29

☐ 127) Problem #PRAVC3C "PRAVC3C - Solving 1-Step Subtraction Equations"
Solve for a:

a - (-19) = -12

Algebraic Expression:
✓ -31

Hints:
• This is how to solve a problem similar to your problem.

m - (-4) = -25
m + (+4) = -25
The first step to solve is to change the subtraction sign and negative sign in front of 19 to plus signs.
Next, you need to do the opposite of the sign in front of 19. Therefore, you must subtract 19 from both sides of the equation.
This is what it should look like:

\[
\begin{align*}
\text{a} - (-19) &= -12 \\
\text{a} + (+ 19) &= -12 & -19 \\
\hline
\text{a} &= -31
\end{align*}
\]

Type in \(-31\)

128) Problem #PRAVCZ8 "PRAVCZ8 - Solving 1-Step Subtraction Equations"

Solve for c:

\[
c - (-19) = -17
\]

Algebraic Expression:

\[\checkmark -36\]

Hints:

This is how to solve a problem similar to your problem.

\[
\begin{align*}
\text{m} - (-4) &= -25 \\
\text{m} + (+4) &= -25 & -4 & -4 \\
\hline
\text{m} &= -29
\end{align*}
\]

The first step to solve is to change the subtraction sign and negative sign in front of 19 to plus signs.
Next, you need to do the opposite of the sign in front of 19. Therefore, you must subtract 19 from both sides of the equation.
This is what it should look like:

\[
\begin{align*}
c - (-19) &= -17 \\
c + (+ 19) &= -17 & -19 \\
\hline
c &= -36
\end{align*}
\]
129) Problem #PRAVC2J "PRAVC2J - Solving 1-Step Subtraction Equations"

Solve for a:

\[a - (-14) = -17 \]

Algebraic Expression:

-31

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
 m - (-4) &= -25 \\
 m + (+4) &= -25 \\
 -4 &- 4 \\
 m &= -29 \\
\end{align*}
\]

- The first step to solve is to change the subtraction sign and negative sign in front of 14 to plus signs.
- Next, you need to do the opposite of the sign in front of 14. Therefore, you must subtract 14 from both sides of the equation.
- This is what it should look like:

\[
\begin{align*}
 a - (-14) &= -17 \\
 a + (+14) &= -17 \\
 -14 &- 14 \\
 a &= -31 \\
\end{align*}
\]

130) Problem #PRAVC2N "PRAVC2N - Solving 1-Step Subtraction Equations"

Solve for b:

\[b - (-12) = -20 \]

Algebraic Expression:

-32

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
 m - (-4) &= -25 \\
 m + (+4) &= -25 \\
 -4 &- 4 \\
\end{align*}
\]
m = -29

- The first step to solve is to change the subtraction sign and negative sign in front of 12 to plus signs.
- Next, you need to do the opposite of the sign in front of 12. Therefore, you must subtract 12 from both sides of the equation.
- This is what it should look like:

\[
\begin{align*}
b - (-12) &= -20 \\
b + (+12) &= -12 \\
\end{align*}
\]

b = -32

Type in -32

131) Problem #PRAVC2A "PRAVC2A - Solving 1-Step Subtraction Equations"
Solve for c:

c - (-18) = -15

Algebraic Expression:

✓ -33

Hints:
- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m - (-4) &= -25 \\
m + (+4) &= -25 \\
\quad -4 &= -4 \\
\end{align*}
\]

m = -29

- The first step to solve is to change the subtraction sign and negative sign in front of 18 to plus signs.
- Next, you need to do the opposite of the sign in front of 18. Therefore, you must subtract 18 from both sides of the equation.
- This is what it should look like:

\[
\begin{align*}
c - (-18) &= -15 \\
c + (+18) &= -18 \\
\end{align*}
\]

c = -33

Type in -33
132) Problem #PRAVC2S "PRAVC2S - Solving 1-Step Subtraction Equations"

Solve for \(c\):

\[c - (-16) = -19 \]

Algebraic Expression:

\(\sqrt{-35} \)

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m - (-4) &= -25 \\
m + (+4) &= -25 \\
-4 &= -4
\end{align*}
\]

\[m = -29 \]

- The first step to solve is to change the subtraction sign and negative sign in front of 16 to plus signs.
- Next, you need to do the opposite of the sign in front of 16. Therefore, you must subtract 16 from both sides of the equation.
- This is what it should look like:

\[
\begin{align*}
c - (-16) &= -19 \\
c + (+ 16) &= -16 \\
-16 &= -16
\end{align*}
\]

\[c = -35 \]

Type in -35

133) Problem #PRAVC2H "PRAVC2H - Solving 1-Step Subtraction Equations"

Solve for \(a\):

\[a - (-11) = -13 \]

Algebraic Expression:

\(\sqrt{-24} \)

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m - (-4) &= -25 \\
m + (+4) &= -25 \\
-4 &= -4
\end{align*}
\]

\[m = -29 \]

- The first step to solve is to change the subtraction sign and negative sign in front of 11 to plus signs.
Next, you need to do the opposite of the sign in front of 11. Therefore, you must subtract 11 from both sides of the equation.

This is what it should look like:

\[
\begin{align*}
& a - (-11) = -13 \\
& a + (+11) - 11 = -11
\end{align*}
\]

\[a = -24\]

Type in -24

134) Problem #PRAVC2Z "PRAVC2Z - Solving 1-Step Subtraction Equations"

Solve for c:

\[c - (-20) = -20\]

Algebraic Expression:

-40

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
& m - (-4) = -25 \\
& m + (+4) = -25 - 4 = -4
\end{align*}
\]

\[m = -29\]

- The first step to solve is to change the subtraction sign and negative sign in front of 20 to plus signs.

- Next, you need to do the opposite of the sign in front of 20. Therefore, you must subtract 20 from both sides of the equation.

This is what it should look like:

\[
\begin{align*}
& c - (-20) = -20 \\
& c + (+20) - 20 = -20
\end{align*}
\]

\[c = -40\]

Type in -40

135) Problem #PRAVC23 "PRAVC23 - Solving 1-Step Subtraction Equations"

Solve for a:
a - (-14) = -15

Algebraic Expression:

✓ -29

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m - (-4) &= -25 \\
m + (+4) &= -25 \\
-4 & \quad -4 \\
m &= -29
\end{align*}
\]

- The first step to solve is to change the subtraction sign and negative sign in front of 14 to plus signs.

- Next, you need to do the opposite of the sign in front of 14. Therefore, you must subtract 14 from both sides of the equation.

- This is what it should look like:

\[
\begin{align*}
a - (-14) &= -15 \\
a + (+14) &= -15 \\
-14 & \quad -14 \\
a &= -29
\end{align*}
\]

Type in -29

136) Problem #PRAVC3A "PRAVC3A - Solving 1-Step Subtraction Equations"

Solve for x:

x - (-18) = -19

Algebraic Expression:

✓ -37

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m - (-4) &= -25 \\
m + (+4) &= -25 \\
-4 & \quad -4 \\
m &= -29
\end{align*}
\]

- The first step to solve is to change the subtraction sign and negative sign in front of 18 to plus signs.

- Next, you need to do the opposite of the sign in front of 18. Therefore, you must subtract 18 from both sides of the equation.

- This is what it should look like:
Type in -37

☐ 137) Problem #PRAVC2R "PRAVC2R - Solving 1-Step Subtraction Equations"
Solve for b:

\[b - (-20) = -19 \]

Algebraic Expression:

✓ -39

Hints:
- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m - (-4) &= -25 \\
m + (+4) &= -25 \\
\quad &\quad - 4 \quad - 4 \\
m &= -29
\end{align*}
\]

- The first step to solve is to change the subtraction sign and negative sign in front of 20 to plus signs.
- Next, you need to do the opposite of the sign in front of 20. Therefore, you must subtract 20 from both sides of the equation.
- This is what it should look like:

\[
\begin{align*}
b - (-20) &= -19 \\
b + (+20) &= -20 \\
\quad &\quad - 20 \quad - 20 \\
b &= -39
\end{align*}
\]

Type in -39

☐ 138) Problem #PRAVC2K "PRAVC2K - Solving 1-Step Subtraction Equations"
Solve for c:

\[c - (-11) = -12 \]

Algebraic Expression:

✓ -23
Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m - (-4) &= -25 \\
m + (+4) &= -25 \\
-4 &= -4
\end{align*}
\]

\[
m = -29
\]

- The first step to solve is to change the subtraction sign and negative sign in front of 11 to plus signs.
- Next, you need to do the opposite of the sign in front of 11. Therefore, you must subtract 11 from both sides of the equation.
- This is what it should look like:

\[
\begin{align*}
c - (-11) &= -12 \\
c + (+11) &= -11
\end{align*}
\]

\[
c = -23
\]

Type in -23

139) Problem #PRAVC3B "PRAVC3B - Solving 1-Step Subtraction Equations"

Solve for b:

\[
b - (-12) = -15
\]

Algebraic Expression:

-27

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m - (-4) &= -25 \\
m + (+4) &= -25 \\
-4 &= -4
\end{align*}
\]

\[
m = -29
\]

- The first step to solve is to change the subtraction sign and negative sign in front of 12 to plus signs.
- Next, you need to do the opposite of the sign in front of 12. Therefore, you must subtract 12 from both sides of the equation.
- This is what it should look like:

\[
\begin{align*}
b - (-12) &= -15 \\
b + (+12) &= -15
\end{align*}
\]
Solve for a:

\[a - (-16) = -20 \]

Algebraic Expression:

\[-36 \]

Hints:

- This is how to solve a problem similar to your problem.

\[
\begin{align*}
m - (-4) &= -25 \\
m + (+4) &= -25 \\
&= -4 \\
&= -4 \\
m &= -29
\end{align*}
\]

- The first step to solve is to change the subtraction sign and negative sign in front of 16 to plus signs.
- Next, you need to do the opposite of the sign in front of 16. Therefore, you must subtract 16 from both sides of the equation.
- This is what it should look like:

\[
\begin{align*}
a - (-16) &= -20 \\
a + (+16) &= -16 \\
&= -16 \\
a &= -36
\end{align*}
\]

Type in -36
Problem Set "Multiplying Decimals 6.NS.B.3" id:[PSABMSW]

☐ Select All
☐ 1) Problem #PRAJN42 "PRAJN42 - Multiplying Decimals"
What is 9.4 x 3.05?

Algebraic Expression:

✅ 28.67

Hints:

- Multiply the numbers *without the decimals*.
- Count the numbers to the right of the decimal point on both numbers being multiplied. After counting, have that amount of numbers after the decimal in your answer.
What is 7.3 x 0.46?

Exact Match (case sensitive):

✓ 3.358

Hints:

- Multiply the numbers without the decimals.
Count the numbers to the right of the decimal point on both numbers being multiplied. After counting, have that amount of numbers after the decimal in your answer.

0.46
x 7.3
3.358

Type in 3.358

3) Problem #PRAJN8E "PRAJN8E - 205620 - Multipicantion of decimals - Tenths place"
Multiply: 8.7 * 4.4?

Algebraic Expression:

\[38.28 \]

Hints:
- First, multiply 87 by 44, ignoring the decimal point.
• Then count the total number of decimal places in the factors and add them.

\[\begin{align*}
8.7 & \quad \text{One decimal place} \\
\times 4.4 & \quad \text{One decimal place} \\
348 & \\
348 & \\
3828 & \quad \text{Two decimal places in the product}
\end{align*} \]

So 38.28 is the product.

4) Problem #PRAJN4Y "PRAJN4Y - Multiplying Decimals"
What is 7.2 x 4.9?

Exact Match (case sensitive):

✓ 35.28

Hints:
- Multiply the numbers **without the decimals**.
- **Count the numbers to the right of the decimal point** on both numbers being multiplied.
- After counting, have that amount of numbers **after the decimal in your answer**.

4.9
\[\times 7.2 \]

35.28

Type in 35.28

5) Problem #PRAJN8D "PRAJN8D - 205620 - Multipication of decimals - Tenths place"
Multiply: 8.4 * 7.4?

Algebraic Expression:

✓ 62.16

Hints:
- First, multiply 84 by 74, ignoring the decimal point.

8.4
\[\times 7.4 \]

336

588

6216
• Then count the total number of decimal places in the factors and add them.

\[
\begin{array}{c}
8.4 & \text{One decimal place} \\
* 7.4 & \text{One decimal place} \\
\hline
336 \\
588 \\
6216
\end{array}
\]

• Insert the decimal point two places from the right end.

\[
\begin{array}{c}
8.4 & \text{One decimal place} \\
* 7.4 & \text{One decimal place} \\
\hline
336 \\
588 \\
62.16 & \text{Two decimal places in the product}
\end{array}
\]

So 62.16 is the product.

6) Problem #PRAJN8F "PRAJN8F - 205620 - Multiplication of decimals - Tenths place"

Multiply: 2.8 * 4.7?

Algebraic Expression:

\[
13.16
\]

Hints:

• First, multiply 28 by 47, ignoring the decimal point.

\[
\begin{array}{c}
2.8 \\
* 4.7 \\
\hline
196 \\
112 \\
1316
\end{array}
\]

• Then count the total number of decimal places in the factors and add them.

\[
\begin{array}{c}
2.8 & \text{One decimal place} \\
* 4.7 & \text{One decimal place} \\
\hline
196 \\
112 \\
1316
\end{array}
\]

• Insert the decimal point two places from the right end.

\[
\begin{array}{c}
2.8 & \text{One decimal place} \\
* 4.7 & \text{One decimal place} \\
\hline
196 \\
112 \\
13.16 & \text{Two decimal places in the product}
\end{array}
\]

So 13.16 is the product.

7) Problem #PRAJPAH "PRAJPAH - 205620 - Multiplication of decimals - Tenths place"
Find the product of 5.4 and 4

Algebraic Expression:

\[21.6 \]

Hints:

- Lets multiply 5.4 by 4, ignoring the decimal point.

\[
\begin{array}{c}
5.4 \\
\times 4 \\
\hline
216
\end{array}
\]

- Count the total number of decimal places and add them.

\[
\begin{array}{c}
5.4 \quad \text{Two decimal place} \\
\times 4 \quad \text{Zero decimal places (4 is a whole number)} \\
\hline
21.6 \quad \text{One decimal places in the product}
\end{array}
\]

So 21.6 is the product. Type 21.6 and click submit.

8) Problem #PRAJN5F "PRAJN5F - Multiplying Decimals"

What is 7.6 x 4.2?

Algebraic Expression:

\[31.92 \]

Hints:

- Multiply the numbers without the decimals.

\[
\begin{array}{c}
4.2 \\
\times 7.6 \\
31.92
\end{array}
\]

Type in 31.92

9) Problem #PRAJPAX "PRAJPAX - 205620 - Multiplication of decimals - Tenths place"

Find the product of 3.8 and 6

Algebraic Expression:

\[22.8 \]

Hints:

- Lets multiply 3.8 by 6, ignoring the decimal point.

3.8
* 6
228

- Count the total number of decimal places and add them.

3.8 <---- Two decimal place
* 6 <---- Zero decimal places (6 is a whole number)

- Insert the decimal point two places from the right end.

3.8 <---- One decimal place
* 6 <---- Zero decimal places (6 is a whole number)
22.8 <---- One decimal places in the product

So 22.8 is the product. Type 22.8 and click submit.

10) Problem #PRAJPA9 "PRAJPA9 - 205620 - Multiplication of decimals - Tenths place"
Find the product of 3.5 and 8

Algebraic Expression:
✓ 28

Hints:
- Lets multiply 3.5 by 8, ignoring the decimal point.

3.5
* 8
28

- Count the total number of decimal places and add them.

3.5 <---- Two decimal place
* 8 <---- Zero decimal places (8 is a whole number)

- Insert the decimal point two places from the right end.

3.5 <---- One decimal place
* 8 <---- Zero decimal places (8 is a whole number)
28 <---- One decimal places in the product

So 28 is the product. Type 28 and click submit.

11) Problem #PRAJN44 "PRAJN44 - Multiplying Decimals"
What is 6.8 x 2.72?

Algebraic Expression:
✓ 18.496

Hints:
- Multiply the numbers without the decimals.
• Count the numbers to the right of the decimal point on both numbers being multiplied.
• After counting, have that amount of numbers after the decimal in your answer.

2.72
\times 6.8
18.496

Type in 18.496

12) Problem #PRAJPAP "PRAJPAP - 205620 - Multiplicantion of decimals - Tenths place"
Find the product of 5.8 and 7

Algebraic Expression:
✓ 40.6

Hints:
• Lets multiply 5.8 by 7, ignoring the decimal point.

5.8
\times 7
406

• Count the total number of decimal places and add them.

5.8 \text{ ----- Two decimal place}
\times 7 \text{ ----- Zero decimal places (7 is a whole number)}

• Insert the decimal point two places from the right end.

5.8 \text{ ----- One decimal place}
\times 7 \text{ ----- Zero decimal places (7 is a whole number)}
40.6 \text{ ----- One decimal places in the product}

So 40.6 is the product. Type 40.6 and click submit.

13) Problem #PRAJPAZ "PRAJPAZ - 205620 - Multiplicantion of decimals - Tenths place"
Find the product of 8.4 and 5

Algebraic Expression:
✓ 42

Hints:
• Lets multiply 8.4 by 5, ignoring the decimal point.

8.4
\times 5
420

• Count the total number of decimal places and add them.

8.4 \text{ ----- Two decimal place}
5/25/2018

Assistment - Printing Content

* 5 <---- Zero decimal places (5 is a whole number)

- Insert the decimal point two places from the right end.

8.4 <---- One decimal place
* 5 <---- Zero decimal places (5 is a whole number)
42 <---- One decimal places in the product

So 42 is the product. Type 42 and click submit.

14) Problem #PRAJN89 "PRAJN89 - 205620 - Multiplication of decimals - Tenths place"
Multiply: 2.2 * 2.8?

Algebraic Expression:

✓ 6.16

Hints:
- First, multiply 22 by 28, ignoring the decimal point.

Then count the total number of decimal places in the factors and add them.

2.2 <---- One decimal place
* 2.8 <---- One decimal place
176
44
616

- Insert the decimal point two places from the right end.

2.2 <---- One decimal place
* 2.8 <---- One decimal place
176
44
616
6.16 <---- Two decimal places in the product

So 6.16 is the product.

15) Problem #PRAJN9P "PRAJN9P - 205620 - Multiplication of decimals - Tenths place"
Multiply: 8.7 * 7.4?

Algebraic Expression:

✓ 64.38

Hints:
- First, multiply 87 by 74, ignoring the decimal point.
Then count the total number of decimal places in the factors and add them.

\[8.7 \quad \text{One decimal place} \]
\[\times \quad 7.4 \quad \text{One decimal place} \]
\[348 \]
\[609 \]
\[6438 \]

Insert the decimal point two places from the right end.

\[8.7 \quad \text{One decimal place} \]
\[\times \quad 7.4 \quad \text{One decimal place} \]
\[348 \]
\[609 \]
\[64.38 \quad \text{Two decimal places in the product} \]

So 64.38 is the product.

16) Problem #PRAJN85 "PRAJN85 - 205620 - Multiplication of decimals - Tenths place"

Multiply: 6.7 X 3.7

Algebraic Expression:

\[24.79 \]

Hints:

- First, multiply 67 by 37, ignoring the decimal point.

\[
\begin{array}{c}
67 \\
\times 37 \\
\hline
469 \\
2010 \\
\hline
2479 \\
\end{array}
\]

Then count the total number of decimal places in the factors and add them.

6.7 \quad \text{One decimal place}
3.7 \quad \text{One decimal place}

Insert the decimal point two places from the right of the product.

6.7 \quad \text{One decimal place}
3.7 \quad \text{One decimal place}
24.79 \quad \text{Two decimal places in the product}
17) Problem #PRAJN8G "PRAJN8G - 205620 - Multiplication of decimals - Tenths place"

Multiply: 3.2 * 6.4?

Algebraic Expression:

✓ 20.48

Hints:

- First, multiply 32 by 64, ignoring the decimal point.

```
  3.2
×  6.4
  128
  192
2048
```

- Then count the total number of decimal places in the factors and add them.

```
3.2 <---- One decimal place
×  6.4 <---- One decimal place
  128
  192
2048
```

- Insert the decimal point two places from the right end.

```
3.2 <---- One decimal place
×  6.4 <---- One decimal place
  128
  192
20.48 <---- Two decimal places in the product
```

So 20.48 is the product.

18) Problem #PRAJN9B "PRAJN9B - 205620 - Multiplication of decimals - Tenths place"

Multiply: 3.2 * 4.8?

Algebraic Expression:

✓ 15.36

Hints:

- First, multiply 32 by 48, ignoring the decimal point.

```
  3.2
×  4.8
  24.6
```

The answer is 24.9.
256
128
1536

• Then count the total number of decimal places in the factors and add them.

 3.2 <----- One decimal place
* 4.8 <----- One decimal place
 256
 128
1536

• Insert the decimal point two places from the right end.

 3.2 <----- One decimal place
* 4.8 <----- One decimal place
 256
 128
15.36 <---- Two decimal places in the product

So 15.36 is the product.

19) Problem #PRAJPAT "PRAJPAT - 205620 - Multiplication of decimals - Tenths place"
Find the product of 8.4 and 6

Algebraic Expression:

50.4

Hints:

• Lets multiply 8.4 by 6, ignoring the decimal point.

 8.4
* 6
504

• Count the total number of decimal places and add them.

 8.4 <----- Two decimal place
* 6 <----- Zero decimal places (6 is a whole number)

• Insert the decimal point two places from the right end.

 8.4 <----- One decimal place
* 6 <----- Zero decimal places (6 is a whole number)
50.4 <---- One decimal places in the product

So 50.4 is the product. Type 50.4 and click submit.

20) Problem #PRAJN96 "PRAJN96 - 205620 - Multiplication of decimals - Tenths place"
Find the product of 8.5 and 6

Algebraic Expression:
5/25/2018

Assistment - Printing Content

1) Problem #PRAJPBA "PRAJPBA - 205620 - Multiplication of decimals - Tenths place"
Find the product of 8.5 and 6

Hints:
- Let's multiply 8.5 by 6, ignoring the decimal point.

\[
\begin{array}{c}
8.5 \\
* \quad 6 \\
\hline
510
\end{array}
\]

- Count the total number of decimal places and add them.

\[
8.5 \quad \text{Two decimal place} \\
* \quad 6 \quad \text{Zero decimal places (6 is a whole number)}
\]

- Insert the decimal point two places from the right end.

\[
8.5 \quad \text{One decimal place} \\
* \quad 6 \quad \text{Zero decimal places (6 is a whole number)}
\]

\[
51 \quad \text{One decimal places in the product}
\]

So 51 is the product. Type 51 and click submit.

2) Problem #PRAJPBK "PRAJPBK - 205620 - Multiplication of decimals - Tenths place"
Find the product of 3.6 and 3

Hints:
- Let's multiply 3.6 by 3, ignoring the decimal point.

\[
\begin{array}{c}
3.6 \\
* \quad 3 \\
\hline
108
\end{array}
\]

- Count the total number of decimal places and add them.

\[
3.6 \quad \text{Two decimal place} \\
* \quad 3 \quad \text{Zero decimal places (3 is a whole number)}
\]

- Insert the decimal point two places from the right end.

\[
3.6 \quad \text{One decimal place} \\
* \quad 3 \quad \text{Zero decimal places (3 is a whole number)}
\]

\[
10.8 \quad \text{One decimal places in the product}
\]

So 10.8 is the product. Type 10.8 and click submit.
Find the product of 5.7 and 5

Algebraic Expression:

✓ 28.5

Hints:

- Lets multiply 5.7 by 5, ignoring the decimal point.

\[
\begin{array}{c}
5.7 \\
\times 5 \\
\hline
285
\end{array}
\]

- Count the total number of decimal places and add them.

5.7 <---- Two decimal place
* 5 <---- Zero decimal places (5 is a whole number)

- Insert the decimal point two places from the right end.

5.7 <---- One decimal place
* 5 <---- Zero decimal places (5 is a whole number)

\[
\begin{array}{c}
28.5 <---- One decimal places in the product
\end{array}
\]

So 28.5 is the product. Type 28.5 and click submit.

23) Problem #PRAJN5H "PRAJN5H - Multiplying Decimals"

What is 5.2 x 1.89?

Algebraic Expression:

✓ 9.828

Hints:

- Multiply the numbers without the decimals.
- Count the numbers to the right of the decimal point on both numbers being multiplied.
- After counting, have that amount of numbers after the decimal in your answer.

\[
\begin{array}{c}
1.89 \\
x 5.2 \\
\hline
9.828
\end{array}
\]

Type in 9.828

24) Problem #PRAJPBB "PRAJPBB - 205620 - Multiplication of decimals - Tenths place"

Find the product of 2.4 and 8

Algebraic Expression:

✓ 19.2

Hints:

- Lets multiply 2.4 by 8, ignoring the decimal point.

\[2.4\]
* 8
192

- Count the total number of decimal places and add them.

 2.4 <---- Two decimal place
* 8 <---- Zero decimal places (8 is a whole number)

- Insert the decimal point two places from the right end.

 2.4 <---- One decimal place
* 8 <---- Zero decimal places (8 is a whole number)
19.2 <---- One decimal places in the product

So 19.2 is the product. Type 19.2 and click submit.

25) Problem #PRAJN52 "PRAJN52 - Multiplying Decimals"
What is 8.4 x 2.33?

Algebraic Expression:

- √ 19.572

Hints:

- Multiply the numbers without the decimals.
- Count the numbers to the right of the decimal point on both numbers being multiplied.
- After counting, have that amount of numbers after the decimal in your answer.

```
8.3
* 5.8
664
415
4814
```

Type in 19.572

26) Problem #PRAJN9M "PRAJN9M - 205620 - Multiplication of decimals - Tenths place"

Multiply: 8.3 * 5.8?

Algebraic Expression:

- √ 48.14

Hints:

- First, multiply 83 by 58, ignoring the decimal point.

```
8.3
* 5.8
664
415
4814
```

- Then count the total number of decimal places in the factors and add them.

 8.3 <---- One decimal place
* 5.8 <---- One decimal place
 664
 415
 4814

- Insert the decimal point two places from the right end.

 8.3 <---- One decimal place
* 5.8 <---- One decimal place
 664
 415
 48.14 <---- Two decimal places in the product

So 48.14 is the product.

27) Problem #PRAJN6N "PRAJN6N - Multiplying Decimals"
What is 5.2 x 3.62?

Algebraic Expression:

✓ 18.824

Hints:

- Multiply the numbers without the decimals.
- Count the numbers to the right of the decimal point on both numbers being multiplied.
- After counting, have that amount of numbers after the decimal in your answer.

3.62
x 5.2
18.824

Type in 18.824

28) Problem #PRAJPAD "PRAJPAD - 205620 - Multiplication of decimals - Tenths place"
Find the product of 7.3 and 7

Algebraic Expression:

✓ 51.1

Hints:

- Lets multiply 7.3 by 7, ignoring the decimal point.

 7.3
* 7
 511

- Count the total number of decimal places and add them.

 7.3 <---- Two decimal place
* 7 <---- Zero decimal places (7 is a whole number)

- Insert the decimal point two places from the right end.
7.3 <---- One decimal place
* 7 <---- Zero decimal places (7 is a whole number)
 51.1 <---- One decimal places in the product

So 51.1 is the product. Type 51.1 and click submit.

29) Problem #PRAJN55 "PRAJN55 - Multiplying Decimals"
What is 7 x 4.23?

Algebraic Expression:
✓ 29.61

Hints:
- Multiply the numbers without the decimals.
- Count the numbers to the right of the decimal point on both numbers being multiplied.
- After counting, have that amount of numbers after the decimal in your answer.

4.23
x 7
29.61

Type in 29.61

30) Problem #PRAJN9S "PRAJN9S - 205620 - Multiplication of decimals - Tenths place"
Multiply: 6.5 * 8.4?

Algebraic Expression:
✓ 54.6

Hints:
- First, multiply 65 by 84, ignoring the decimal point.

6.5
* 8.4
 260
 520
 5460

- Then count the total number of decimal places in the factors and add them.

6.5 <---- One decimal place
* 8.4 <---- One decimal place
 260
 520
 5460

- Insert the decimal point two places from the right end.

6.5 <---- One decimal place
* 8.4 <---- One decimal place
 260
 520
 5460

54.6 <---- Two decimal places in the product
So 54.6 is the product.

- **31) Problem #PRAJN57 "PRAJN57 - Multiplying Decimals"
 What is 8.6 x 3.66?

 Algebraic Expression:

 ✓ 31.476

 Hints:

 - Multiply the numbers **without the decimals**.
 - **Count the numbers to the right of the decimal point** on both numbers being multiplied.
 - After counting, have that amount of numbers **after the decimal in your answer**.

 3.66
 x 8.6
 31.476

 Type in 31.476

- **32) Problem #PRAJN6A "PRAJN6A - Multiplying Decimals"
 What is 8.8 x 1.25?

 Algebraic Expression:

 ✓ 11

 Hints:

 - Multiply the numbers **without the decimals**.
 - **Count the numbers to the right of the decimal point** on both numbers being multiplied.
 - After counting, have that amount of numbers **after the decimal in your answer**.

 1.25
 x 8.8
 11

 Type in 11

- **33) Problem #PRAJN8T "PRAJN8T - 205620 - Multiplication of decimals - Tenths place"
 Multiply: 7.3 * 8.6?

 Algebraic Expression:

 ✓ 62.78

 Hints:

 - First, multiply 73 by 86, ignoring the decimal point.

 7.3
 * 8.6
 438
 584
 6278
• Then count the total number of decimal places in the factors and add them.

\[
\begin{align*}
7.3 & \text{ One decimal place} \\
* & 8.6 \text{ One decimal place} \\
438 \\
584 \\
6278
\end{align*}
\]

• Insert the decimal point two places from the right end.

\[
\begin{align*}
7.3 & \text{ One decimal place} \\
* & 8.6 \text{ One decimal place} \\
438 \\
584 \\
62.78 \text{ Two decimal places in the product}
\end{align*}
\]

So 62.78 is the product.

34) Problem #PRAJPA5 "PRAJPA5 - 205620 - Multiplication of decimals - Tenths place"

Find the product of 5.3 and 3

Algebraic Expression:

\[15.9\]

Hints:

• Lets multiply 5.3 by 3, ignoring the decimal point.

\[
\begin{align*}
5.3 \\
* & 3 \\
159
\end{align*}
\]

• Count the total number of decimal places and add them.

\[
\begin{align*}
5.3 & \text{ Two decimal place} \\
* & 3 \text{ Zero decimal places (3 is a whole number)} \\
15.9 & \text{ One decimal places in the product}
\end{align*}
\]

So 15.9 is the product. Type 15.9 and click submit.

35) Problem #PRAJN8V "PRAJN8V - 205620 - Multiplication of decimals - Tenths place"

Multiply: 5.5 * 7.6?

Algebraic Expression:

\[41.8\]

Hints:

• First, multiply 55 by 76, ignoring the decimal point.

\[
\begin{align*}
5.5 & \text{ One decimal place} \\
* & 3 \text{ Zero decimal places (3 is a whole number)} \\
15.9 & \text{ One decimal places in the product}
\end{align*}
\]

So 15.9 is the product. Type 15.9 and click submit.
Then count the total number of decimal places in the factors and add them.

5.5 <---- One decimal place
* 7.6 <---- One decimal place
330
385
4180

Insert the decimal point two places from the right end.

5.5 <---- One decimal place
* 7.6 <---- One decimal place
330
385
41.8 <---- Two decimal places in the product

So 41.8 is the product.

3.6
* 4.8
288
144
1728

Then count the total number of decimal places in the factors and add them.

3.6 <---- One decimal place
* 4.8 <---- One decimal place
288
144
1728

Insert the decimal point two places from the right end.

3.6 <---- One decimal place
* 4.8 <---- One decimal place
288
144
17.28 <---- Two decimal places in the product
So 17.28 is the product.

37) Problem #PRAJN6H "PRAJN6H - Multiplying Decimals"
What is 7.1 x 4.47?

Algebraic Expression:

✓ 31.737

Hints:
- Multiply the numbers without the decimals.
- Count the numbers to the right of the decimal point on both numbers being multiplied.
- After counting, have that amount of numbers after the decimal in your answer.

```
4.47
x 7.1
31.737
```

Type in 31.737

38) Problem #PRAJN5W "PRAJN5W - Multiplying Decimals"
What is 9.5 x 3.72?

Algebraic Expression:

✓ 35.34

Hints:
- Multiply the numbers without the decimals.
- Count the numbers to the right of the decimal point on both numbers being multiplied.
- After counting, have that amount of numbers after the decimal in your answer.

```
3.72
x 9.5
35.34
```

Type in 35.34

39) Problem #PRAJN6J "PRAJN6J - Multiplying Decimals"
What is 8.3 x 3.09?

Algebraic Expression:

✓ 25.647

Hints:
- Multiply the numbers without the decimals.
- Count the numbers to the right of the decimal point on both numbers being multiplied.
- After counting, have that amount of numbers after the decimal in your answer.

```
3.09
x 8.3
```

Type in 25.647
40) Problem #PRAJN6G "PRAJN6G - Multiplying Decimals"
What is 8.6 x 0.49?
Algebraic Expression:

✅ 4.214

Hints:
- Multiply the numbers without the decimals.
- Count the numbers to the right of the decimal point on both numbers being multiplied.
- After counting, have that amount of numbers after the decimal in your answer.

0.49

x 8.6

4.214

Type in 4.214

41) Problem #PRAJN6R "PRAJN6R - Multiplying Decimals"
What is 8.7 x 0.95?

Algebraic Expression:

✅ 8.265

Hints:
- Multiply the numbers without the decimals.
- Count the numbers to the right of the decimal point on both numbers being multiplied.
- After counting, have that amount of numbers after the decimal in your answer.

0.95

x 8.7

8.265

Type in 8.265

42) Problem #PRAJN8S "PRAJN8S - 205620 - Multiplication of decimals - Tenths place"
Multiply: 6.6 * 3.7?

Algebraic Expression:

✅ 24.42

Hints:
- First, multiply 66 by 37, ignoring the decimal point.

6.6

* 3.7

462

198

2442
Then count the total number of decimal places in the factors and add them.

\[
\begin{array}{c}
6.6 \quad \text{One decimal place} \\
\times 3.7 \quad \text{One decimal place} \\
462 \\
198 \\
\underline{2442}
\end{array}
\]

Insert the decimal point two places from the right end.

\[
\begin{array}{c}
6.6 \quad \text{One decimal place} \\
\times 3.7 \quad \text{One decimal place} \\
462 \\
198 \\
\underline{24.42} \quad \text{Two decimal places in the product}
\end{array}
\]

So 24.42 is the product.

43) Problem #PRAJN9X "PRAJN9X - 205620 - Multiplication of decimals - Tenths place"
Multiply: 2.7 * 2.8?

Algebraic Expression:

\[
7.56
\]

Hints:
- First, multiply 27 by 28, ignoring the decimal point.

\[
\begin{array}{c}
2.7 \\
\times 2.8 \\
216 \\
54 \\
\underline{756}
\end{array}
\]

Then count the total number of decimal places in the factors and add them.

\[
\begin{array}{c}
2.7 \quad \text{One decimal place} \\
\times 2.8 \quad \text{One decimal place} \\
216 \\
54 \\
\underline{7.56} \quad \text{Two decimal places in the product}
\end{array}
\]

So 7.56 is the product.

44) Problem #PRAJPA2 "PRAJPA2 - 205620 - Multiplication of decimals - Tenths place"
Find the product of 7.7 and 8
Algebraic Expression:
✓ 61.6

Hints:
- Lets multiply 7.7 by 8, ignoring the decimal point.

\[
\begin{align*}
7.7 \\
\times \quad 8 \\
\hline
616
\end{align*}
\]

- Count the total number of decimal places and add them.

\[
\begin{align*}
7.7 & \quad \text{Two decimal place} \\
\times \quad 8 & \quad \text{Zero decimal places (8 is a whole number)} \\
\hline
616 & \quad \text{One decimal places in the product}
\end{align*}
\]

So 61.6 is the product. Type 61.6 and click submit.

45) Problem #PRAJN8R "PRAJN8R - 205620 - Multiplication of decimals - Tenths place"

Multiply: 7.2 * 5.6?

Algebraic Expression:
✓ 40.32

Hints:
- First, multiply 72 by 56, ignoring the decimal point.

\[
\begin{align*}
7.2 \\
\times \quad 5.6 \\
\hline
432 \\
360 \\
\hline
4032
\end{align*}
\]

- Then count the total number of decimal places in the factors and add them.

\[
\begin{align*}
7.2 & \quad \text{One decimal place} \\
\times \quad 5.6 & \quad \text{One decimal place} \\
\hline
432 \\
360 \\
\hline
4032
\end{align*}
\]

- Insert the decimal point two places from the right end.

\[
\begin{align*}
7.2 & \quad \text{One decimal place} \\
\times \quad 5.6 & \quad \text{One decimal place} \\
\hline
432 \\
360 \\
\hline
4032
\end{align*}
\]
40.32 <---- Two decimal places in the product

So 40.32 is the product.

46) Problem #PRAJN82 "PRAJN82 - 205620 - Multiplication of decimals - Tenths place"
Multiply: 6.6 * 8.5?

Algebraic Expression:
✓ 56.1

Hints:
- First, multiply 66 by 85, ignoring the decimal point.

6.6
* 8.5
330
528
5610

- Then count the total number of decimal places in the factors and add them.

6.6 <---- One decimal place
* 8.5 <---- One decimal place
330
528
5610

- Insert the decimal point two places from the right end.

6.6 <---- One decimal place
* 8.5 <---- One decimal place
330
528
56.1 <---- Two decimal places in the product

So 56.1 is the product.

47) Problem #PRAJN5V "PRAJN5V - Multiplying Decimals"
What is 9.3 x 4.21?

Algebraic Expression:
✓ 39.153

Hints:
- Multiply the numbers without the decimals.
- Count the numbers to the right of the decimal point on both numbers being multiplied.
- After counting, have that amount of numbers after the decimal in your answer.

4.21
x 9.3
39.153

Type in 39.153
48) Problem #PRAJN8N "PRAJN8N - 205620 - Multiplicantion of decimals - Tenths place"
Multiply: 6.5 * 6.6

Algebraic Expression:

\[
\text{\checkmark 42.9}
\]

Hints:

- First, multiply 65 by 66, ignoring the decimal point.

\[
\begin{array}{c}
6.5 \\
* 6.6 \\
390 \\
390 \\
4290
\end{array}
\]

- Then count the total number of decimal places in the factors and add them.

\[
\begin{array}{c}
6.5 \quad \text{\textbf{--- One decimal place}} \\
* \quad \text{\textbf{6.6 --- One decimal place}} \\
390 \\
390 \\
4290 \\
\end{array}
\]

- Insert the decimal point two places from the right end.

\[
\begin{array}{c}
6.5 \quad \text{\textbf{--- One decimal place}} \\
* \quad \text{\textbf{6.6 --- One decimal place}} \\
390 \\
390 \\
\text{\textbf{42.9 --- Two decimal places in the product}}
\end{array}
\]

So 42.9 is the product.

49) Problem #PRAJN9Z "PRAJN9Z - 205620 - Multiplicantion of decimals - Tenths place"
Find the product of 6.6 and 8

Algebraic Expression:

\[
\text{\checkmark 52.8}
\]

Hints:

- Lets multiply 6.6 by 8, ignoring the decimal point.

\[
\begin{array}{c}
6.6 \\
* \quad \text{8} \\
528
\end{array}
\]

- Count the total number of decimal places and add them.

\[
\begin{array}{c}
6.6 \quad \text{\textbf{--- Two decimal place}} \\
* \quad \text{\textbf{8 --- Zero decimal places (8 is a whole number)}}
\end{array}
\]

- Insert the decimal point two places from the right end.
50) Problem #PRAJN9G "PRAJN9G - 205620 - Multiplication of decimals - Tenths place"

Multiply: 6.2 * 5.4?

Algebraic Expression:

✔ 33.48

Hints:

- First, multiply 62 by 54, ignoring the decimal point.

\[
\begin{array}{c}
6.2 \\
\times \quad 5.4 \\
\hline
248 \\
310 \\
\hline
3348 \\
\end{array}
\]

- Then count the total number of decimal places in the factors and add them.

\[
\begin{array}{c}
6.2 \quad \text{One decimal place} \\
\times \quad 5.4 \quad \text{One decimal place} \\
\hline
33.48 \quad \text{Two decimal places in the product} \\
\end{array}
\]

So 33.48 is the product.

51) Problem #PRAJN9Y "PRAJN9Y - 205620 - Multiplication of decimals - Tenths place"

Multiply: 8.4 * 3.7?

Algebraic Expression:

✔ 31.08

Hints:

- First, multiply 84 by 37, ignoring the decimal point.

\[
\begin{array}{c}
8.4 \\
\times \quad 3.7 \\
\hline
588 \\
252 \\
\hline
3108 \\
\end{array}
\]

So 31.08 is the product.
Then count the total number of decimal places in the factors and add them.

\[
\begin{align*}
8.4 & \quad \text{One decimal place} \\
\times 3.7 & \quad \text{One decimal place} \\
\hline
588 \\
252 \\
\hline
3108
\end{align*}
\]

Insert the decimal point two places from the right end.

\[
\begin{align*}
8.4 & \quad \text{One decimal place} \\
\times 3.7 & \quad \text{One decimal place} \\
\hline
588 \\
252 \\
\hline
31.08 & \quad \text{Two decimal places in the product}
\end{align*}
\]

So 31.08 is the product.

52) Problem #PRAJPAS "PRAJPAS - 205620 - Multiplication of decimals - Tenths place"
Find the product of 5.8 and 2

Algebraic Expression:

- 11.6

Hints:

- Lets multiply 5.8 by 2, ignoring the decimal point.

\[
\begin{align*}
5.8 \\
\times 2 \\
\hline
116
\end{align*}
\]

- Count the total number of decimal places and add them.

\[
\begin{align*}
5.8 & \quad \text{Two decimal place} \\
\times 2 & \quad \text{Zero decimal places (2 is a whole number)} \\
\hline
11.6 & \quad \text{One decimal place in the product}
\end{align*}
\]

So 11.6 is the product. Type 11.6 and click submit.

53) Problem #PRAJPAS "PRAJPAS - 205620 - Multiplication of decimals - Tenths place"
Find the product of 5.5 and 4

Algebraic Expression:

- 22

Hints:
• Lets multiply 5.5 by 4, ignoring the decimal point.

\[
\begin{array}{c}
5.5 \\
\times 4 \\
\hline
220 \\
\end{array}
\]

• Count the total number of decimal places and add them.

5.5 \hspace{1cm} \text{Two decimal place} \\
\times 4 \hspace{1cm} \text{Zero decimal places (4 is a whole number)}

• Insert the decimal point two places from the right end.

5.5 \hspace{1cm} \text{One decimal place} \\
\times 4 \hspace{1cm} \text{Zero decimal places (4 is a whole number)} \\
\hline
22 \hspace{1cm} \text{One decimal places in the product}

So 22 is the product. Type 22 and click submit.

☐ 54) Problem #PRAJPAG "PRAJPAG - 205620 - Multiplication of decimals - Tenths place"
Find the product of 3.8 and 6

Algebraic Expression:

22.8

Hints:

• Lets multiply 3.8 by 6, ignoring the decimal point.

\[
\begin{array}{c}
3.8 \\
\times 6 \\
\hline
228 \\
\end{array}
\]

• Count the total number of decimal places and add them.

3.8 \hspace{1cm} \text{Two decimal place} \\
\times 6 \hspace{1cm} \text{Zero decimal places (6 is a whole number)}

• Insert the decimal point two places from the right end.

3.8 \hspace{1cm} \text{One decimal place} \\
\times 6 \hspace{1cm} \text{Zero decimal places (6 is a whole number)} \\
\hline
22.8 \hspace{1cm} \text{One decimal places in the product}

So 22.8 is the product. Type 22.8 and click submit.

☐ 55) Problem #PRAJN5D "PRAJN5D - Multiplying Decimals"

What is 7.2 x 3.78?

Algebraic Expression:

27.216
Hints:
- Multiply the numbers without the decimals.
- Count the numbers to the right of the decimal point on both numbers being multiplied.
- After counting, have that amount of numbers after the decimal in your answer.

3.78
x 7.2
27.216

Type in 27.216

56) Problem #PRAJPAR "PRAJPAR - 205620 - Multiplication of decimals - Tenths place"
Find the product of 2.2 and 5

Algebraic Expression:

√ 11

Hints:
- Lets multiply 2.2 by 5, ignoring the decimal point.

 2.2
 * 5
 110

- Count the total number of decimal places and add them.

 2.2 <---- Two decimal place
 * 5 <---- Zero decimal places (5 is a whole number)

- Insert the decimal point two places from the right end.

 2.2 <---- One decimal place
 * 5 <---- Zero decimal places (5 is a whole number)
 11 <---- One decimal places in the product

So 11 is the product. Type 11 and click submit.

57) Problem #PRAJN45 "PRAJN45 - Multiplying Decimals"

What is 7.1 x 4.46?

Algebraic Expression:

√ 31.666

Hints:
- Multiply the numbers without the decimals.
- Count the numbers to the right of the decimal point on both numbers being multiplied.
- After counting, have that amount of numbers after the decimal in your answer.
Multiply: 4.3 * 2.6?

Algebraic Expression:

\[11.18 \]

Hints:

- First, multiply 43 by 26, ignoring the decimal point.

\[
\begin{array}{c}
 43 \\
\times \hspace{1.5em} 26 \\
\hline
 258 \\
 86 \\
\hline
 1118
\end{array}
\]

- Then count the total number of decimal places in the factors and add them.

\[
\begin{array}{c}
 4.3 \hspace{1.5em} \text{One decimal place} \\
\times \hspace{1.5em} 2.6 \hspace{1.5em} \text{One decimal place} \\
\hline
 258 \\
 86 \\
\hline
 1118 \hspace{1.5em} \text{Two decimal places in the product}
\end{array}
\]

So 11.18 is the product.

Multiply: 5.3 * 7.4?

Algebraic Expression:

\[39.22 \]

Hints:

- First, multiply 53 by 74, ignoring the decimal point.

\[
\begin{array}{c}
 5.3 \\
\times \hspace{1.5em} 7.4 \\
\hline
 212 \\
 371 \\
\hline
 3922
\end{array}
\]
Then count the total number of decimal places in the factors and add them.

\[
\begin{align*}
5.3 & \quad \text{One decimal place} \\
\times & \quad 7.4 \quad \text{One decimal place} \\
& \quad 212 \\
& \quad 371 \\
& \quad 3922
\end{align*}
\]

Insert the decimal point two places from the right end.

\[
\begin{align*}
5.3 & \quad \text{One decimal place} \\
\times & \quad 7.4 \quad \text{One decimal place} \\
& \quad 212 \\
& \quad 371 \\
& \quad 39.22 \quad \text{Two decimal places in the product}
\end{align*}
\]

So 39.22 is the product.

**60) Problem #PRAJN6C "PRAJN6C - Multiplying Decimals"

What is 9.1 x 1.69?

Algebraic Expression:

✅ 15.379

Hints:

- Multiply the numbers without the decimals.
- Count the numbers to the right of the decimal point on both numbers being multiplied.
- After counting, have that amount of numbers after the decimal in your answer.

1.69
\times \quad 9.1
15.379

Type in 15.379

**61) Problem #PRAJN9E "PRAJN9E - 205620 - Multiplication of decimals - Tenths place"

Multiply: 6.5 * 6.5?

Algebraic Expression:

✅ 42.25

Hints:

- First, multiply 65 by 65, ignoring the decimal point.

\[
\begin{align*}
6.5 & \quad \text{One decimal place} \\
\times & \quad 6.5 \quad \text{One decimal place} \\
& \quad 325 \\
& \quad 390 \\
& \quad 4225
\end{align*}
\]

- Then count the total number of decimal places in the factors and add them.

\[
\begin{align*}
6.5 & \quad \text{One decimal place} \\
\times & \quad 6.5 \quad \text{One decimal place}
\end{align*}
\]
325
390
4225

- Insert the decimal point two places from the right end.

\[
\begin{array}{c}
6.5 \quad \text{One decimal place} \\
\times \quad 6.5 \quad \text{One decimal place}
\end{array}
\]

\[
\begin{array}{c}
325 \\
390 \\
42.25 \quad \text{Two decimal places in the product}
\end{array}
\]

So 42.25 is the product.

62) Problem #PRAJPBF "PRAJPBF - 205620 - Multiplicantion of decimals - Tenths place"

Find the product of 3.7 and 3

Algebraic Expression:

✓ 11.1

Hints:

- Lets multiply 3.7 by 3, ignoring the decimal point.

\[
\begin{array}{c}
3.7 \\
\times \quad 3
\end{array}
\]

\[
111
\]

- Count the total number of decimal places and add them.

\[
\begin{array}{c}
3.7 \quad \text{Two decimal place} \\
\times \quad 3 \quad \text{Zero decimal places (3 is a whole number)}
\end{array}
\]

\[
\begin{array}{c}
3.7 \quad \text{Zero decimal places (3 is a whole number)} \\
111 \quad \text{One decimal places in the product}
\end{array}
\]

So 11.1 is the product. Type 11.1 and click submit.

63) Problem #PRAJN83 "PRAJN83 - 205620 - Multiplicantion of decimals - Tenths place"

Multiply: 5.2 * 3.4?

Algebraic Expression:

✓ 17.68

Hints:

- First, multiply 52 by 34, ignoring the decimal point.

\[
\begin{array}{c}
5.2 \\
\times \quad 3.4
\end{array}
\]

\[
208
\]
Then count the total number of decimal places in the factors and add them.

\[
\begin{array}{c}
5.2 \quad \text{One decimal place} \\
\times \quad 3.4 \quad \text{One decimal place} \\
\hline
208 \\
156 \\
\hline
1768
\end{array}
\]

Insert the decimal point two places from the right end.

\[
\begin{array}{c}
5.2 \quad \text{One decimal place} \\
\times \quad 3.4 \quad \text{One decimal place} \\
\hline
208 \\
156 \\
\hline
17.68 \quad \text{Two decimal places in the product}
\end{array}
\]

So 17.68 is the product.

64) Problem #PRAJN5S "PRAJN5S - Multiplying Decimals"

What is 7.4 x 3.45?

Algebraic Expression:

\[25.53\]

Hints:

- Multiply the numbers without the decimals.
- Count the numbers to the right of the decimal point on both numbers being multiplied.
- After counting, have that amount of numbers after the decimal in your answer.

3.45
\[\times\] 7.4
\[\rightarrow\] 25.53

Type in 25.53

65) Problem #PRAJN99 "PRAJN99 - 205620 - Multiplication of decimals - Tenths place"

Find the product of 8.2 and 2

Algebraic Expression:

\[16.4\]

Hints:

- Lets multiply 8.2 by 2, ignoring the decimal point.

\[\begin{array}{c}
8.2 \\
\times \quad 2 \\
\hline
164
\end{array}\]

- Count the total number of decimal places and add them.
8.2 ---- Two decimal place
* 2 ---- Zero decimal places (2 is a whole number)

- Insert the decimal point two places from the right end.

8.2 ---- One decimal place
* 2 ---- Zero decimal places (2 is a whole number)
16.4 ---- One decimal places in the product

So 16.4 is the product. Type 16.4 and click submit.

66) Problem #PRAJPBC "PRAJPBC - 205620 - Multiplication of decimals - Tenths place"
Find the product of 6.8 and 3
Algebraic Expression:
✓ 20.4

Hints:
- Lets multiply 6.8 by 3, ignoring the decimal point.

6.8
* 3
204

- Count the total number of decimal places and add them.

6.8 ---- Two decimal place
* 3 ---- Zero decimal places (3 is a whole number)

- Insert the decimal point two places from the right end.

6.8 ---- One decimal place
* 3 ---- Zero decimal places (3 is a whole number)
20.4 ---- One decimal places in the product

So 20.4 is the product. Type 20.4 and click submit.

67) Problem #PRAJN8Q "PRAJN8Q - 205620 - Multiplication of decimals - Tenths place"
Multiply: 2.5 * 7.4?
Algebraic Expression:
✓ 18.5

Hints:
- First, multiply 25 by 74, ignoring the decimal point.

2.5
* 7.4
100
175
Then count the total number of decimal places in the factors and add them.

\[
\begin{array}{c}
2.5 <---- \text{One decimal place} \\
\times \quad 7.4 <---- \text{One decimal place} \\
100 \\
175 \\
1850 \\
\end{array}
\]

Insert the decimal point two places from the right end.

\[
\begin{array}{c}
2.5 <---- \text{One decimal place} \\
\times \quad 7.4 <---- \text{One decimal place} \\
100 \\
175 \\
18.5 <---- \text{Two decimal places in the product} \\
\end{array}
\]

So 18.5 is the product.

68) Problem #PRAJPAY "PRAJPAY - 205620 - Multiplication of decimals - Tenths place"
Find the product of 8.6 and 8

Algebraic Expression:

\[68.8\]

Hints:

- Let's multiply 8.6 by 8, ignoring the decimal point.

\[
\begin{array}{c}
8.6 \\
\times \quad 8 \\
688 \\
\end{array}
\]

- Count the total number of decimal places and add them.

\[
\begin{array}{c}
8.6 <---- \text{Two decimal places} \\
\times \quad 8 <---- \text{Zero decimal places (8 is a whole number)} \\
68.8 <---- \text{One decimal places in the product} \\
\end{array}
\]

So 68.8 is the product. Type 68.8 and click submit.

69) Problem #PRAJPAQ "PRAJPAQ - 205620 - Multiplication of decimals - Tenths place"
Find the product of 2.6 and 3

Algebraic Expression:

\[7.8\]
Hints:

- Lets multiply 2.6 by 3, ignoring the decimal point.

\[
\begin{align*}
2.6 \\
\times 3 \\
78
\end{align*}
\]

- Count the total number of decimal places and add them.

\[
\begin{align*}
2.6 <---- \text{ Two decimal place} \\
\times 3 <---- \text{ Zero decimal places (3 is a whole number)}
\end{align*}
\]

- Insert the decimal point two places from the right end.

\[
\begin{align*}
2.6 <---- \text{ One decimal place} \\
\times 3 <---- \text{ Zero decimal places (3 is a whole number)} \\
7.8 <---- \text{ One decimal places in the product}
\end{align*}
\]

So 7.8 is the product. Type 7.8 and click submit.

- 70) Problem #PRAJN93 "PRAJN93 - 205620 - Multiplication of decimals - Tenths place"

Find the product of 8.7 and 7

Algebraic Expression:

✓ 60.9

Hints:

- Lets multiply 8.7 by 7, ignoring the decimal point.

\[
\begin{align*}
8.7 \\
\times 7 \\
609
\end{align*}
\]

- Count the total number of decimal places and add them.

\[
\begin{align*}
8.7 <---- \text{ Two decimal place} \\
\times 7 <---- \text{ Zero decimal places (7 is a whole number)}
\end{align*}
\]

- Insert the decimal point two places from the right end.

\[
\begin{align*}
8.7 <---- \text{ One decimal place} \\
\times 7 <---- \text{ Zero decimal places (7 is a whole number)} \\
60.9 <---- \text{ One decimal places in the product}
\end{align*}
\]

So 60.9 is the product. Type 60.9 and click submit.

- 71) Problem #PRAJN9C "PRAJN9C - 205620 - Multiplication of decimals - Tenths place"

Multiply: 3.6 * 5.8?
Algebraic Expression:

20.88

Hints:

• First, multiply 36 by 58, ignoring the decimal point.

\[
\begin{array}{c}
3.6 \\
* 5.8 \\
\hline
288 \\
180 \\
2088
\end{array}
\]

• Then count the total number of decimal places in the factors and add them.

\[
\begin{array}{c}
3.6 <----- One decimal place \\
* 5.8 <----- One decimal place \\
\hline
288 \\
180 \\
2088
\end{array}
\]

• Insert the decimal point two places from the right end.

\[
\begin{array}{c}
3.6 <----- One decimal place \\
* 5.8 <----- One decimal place \\
\hline
288 \\
180 \\
20.88 <---- Two decimal places in the product
\end{array}
\]

So 20.88 is the product.

72) Problem #PRAJN6M "PRAJN6M - Multiplying Decimals"
What is 5.7 x 1.89?

Algebraic Expression:

10.773

Hints:

• Multiply the numbers without the decimals.

• Count the numbers to the right of the decimal point on both numbers being multiplied.

• After counting, have that amount of numbers after the decimal in your answer.

1.89
x 5.7
10.773

Type in 10.773

73) Problem #PRAJN43 "PRAJN43 - Multiplying Decimals"
What is 9.7 x 3.21?

Algebraic Expression:

31.137

Hints:
- Multiply the numbers \textit{without the decimals}.
- Count the numbers to the right of the decimal point on both numbers being multiplied.
- After counting, have that amount of numbers after the decimal in your answer.

\[\begin{array}{c}
3.21 \\
\times \quad 9.7 \\
31.137 \\
\end{array} \]

Type in 31.137

\[\checkmark \quad 31.137 \]

\[\square \] 74) Problem #PRAJN5T "PRAJN5T - Multiplying Decimals"

What is 5.2 \times 0.56?

\textbf{Algebraic Expression:}

\[\checkmark \quad 2.912 \]

\textbf{Hints:}
- Multiply the numbers \textit{without the decimals}.
- Count the numbers to the right of the decimal point on both numbers being multiplied.
- After counting, have that amount of numbers after the decimal in your answer.

\[\begin{array}{c}
0.56 \\
\times \quad 5.2 \\
2.912 \\
\end{array} \]

Type in 2.912

\[\square \] 75) Problem #PRAJN8M "PRAJN8M - 205620 - Multiplication of decimals - Tenths place"

Multiply: 4.8 \times 8.7?

\textbf{Algebraic Expression:}

\[\checkmark \quad 41.76 \]

\textbf{Hints:}
- First, multiply 48 by 87, ignoring the decimal point.

\[\begin{array}{c}
4.8 \\
\times \quad 8.7 \\
336 \\
384 \\
4176 \\
\end{array} \]

- Then count the total number of decimal places in the factors and add them.

\[\begin{array}{c}
4.8 \quad \text{<---- One decimal place} \\
\times \quad 8.7 \quad \text{<---- One decimal place} \\
336 \\
384 \\
4176 \\
\end{array} \]

- Insert the decimal point two places from the right end.

\[\begin{array}{c}
4.8 \quad \text{<---- One decimal place} \\
\times \quad 8.7 \\
336 \\
384 \\
4176 \\
\end{array} \]
8.7<---- One decimal place

336

384

41.76<---- Two decimal places in the product

So 41.76 is the product.

76) Problem #PRAJN5Y "PRAJN5Y - Multiplying Decimals"

What is 5.8 x 4.93?

Algebraic Expression:

✓ 28.594

Hints:

- Multiply the numbers without the decimals.
- Count the numbers to the right of the decimal point on both numbers being multiplied.
- After counting, have that amount of numbers after the decimal in your answer.

4.93

x 5.8

28.594

Type in 28.594

77) Problem #PRAJPBE "PRAJPBE - 205620 - Multiplicantion of decimals - Tenths place"

Find the product of 8.3 and 4

Algebraic Expression:

✓ 33.2

Hints:

- Let's multiply 8.3 by 4, ignoring the decimal point.

8.3

* 4

33.2

Type in 33.2 and click submit.
78) Problem #PRAJPAJ "PRAJPAJ - 205620 - Multiplication of decimals - Tenths place"
Find the product of 2.5 and 5

Algebraic Expression:

✓ 12.5

Hints:

- Let's multiply 2.5 by 5, ignoring the decimal point.

\[
\begin{array}{c}
2.5 \\
* 5 \\
\hline
125 \\
\end{array}
\]

- Count the total number of decimal places and add them.

\[
\begin{array}{c}
2.5 \quad \text{Two decimal place} \\
* 5 \quad \text{Zero decimal places (5 is a whole number)} \\
\hline
12.5 \quad \text{One decimal places in the product}
\end{array}
\]

So 12.5 is the product. Type 12.5 and click submit.

79) Problem #PRAJN9F "PRAJN9F - 205620 - Multiplication of decimals - Tenths place"
Multiply: 8.4 * 6.7?

Algebraic Expression:

✓ 56.28

Hints:

- First, multiply 84 by 67, ignoring the decimal point.

\[
\begin{array}{c}
8.4 \\
* 6.7 \\
\hline
588 \\
504 \\
\hline
5628 \\
\end{array}
\]

- Then count the total number of decimal places in the factors and add them.

\[
\begin{array}{c}
8.4 \quad \text{One decimal place} \\
\end{array}
\]

\[
\begin{array}{c}
6.7 \quad \text{One decimal place} \\
\hline
504 \\
5628 \\
\end{array}
\]

- Insert the decimal point two places from the right end.

\[
\begin{array}{c}
8.4 \quad \text{One decimal place} \\
* 6.7 \quad \text{One decimal place} \\
\hline
504 \\
5628 \\
\end{array}
\]
Two decimal places in the product

So 56.28 is the product.

80) Problem #PRAJN6B "PRAJN6B - Multiplying Decimals"
What is 9.7 x 4.33?

Algebraic Expression:

42.001

Hints:

• Multiply the numbers without the decimals.
• Count the numbers to the right of the decimal point on both numbers being multiplied.
• After counting, have that amount of numbers after the decimal in your answer.

4.33
x 9.7
42.001

Type in 42.001

81) Problem #PRAJPA3 "PRAJPA3 - 205620 - Multiplicantion of decimals - Tenths place"
Find the product of 4.5 and 2

Algebraic Expression:

9

Hints:

• Lets multiply 4.5 by 2, ignoring the decimal point.

4.5
* 2
90

• Count the total number of decimal places and add them.

4.5 <---- Two decimal place
* 2 <---- Zero decimal places (2 is a whole number)

• Insert the decimal point two places from the right end.

4.5 <---- One decimal place
* 2 <---- Zero decimal places (2 is a whole number)
9 <---- One decimal places in the product

So 9 is the product. Type 9 and click submit.
Find the product of 7.3 and 3

Algebraic Expression:
\[21.9 \]

Hints:
- Let's multiply 7.3 by 3, ignoring the decimal point.

\[
\begin{array}{c}
7.3 \\
\times 3 \\
\hline
219
\end{array}
\]

- Count the total number of decimal places and add them.

\[
\begin{array}{c}
7.3 \\ \text{Two decimal place} \\
\times 3 \\
\text{Zero decimal places (3 is a whole number)}
\end{array}
\]

- Insert the decimal point two places from the right end.

\[
\begin{array}{c}
7.3 \\ \text{One decimal place} \\
\times 3 \\
\text{Zero decimal places (3 is a whole number)}
\end{array}
\]

\[
\begin{array}{c}
21.9 \\ \text{One decimal places in the product}
\end{array}
\]

So 21.9 is the product. Type 21.9 and click submit.

83) Problem #PRAJN6D "PRAJN6D - Multiplying Decimals"

What is 6.1 x 3.07?

Algebraic Expression:
\[18.727 \]

Hints:
- Multiply the numbers without the decimals.

\[
\begin{array}{c}
3.07 \\
x 6.1 \\
\hline
18.727
\end{array}
\]

Type in 18.727

84) Problem #PRAJN5E "PRAJN5E - Multiplying Decimals"

What is 7.6 x 3.09?

Algebraic Expression:
\[23.484 \]

Hints:
- Multiply the numbers without the decimals.

- Count the numbers to the right of the decimal point on both numbers being multiplied.
• After counting, have that amount of numbers after the decimal in your answer.

3.09
x 7.6
23.484

Type in 23.484

85) Problem #PRAJN84 "PRAJN84 - 205620 - Multiplication of decimals - Tenths place"
Multiply: 7.8 * 2.5?

Algebraic Expression:

✓ 19.5

Hints:
• First, multiply 78 by 25, ignoring the decimal point.

7.8
* 2.5
390
156
1950

• Then count the total number of decimal places in the factors and add them.

7.8 <---- One decimal place
* 2.5 <---- One decimal place
390
156
1950

• Insert the decimal point two places from the right end.

7.8 <---- One decimal place
* 2.5 <---- One decimal place
390
156
19.5 <---- Two decimal places in the product

So 19.5 is the product.

3.12
87) Problem #PRAJPA7 "PRAJPA7 - 205620 - Multiplicantion of decimals - Tenths place"
Find the product of 8.7 and 8

Algebraic Expression:

✓ 69.6

Hints:

- Let's multiply 8.7 by 8, ignoring the decimal point.

\[
\begin{array}{c}
\frac{8.7}{8} \\
\hline
\underline{696}
\end{array}
\]

- Count the total number of decimal places and add them.

\[8.7 \quad \text{Two decimal place}
\]

\[\begin{array}{c}
\frac{8.7}{8} \\
\hline
\underline{696}
\end{array}
\]

- Insert the decimal point two places from the right end.

\[8.7 \quad \text{One decimal place}
\]

\[\begin{array}{c}
\frac{8.7}{8} \\
\hline
\underline{696}
\end{array}
\]

So 69.6 is the product. Type 69.6 and click submit.

88) Problem #PRAJN8K "PRAJN8K - 205620 - Multiplicantion of decimals - Tenths place"
Multiply: 2.5 * 3.7?

Algebraic Expression:

✓ 9.25

Hints:

- First, multiply 25 by 37, ignoring the decimal point.

\[
\begin{array}{c}
\frac{2.5}{3.7} \\
\hline
\underline{175}
\end{array}
\]

- Then count the total number of decimal places in the factors and add them.

\[2.5 \quad \text{One decimal place}
\]

\[\begin{array}{c}
\frac{2.5}{3.7} \\
\hline
\underline{175}
\end{array}
\]
- Insert the decimal point two places from the right end.

\[
\begin{array}{c}
2.5 \quad \text{One decimal place} \\
\times \quad 3.7 \quad \text{One decimal place} \\
\hline
175 \\
75 \\
9.25 \quad \text{Two decimal places in the product}
\end{array}
\]

So 9.25 is the product.

89) Problem #PRAJN6F "PRAJN6F - Multiplying Decimals"
What is 8.5 x 0.58?

Algebraic Expression:

\[4.93\]

Hints:
- Multiply the numbers *without the decimals*.
- Count the numbers to the right of the decimal point on both numbers being multiplied.
- After counting, have that amount of numbers *after the decimal in your answer*.

\[\begin{array}{c}
0.58 \\
x \quad 8.5 \\
\hline
4.93
\end{array}\]

Type in 4.93

90) Problem #PRAJN46 "PRAJN46 - Multiplying Decimals"
What is 9.2 x 1.87?

Algebraic Expression:

\[17.204\]

Hints:
- Multiply the numbers *without the decimals*.
- Count the numbers to the right of the decimal point on both numbers being multiplied.
- After counting, have that amount of numbers *after the decimal in your answer*.

\[\begin{array}{c}
1.87 \\
x \quad 9.2 \\
\hline
17.204
\end{array}\]

Type in 17.204

91) Problem #PRAJN9J "PRAJN9J - 205620 - Multiplication of decimals - Tenths place"
Multiply: 4.6 * 6.5?

Algebraic Expression:

\[29.9\]

Hints:
First, multiply 46 by 65, ignoring the decimal point.

\[
\begin{array}{c}
4.6 \\
\times 6.5 \\
\hline \\
230 \\
276 \\
2990 \\
\end{array}
\]

Then count the total number of decimal places in the factors and add them.

\[
\begin{array}{c}
4.6 \text{ One decimal place} \\
\times 6.5 \text{ One decimal place} \\
\hline \\
230 \\
276 \\
2990 \\
\end{array}
\]

Insert the decimal point two places from the right end.

\[
\begin{array}{c}
4.6 \text{ One decimal place} \\
\times 6.5 \text{ One decimal place} \\
\hline \\
230 \\
276 \\
29.9 \text{ Two decimal places in the product} \\
\end{array}
\]

So 29.9 is the product.

Problem #PRAJN8Z "PRAJN8Z - 205620 - Multiplication of decimals - Tenths place"

Multiply: 6.6 * 4.6

Algebraic Expression:

\[
30.36
\]

Hints:

First, multiply 66 by 46, ignoring the decimal point.

\[
\begin{array}{c}
6.6 \\
\times 4.6 \\
\hline \\
396 \\
264 \\
3036 \\
\end{array}
\]

Then count the total number of decimal places in the factors and add them.

\[
\begin{array}{c}
6.6 \text{ One decimal place} \\
\times 4.6 \text{ One decimal place} \\
\hline \\
396 \\
264 \\
3036 \\
\end{array}
\]

Insert the decimal point two places from the right end.

\[
\begin{array}{c}
6.6 \text{ One decimal place} \\
\times 4.6 \text{ One decimal place} \\
\hline \\
396 \\
264 \\
\end{array}
\]
30.36 \quad \text{Two decimal places in the product}

So 30.36 is the product.

93) Problem #PRAJN47 "PRAJN47 - Multiplying Decimals"

What is 9.4 x 2.99?

Algebraic Expression:

\[
\text{Valid: 28.106}
\]

Hints:

- Multiply the numbers \text{without the decimals}.
- \text{Count the numbers to the right of the decimal point} on both numbers being multiplied.
- After counting, have that amount of numbers \text{after the decimal in your answer}.
-

\[
\begin{array}{c}
2.99 \\
\times \quad 9.4 \\
28.106
\end{array}
\]

Type in 28.106

94) Problem #PRAJN6P "PRAJN6P - Multiplying Decimals"

What is 6.5 x 2.13?

Algebraic Expression:

\[
\text{Valid: 13.845}
\]

Hints:

- Multiply the numbers \text{without the decimals}.
- \text{Count the numbers to the right of the decimal point} on both numbers being multiplied.
- After counting, have that amount of numbers \text{after the decimal in your answer}.
-

\[
\begin{array}{c}
2.13 \\
\times \quad 6.5 \\
13.845
\end{array}
\]

Type in 13.845

95) Problem #PRAJN9T "PRAJN9T - 205620 - Multiplication of decimals - Tenths place"

Multiply: 6.2 \times 5.8?

Algebraic Expression:

\[
\text{Valid: 35.96}
\]

Hints:

- First, multiply 62 by 58, ignoring the decimal point.

\[
\begin{array}{c}
6.2 \\
\times \quad 5.8 \\
496 \\
310 \\
3596
\end{array}
\]
Then count the total number of decimal places in the factors and add them.

\[
\begin{align*}
6.2 & \quad \text{One decimal place} \\
\times & \quad 5.8 \quad \text{One decimal place} \\
496 & \\
310 & \\
3596 & \\
\end{align*}
\]

Insert the decimal point two places from the right end.

\[
\begin{align*}
6.2 & \quad \text{One decimal place} \\
\times & \quad 5.8 \quad \text{One decimal place} \\
496 & \\
310 & \\
35.96 & \quad \text{Two decimal places in the product}
\end{align*}
\]

So 35.96 is the product.

96) Problem #PRAJPAN "PRAJPAN - 205620 - Multiplication of decimals - Tenths place"

Find the product of 2.5 and 7

Algebraic Expression:

✓ 17.5

Hints:

- Lets multiply 2.5 by 7, ignoring the decimal point.

\[
\begin{align*}
2.5 & \\
\times & \quad 7 \\
175 & \\
\end{align*}
\]

- Count the total number of decimal places and add them.

\[
\begin{align*}
2.5 & \quad \text{Two decimal place} \\
\times & \quad 7 \quad \text{Zero decimal places (7 is a whole number)} \\
175 & \\
\end{align*}
\]

- Insert the decimal point two places from the right end.

\[
\begin{align*}
2.5 & \quad \text{One decimal place} \\
\times & \quad 7 \quad \text{Zero decimal places (7 is a whole number)} \\
17.5 & \quad \text{One decimal places in the product}
\end{align*}
\]

So 17.5 is the product. Type 17.5 and click submit.

97) Problem #PRAJN5Z "PRAJN5Z - Multiplying Decimals"

What is 5.7 x 4.62?

Algebraic Expression:

✓ 26.334

Hints:

- Multiply the numbers without the decimals.
- Count the numbers to the right of the decimal point on both numbers being multiplied.
- After counting, have that amount of numbers after the decimal in your answer.

4.62
\[\times \ 5.7 \]
26.334

Type in 26.334

98) Problem #PRAJN5B "PRAJN5B - Multiplying Decimals"
What is 5.1 x 2.82?

Algebraic Expression:
- ✔ 14.382

Hints:
- Multiply the numbers without the decimals.
- Count the numbers to the right of the decimal point on both numbers being multiplied.
- After counting, have that amount of numbers after the decimal in your answer.

2.82
\[\times \ 5.1 \]
14.382

Type in 14.382

99) Problem #PRAJN5X "PRAJN5X - Multiplying Decimals"
What is 4.9 x 3.99?

Algebraic Expression:
- ✔ 19.551

Hints:
- Multiply the numbers without the decimals.
- Count the numbers to the right of the decimal point on both numbers being multiplied.
- After counting, have that amount of numbers after the decimal in your answer.

3.99
\[\times \ 4.9 \]
19.551

Type in 19.551

100) Problem #PRAJPA4 "PRAJPA4 - 205620 - Multiplication of decimals - Tenths place"
Find the product of 2.6 and 5

Algebraic Expression:
- ✔ 13

Hints:
- Lets multiply 2.6 by 5, ignoring the decimal point.
Count the total number of decimal places and add them.

2.6 <---- Two decimal place
* 5 <---- Zero decimal places (5 is a whole number)
130

Insert the decimal point two places from the right end.

2.6 <---- One decimal place
* 5 <---- Zero decimal places (5 is a whole number)
13 <---- One decimal places in the product

So 13 is the product. Type 13 and click submit.

101) Problem #PRAJN48 "PRAJN48 - Multiplying Decimals"
What is 6.5 x 3.89?

Algebraic Expression:
✓ 25.285

Hints:
- Multiply the numbers without the decimals.
- Count the numbers to the right of the decimal point on both numbers being multiplied.
- After counting, have that amount of numbers after the decimal in your answer.

3.89
x 6.5
25.285

Type in 25.285

102) Problem #PRAJPAA "PRAJPAA - 205620 - Multiplication of decimals - Tenths place"
Find the product of 6.6 and 8

Algebraic Expression:
✓ 52.8

Hints:
- Lets multiply 6.6 by 8, ignoring the decimal point.

6.6
* 8
528

Count the total number of decimal places and add them.

6.6 <---- Two decimal place
* 8 <---- Zero decimal places (8 is a whole number)
- Insert the decimal point two places from the right end.

6.6 <---- One decimal place
* 8 <---- Zero decimal places (8 is a whole number)
52.8 <---- One decimal places in the product

So 52.8 is the product. Type 52.8 and click submit.

103) Problem #PRAJPBD "PRAJPBD - 205620 - Multiplication of decimals - Tenths place"
Find the product of 7.2 and 4

Algebraic Expression:

✅ 28.8

Hints:

- Lets multiply 7.2 by 4, ignoring the decimal point.

7.2
* ___ 4
288

- Count the total number of decimal places and add them.

7.2 <---- Two decimal place
* ___ 4 <---- Zero decimal places (4 is a whole number)

- Insert the decimal point two places from the right end.

7.2 <---- One decimal place
* ___ 4 <---- Zero decimal places (4 is a whole number)
28.8 <---- One decimal places in the product

So 28.8 is the product. Type 28.8 and click submit.

104) Problem #PRAJN54 "PRAJN54 - Multiplying Decimals"
What is 7.4 x 1.22?

Algebraic Expression:

✅ 9.028

Hints:

- Multiply the numbers **without the decimals.**

- **Count the numbers to the right of the decimal point** on both numbers being multiplied.

- After counting, have that amount of numbers **after the decimal in your answer.**

- 1.22
 x 7.4
Type in 9.028

105) Problem #PRAJN9W "PRAJN9W - 205620 - Multiplication of decimals - Tenths place"

Multiply: 4.7 * 8.8

Algebraic Expression:

✓ 41.36

Hints:

• First, multiply 47 by 88, ignoring the decimal point.

 4.7
 * 8.8
 376
 376
 4136

• Then count the total number of decimal places in the factors and add them.

 4.7 <---- One decimal place
 * 8.8 <---- One decimal place
 376
 376
 4136

• Insert the decimal point two places from the right end.

 4.7 <---- One decimal place
 * 8.8 <---- One decimal place
 376
 376
 41.36 <---- Two decimal places in the product

So 41.36 is the product.

106) Problem #PRAJPAV "PRAJPAV - 205620 - Multiplication of decimals - Tenths place"

Find the product of 6.7 and 8

Algebraic Expression:

✓ 53.6

Hints:

• Lets multiply 6.7 by 8, ignoring the decimal point.

 6.7
 * 8
 536

• Count the total number of decimal places and add them.

 6.7 <---- Two decimal place
 * 8 <---- Zero decimal places (8 is a whole number)
• Insert the decimal point two places from the right end.

6.7 <---- One decimal place
* 8 <---- Zero decimal places (8 is a whole number)
53.6 <---- One decimal places in the product

So 53.6 is the product. Type 53.6 and click submit.

107) Problem #PRAJPAE "PRAJPAE - 205620 - Multiplication of decimals - Tenths place"
Find the product of 2.2 and 3

Algebraic Expression:
✓ 6.6

Hints:
• Lets multiply 2.2 by 3, ignoring the decimal point.

 2.2
* 3
 66

• Count the total number of decimal places and add them.

 2.2 <---- Two decimal place
* 3 <---- Zero decimal places (3 is a whole number)

 6.6 <---- One decimal places in the product

So 6.6 is the product. Type 6.6 and click submit.

108) Problem #PRAJN88 "PRAJN88 - 205620 - Multiplication of decimals - Tenths place"
Multiply: 4.3 * 2.7?

Algebraic Expression:
✓ 11.61

Hints:
• First, multiply 43 by 27, ignoring the decimal point.

 4.3
* 2.7
 86
 301
 1161

• Then count the total number of decimal places in the factors and add them.
4.3 <---- One decimal place
* 2.7 <---- One decimal place
301
 86
1161

- Insert the decimal point two places from the right end.

4.3 <---- One decimal place
* 2.7 <---- One decimal place
301
 86
11.61 <---- Two decimal places in the product

So 11.61 is the product.

109) Problem #PRAJN94 "PRAJN94 - 205620 - Multiplicantion of decimals - Tenths place"
Find the product of 7.6 and 4

Algebraic Expression:
✓ 30.4

Hints:
- Lets multiply 7.6 by 4, ignoring the decimal point.

 7.6
* 4
 304

- Count the total number of decimal places and add them.

 7.6 <---- Two decimal place
* 4 <---- Zero decimal places (4 is a whole number)

- Insert the decimal point two places from the right end.

 7.6 <---- One decimal place
* 4 <---- Zero decimal places (4 is a whole number)
 30.4 <---- One decimal places in the product

So 30.4 is the product. Type 30.4 and click submit.

110) Problem #PRAJN53 "PRAJN53 - Multiplying Decimals"
What is 8.4 x 1.36?

Algebraic Expression:
✓ 11.424

Hints:
- Multiply the numbers without the decimals.
- Count the numbers to the right of the decimal point on both numbers being multiplied.
1.36
\times \quad 8.4
11.424

After counting, have that amount of numbers \textit{after the decimal in your answer}.

111) Problem #PRAJN9H "PRAJN9H - 205620 - Multiplication of decimals - Tenths place"
Multiply: 6.4 \times 4.4?

\textbf{Algebraic Expression:}

\checkmark 28.16

\textbf{Hints:}

- First, multiply 64 by 44, ignoring the decimal point.

\begin{align*}
6.4 & \quad \times \quad 4.4 \\
256 & \\
256 & \\
2816 &
\end{align*}

- Then count the total number of decimal places in the factors and add them.

\begin{align*}
6.4 & \quad \text{One decimal place} \\
* \quad 4.4 & \quad \text{One decimal place} \\
256 & \\
256 & \\
2816 & \quad \text{Two decimal places in the product}
\end{align*}

So 28.16 is the product.

112) Problem #PRAJN5C "PRAJN5C - Multiplying Decimals"
What is 7.6 \times 4.19?

\textbf{Algebraic Expression:}

\checkmark 31.844

\textbf{Hints:}

- Multiply the numbers \textit{without the decimals}.
- \textit{Count the numbers to the right of the decimal point} on both numbers being multiplied.
- After counting, have that amount of numbers \textit{after the decimal in your answer}.

4.19
113) Problem #PRAJN97 "PRAJN97 - 205620 - Multiplication of decimals - Tenths place"
Find the product of 7.8 and 3

Algebraic Expression:

- **✓ 23.4**

Hints:

- Lets multiply 7.8 by 3, ignoring the decimal point.

\[
\begin{array}{c}
7.8 \\
* \ 3 \\
\hline
234 \\
\end{array}
\]

- Count the total number of decimal places and add them.

\[
7.8 \quad \text{Two decimal place} \\
* 3 \quad \text{Zero decimal places} \quad (3 \text{ is a whole number})
\]

- Insert the decimal point two places from the right end.

\[
\begin{array}{c}
7.8 \quad \text{One decimal place} \\
* \ 3 \quad \text{Zero decimal places} \quad (3 \text{ is a whole number}) \\
\hline
23.4 \quad \text{One decimal places in the product}
\end{array}
\]

So 23.4 is the product. Type 23.4 and click submit.

114) Problem #PRAJN9R "PRAJN9R - 205620 - Multiplication of decimals - Tenths place"

Multiply: 5.2 \times 6.6?

Algebraic Expression:

- **✓ 34.32**

Hints:

- First, multiply 52 by 66, ignoring the decimal point.

\[
\begin{array}{c}
5.2 \\
* \ 6.6 \\
\hline
312 \\
312 \\
\hline
3432 \\
\end{array}
\]

- Then count the total number of decimal places in the factors and add them.

\[
\begin{array}{c}
5.2 \quad \text{One decimal place} \\
* \ 6.6 \quad \text{One decimal place} \\
\hline
312 \\
312 \\
\hline
3432 \\
\end{array}
\]
• Insert the decimal point two places from the right end.

\[
\begin{array}{c}
5.2 \text{ One decimal place} \\
* 6.6 \text{ One decimal place} \\
\hline
312 \\
312 \\
34.32 \text{ Two decimal places in the product}
\end{array}
\]

So 34.32 is the product.

115) Problem #PRAJN8U "PRAJN8U - 205620 - Multiplication of decimals - Tenths place"
Multiply: 5.2 * 5.8?

Algebraic Expression:

✓ 30.16

Hints:

• First, multiply 52 by 58, ignoring the decimal point.

\[
\begin{array}{c}
5.2 \text{ One decimal place} \\
* 5.8 \text{ One decimal place} \\
\hline
416 \\
260 \\
3016
\end{array}
\]

• Then count the total number of decimal places in the factors and add them.

\[
\begin{array}{c}
5.2 \text{ One decimal place} \\
* 5.8 \text{ One decimal place} \\
\hline
416 \\
260 \\
3016
\end{array}
\]

• Insert the decimal point two places from the right end.

\[
\begin{array}{c}
5.2 \text{ One decimal place} \\
* 5.8 \text{ One decimal place} \\
\hline
416 \\
260 \\
30.16 \text{ Two decimal places in the product}
\end{array}
\]

So 30.16 is the product.

116) Problem #PRAJN8X "PRAJN8X - 205620 - Multiplication of decimals - Tenths place"
Multiply: 6.2 * 6.8?

Algebraic Expression:

✓ 42.16

Hints:

• First, multiply 62 by 68, ignoring the decimal point.

6.2
Then count the total number of decimal places in the factors and add them.

6.2 <---- One decimal place
* 6.8 <---- One decimal place

 372

 4216

Insert the decimal point two places from the right end.

6.2 <---- One decimal place
* 6.8 <---- One decimal place

 372

 42.16 <---- Two decimal places in the product

So 42.16 is the product.

117) Problem #PRAJN9K "PRAJN9K - 205620 - Multiplication of decimals - Tenths place"

Multiply: 2.2 * 7.8?

Algebraic Expression:

17.16

Hints:

First, multiply 22 by 78, ignoring the decimal point.

2.2
* 7.8

 176

 154

 1716

Then count the total number of decimal places in the factors and add them.

2.2 <---- One decimal place
* 7.8 <---- One decimal place

 176

 154

 1716

Insert the decimal point two places from the right end.

2.2 <---- One decimal place
* 7.8 <---- One decimal place

 176

 154

 17.16 <---- Two decimal places in the product
So 17.16 is the product.

118) Problem #PRAJN98 "PRAJN98 - 205620 - Multiplication of decimals - Tenths place"
Find the product of 7.4 and 3

Algebraic Expression:

✓ 22.2

Hints:

- Lets multiply 7.4 by 3, ignoring the decimal point.

\[
\begin{array}{c}
7.4 \\
\times \quad 3 \\
\hline
222 \\
\end{array}
\]

- Count the total number of decimal places and add them.

\[
\begin{array}{c}
7.4 \quad \text{Two decimal place} \\
* \quad \text{Zero decimal places} \\
\hline
22.2 \quad \text{One decimal places in the product}
\end{array}
\]

So 22.2 is the product. Type 22.2 and click submit.

119) Problem #PRAJN5U "PRAJN5U - Multiplying Decimals"
What is 8.2 x 3.78?

Algebraic Expression:

✓ 30.996

Hints:

- Multiply the numbers **without the decimals.**
- **Count the numbers to the right of the decimal point** on both numbers being multiplied.
- After counting, have that amount of numbers **after the decimal in your answer.**

\[
\begin{array}{c}
3.78 \\
\times \quad 8.2 \\
\hline
30.996 \\
\end{array}
\]

Type in 30.996

120) Problem #PRAJN6Q "PRAJN6Q - Multiplying Decimals"
What is 8.2 x 2.17?

Algebraic Expression:

✓ 17.794

Hints:
- Multiply the numbers **without the decimals**.
- Count the numbers to the right of the decimal point on both numbers being multiplied.
- After counting, have that amount of numbers **after the decimal in your answer**.

```
2.17
x  8.2
17.794
```

Type in 17.794

121) Problem #PRAJPAC "PRAJPAC - 205620 - Multiplication of decimals - Tenths place"

Find the product of 5.7 and 5

Algebraic Expression:

✓ 28.5

Hints:

- Lets multiply 5.7 by 5, ignoring the decimal point.

```
5.7
*     5
285
```

- Count the total number of decimal places and add them.

```
5.7 <---- Two decimal place
*   5 <---- Zero decimal places (5 is a whole number)
```

- Insert the decimal point two places from the right end.

```
5.7 <---- One decimal place
*   5 <---- Zero decimal places (5 is a whole number)
28.5 <---- One decimal places in the product
```

So 28.5 is the product. Type 28.5 and click submit.

122) Problem #PRAJPAU "PRAJPAU - 205620 - Multiplication of decimals - Tenths place"

Find the product of 6.5 and 2

Algebraic Expression:

✓ 13

Hints:

- Lets multiply 6.5 by 2, ignoring the decimal point.

```
6.5
*     2
130
```

- Count the total number of decimal places and add them.
6.5 <---- Two decimal place
* 2 <---- Zero decimal places (2 is a whole number)

- Insert the decimal point two places from the right end.

6.5 <---- One decimal place
* 2 <---- Zero decimal places (2 is a whole number)
13 <---- One decimal places in the product

So 13 is the product. Type 13 and click submit.

123) Problem #PRAJN9Q "PRAJN9Q - 205620 - Multiplication of decimals - Tenths place"
Multiply: 5.8 * 7.7?

Algebraic Expression:

✓ 44.66

Hints:

- First, multiply 58 by 77, ignoring the decimal point.

5.8
* 7.7
406
406
4466

- Then count the total number of decimal places in the factors and add them.

5.8 <---- One decimal place
* 7.7 <---- One decimal place
406
406
4466

- Insert the decimal point two places from the right end.

5.8 <---- One decimal place
* 7.7 <---- One decimal place
406
406
44.66 <---- Two decimal places in the product

So 44.66 is the product.

124) Problem #PRAJN9U "PRAJN9U - 205620 - Multiplication of decimals - Tenths place"
Multiply: 8.8 * 7.5?

Algebraic Expression:

✓ 66

Hints:

- First, multiply 88 by 75, ignoring the decimal point.
8.8
* 7.5
440
616
6600

- Then count the total number of decimal places in the factors and add them.

 8.8 <---- One decimal place
* 7.5 <---- One decimal place

 440
 616

 6600

- Insert the decimal point two places from the right end.

 8.8 <---- One decimal place
* 7.5 <---- One decimal place

 440
 616

 66 <---- Two decimal places in the product

So 66 is the product.

125) Problem #PRAJN5P "PRAJN5P - Multiplying Decimals"
What is 7.8 x 1.9?

Algebraic Expression:

✓ 14.82

Hints:
- Multiply the numbers without the decimals.
- Count the numbers to the right of the decimal point on both numbers being multiplied.
- After counting, have that amount of numbers after the decimal in your answer.

1.9
x 7.8
14.82

Type in 14.82

126) Problem #PRAJN59 "PRAJN59 - Multiplying Decimals"
What is 5.7 x 2.09?

Algebraic Expression:

✓ 11.913

Hints:
- Multiply the numbers without the decimals.
- Count the numbers to the right of the decimal point on both numbers being multiplied.
- After counting, have that amount of numbers after the decimal in your answer.
Multiply: 2.2 * 3.5?

Algebraic Expression:

\[
7.7
\]

Hints:

- First, multiply 22 by 35, ignoring the decimal point.

\[
\begin{align*}
2.2 & \times 3.5 \\
2.2 & \times 35 \\
& 110 \\
& 66 \\
& 770
\end{align*}
\]

- Then count the total number of decimal places in the factors and add them.

\[
\begin{align*}
2.2 & \text{ One decimal place} \\
* & 3.5 \text{ One decimal place} \\
& 110 \\
& 66 \\
& 770
\end{align*}
\]

- Insert the decimal point two places from the right end.

\[
\begin{align*}
2.2 & \text{ One decimal place} \\
* & 3.5 \text{ One decimal place} \\
& 110 \\
& 66 \\
& 7.7 \text{ Two decimal places in the product}
\end{align*}
\]

So 7.7 is the product.

Multiply: 4.5 * 2.6?

Algebraic Expression:

\[
11.7
\]

Hints:

- First, multiply 45 by 26, ignoring the decimal point.

\[
\begin{align*}
4.5 & \times 2.6 \\
4.5 & \times 26 \\
& 270 \\
& 90 \\
& 1170
\end{align*}
\]
Then count the total number of decimal places in the factors and add them.

\[
\begin{align*}
4.5 \times 2.6 & \quad \text{One decimal place} \\
\hline
270 \\
90 \\
1170
\end{align*}
\]

Insert the decimal point two places from the right end.

\[
\begin{align*}
4.5 \times 2.6 & \quad \text{One decimal place} \\
\hline
270 \\
90 \\
11.7 \quad \text{Two decimal places in the product}
\end{align*}
\]

So 11.7 is the product.

129) Problem #PRAJN9N "PRAJN9N - 205620 - Multiplication of decimals - Tenths place"

Multiply: 5.7 \times 4.7?

Algebraic Expression:

\[26.79\]

Hints:

- First, multiply 57 by 47, ignoring the decimal point.

\[
\begin{align*}
5.7 \\
\times 4.7 \\
\hline
399 \\
228 \\
2679
\end{align*}
\]

Then count the total number of decimal places in the factors and add them.

\[
\begin{align*}
5.7 \times 4.7 & \quad \text{One decimal place} \\
\hline
399 \\
228 \\
2679
\end{align*}
\]

Insert the decimal point two places from the right end.

\[
\begin{align*}
5.7 \times 4.7 & \quad \text{One decimal place} \\
\hline
399 \\
228 \\
26.79 \quad \text{Two decimal places in the product}
\end{align*}
\]

So 26.79 is the product.

130) Problem #PRAJN87 "PRAJN87 - 205620 - Multiplication of decimals - Tenths place"

Multiply: 8.7 \times 6.8?
Algebraic Expression:

✓ 59.16

Hints:

- First, multiply 87 by 68, ignoring the decimal point.

\[
\begin{array}{c}
8.7 \\
* \ 6.8 \\
\hline
696 \\
522 \\
5916
\end{array}
\]

- Then count the total number of decimal places in the factors and add them.

\[
\begin{array}{c}
8.7 \text{ One decimal place} \\
* \ 6.8 \text{ One decimal place} \\
\hline
696 \\
522 \\
5916
\end{array}
\]

- Insert the decimal point two places from the right end.

\[
\begin{array}{c}
8.7 \text{ One decimal place} \\
* \ 6.8 \text{ One decimal place} \\
\hline
696 \\
522 \\
59.16 \text{ Two decimal places in the product}
\end{array}
\]

So 59.16 is the product.

131) Problem #PRAJN95 “PRAJN95 - 205620 - Multiplication of decimals - Tenths place”

Find the product of 8.5 and 3

Algebraic Expression:

✓ 25.5

Hints:

- Lets multiply 8.5 by 3, ignoring the decimal point.

\[
\begin{array}{c}
8.5 \\
* \ 3 \\
\hline
255
\end{array}
\]

- Count the total number of decimal places and add them.

\[
\begin{array}{c}
8.5 \text{ Two decimal place} \\
* \ 3 \text{ Zero decimal places (3 is a whole number)}
\end{array}
\]

- Insert the decimal point two places from the right end.

\[
\begin{array}{c}
8.5 \text{ One decimal place} \\
* \ 3 \text{ Zero decimal places (3 is a whole number)}
\end{array}
\]
25.5 <---- One decimal places in the product

So 25.5 is the product. Type 25.5 and click submit.

132) Problem #PRAJPAM "PRAJPAM - 205620 - Multiplication of decimals - Tenths place"
Find the product of 3.4 and 8
Algebraic Expression:

✓ 27.2

Hints:
- Lets multiply 3.4 by 8, ignoring the decimal point.

\[
\begin{align*}
3.4 & \times 8 \\
&= 272
\end{align*}
\]

- Count the total number of decimal places and add them.

\[
\begin{align*}
3.4 & \text{ <---- Two decimal place} \\
* 8 & \text{ <---- Zero decimal places (8 is a whole number)} \\
27.2 & \text{ <---- One decimal places in the product}
\end{align*}
\]

So 27.2 is the product. Type 27.2 and click submit.

133) Problem #PRAJN6E "PRAJN6E - Multiplying Decimals"
What is 9.8 x 1.05?
Algebraic Expression:

✓ 10.29

Hints:
- Multiply the numbers without the decimals.
- Count the numbers to the right of the decimal point on both numbers being multiplied.
- After counting, have that amount of numbers after the decimal in your answer.

\[
\begin{align*}
1.05 & \times 9.8 \\
&= 10.29
\end{align*}
\]

Type in 10.29

134) Problem #PRAJPA8 "PRAJPA8 - 205620 - Multiplication of decimals - Tenths place"
Find the product of 5.3 and 8
Algebraic Expression:
42.4

Hints:

- Lets multiply 5.3 by 8, ignoring the decimal point.

\[
\begin{array}{c}
5.3 \\
* \ 8 \\
\hline
424
\end{array}
\]

- Count the total number of decimal places and add them.

\[
\begin{array}{c}
5.3 \ <---- \ \text{Two decimal place} \\
* \ 8 \ <---- \ \text{Zero decimal places (8 is a whole number)}
\end{array}
\]

- Insert the decimal point two places from the right end.

\[
\begin{array}{c}
5.3 \ <---- \ \text{One decimal place} \\
* \ 8 \ <---- \ \text{Zero decimal places (8 is a whole number)} \\
42.4 \ <---- \ \text{One decimal places in the product}
\end{array}
\]

So 42.4 is the product. Type 42.4 and click submit.

135) Problem #PRAJN5R "PRAJN5R - Multiplying Decimals"
What is 8.7 x 0.23?

Algebraic Expression:

\[
2.001
\]

Hints:

- Multiply the numbers **without the decimals.**
- **Count the numbers to the right of the decimal point** on both numbers being multiplied.
- After counting, have that amount of numbers **after the decimal in your answer.**

\[
\begin{array}{c}
0.23 \\
x \ 8.7 \\
\hline
2.001
\end{array}
\]

Type in 2.001

136) Problem #PRAJPAK "PRAJPAK - 205620 - Multiplication of decimals - Tenths place"
Find the product of 7.5 and 8

Algebraic Expression:

\[
60
\]

Hints:

- Lets multiply 7.5 by 8, ignoring the decimal point.

\[
\begin{array}{c}
7.5 \\
* \ 8 \\
\hline
600
\end{array}
\]
Count the total number of decimal places and add them.

7.5 <---- Two decimal place
* 8 <---- Zero decimal places (8 is a whole number)

Insert the decimal point two places from the right end.

7.5 <---- One decimal place
* 8 <---- Zero decimal places (8 is a whole number)
60 <---- One decimal places in the product

So 60 is the product. Type 60 and click submit.

137) Problem #PRAJN8Y "PRAJN8Y - 205620 - Multiplication of decimals - Tenths place"
Multiply: 4.8 * 8.6?

Algebraic Expression:
41.28

Hints:
First, multiply 48 by 86, ignoring the decimal point.

4.8
* 8.6
288
384
4128

Then count the total number of decimal places in the factors and add them.

4.8 <---- One decimal place
* 8.6 <---- One decimal place
288
384
4128

Insert the decimal point two places from the right end.

4.8 <---- One decimal place
* 8.6 <---- One decimal place
288
384
41.28 <---- Two decimal places in the product

So 41.28 is the product.

138) Problem #PRAJPBG "PRAJPBG - 205620 - Multiplication of decimals - Tenths place"
Find the product of 6.4 and 6

Algebraic Expression:
38.4
Hints:

- Lets multiply 6.4 by 6, ignoring the decimal point.

\[
\begin{array}{c}
6.4 \\
\times \quad 6 \\
\hline
384
\end{array}
\]

- Count the total number of decimal places and add them.

\[
6.4 \quad \text{Two decimal place} \\
\times \quad 6 \quad \text{Zero decimal places (6 is a whole number)} \\
\hline
38.4 \quad \text{One decimal places in the product}
\]

So 38.4 is the product. Type 38.4 and click submit.

139) Problem #PRAJPBJ "PRAJPBJ - 205620 - Multiplication of decimals - Tenths place"
Find the product of 6.2 and 7

Algebraic Expression:

\[
43.4
\]

Hints:

- Lets multiply 6.2 by 7, ignoring the decimal point.

\[
\begin{array}{c}
6.2 \\
\times \quad 7 \\
\hline
434
\end{array}
\]

- Count the total number of decimal places and add them.

\[
6.2 \quad \text{Two decimal place} \\
\times \quad 7 \quad \text{Zero decimal places (7 is a whole number)} \\
\hline
43.4 \quad \text{One decimal places in the product}
\]

So 43.4 is the product. Type 43.4 and click submit.

140) Problem #PRAJPAF "PRAJPAF - 205620 - Multiplication of decimals - Tenths place"
Find the product of 5.2 and 7

Algebraic Expression:

✓ 36.4

Hints:

- Lets multiply 5.2 by 7, ignoring the decimal point.

\[
\begin{array}{c}
5.2 \\
* 7 \\
364
\end{array}
\]

- Count the total number of decimal places and add them.

\[
\begin{array}{c}
5.2 \text{ <----- Two decimal place} \\
* 7 \text{ <----- Zero decimal places (7 is a whole number)}
\end{array}
\]

- Insert the decimal point two places from the right end.

\[
\begin{array}{c}
5.2 \text{ <----- One decimal place} \\
* 7 \text{ <----- Zero decimal places (7 is a whole number)} \\
36.4 \text{ <----- One decimal places in the product}
\end{array}
\]

So 36.4 is the product. Type 36.4 and click submit.

141) Problem #PRAJN58 "PRAJN58 - Multiplying Decimals"

What is 6 x 2.88?

Algebraic Expression:

✓ 17.28

Hints:

- Multiply the numbers without the decimals.

\[
\begin{array}{c}
2.88 \\
x 6 \\
17.28
\end{array}
\]

Type in 17.28

142) Problem #PRAJN8J "PRAJN8J - 205620 - Multiplication of decimals - Tenths place"

Multiply: 8.5 * 5.8?

Algebraic Expression:

✓ 49.3

Hints:

- First, multiply 85 by 58, ignoring the decimal point.

\[
8.5
\]
Then count the total number of decimal places in the factors and add them.

\[8.5 \text{ One decimal place}\]
\[\times \quad 5.8 \text{ One decimal place}\]
\[680\]
\[425\]
\[4930\]

Insert the decimal point two places from the right end.

\[8.5 \text{ One decimal place}\]
\[\times \quad 5.8 \text{ One decimal place}\]
\[680\]
\[425\]
\[49.3 \text{ Two decimal places in the product}\]

So 49.3 is the product.

143) Problem #PRAJN92 "PRAJN92 - 205620 - Multiplication of decimals - Tenths place"

Find the product of 3.2 and 4

Algebraic Expression:

12.8

Hints:

- Lets multiply 3.2 by 4, ignoring the decimal point.

\[
\begin{array}{c}
3.2 \\
\times \quad 4 \\
\hline
128
\end{array}
\]

- Count the total number of decimal places and add them.

\[3.2 \text{ Two decimal place}\]
\[\times \quad 4 \text{ Zero decimal places (4 is a whole number)}\]

- Insert the decimal point two places from the right end.

\[3.2 \text{ One decimal place}\]
\[\times \quad 4 \text{ Zero decimal places (4 is a whole number)}\]
\[12.8 \text{ One decimal places in the product}\]

So 12.8 is the product. Type 12.8 and click submit.

144) Problem #PRAJN9D "PRAJN9D - 205620 - Multiplication of decimals - Tenths place"

Multiply: 4.3 * 6.8?
Algebraic Expression:

\[29.24 \]

Hints:

- First, multiply 43 by 68, ignoring the decimal point.

\[
\begin{array}{c}
4.3 \\
\times \ 6.8 \\
\hline
344 \\
258 \\
2924
\end{array}
\]

- Then count the total number of decimal places in the factors and add them.

\[
\begin{array}{c}
4.3 \ 	ext{--- One decimal place} \\
\times \ 6.8 \ 	ext{--- One decimal place} \\
\hline
344 \\
258 \\
2924
\end{array}
\]

- Insert the decimal point two places from the right end.

\[
\begin{array}{c}
4.3 \ 	ext{--- One decimal place} \\
\times \ 6.8 \ 	ext{--- One decimal place} \\
\hline
344 \\
258 \\
29.24 \ 	ext{--- Two decimal places in the product}
\end{array}
\]

So 29.24 is the product.

145) Problem #PRAJN49 "PRAJN49 - Multiplying Decimals"

What is 7.2 x 3.5?

Algebraic Expression:

\[25.2 \]

Hints:

- Multiply the numbers without the decimals.

- Count the numbers to the right of the decimal point on both numbers being multiplied.

- After counting, have that amount of numbers after the decimal in your answer.

\[
\begin{array}{c}
3.5 \\
x \ 7.2 \\
25.2
\end{array}
\]

Type in 25.2

146) Problem #PRAJPBH "PRAJPBH - 205620 - Multiplication of decimals - Tenths place"

Find the product of 7.5 and 4

Algebraic Expression:

\[30 \]

Hints:
• Lets multiply 7.5 by 4, ignoring the decimal point.

\[
\begin{array}{c}
7.5 \\
\times 4 \\
\hline
300 \\
\end{array}
\]

• Count the total number of decimal places and add them.

\[
\begin{array}{l}
7.5 \text{ Two decimal place} \\
\times 4 \text{ Zero decimal places (4 is a whole number)} \\
\hline
\end{array}
\]

• Insert the decimal point two places from the right end.

\[
\begin{array}{l}
7.5 \text{ One decimal place} \\
\times 4 \text{ Zero decimal places (4 is a whole number)} \\
30 \text{ One decimal places in the product} \\
\end{array}
\]

So 30 is the product. Type 30 and click submit.

147) Problem #PRAJN5A "PRAJN5A - Multiplying Decimals"
What is 5 x 2.79?

Algebraic Expression:

✓ 13.95

Hints:

• Multiply the numbers without the decimals.
• Count the numbers to the right of the decimal point on both numbers being multiplied.
• After counting, have that amount of numbers after the decimal in your answer.

\[
\begin{array}{c}
2.79 \\
\times 5 \\
\hline
13.95 \\
\end{array}
\]

Type in 13.95

148) Problem #PRAJN5G "PRAJN5G - Multiplying Decimals"
What is 6.4 x 4.45?

Algebraic Expression:

✓ 28.48

Hints:

• Multiply the numbers without the decimals.
• Count the numbers to the right of the decimal point on both numbers being multiplied.
• After counting, have that amount of numbers after the decimal in your answer.

\[
\begin{array}{c}
4.45 \\
\times 6.4 \\
\hline
28.48 \\
\end{array}
\]
28.48
Type in 28.48

149) Problem #PRAJN8W "PRAJN8W - 205620 - Multiplication of decimals - Tenths place"
Multiply: 8.5 * 8.5?

Algebraic Expression:
✓ 72.25

Hints:
• First, multiply 85 by 85, ignoring the decimal point.

\[
\begin{array}{c}
8.5 \\
* \ 8.5 \\
\hline
425 \\
680 \\
7225
\end{array}
\]

• Then count the total number of decimal places in the factors and add them.

\[
\begin{array}{c}
8.5 \text{ <---- One decimal place } \\
* \ 8.5 \text{ <---- One decimal place } \\
\hline
425 \\
680 \\
7225
\end{array}
\]

• Insert the decimal point two places from the right end.

\[
\begin{array}{c}
8.5 \text{ <---- One decimal place } \\
* \ 8.5 \text{ <---- One decimal place } \\
\hline
425 \\
680 \\
72.25 \text{ <---- Two decimal places in the product}
\end{array}
\]

So 72.25 is the product.

150) Problem #PRAJPAW "PRAJPAW - 205620 - Multiplication of decimals - Tenths place"
Find the product of 8.4 and 6

Algebraic Expression:
✓ 50.4

Hints:
• Lets multiply 8.4 by 6, ignoring the decimal point.

\[
\begin{array}{c}
8.4 \\
* \ 6 \\
\hline
504
\end{array}
\]

• Count the total number of decimal places and add them.

\[
\begin{array}{c}
8.4 \text{ <---- Two decimal places } \\
* \ 6 \text{ <---- Zero decimal places (6 is a whole number)}
\end{array}
\]
• Insert the decimal point two places from the right end.

 8.4 <---- One decimal place
* 6 <---- Zero decimal places (6 is a whole number)
 50.4 <---- One decimal places in the product

So 50.4 is the product. Type 50.4 and click submit.
Problem Set "Adding Decimals 6.NS.B.3" id:[PSABFTC]

Select All

1) Problem #PRAHCQ2 "PRAHCQ2 - Addition of decimals - Hundredths place"

What is 72.57 + 6.78?

Exact Match (case sensitive):

✓ 79.35

Hints:

When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.
When you add you get:

\[
\begin{align*}
72.57 \\
+ 6.78 \\
79.35
\end{align*}
\]

Type in 79.35.

2) Problem #PRAHCM "PRAHCM - Addition of decimals - Tenths place + Thousandths place"

What is 2.6 + 7.552?

Exact Match (case sensitive):

✅ 10.152
When adding you need to **add the ones with the ones**. The **tenths with the tenths**. AND SO ON.

You must line up the decimal to do this.

In this case we add 0 hundredths and 0 thousandths to 2.6. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
2.600 \\
+ 7.552
\end{align*}
\]
When you add you get:

\[
\begin{align*}
2.600 \\
+ 7.552 \\
10.152
\end{align*}
\]

Type in 10.152.

3) Problem #PRAHCMB "PRAHCMB - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 262.4 + 459.325?

Exact Match (case sensitive):

✓ 721.725
When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

In this case we add 0 hundredths and 0 thousandths to 262.4. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
262.400 \\
+ 459.325
\end{align*}
\]
When you add you get:

\[
262.400 \\
+ 459.325 \\
721.725
\]

Type in 721.725.

4) Problem #PRAHCNB "PRAHCNB - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 9.82 + 92.537?

Exact Match (case sensitive):

✅ 102.357

Hints:

- When adding you need to **add the ones with the ones. The tenths with the tenths. AND SO ON.**

 You must line up the decimal to do this.

- In this case we add 0 hundredths and 0 thousandths to 9.82. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
9.820 \\
+ 92.537 \\
--- \\
9.820
\]
Type in 102.357.

5) Problem #PRAHCMX "PRAHCMX - Addition of decimals - Tenths place + Hundredths place"

What is 18.5 + 8.83?

Exact Match (case sensitive):

✔ 27.33

Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.
- In this case we add 0 hundredths to 18.5. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

18.50
+ 8.83

18.50
+ 8.83
27.33

Type in 27.33.

6) Problem #PRAHCKG "PRAHCKG - Addition of decimals - Tenths place + Thousandths place"

What is 912.6 + 80.828?

Exact Match (case sensitive):

✔ 993.428

Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.
- In this case we add 0 hundredths and 0 thousandths to 912.6. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

912.600
+ 80.828

912.600
+ 80.828
Type in 993.428.

7) Problem #PRAHCK2 "PRAHCK2 - Addition of decimals - Tenths place + Thousandths place"
What is 9.8 + 96.552?
Exact Match (case sensitive):
✓ 106.352

Hints:
• When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.
You must line up the decimal to do this.
• In this case we add 0 hundredths and 0 thousandths to 9.8. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
9.800 \\
+ 96.552 \\
\end{align*}
\]

Type in 106.352.

8) Problem #PRAHCKP "PRAHCKP - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 10.2 + 40.416?
Exact Match (case sensitive):
✓ 50.616

Hints:
• When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.
You must line up the decimal to do this.
• In this case we add 0 hundredths and 0 thousandths to 10.2. This does not change the value of the
number.

Line up the decimal like this and add, keeping the decimal in place.

10.200
+ 40.416

- When you add you get:

```
10.200
+ 40.416
50.616
```

Type in 50.616.

9) Problem #PRAHCPP "PRAHCPP - 195379 - Mika - Addition of decimals - Range"

What is 36753 + 0.414675?

Exact Match (case sensitive):

✔️ 36753.414675

Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

- In this case we add 0 tenths, 0 hundredths, 0 thousandths, 0 ten-thousandths, 0 hundred-thousandths and 0 millionths to 36753. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

```
36753.000000
+ 0.414675
36753.414675
```

Type in 36753.414675.

10) Problem #PRAHCK6 "PRAHCK6 - Addition of decimals - Tenths place"
What is 75.1 + 48.8?

Exact Match (case sensitive):

✓ 123.9

Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

- **Line up the decimal** like this and add, keeping the decimal in place.

```
75.1
+ 48.8
```

- When you add you get:

```
75.1
+ 48.8
123.9
```

Type in 123.9.

11) Problem #PRAHCNV "PRAHCNV - 194969 - Mika - Addition of decimals - Range .001 and 100"

What is 259.1 + 58.8?

Exact Match (case sensitive):

✓ 317.9

Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

- In this case we line up the decimal like this and add, keeping the decimal in place.

```
259.1
+ 58.8
```

- When you add you get:

```
259.1
+ 58.8
317.9
```
Type in 317.9.

12) Problem #PRAHCRB "PRAHCRB - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 251.12 + 292.687?

Exact Match (case sensitive):

✓ 543.807

Hints:
- When adding you need to **add the ones with the ones. The tenths with the tenths. AND SO ON.**
- You must line up the decimal to do this.
- In this case we add 0 thousandths to 251.12. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{array}{c}
251.120 \\
+ 292.687 \\
\hline
543.807
\end{array}
\]

Type in 543.807.

13) Problem #PRAHCQ7 "PRAHCQ7 - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 485.76 + 75.47?

Exact Match (case sensitive):

✓ 561.23

Hints:
- When adding you need to **add the ones with the ones. The tenths with the tenths. AND SO ON.**
- You must line up the decimal to do this.
- In this case we **line up the decimal** like this and add, keeping the decimal in place.

\[
\begin{array}{c}
485.76 \\
+ 75.47 \\
\hline
561.23
\end{array}
\]

• When you add you get:
485.76
+ 75.47
561.23

Type in 561.23.

14) Problem #PRAHCMDC "PRAHCMD - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 325.6 + 114.571?

Exact Match (case sensitive):
✓ 440.171

Hints:
• When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.
• In this case we add 0 hundredths and 0 thousandths to 325.6. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

325.600
+ 114.571

When you add you get:

325.600
+ 114.571
440.171

Type in 440.171.

15) Problem #PRAHCPQ "PRAHCPQ - 195379 - Mika - Addition of decimals - Range"
What is 71992 + 0.407744?

Exact Match (case sensitive):
✓ 71992.407744

Hints:
• When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.
• In this case we add 0 tenths, 0 hundredths, 0 thousandths, 0 ten-thousandths, 0 hundred-thousandths and 0 millionths to 71992. This does not change the value of the number.
Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
71992.000000 \\
+ 0.407744 \\
\hline
71992.407744
\end{align*}
\]

- When you add you get:

\[
\begin{align*}
71992.000000 \\
\hline
+ 0.407744 \\
\hline
71992.407744
\end{align*}
\]

Type in 71992.407744.

16) Problem #PRAHCQ4 "PRAHCQ4 - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 669.4 + 4.47?

Exact Match (case sensitive):

✅ 673.87

Hints:
- When adding you need to **add the ones with the ones**. The **tenths with the tenths**. AND SO ON.

You must line up the decimal to do this.
- In this case we add 0 hundredths to 669.4. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
669.40 \\
\hline
+ 4.47 \\
\hline
673.87
\end{align*}
\]

Type in 673.87.

17) Problem #PRAHCKM "PRAHCKM - Addition of decimals - Tenths place + Thousandths place"
What is 2.2 + 430.882?

Exact Match (case sensitive):
433.082

Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.
- In this case we add 0 hundredths and 0 thousandths to 2.2. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[\begin{array}{c}
2.200 \\
+ 430.882 \\
\hline
433.082 \\
\end{array} \]

Type in 433.082.

18) Problem #PRAHCQ9 "PRAHCQ9 - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 316.62 + 366.418?

Exact Match (case sensitive):
683.038

Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.
- In this case we add 0 thousandths to 316.62. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[\begin{array}{c}
316.620 \\
+ 366.418 \\
\hline
683.038 \\
\end{array} \]
Type in 683.038.

19) Problem #PRAHCRD "PRAHCRD - Addition of decimals - Tenths place + Thousandths place"
What is 11.5 + 555.325?

Exact Match (case sensitive):

✅ 566.825

Hints:
- When adding you need to **add the ones with the ones. The tenths with the tenths. AND SO ON.**
- You must line up the decimal to do this.
- In this case we add 0 hundredths and 0 thousandths to 11.5. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

```
11.500
+ 555.325
```

Type in 566.825.

20) Problem #PRAHCPD "PRAHCPD - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 37.32 + 773.855?

Exact Match (case sensitive):

✅ 811.175

Hints:
- When adding you need to **add the ones with the ones. The tenths with the tenths. AND SO ON.**
- You must line up the decimal to do this.
- In this case we add 0 hundredths and 0 thousandths to 37.32. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

```
37.320
+ 773.855
```
• When you add you get:

 37.320
 + 773.855
 811.175

Type in 811.175.

21) Problem #PRAHCQR "PRAHCQR - Addition of decimals - Tenths place + Thousandths place"
What is 384.3 + 2.804?

Exact Match (case sensitive):

✓ 387.104

Hints:

• When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

• In this case we add 0 hundredths and 0 thousandths to 384.3. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

 384.300
 + 2.804

• When you add you get:

 384.300
 + 2.804
 387.104

Type in 387.104.

22) Problem #PRAHCKZ "PRAHCKZ - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 17.2 + 20.661?

Exact Match (case sensitive):

✓ 37.861

Hints:

• When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.
You must line up the decimal to do this.

- In this case we add 0 hundredths and 0 thousandths to 17.2. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
17.200 & \\
+ & 20.661 \\
\end{align*}
\]

- When you add you get:

\[
\begin{align*}
17.200 & \\
+ & 20.661 \\
\end{align*}
\]

\[37.861\]

Type in 37.861.

23) Problem #PRAHCN4 "PRAHCN4 - 194969 - Mika - Addition of decimals - Range .001 and 100"

What is 8.2 + 64.28?

Exact Match (case sensitive):

\[72.48\]

Hints:

- When adding you need to **add the ones with the ones. The tenths with the tenths. AND SO ON.**

You must line up the decimal to do this.

- In this case we add 0 hundredths to 8.2. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
8.20 & \\
+ & 64.28 \\
\end{align*}
\]

- When you add you get:

\[
\begin{align*}
8.20 & \\
+ & 64.28 \\
\end{align*}
\]

\[72.48\]

Type in 72.48.
24) Problem #PRAHCKJ "PRAHCKJ - Addition of decimals - Tenths place + Thousandths place"
What is 587.5 + 29.226?

Exact Match (case sensitive):

✓ 616.726

Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.
- You must line up the decimal to do this.
- In this case we add 0 hundredths and 0 thousandths to 587.5. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[\begin{align*}
587.500 & \\
+ 29.226 & \\
\hline
616.726 &
\end{align*} \]

Type in 616.726.

25) Problem #PRAHCK4 "PRAHCK4 - Addition of decimals - Tenths place + Thousandths place"
What is 1.4 + 82.826?

Exact Match (case sensitive):

✓ 84.226

Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.
- You must line up the decimal to do this.
- In this case we add 0 hundredths and 0 thousandths to 1.4. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[\begin{align*}
1.400 & \\
+ 82.826 & \\
\hline
84.226 &
\end{align*} \]

• When you add you get:

\[\begin{align*}
1.400 & \\
+ 82.826 & \\
\hline
1.400 &
\end{align*} \]
26) Problem #PRAHCKT "PRAHCKT - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 32.8 + 43.111?
Exact Match (case sensitive):

✅ 75.911

Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.
- You must line up the decimal to do this.
- In this case we add 0 hundredths and 0 thousandths to 32.8. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

```
32.800
+ 43.111
75.911
```

Type in 75.911.

27) Problem #PRAHCQJ "PRAHCQJ - Addition of decimals - Tenths place + Thousandths place"
What is 72.5 + 8.575?
Exact Match (case sensitive):

✅ 81.075

Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.
- You must line up the decimal to do this.
- In this case we add 0 hundredths and 0 thousandths to 72.5. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

```
32.800
+ 43.111
75.911
```
When you add you get:

72.500
+ 8.575
81.075

Type in 81.075.

28) Problem #PRAHCQG "PRAHCQG - Addition of decimals - Tenths place + Thousandths place"

What is 45.3 + 3.451?

Exact Match (case sensitive):

✅ 48.751

Hints:

- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.
- You must line up the decimal to do this.
- In this case we add 0 hundredths and 0 thousandths to 45.3. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

45.300
+ 3.451
48.751

Type in 48.751.

29) Problem #PRAHCM2 "PRAHCM2 - Addition of decimals - Ones place + Tenths place"

What is 1 + 7.1?

Exact Match (case sensitive):

✅ 8.1

Hints:
When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

In this case we add 0 tenths to 1. This does not change the value of the number. Line up the decimal like this and add, keeping the decimal in place.

\[1.0 \]
\[+ 7.1 \]
\[8.1 \]

Type in 8.1.

When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

In this case we add 0 tenths, 0 hundredths, 0 thousandths, 0 ten-thousandths, 0 hundred-thousandths and 0 millionths to 9785. This does not change the value of the number. Line up the decimal like this and add, keeping the decimal in place.

\[9785.000000 \]
\[+ 0.183551 \]
\[9785.183551 \]

Type in 9785.183551.
31) Problem #PRAHCQZ "PRAHCQZ - Addition of decimals - Hundredths place"

What is 19.14 + 2.95?

Exact Match (case sensitive):

✅ 22.09

Hints:

- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

- Line up the decimal like this and add, keeping the decimal in place.

 19.14
 + 2.95

 22.09

Type in 22.09.

32) Problem #PRAHCQ3 "PRAHCQ3 - 194969 - Mika - Addition of decimals - Range .001 and 100"

What is 182.6 + 3.42?

Exact Match (case sensitive):

✅ 186.02

Hints:

- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

- In this case we add 0 hundredths to 182.6. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

 182.60
 + 3.42

 186.02
Type in 186.02.

33) Problem #PRAHCNP "PRAHCNP - 194969 - Mika - Addition of decimals - Range .001 and 100"

What is 351.883 + 29.263?

Exact Match (case sensitive):

✓ 381.146

Hints:

- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

- In this case we line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
351.883 & \quad + \quad 29.263 \\
\hline
381.146 & \quad \text{Exact Match (case sensitive)}
\end{align*}
\]

Type in 381.146.

34) Problem #PRAHCP4 "PRAHCP4 - 194969 - Mika - Addition of decimals - Range .001 and 100"

What is 1.71 + 1.421?

Exact Match (case sensitive):

✓ 3.131

Hints:

- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

- In this case we add 0 hundredths and 0 thousandths to 1.71. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
1.710 & \quad + \quad 1.421 \\
\hline
3.131 & \quad \text{Exact Match (case sensitive)}
\end{align*}
\]

- When you add you get:
1.710
+ 1.421
3.131

Type in 3.131.

35) Problem #PRAHCPR "PRAHCPR - 195379 - Mika - Addition of decimals - Range "
What is 6856 + 0.312163?

Exact Match (case sensitive):
✓ 6856.312163

Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.
- You must line up the decimal to do this.
- In this case we add 0 tenths, 0 hundredths, 0 thousandths, 0 ten-thousandths, 0 hundred-thousandths and 0 millionths to 6856. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

6856.000000
+ 0.312163
6856.312163

Type in 6856.312163.

36) Problem #PRAHCQH "PRAHCQH - Addition of decimals - Tenths place + Thousandths place"
What is 55.5 + 3.167?

Exact Match (case sensitive):
✓ 58.667

Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.
- You must line up the decimal to do this.
- In this case we add 0 hundredths and 0 thousandths to 55.5. This does not change the value of the number.
Line up the decimal like this and add, keeping the decimal in place.

55.500
+ 3.167

- When you add you get:

55.500
+ 3.167
58.667

Type in 58.667.

37) Problem #PRAHCP8 "PRAHCP8 - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 7.6 + 447.38?
Exact Match (case sensitive):
✓ 454.98

Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.
- In this case we add 0 hundredths to 7.6. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

7.60
+ 447.38
454.98

Type in 454.98.

38) Problem #PRAHCNU "PRAHCNU - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 583.1 + 56.6?
Exact Match (case sensitive):
Hints:

- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

- In this case we line up the decimal like this and add, keeping the decimal in place.

$$583.1$$

$$+ 56.6$$

When you add you get:

$$583.1$$

$$+ 56.6$$

$$639.7$$

Type in 639.7.

- 39) Problem #PRAHCPW "PRAHCPW - 195379 - Mika - Addition of decimals - Range "

What is 54964 + 0.586581?

Exact Match (case sensitive):

$$\checkmark 54964.586581$$

Hints:

- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

- In this case we add 0 tenths, 0 hundredths, 0 thousandths, 0 ten-thousandths, 0 hundred-thousandths and 0 millionths to 54964. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

$$54964.000000$$

$$+ 0.586581$$

When you add you get:

$$54964.000000$$

$$+ 0.586581$$

$$54964.586581$$
40) Problem #PRAHCMT "PRAHCMT - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 379.76 + 478.37?
Exact Match (case sensitive):
✓ 858.13
Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.
- You must line up the decimal to do this.
- In this case we line up the decimal like this and add, keeping the decimal in place.

379.76
+ 478.37

When you add you get:

379.76
+ 478.37
858.13

Type in 858.13.

41) Problem #PRAHCQF "PRAHCQF - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 7.375 + 72.817?
Exact Match (case sensitive):
✓ 80.192
Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.
- You must line up the decimal to do this.
- In this case we line up the decimal like this and add, keeping the decimal in place.

7.375
+ 72.817

When you add you get:

7.375
+ 72.817
80.192

Type in 80.192.

42) Problem #PRAHCQP "PRAHCQP - Addition of decimals - Tenths place + Thousandths place"
What is 138.5 + 4.515?

Exact Match (case sensitive):
✔ 143.015

Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.
- You must line up the decimal to do this.
- In this case we add 0 hundredths and 0 thousandths to 138.5. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{array}{c}
138.500 \\
+ 4.515 \\
\hline
143.015 \\
\end{array}
\]

Type in 143.015.

43) Problem #PRAHCNY "PRAHCNY - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 401.3 + 168.55?

Exact Match (case sensitive):
✔ 569.85

Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.
- You must line up the decimal to do this.
- In this case we add 0 hundredths to 401.3. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{array}{c}
401.30 \\
\end{array}
\]
• When you add you get:

\[
\begin{align*}
401.30 \\
+ 168.55 \\
\hline
569.85
\end{align*}
\]

Type in 569.85.

44) Problem #PRAHCPB "PRAHCPB - Addition of decimals - Tenths place + Thousandths place"

What is 20.5 + 75.364?

Exact Match (case sensitive):

✓ 95.864

Hints:

• When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

• In this case we add 0 hundredths and 0 thousandths to 20.5. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
20.500 \\
+ 75.364 \\
\hline
95.864
\end{align*}
\]

Type in 95.864.

45) Problem #PRAHCNH "PRAHCNH - 194969 - Mika - Addition of decimals - Range .001 and 100"

What is 856.38 + 9.578?

Exact Match (case sensitive):

✓ 865.958

Hints:

• When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.
You must line up the decimal to do this.

- In this case we add 0 hundredths and 0 thousandths to 856.38. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

856.380

+ 9.578

When you add you get:

856.380

+ 9.578

865.958

Type in 865.958.

46) Problem #PRAHCMC "PRAHCMC - 194969 - Mika - Addition of decimals - Range .001 and 100"

What is 358.4 + 296.242?

Exact Match (case sensitive):

✅ 654.642

Hints:

- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

- In this case we add 0 hundredths and 0 thousandths to 358.4. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

358.400

+ 296.242

When you add you get:

358.400

+ 296.242

654.642

Type in 654.642.
47) Problem #PRAHCNX "PRAHCNX - 194969 - Mika - Addition of decimals - Range .001 and 100"

What is 157.4 + 354.76?

Exact Match (case sensitive):

✓ 512.16

Hints:

- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

- In this case we add 0 hundredths to 157.4. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

```
157.40
+ 354.76
```

When you add you get:

```
157.40
+ 354.76
512.16
```

Type in 512.16.

48) Problem #PRAHCPM "PRAHCPM - 194969 - Mika - Addition of decimals - Range .001 and 100"

What is 9.883 + 8.245?

Exact Match (case sensitive):

✓ 18.128

Hints:

- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

- In this case we line up the decimal like this and add, keeping the decimal in place.

```
9.883
+ 8.245
```

When you add you get:

```
9.883
+ 8.245
18.128
```
18.128

Type in 18.128.

49) Problem #PRAHCRF "PRAHCRF - Addition of decimals - Tenths place"

What is 43.5 + 4.3?

Exact Match (case sensitive):

- **✓ 47.8**

Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

- **Line up the decimal** like this and add, keeping the decimal in place.

```
43.5
+ 4.3
47.8
```

- When you add you get:

```
43.5
+ 4.3
47.8
```

Type in 47.8.

50) Problem #PRAHCNG "PRAHCNG - 194969 - Mika - Addition of decimals - Range .001 and 100"

What is 97.568 + 64.577?

Exact Match (case sensitive):

- **✓ 162.145**

Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

- In this case we line up the decimal like this and add, keeping the decimal in place.

```
97.568
+ 64.577
```

- When you add you get:
97.568
+ 64.577
162.145

Type in 162.145.

51) Problem #PRAHCMK "PRAHCMK - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 650.1 + 8.8?
Exact Match (case sensitive):
✓ 658.9

Hints:
• When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.
• In this case we line up the decimal like this and add, keeping the decimal in place.

650.1
+ 8.8
658.9

52) Problem #PRAHCMN "PRAHCMN - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 67.64 + 67.475?
Exact Match (case sensitive):
✓ 135.115

Hints:
• When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.
• In this case we add 0 hundredths and 0 thousandths to 67.64. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.
When you add you get:

\[
\begin{align*}
67.640 \\
+ 67.475 \\
\hline
135.115
\end{align*}
\]

Type in 135.115.

53) Problem #PRAHCM6 "PRAHCM6 - Addition of decimals - Tenths place"

What is 55.3 + 1.3?

Exact Match (case sensitive):

✓ 56.6

Hints:

- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

- Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
55.3 \\
+ 1.3 \\
\hline
56.6
\end{align*}
\]

Type in 56.6.

54) Problem #PRAHCQ6 "PRAHCQ6 - 194969 - Mika - Addition of decimals - Range .001 and 100"

What is 258.48 + 33.82?

Exact Match (case sensitive):

✓ 292.3

Hints:

- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.
You must line up the decimal to do this.

- In this case we **line up the decimal** like this and add, keeping the decimal in place.

\[
\begin{array}{c}
258.48 \\
+ 33.82 \\
\hline
292.3
\end{array}
\]

- When you add you get:

\[
\begin{array}{c}
258.48 \\
+ 33.82 \\
\hline
292.3
\end{array}
\]

Type in 292.3.

55) Problem #PRAHCNR "PRAHCNR - 194969 - Mika - Addition of decimals - Range .001 and 100"

What is 97.6 + 45.44?

Exact Match (case sensitive):

✅ 143.04

Hints:

- When adding you need to **add the ones with the ones**. The **tenths with the tenths**. AND SO ON.

You must line up the decimal to do this.

- In this case we add 0 hundredths to 97.6. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{array}{c}
97.60 \\
+ 45.44 \\
\hline
143.04
\end{array}
\]

Type in 143.04.

56) Problem #PRAHCK3 "PRAHCK3 - Addition of decimals - Tenths place + Thousandths place"
What is 5.5 + 90.211?

Exact Match (case sensitive):

✔️ 95.711

Hints:
- When adding you need to **add the ones with the ones**. The **tenths with the tenths**. AND SO ON.

You must line up the decimal to do this.
- In this case we add 0 hundredths and 0 thousandths to 5.5. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{array}{c}
5.500 \\
+ 90.211 \\
\hline
95.711
\end{array}
\]

Type in 95.711.

57) Problem #PRAHCM8 "PRAHCM8 - Addition of decimals - Hundredths place"

What is 18.95 + 18.49?

Exact Match (case sensitive):

✔️ 37.44

Hints:
- When adding you need to **add the ones with the ones**. The **tenths with the tenths**. AND SO ON.

You must line up the decimal to do this.
- **Line up the decimal** like this and add, keeping the decimal in place.

\[
\begin{array}{c}
18.95 \\
+ 18.49 \\
\hline
37.44
\end{array}
\]

- When you add you get:

\[
\begin{array}{c}
18.95 \\
+ 18.49 \\
\hline
37.44
\end{array}
\]
58) Problem #PRAHPC "PRAHPC - Addition of decimals - Tenths place + Thousandths place"
What is 87.5 + 30.786?
Exact Match (case sensitive):
✔ 118.286

Hints:
• When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.
• In this case we add 0 hundredths and 0 thousandths to 87.5. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
87.500 \\
+ 30.786 \\
\hline
118.286
\end{align*}
\]

Type in 118.286.

59) Problem #PRAHCPK "PRAHCPK - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 8.212 + 6.114?
Exact Match (case sensitive):
✔ 14.326

Hints:
• When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.
• In this case we line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
8.212 \\
+ 6.114 \\
\hline
14.326
\end{align*}
\]

Type in 14.326.
Type in 14.326.

60) Problem #PRAHCKN "PRAHCKN - Addition of decimals - Tenths place + Thousandths place"
What is 2.3 + 669.415?

Exact Match (case sensitive):
✔ 671.715

Hints:
- When adding you need to **add the ones with the ones. The tenths with the tenths. AND SO ON.**
- **You must line up the decimal to do this.**
- In this case we add 0 hundredths and 0 thousandths to 2.3. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{array}{c}
2.300 \\
+ 669.415 \\
671.715
\end{array}
\]

Type in 671.715.

61) Problem #PRAHCNQ "PRAHCNQ - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 18.8 + 77.88?

Exact Match (case sensitive):
✔ 96.68

Hints:
- When adding you need to **add the ones with the ones. The tenths with the tenths. AND SO ON.**
- **You must line up the decimal to do this.**
- In this case we add 0 hundredths to 18.8. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{array}{c}
2.300 \\
+ 669.415 \\
671.715
\end{array}
\]
When you add you get:

\[
\begin{align*}
18.80 \\
+ 77.88 \\
\hline
96.68
\end{align*}
\]

Type in 96.68.

62) Problem #PRAHCPV "PRAHCPV - 195379 - Mika - Addition of decimals - Range"
What is 30079 + 0.418526?

Exact Match (case sensitive):

✔️ 30079.418526

Hints:

- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

- In this case we add 0 tenths, 0 hundredths, 0 thousandths, 0 ten-thousandths, 0 hundred-thousandths and 0 millionths to 30079. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
30079.000000 \\
+ 0.418526 \\
\hline
30079.418526
\end{align*}
\]

Type in 30079.418526.

63) Problem #PRAHCMH "PRAHCMH - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 713.7 + 6.5?

Exact Match (case sensitive):

✔️ 720.2

Hints:
• When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.
• In this case we line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
713.7 \\
+ 6.5 \\
\end{align*}
\]

\[
720.2
\]

Type in 720.2.

64) Problem #PRAHCN2 "PRAHCN2 - Addition of decimals - Tenths place"

What is 1.5 + 4.5?

Exact Match (case sensitive):

✔️ 6

Hints:

• When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

• Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
1.5 \\
+ 4.5 \\
\end{align*}
\]

\[
6
\]

Type in 6.

65) Problem #PRAHCN7 "PRAHCN7 - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 49.82 + 1.341?

Exact Match (case sensitive):

✔ 51.161

Hints:

- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

- In this case we add 0 hundredths and 0 thousandths to 49.82. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
49.820 \\
+ 1.341 \\
\hline
51.161
\end{align*}
\]

Type in 51.161.

66) Problem #PRAHCMZ "PRAHCMZ - Addition of decimals - Tenths place + Hundredths place"

What is 13.4 + 6.72?

Exact Match (case sensitive):

✔ 20.12

Hints:

- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

- In this case we add 0 hundredths to 13.4. This does not change the value of the number. Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
13.40 \\
+ 6.72 \\
\hline
20.12
\end{align*}
\]

- When you add you get:

\[
\begin{align*}
13.40 \\
+ 6.72 \\
\hline
20.12
\end{align*}
\]
Type in 20.12.

67) Problem #PRAHCNN "PRAHCNN - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 437.735 + 13.843?

Exact Match (case sensitive):

✓ 451.578

Hints:

- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

- You must line up the decimal to do this.

- In this case we line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
437.735 \\
+ &13.843 \\
451.578
\end{align*}
\]

Type in 451.578.

68) Problem #PRAHCQS "PRAHCQS - Addition of decimals - Hundredths place"
What is 7.11 + 4.69?

Exact Match (case sensitive):

✓ 11.8

Hints:

- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

- You must line up the decimal to do this.

- Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
7.11 \\
+ &4.69 \\
11.8
\end{align*}
\]
Type in 11.8.

69) Problem #PRAHCM4 "PRAHCM4 - Addition of decimals - Ones place + Tenths place"
What is 1 + 6.7?

Exact Match (case sensitive):
✔ 7.7

Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.
- You must line up the decimal to do this.
- In this case we add 0 tenths to 1. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

```
1.0
+ 6.7
7.7
```

Type in 7.7.

70) Problem #PRAHCPF "PRAHCPF - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 24.58 + 503.557?

Exact Match (case sensitive):
✔ 528.137

Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.
- You must line up the decimal to do this.
- In this case we add 0 hundredths and 0 thousandths to 24.58. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

```
24.580
+ 503.557
528.137
```

- When you add you get:

```
24.580
503.557
528.137
```
+ 503.557

528.137

Type in 528.137.

71) Problem PRAHCPU "PRAHCPU - 195379 - Mika - Addition of decimals - Range "
What is 90967 + 0.666212?

Exact Match (case sensitive):
✓ 90967.666212

Hints:
• When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.
• In this case we add 0 tenths, 0 hundredths, 0 thousandths, 0 ten-thousandths, 0 hundred-thousandths and 0 millionths to 90967. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

90967.000000
+ 0.666212

90967.666212

Type in 90967.666212.

72) Problem PRAHCQX "PRAHCQX - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 6.44 + 377.253?

Exact Match (case sensitive):
✓ 383.693

Hints:
• When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.
• In this case we add 0 thousandths to 6.44. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

90967.000000
+ 0.666212
90967.666212

Type in 90967.666212.
When you add you get:

\[
\begin{array}{c}
6.440 \\
+ 377.253 \\
\hline
383.693
\end{array}
\]

Type in 383.693.

73) Problem #PRAHCM9 "PRAHCM9 - Addition of decimals - Hundredths place"
What is 16.51 + 16.21?

Exact Match (case sensitive):
✓ 32.72

Hints:
• When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

• Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{array}{c}
16.51 \\
+ 16.21 \\
\hline
32.72
\end{array}
\]

Type in 32.72.

74) Problem #PRAHCMP "PRAHCMP - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 20.17 + 84.636?

Exact Match (case sensitive):
✓ 104.806

Hints:
• When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

• In this case we add 0 hundredths and 0 thousandths to 20.17. This does not change the value of the number.
Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
20.170 \\
+ &84.636 \\
\end{align*}
\]

- When you add you get:

\[
\begin{align*}
20.170 \\
+ &84.636 \\
104.806 \\
\end{align*}
\]

Type in 104.806.

75) Problem #PRAHCKS "PRAHCKS - 194969 - Mika - Addition of decimals - Range .001 and 100"

What is 14.1 + 42.311?

Exact Match (case sensitive):

✓ 56.411

Hints:

- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

- In this case we add 0 hundredths and 0 thousandths to 14.1. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
14.100 \\
+ &42.311 \\
56.411 \\
\end{align*}
\]

Type in 56.411.

76) Problem #PRAHCKY "PRAHCKY - 194969 - Mika - Addition of decimals - Range .001 and 100"

What is 19.5 + 28.517?
Exact Match (case sensitive):

✅ 48.017

Hints:

- When adding you need to **add the ones with the ones. The tenths with the tenths. AND SO ON.**

You must line up the decimal to do this.

- In this case we add 0 hundredths and 0 thousandths to 19.5. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
19.500 \\
+ 28.517 \\
\rightarrow 48.017
\end{align*}
\]

Type in 48.017.

77) Problem #PRAHCN5 "PRAHCN5 - 194969 - Mika - Addition of decimals - Range .001 and 100"

What is 2.4 + 32.66?

Exact Match (case sensitive):

✅ 35.06

Hints:

- When adding you need to **add the ones with the ones. The tenths with the tenths. AND SO ON.**

You must line up the decimal to do this.

- In this case we add 0 hundredths to 2.4. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
2.40 \\
+ 32.66 \\
\rightarrow 35.06
\end{align*}
\]
Type in 35.06.

78) Problem #PRAHCK8 "PRAHCK8 - Addition of decimals - Tenths place + Thousandths place"

What is 1.4 + 4.372?

Exact Match (case sensitive):

✓ 5.772

Hints:

- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

- In this case we add 0 hundredths and 0 thousandths to 1.4. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

1.400

+ 4.372

5.772

Type in 5.772.

79) Problem #PRAHCK9 "PRAHCK9 - Addition of decimals - Tenths place + Thousandths place"

What is 4.6 + 8.806?

Exact Match (case sensitive):

✓ 13.406

Hints:

- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

- In this case we add 0 hundredths and 0 thousandths to 4.6. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

4.600
When you add you get:

\[
\begin{align*}
4.600 \\
+ 8.806 \\
13.406
\end{align*}
\]

Type in 13.406.

80) Problem #PRAHCQM "PRAHCQM - 194969 - Mika - Addition of decimals - Range .001 and 100"

What is 374.177 + 368.236?

Exact Match (case sensitive):

✔ 742.413

Hints:

- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

- In this case we line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
374.177 \\
+ 368.236
\end{align*}
\]

Type in 742.413.

81) Problem #PRAHCQQ "PRAHCQQ - Addition of decimals - Tenths place + Thousandths place"

What is 518.4 + 7.578?

Exact Match (case sensitive):

✔ 525.978

Hints:

- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

- In this case we add 0 hundredths and 0 thousandths to 518.4. This does not change the value of the
number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
518.400 \\
+ &7.578 \\
\end{align*}
\]

When you add you get:

\[
\begin{align*}
518.400 \\
+ &7.578 \\
\end{align*}
\]

525.978

Type in 525.978.

82) Problem #PRAHCQ5 "PRAHCQ5 - 194969 - Mika - Addition of decimals - Range .001 and 100"

What is 400.3 + 4.72?

Exact Match (case sensitive):

✔️ 405.02

Hints:

- When adding you need to **add the ones with the ones**. The **tenths with the tenths**. AND SO ON.

You must line up the decimal to do this.
- In this case we add 0 hundredths to 400.3. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
400.30 \\
+ &4.72 \\
\end{align*}
\]

When you add you get:

\[
\begin{align*}
400.30 \\
+ &4.72 \\
\end{align*}
\]

405.02

Type in 405.02.

83) Problem #PRAHCMJ "PRAHCMJ - 194969 - Mika - Addition of decimals - Range .001 and 100"

What is 111.6 + 7.4?
Exact Match (ignore case):

- ✔️ 119
- ✔️ 119.0

Hints:
- When adding you need to **add the ones with the ones. The tenths with the tenths. AND SO ON.**

 You must line up the decimal to do this.
- In this case we line up the decimal like this and add, keeping the decimal in place.

\[
\begin{array}{c}
111.6 \\
+ 7.4 \\
\hline
119
\end{array}
\]

Type in 119

84) Problem #PRAHCP5 "PRAHCP5 - 194969 - Mika - Addition of decimals - Range .001 and 100"

What is 3.62 + 7.781?

Exact Match (case sensitive):

- ✔️ 11.401

Hints:
- When adding you need to **add the ones with the ones. The tenths with the tenths. AND SO ON.**

 You must line up the decimal to do this.
- In this case we add 0 hundredths and 0 thousandths to 3.62. This does not change the value of the number.

 Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{array}{c}
3.620 \\
+ 7.781 \\
\hline
11.401
\end{array}
\]

- When you add you get:
Type in 11.401.

85) Problem #PRAHCMF "PRAHCMF - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 69.3 + 390.51?

Exact Match (case sensitive):

✓ 459.81

Hints:

- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

- In this case we add 0 hundredths to 69.3. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
69.30 \\
+ 390.51 \\
\end{align*}
\]

When you add you get:

\[
\begin{align*}
69.30 \\
+ 390.51 \\
459.81 \\
\end{align*}
\]

Type in 459.81.

86) Problem #PRAHCQE "PRAHCQE - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 3.232 + 93.854?

Exact Match (case sensitive):

✓ 97.086

Hints:

- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

- In this case we line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
3.232 \\
+ 93.854 \\
\end{align*}
\]

When you add you get:
3.232
+ 93.854
97.086

Type in 97.086.

87) Problem #PRAHCM7 "PRAHCM7 - Addition of decimals - Tenths place"

What is 55.1 + 6.0?

Exact Match (case sensitive):

✔ 61.1

Hints:

- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

- Line up the decimal like this and add, keeping the decimal in place.

55.1
+ 6.0

When you add you get:

```
  55.1
+  6.0
  61.1
```

Type in 61.1.

88) Problem #PRAHCQA "PRAHCQA - 194969 - Mika - Addition of decimals - Range .001 and 100"

What is 340.808 + 9.312?

Exact Match (case sensitive):

✔ 350.12

Hints:

- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

- In this case we line up the decimal like this and add, keeping the decimal in place.
When you add you get:

\[
\begin{align*}
340.808 \\
+ 9.312 \\
350.12
\end{align*}
\]

Type in 350.12.

89) Problem #PRAHCPG "PRAHCPG - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 8.45 + 471.86?

Exact Match (case sensitive):

✅ 480.31

Hints:

- When adding you need to **add the ones with the ones.** The **tenths with the tenths.** **AND SO ON.**

 You must line up the decimal to do this.

- In this case we **line up the decimal** like this and add, keeping the decimal in place.

\[
\begin{align*}
8.45 \\
+ 471.86 \\
480.31
\end{align*}
\]

Type in 480.31.

90) Problem #PRAHCPE "PRAHCPE - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 20.13 + 332.571?

Exact Match (case sensitive):

✅ 352.701

Hints:

- When adding you need to **add the ones with the ones.** The **tenths with the tenths.** **AND SO ON.**

 You must line up the decimal to do this.

- In this case we add 0 hundredths and 0 thousandths to 20.13. This does not change the value of the
number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
20.130 \\
+ 332.571 \\
\end{align*}
\]

When you add you get:

\[
\begin{align*}
20.130 \\
+ 332.571 \\
352.701 \\
\end{align*}
\]

Type in 352.701.

91) Problem #PRAHCKR "PRAHCKR - 194969 - Mika - Addition of decimals - Range .001 and 100"

What is 41.3 + 29.502?

Exact Match (case sensitive):

✔ 70.802

Hints:

- When adding you need to **add the ones with the ones. The tenths with the tenths. AND SO ON.**

You must line up the decimal to do this.

- In this case we add 0 hundredths and 0 thousandths to 41.3. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
41.300 \\
+ 29.502 \\
\end{align*}
\]

When you add you get:

\[
\begin{align*}
41.300 \\
+ 29.502 \\
70.802 \\
\end{align*}
\]

Type in 70.802.

92) Problem #PRAHCQK "PRAHCQK - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 214.808 + 406.582?

Exact Match (case sensitive):

✓ 621.39

Hints:

- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

- In this case we line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
214.808 \\
+ 406.582 \\
\hline
621.39
\end{align*}
\]

Type in 621.39.

93) Problem #PRAHCPJ "PRAHCPJ - 194969 - Mika - Addition of decimals - Range .001 and 100"

What is 3.81 + 173.34?

Exact Match (case sensitive):

✓ 177.15

Hints:

- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

- In this case we line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
3.81 \\
+ 173.34 \\
\hline
177.15
\end{align*}
\]

Type in 177.15.
94) Problem #PRAHCN9 “PRAHCN9 - 194969 - Mika - Addition of decimals - Range .001 and 100”
What is 41.51 + 4.185?

Exact Match (case sensitive):

✓ 45.695

Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.
- In this case we add 0 hundredths and 0 thousandths to 41.51. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
41.510 \\
+ 4.185 \\
\hline
45.695
\end{align*}
\]

Type in 45.695.

95) Problem #PRAHCKX “PRAHCKX - 194969 - Mika - Addition of decimals - Range .001 and 100”
What is 14.4 + 44.618?

Exact Match (case sensitive):

✓ 59.018

Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.
- In this case we add 0 hundredths and 0 thousandths to 14.4. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
14.400 \\
+ 44.618 \\
\hline
59.018
\end{align*}
\]

• When you add you get:
14.400
+ 44.618
59.018

Type in 59.018.

96) Problem #PRAHCRA "PRAHCRA - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 323.63 + 322.161?
Exact Match (case sensitive):
✓ 645.791

Hints:
• When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.
• In this case we add 0 thousandths to 323.63. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
323.630 \\
+ 322.161 \\
645.791
\end{align*}
\]

Type in 645.791.

97) Problem #PRAHCNT "PRAHCNT - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 188.1 + 62.5?
Exact Match (case sensitive):
✓ 250.6

Hints:
• When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.
• In this case we line up the decimal like this and add, keeping the decimal in place.
When you add you get:

\[
\begin{align*}
188.1 \\
+ 62.5 \\
\rightarrow 250.6
\end{align*}
\]

Type in 250.6.

98) Problem #PRAHCNC "PRAHCNC - 194969 - Mika - Addition of decimals - Range .001 and 100"

What is 9.53 + 56.682?

Exact Match (case sensitive):

✔️ 66.212

Hints:
- When adding you need to **add the ones with the ones**, **the tenths with the tenths**, and so on.
- You must line up the decimal to do this.
- In this case we add 0 hundredths and 0 thousandths to 9.53. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
9.530 \\
+ 56.682 \\
\rightarrow 66.212
\end{align*}
\]

Type in 66.212.

99) Problem #PRAHCKU "PRAHCKU - 194969 - Mika - Addition of decimals - Range .001 and 100"

What is 35.1 + 22.377?

Exact Match (case sensitive):

✔️ 57.477

Hints:
• When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.
• In this case we add 0 hundredths and 0 thousandths to 35.1. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{array}{c}
35.100 \\
+ \quad 22.377 \\
\hline
57.477
\end{array}
\]

Type in 57.477.

100) Problem #PRAHCQT "PRAHCQT - Addition of decimals - Hundredths place"
What is 4.30 + 5.68?

Exact Match (case sensitive):

✓ 9.98

Hints:
• When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{array}{c}
4.3 \\
+ \quad 5.68 \\
\hline
9.98
\end{array}
\]

Type in 9.98.

101) Problem #PRAHCPX "PRAHCPX - 195379 - Mika - Addition of decimals - Range"
What is 31938 + 0.421686?
Exact Match (case sensitive):

✓ 31938.421686

Hints:

- When adding you need to **add the ones with the ones. The tenths with the tenths. AND SO ON.**

You must line up the decimal to do this.

- In this case we add 0 tenths, 0 hundredths, 0 thousandths, 0 ten-thousandths, 0 hundred-thousandths and 0 millionths to 31938. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
31938.000000 \\
+ 0.421686
\end{align*}
\]

When you add you get:

\[
\begin{align*}
31938.000000 \\
+ 0.421686 \\
31938.421686
\end{align*}
\]

Type in 31938.421686.

102) Problem #PRAHCNF "PRAHCNF - 194969 - Mika - Addition of decimals - Range .001 and 100"

What is 48.204 + 84.672?

Exact Match (case sensitive):

✓ 132.876

Hints:

- When adding you need to **add the ones with the ones. The tenths with the tenths. AND SO ON.**

You must line up the decimal to do this.

- In this case we line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
48.204 \\
+ 84.672
\end{align*}
\]

When you add you get:

\[
\begin{align*}
48.204 \\
+ 84.672 \\
132.876
\end{align*}
\]
103) Problem #PRAHCQN "PRAHCQN - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 480.677 + 247.322?

Exact Match (case sensitive):

✔ 727.999

Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.
- You must line up the decimal to do this.
- In this case we line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
480.677 \\
+ 247.322 \\
\hline
727.999 \\
\end{align*}
\]

Type in 727.999.

104) Problem #PRAHCM3 "PRAHCM3 - Addition of decimals - Ones place + Tenths place"
What is 5 + 3.8?

Exact Match (case sensitive):

✔ 8.8

Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.
- You must line up the decimal to do this.
- In this case we add 0 tenths to 5. This does not change the value of the number.
Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
5.0 \\
+ 3.8 \\
\hline
8.8 \\
\end{align*}
\]

When you add you get:

\[
\begin{align*}
5.0 \\
+ 3.8 \\
\hline
8.8 \\
\end{align*}
\]
8.8

Type in 8.8.

105) Problem #PRAHCPZ "PRAHCPZ - 194969 - Mika - Addition of decimals - Range .001 and 100"

What is 432.61 + 34.218?

Exact Match (case sensitive):

✅ 466.828

Hints:

- When adding you need to **add the ones with the ones. The tenths with the tenths. AND SO ON.**
- You must line up the decimal to do this.
- In this case we add 0 thousandths to 432.61. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

```
432.610
+ 34.218
```

- When you add you get:

```
432.610
+ 34.218
```

Type in 466.828.

106) Problem #PRAHCMV "PRAHCMV - 194969 - Mika - Addition of decimals - Range .001 and 100"

What is 692.5 + 36.45?

Exact Match (case sensitive):

✅ 728.95

Hints:

- When adding you need to **add the ones with the ones. The tenths with the tenths. AND SO ON.**
- You must line up the decimal to do this.
- In this case we add 0 hundredths to 692.5. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

```
692.50
+ 36.45
```

Type in 728.95.
• When you add you get:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>692.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>36.45</td>
<td></td>
</tr>
<tr>
<td>728.95</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Type in 728.95.

107) Problem #PRAHCP9 "PRAHCP9 - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 1.1 + 967.52?

Exact Match (case sensitive):
✓ 968.62

Hints:
• When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.
• In this case we add 0 hundredths to 1.1. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.10</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>967.52</td>
</tr>
<tr>
<td>968.62</td>
<td></td>
</tr>
</tbody>
</table>

Type in 968.62.

108) Problem #PRAHCNK "PRAHCNK - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 723.74 + 5.715?

Exact Match (case sensitive):
✓ 729.455

Hints:
• When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.
• In this case we add 0 hundredths and 0 thousandths to 723.74. This does not change the value of the
number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
723.740 \\
+ 5.715 \\
= 729.455
\end{align*}
\]

- When you add you get:

\[
\begin{align*}
723.740 \\
+ 5.715 \\
= 729.455
\end{align*}
\]

Type in 729.455.

109) Problem "PRAHCQC - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 290.434 + 1.876?

Exact Match (case sensitive):
✓ 292.31

Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.
- In this case we line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
290.434 \\
+ 1.876 \\
= 292.31
\end{align*}
\]

Type in 292.31.

110) Problem "PRAHCMR - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 272.74 + 179.48?

Exact Match (case sensitive):
5/25/2018

Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.
- In this case we line up the decimal like this and add, keeping the decimal in place.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>272.74</td>
<td></td>
</tr>
<tr>
<td>+ 179.48</td>
<td></td>
</tr>
<tr>
<td>452.22</td>
<td></td>
</tr>
</tbody>
</table>

Type in 452.22.

11) Problem #PRAHCKK "PRAHCKK - Addition of decimals - Tenths place + Thousandths place"

What is 6.1 + 453.701?

Exact Match (case sensitive):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6.100</td>
<td></td>
</tr>
<tr>
<td>+ 453.701</td>
<td></td>
</tr>
<tr>
<td>459.801</td>
<td></td>
</tr>
</tbody>
</table>

Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.
- In this case we add 0 hundredths and 0 thousandths to 6.1. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6.100</td>
<td></td>
</tr>
<tr>
<td>+ 453.701</td>
<td></td>
</tr>
<tr>
<td>459.801</td>
<td></td>
</tr>
</tbody>
</table>
Type in 459.801.

112) Problem #PRAHCQ8 "PRAHCQ8 - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 273.81 + 55.22?

Exact Match (case sensitive):

> 329.03

Hints:

- When adding you need to **add the ones with the ones. The tenths with the tenths. AND SO ON.**
- **You must line up the decimal to do this.**
- In this case we **line up the decimal** like this and add, keeping the decimal in place.

```
  273.81
+ 55.22
```

Type in 329.03.

113) Problem #PRAHCMW "PRAHCMW - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 749.4 + 68.67?

Exact Match (case sensitive):

> 818.07

Hints:

- When adding you need to **add the ones with the ones. The tenths with the tenths. AND SO ON.**
- **You must line up the decimal to do this.**
- In this case we **add 0 hundredths to 749.4. This does not change the value of the number.**
- **Line up the decimal** like this and add, keeping the decimal in place.

```
  749.40
+  68.67
```

Type in 818.07.

- When you add you get:

```
749.40
+  68.67
---
  818.07
```
+ 68.67
818.07

Type in 818.07.

144) Problem #PRAHCQW "PRAHCQW - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 3.63 + 143.182?

Exact Match (case sensitive):

✔ 146.812

Hints:

- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.
- You must line up the decimal to do this.
- In this case we add 0 thousandths to 3.63. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{array}{c}
3.630 \\
+ 143.182 \\
\end{array}
\]

When you add you get:

\[
\begin{array}{c}
3.630 \\
\ + 143.182 \\
146.812 \\
\end{array}
\]

145) Problem #PRAHCMG "PRAHCMG - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 13.8 + 396.76?

Exact Match (case sensitive):

✔ 410.56

Hints:

- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.
- You must line up the decimal to do this.
- In this case we add 0 hundredths to 13.8. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{array}{c}
13.80 \\
\ + 396.76 \\
410.56 \\
\end{array}
\]
• When you add you get:

\[
\begin{align*}
13.80 \\
+ & \ 396.76 \\
& = 410.56
\end{align*}
\]

Type in 410.56.

116) Problem #PRAHCMEX "PRAHCMEX - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 34.6 + 279.82?

Exact Match (case sensitive):
✓ 314.42

Hints:
• When adding you need to **add the ones with the ones. The tenths with the tenths. AND SO ON.**

You must line up the decimal to do this.
• In this case we add 0 hundredths to 34.6. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
34.60 \\
+ & \ 279.82 \\
& = 314.42
\end{align*}
\]

Type in 314.42.

117) Problem #PRAHCP7X "PRAHCP7X - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 2.8 + 394.34?

Exact Match (case sensitive):
✓ 397.14

Hints:
• When adding you need to **add the ones with the ones. The tenths with the tenths. AND SO ON.**
You must line up the decimal to do this.

- In this case we add 0 hundredths to 2.8. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
2.80 \\
+ 394.34 \\
397.14
\end{align*}
\]

- When you add you get:

\[
\begin{align*}
2.80 \\
+ 394.34 \\
397.14
\end{align*}
\]

Type in 397.14.

118) Problem #PRAHCNA "PRAHCNA - Addition of decimals - Hundredths place"
What is 17.45 + 17.23?

Exact Match (case sensitive):

✔ 34.68

Hints:

- When adding you need to **add the ones with the ones. The tenths with the tenths. AND SO ON.**

You must line up the decimal to do this.

- Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
17.45 \\
+ 17.23 \\
34.68
\end{align*}
\]

Type in 34.68.

119) Problem #PRAHCPN "PRAHCPN - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 3.458 + 3.241?

Exact Match (case sensitive):

✔ 6.699
Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.
- You must line up the decimal to do this.
- In this case we line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
3.458 \\
+ 3.241
\end{align*}
\]

- When you add you get:

\[
\begin{align*}
3.458 \\
+ 3.241 \\
6.699
\end{align*}
\]

Type in 6.699.

120) Problem #PRAHCNJ "PRAHCNJ - 194969 - Mika - Addition of decimals - Range .001 and 100"

What is 127.77 + 1.183?

Exact Match (case sensitive):

✅ 128.953

Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.
- You must line up the decimal to do this.
- In this case we add 0 hundredths and 0 thousandths to 127.77. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
127.770 \\
+ 1.183
\end{align*}
\]

- When you add you get:

\[
\begin{align*}
127.770 \\
+ 1.183 \\
128.953
\end{align*}
\]

Type in 128.953.
121) Problem #PRAHCRE "PRAHCRE - Addition of decimals - Tenths place + Thousandths place"
What is 66.1 + 727.437?

Exact Match (case sensitive):

✓ 793.537

Hints:

- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

- In this case we add 0 hundredths and 0 thousandths to 66.1. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
66.100 \\
+ 727.437 \\
\rightarrow 793.537
\end{align*}
\]

Type in 793.537.

122) Problem #PRAHCQV "PRAHCQV - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 8.32 + 488.751?

Exact Match (case sensitive):

✓ 497.071

Hints:

- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

- In this case we add 0 thousandths to 8.32. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
8.320 \\
+ 488.751 \\
\rightarrow 497.071
\end{align*}
\]

Type in 497.071.
Type in 497.071.

123) Problem #PRAHCQB "PRAHCQB - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 230.144 + 2.103?

Exact Match (case sensitive):

✔ 232.247

Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.
- You must line up the decimal to do this.
- In this case we line up the decimal like this and add, keeping the decimal in place.

```
230.144
+  2.103
```

Type in 232.247.

124) Problem #PRAHCMY "PRAHCMY - Addition of decimals - Tenths place + Hundredths place"
What is 12.1 + 5.27?

Exact Match (case sensitive):

✔ 17.37

Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.
- You must line up the decimal to do this.
- In this case we add 0 hundredths to 12.1. This does not change the value of the number.
- Line up the decimal like this and add, keeping the decimal in place.

```
12.10
+  5.27
```
125) Problem #PRAHCM "PRAHCM - 194969 - Mika - Addition of decimals - Range .001 and 100"

What is 259.63 + 267.22?

Exact Match (case sensitive):

✔ 526.85

Hints:

• When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.
• In this case we line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
259.63 \\
+ 267.22 \\
\hline
526.85
\end{align*}
\]

126) Problem #PRAHCMU "PRAHCMU - 194969 - Mika - Addition of decimals - Range .001 and 100"

What is 891.3 + 82.73?

Exact Match (case sensitive):

✔ 974.03

Hints:

• When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.
• In this case we add 0 hundredths to 891.3. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

891.30
When you add you get:

891.30
+ 82.73
974.03

Type in 974.03.

**127) Problem #PRAHCN8 "PRAHCN8 - 194969 - Mika - Addition of decimals - Range .001 and 100"

What is 21.46 + 6.174?

Exact Match (case sensitive):

✓ 27.634

Hints:

- When adding you need to **add the ones with the ones. The tenths with the tenths. AND SO ON.**
- **You must line up the decimal to do this.**
- In this case we add 0 hundredths and 0 thousandths to 21.46. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

21.460
+ 6.174
27.634

Type in 27.634.

**128) Problem #PRAHCQD "PRAHCQD - 194969 - Mika - Addition of decimals - Range .001 and 100"

What is 8.388 + 24.624?

Exact Match (case sensitive):

✓ 33.012

Hints:

- When adding you need to **add the ones with the ones. The tenths with the tenths. AND SO ON.**
You must line up the decimal to do this.

- In this case we line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
8.388 \\
+ 24.624 \\
\hline
33.012
\end{align*}
\]

Type in 33.012.

129) Problem #PRAHCQY "PRAHCQY - Addition of decimals - Hundredths place"

What is 36.25 + 3.22?

Exact Match (case sensitive):

✔️ 39.47

Hints:

- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

- Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
36.25 \\
+ 3.22 \\
\hline
39.47
\end{align*}
\]

Type in 39.47.

130) Problem #PRAHCK5 "PRAHCK5 - Addition of decimals - Tenths place"

What is 43.1 + 97.2?

Exact Match (case sensitive):

✔️ 140.3

Hints:
When adding you need to \textit{add the ones with the ones}. The \textit{tenths with the tenths}. AND SO ON.

You must line up the decimal to do this.

\textbf{Line up the decimal} like this and add, keeping the decimal in place.

\begin{align*}
43.1 \\
+ 97.2 \\
\hline
140.3
\end{align*}

When you add you get:

\begin{align*}
43.1 \\
+ 97.2 \\
\hline
140.3
\end{align*}

Type in 140.3.

131) Problem #PRAHCM5 "PRAHCM5 - Addition of decimals - Tenths place"

What is 60.2 + 2.3?

\textbf{Exact Match (case sensitive):}

\checkmark 62.5

\textbf{Hints:}

- When adding you need to \textit{add the ones with the ones}. The \textit{tenths with the tenths}. AND SO ON.

You must line up the decimal to do this.

\textbf{Line up the decimal} like this and add, keeping the decimal in place.

\begin{align*}
60.2 \\
+ 2.3 \\
\hline
62.5
\end{align*}

When you add you get:

\begin{align*}
60.2 \\
+ 2.3 \\
\hline
62.5
\end{align*}

Type in 62.5.
132) Problem #PRAHCRC "PRAHCRC - Addition of decimals - Tenths place + Thousandths place"
What is 15.1 + 611.108?

Exact Match (case sensitive):

✔ 626.208

Hints:
- When adding you need to **add the ones with the ones. The tenths with the tenths. AND SO ON.**
- You must line up the decimal to do this.
- In this case we add 0 hundredths and 0 thousandths to 15.1. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
15.100 \\
+ 611.108 \\
\hline
626.208
\end{align*}
\]

Type in 626.208.

133) Problem #PRAHCN3 "PRAHCN3 - Addition of decimals - Tenths place"
What is 8.5 + 7.0?

Exact Match (case sensitive):

✔ 15.5

Hints:
- When adding you need to **add the ones with the ones. The tenths with the tenths. AND SO ON.**
- You must line up the decimal to do this.
- **Line up the decimal** like this and add, keeping the decimal in place.

\[
\begin{align*}
8.5 \\
+ 7.0 \\
\hline
15.5
\end{align*}
\]

- When you add you get:
8.5
+ 7.0
15.5

Type in 15.5.

134) Problem #PRAHCP3 "PRAHCP3 - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 262.68 + 20.777?

Exact Match (case sensitive):

✓ 283.457

Hints:

• When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

• In this case we add 0 thousandths to 262.68. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

262.680
+ 20.777
283.457

Type in 283.457

135) Problem #PRAHCRG "PRAHCRG - Addition of decimals - Tenths place"
What is 97.3 + 1.1?

Exact Match (case sensitive):

✓ 98.4

Hints:

• When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

• Line up the decimal like this and add, keeping the decimal in place.
97.3
+ 1.1

- When you add you get:

97.3
+ 1.1
98.4

Type in 98.4.

136) Problem #PRAHCK7 "PRAHCK7 - Addition of decimals - Tenths place"
What is 18.3 + 81.6?

Exact Match (case sensitive):
✔ 99.9

Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

- Line up the decimal like this and add, keeping the decimal in place.

18.3
+81.6

- When you add you get:

18.3
+81.6
99.9

Type in 99.9.

137) Problem #PRAHCNW "PRAHCNW - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 203.2 + 200.61?

Exact Match (case sensitive):
✔ 403.81

Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.
You must line up the decimal to do this.

- In this case we add 0 hundredths to 203.2. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
203.20 \\
+ 200.61 \\
\hline
403.81
\end{align*}
\]

Type in 403.81.

138) Problem #PRAHCNZ "PRAHCNZ - Addition of decimals - Tenths place"

What is 6.1 + 2.5?

Exact Match (case sensitive):

✅ 8.6

Hints:

- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

- **Line up the decimal** like this and add, keeping the decimal in place.

\[
\begin{align*}
6.1 \\
+ 2.5 \\
\hline
8.6
\end{align*}
\]

Type in 8.6.

139) Problem #PRAHCPH "PRAHCPH - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 3.17 + 167.86?

Exact Match (case sensitive):

✓ 171.03

Hints:

- When adding you need to **add the ones with the ones**. The **tenths** with the tenths. AND SO ON.

You must line up the decimal to do this.

- In this case we **line up the decimal** like this and add, keeping the decimal in place.

\[
\begin{align*}
3.17 \\
+ 167.86 \\
\hline
171.03
\end{align*}
\]

Type in 171.03.

140) Problem #PRAHCQU "PRAHCQU - Addition of decimals - Hundredths place"

What is 7.16 + 6.12?

Exact Match (case sensitive):

✓ 13.28

Hints:

- When adding you need to **add the ones with the ones**. The **tenths** with the tenths. AND SO ON.

You must line up the decimal to do this.

- **Line up the decimal** like this and add, keeping the decimal in place.

\[
\begin{align*}
7.16 \\
+ 6.12 \\
\hline
13.28
\end{align*}
\]

Type in 13.28.
141) Problem #PRAHCPY "PRAHCPY - 195379 - Mika - Addition of decimals - Range
What is 93198 + 0.546825?

Exact Match (case sensitive):

✓ 93198.546825

Hints:

- When adding you need to **add the ones with the ones. The tenths with the tenths. AND SO ON.**

You must line up the decimal to do this.

- In this case we add 0 tenths, 0 hundredths, 0 thousandths, 0 ten-thousandths, 0 hundred-thousandths and 0 millionths to 93198. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{array}{c}
93198.000000 \\
+ 0.546825 \\
\hline
93198.546825
\end{array}
\]

Type in 93198.546825.

142) Problem #PRAHCNE "PRAHCNE - 194969 - Mika - Addition of decimals - Range .001 and 100"

What is 44.453 + 97.885?

Exact Match (case sensitive):

✓ 142.338

Hints:

- When adding you need to **add the ones with the ones. The tenths with the tenths. AND SO ON.**

You must line up the decimal to do this.

- In this case we **line up the decimal** like this and add, keeping the decimal in place.

\[
\begin{array}{c}
44.453 \\
+ 97.885 \\
\hline
142.338
\end{array}
\]

- When you add you get:

\[
\begin{array}{c}
44.453 \\
+ 97.885 \\
\hline
142.338
\end{array}
\]
142.338

Type in 142.338.

143) Problem #PRAHCN6 "PRAHCN6 - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 8.1 + 53.55?

Exact Match (case sensitive):

✓ 61.65

Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.
- You must line up the decimal to do this.
- In this case we add 0 hundredths to 8.1. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{array}{c}
8.10 \\
+ 53.55 \\
\hline
61.65
\end{array}
\]

Type in 61.65.

144) Problem #PRAHCPS "PRAHCPS - 195379 - Mika - Addition of decimals - Range "
What is 20315 + 0.605217?

Exact Match (case sensitive):

✓ 20315.605217

Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.
- You must line up the decimal to do this.
- In this case we add 0 tenths, 0 hundredths, 0 thousandths, 0 ten-thousandths, 0 hundred-thousandths and 0 millionths to 20315. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{array}{c}
20315.000000
\end{array}
\]
• When you add you get:

\[
\begin{align*}
20315.000000 \\
+ 0.605217 \\
20315.605217
\end{align*}
\]

Type in 20315.605217.

145) Problem #PRAHCKW "PRAHCKW - 194969 - Mika - Addition of decimals - Range .001 and 100"

What is 26.4 + 16.776?

Exact Match (case sensitive):

✓ 43.176

Hints:
• When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.
• In this case we add 0 hundredths and 0 thousandths to 26.4. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
26.400 \\
+ 16.776 \\
43.176
\end{align*}
\]

Type in 43.176.

146) Problem #PRAHCNS "PRAHCNS - 194969 - Mika - Addition of decimals - Range .001 and 100"

What is 10.4 + 41.44?

Exact Match (case sensitive):

✓ 51.84

Hints:
• When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.
You must line up the decimal to do this.
- In this case we add 0 hundredths to 10.4. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
10.40 \\
+ 41.44 \\
\end{align*}
\]

- When you add you get:

\[
\begin{align*}
10.40 \\
+ 41.44 \\
51.84
\end{align*}
\]

Type in 51.84.

147) Problem #PRAHCP2 "PRAHCP2 - 194969 - Mika - Addition of decimals - Range .001 and 100"

What is 306.87 + 78.802?

Exact Match (case sensitive):

✓ 385.672

Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.
- You must line up the decimal to do this.
- In this case we add 0 thousandths to 306.87. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
306.870 \\
+ 78.802 \\
\end{align*}
\]

- When you add you get:

\[
\begin{align*}
306.870 \\
+ 78.802 \\
385.672
\end{align*}
\]

Type in 385.672.
148) Problem #PRAHCKH "PRAHCKH - Addition of decimals - Tenths place + Thousandths place"
What is 453.8 + 38.643?

Exact Match (case sensitive):

- 492.443

Hints:
- When adding you need to **add the ones with the ones. The tenths with the tenths. AND SO ON.**
- You must line up the decimal to do this.
- In this case we add 0 hundredths and 0 thousandths to 453.8. This does not change the value of the number.
- **Line up the decimal** like this and add, keeping the decimal in place.

```
453.800
+ 38.643
492.443
```

Type in 492.443.

149) Problem #PRAHCPA "PRAHCPA - Addition of decimals - Tenths place + Thousandths place"
What is 89.8 + 78.327?

Exact Match (case sensitive):

- 168.127

Hints:
- When adding you need to **add the ones with the ones. The tenths with the tenths. AND SO ON.**
- You must line up the decimal to do this.
- In this case we add 0 hundredths and 0 thousandths to 89.8. This does not change the value of the number.
- **Line up the decimal** like this and add, keeping the decimal in place.

```
89.800
+ 78.327
168.127
```

When you add you get:

```
89.800
```

Type in 168.127.

150) Problem #PRAHCP6 "PRAHCP6 - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 1.63 + 2.607?

Exact Match (case sensitive):
✓ 4.237

Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.
- You must line up the decimal to do this.
- In this case we add 0 hundredths and 0 thousandths to 1.63. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

<p>| 1.630 |</p>
<table>
<thead>
<tr>
<th>+ 2.607</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.237</td>
</tr>
</tbody>
</table>

Type in 2.637.

151) Problem #PRAHCKV "PRAHCKV - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 20.6 + 22.285?

Exact Match (case sensitive):
✓ 42.885

Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.
- You must line up the decimal to do this.
- In this case we add 0 hundredths and 0 thousandths to 20.6. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

<p>| 20.6 |</p>
<table>
<thead>
<tr>
<th>+ 22.285</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.885</td>
</tr>
</tbody>
</table>
When you add you get:

\[
\begin{align*}
20.600 \\
+ & \ 22.285 \\
\hline
42.885
\end{align*}
\]

Type in 42.885.

152) Problem #PRAHCRH "PRAHCRH - Addition of decimals - Tenths place"

What is 31.4 + 2.4?

Exact Match (case sensitive):

✓ 33.8

Hints:

- When adding you need to **add the ones with the ones. The tenths with the tenths. AND SO ON.**

You must line up the decimal to do this.

- **Line up the decimal** like this and add, keeping the decimal in place.

\[
\begin{align*}
31.4 \\
+ & \ 2.4 \\
\hline
33.8
\end{align*}
\]

153) Problem #PRAHCMM "PRAHCMM - 194969 - Mika - Addition of decimals - Range .001 and 100"

What is 78.78 + 65.356?

Exact Match (case sensitive):

✓ 144.136

Hints:

- When adding you need to **add the ones with the ones. The tenths with the tenths. AND SO ON.**
You must line up the decimal to do this.

- In this case we add 0 hundredths and 0 thousandths to 78.78. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{array}{c}
78.780 \\
+ 65.356 \\
\hline
144.136
\end{array}
\]

Type in 144.136.

Problem #PRAHCNM "PRAHCNM - 194969 - Mika - Addition of decimals - Range .001 and 100"

What is 469.605 + 80.487?

Exact Match (case sensitive):

✅ 550.092

Hints:
- When adding you need to add the ones with the ones. The tenths with the tenths. AND SO ON.

You must line up the decimal to do this.

- In this case we line up the decimal like this and add, keeping the decimal in place.

\[
\begin{array}{c}
469.605 \\
+ 80.487 \\
\hline
550.092
\end{array}
\]

Type in 550.092.

Problem #PRAHCND "PRAHCND - 194969 - Mika - Addition of decimals - Range .001 and 100"
What is 2.35 + 63.403?

Exact Match (case sensitive):
✓ 65.753

Hints:
- When adding you need to **add the ones with the ones. The tenths with the tenths. AND SO ON.**

You must line up the decimal to do this.
- In this case we add 0 hundredths and 0 thousandths to 2.35. This does not change the value of the number.

Line up the decimal like this and add, keeping the decimal in place.

\[
\begin{align*}
2.350 \\
+ 63.403 \\
\hline
65.753
\end{align*}
\]

• When you add you get:

\[
\begin{align*}
2.350 \\
+ 63.403 \\
\hline
65.753
\end{align*}
\]

Type in 65.753.
Problem Set "Adding or Subtracting Negative Decimals 7.NS.A.1d" id:[PSAGGM]

Select All

1) Problem #PRAH4ZP "PRAH4ZP - Subtraction - one positive, one negative number"
What is -274.11 - 375.42 ?

Algebraic Expression:
✓ -649.53
✓ -649.5

Hints:

One way to think about subtracting is to change it to adding the opposite:
One example: 1 - (-2) = 1 + 2 = 3, and
Another example: -3 - 4 = -3 + (-4) = -7

So you can rewrite -274.11 - 375.42 as -274.11 + -375.42.
Since both numbers are negative you are just adding a distance to the left with another distance to the left so just add the values.

\[-274.11 + (-375.42) = -649.53\]

Type in -649.53.

2) Problem #PRAH4YF "PRAH4YF - Subtraction - two negative numbers"
What is -217.63 - (-262.26)?

Algebraic Expression:
https://www.assistments.org/build/print/sequence/809733?mode=debug&op_scaf=false&op_hint=false&op_answer_op=false&op_answer=false&op_name=false&op_buggies=false&op_sections=false&short_answers=false

✔️ 44.63
✔️ 44.6

Hints:
Subtracting a negative is the same as adding a positive, so you can rewrite this problem as:

\[-217.63 + 262.26\]

How would you add a positive and a negative number?

When you add numbers of opposite signs, you just subtract their absolute values. The answer has the same sign as the greater number.

For example, \(-2 + 1 = -1\), and \(-3 + 4 = 1\).

So what is \(-217.63 + 262.26\)?
(Remember, this is still the same as \(-217.63 - (-262.26)\))
-217.63 - (-262.26) = -217.63 + 262.26 = 44.63. Type in 44.63.

3) Problem #PRAH4YG "PRAH4YG - Subtraction - two negative numbers"
What is -253.55 - (-485.89)?

Algebraic Expression:
- ✓ 232.34
- ✓ 232.3

Hints:
- Subtracting a negative is the same as adding a positive, so you can rewrite this problem as:

\[-253.55 + 485.89\]

How would you add a positive and a negative number?
When you add numbers of opposite signs, you just subtract their absolute values.

The answer has the same sign as the greater number.

For example, \(-2 + 1 = -1\), and \(-3 + 4 = 1\).

So what is \(-253.55 + 485.89\)?
(Remember, this is still the same as \(-253.55 - (-485.89)\))

\[-253.55 - (-485.89) = -253.55 + 485.89 = 232.34. \text{ Type in 232.34.}\]

4) Problem #PRABE83 "PRABE83 - Addition - Decimals: carry over of tenths"

What is 9.1 + -7.9?

Algebraic Expression:

✓ 1.2

Scaffold:

First, you can simplify this problem, by simplifying the signs.

9.1 - 7.9 is the same as 9.1 - 7.9
Next, to subtract the decimals, you can start by subtracting their digits at the tenths place.

What is 0.1 - 0.9?

Algebraic Expression:

-0.8

Hints:
- Let us remove the decimal points from the sum and subtract them.
 Subtract 9 from 1.
- 1 - 9 = -8
 Now, put the decimal points back.
- When we put the decimal points back we get,
 0.1 - 0.9 = -0.8

Type in -0.8.

Scaffold:
You know the difference of the tenths digits is -0.8.

Now subtract the whole numbers of the two decimals.

What is 9 - 7?

Algebraic Expression:

2

Hints:
- Start at 9 and count down 7

9 - 7 = 2
Type in 2.

Scaffold:
You know the difference of the tenths digits is -0.8, and the difference of the whole numbers is 2.

Now try the original problem.

What is 9.1 - 7.9?

Algebraic Expression:

1.2

Hints:
- The difference of the tenths digits is -0.8,
 and the difference of the whole numbers is 2.
- Add the above two differences to get the result.
 - 16 - 1 = 1.2

Thus,
9.1 - 7.9 = 1.2

Type in 1.2.
5) Problem #PRABE84 "PRABE84 - Addition - Decimals: carry over of tenths"

What is 9.2 + -7.8?

Algebraic Expression:

✓ 1.4

Scaffold:
First, you can simplify this problem, by simplifying the signs.
9.2 + -7.8 is the same as 9.2 - 7.8

Next, to subtract the decimals, you can start by subtracting their digits at the tenths place.

What is 0.2 - 0.8?

Algebraic Expression:

✓ -0.6

Hints:
- Let us remove the decimal points from the sum and subtract them.
 Subtract 8 from 2.
- 2 - 8 = -6
 Now, put the decimal points back.
- When we put the decimal points back we get,
 0.2 - 0.8 = -0.6

Type in -0.6.

Scaffold:
You know the difference of the tenths digits is -0.6.

Now subtract the whole numbers of the two decimals.

What is 9 - 7?

Algebraic Expression:

✓ 2

Hints:
- Start at 9 and count down 7
 9 - 7 = 2
 Type in 2.

Scaffold:
You know the difference of the tenths digits is -0.6,
and the difference of the whole numbers is 2.

Now try the original problem.

What is 9.2 - 7.8?

Algebraic Expression:

✓ 1.4

Hints:
- The difference of the tenths digits is -0.6,
 and the difference of the whole numbers is 2.
- Add the above two differences to get the result.
• 16 - 1 = 1.4

Thus,
9.2 - 7.8 = 1.4

Type in 1.4.

6) Problem #PRAH4Y3 "PRAH4Y3 - Addition - two negative numbers"
What is -60.838 + -415.818?

Algebraic Expression:
✓ -476.656
✓ -476.7

Hints:
• Adding two negative numbers is the same as adding two positive numbers, just with a negative answer.

For example, -1 + -2 = -3, and -3 + -4 = -7.

So what is -60.838 + -415.818?
• -60.838 + -415.818 = -476.656. Type in -476.656.

7) Problem #PRAH4Y2 "PRAH4Y2 - Addition - two negative numbers"
What is -187.882 + -462.119?

Algebraic Expression:
✓ -650.001
✓ -650.0

Hints:
• Adding two negative numbers is the same as adding two positive numbers, just with a negative answer.

For example, -1 + -2 = -3, and -3 + -4 = -7.

So what is -187.882 + -462.119?
• -187.882 + -462.119 = -650.001. Type in -650.001.

8) Problem #PRAH4ZQ "PRAH4ZQ - Subtraction - one positive, one negative number"
What is 432.62 - (-137.49)?

Algebraic Expression:
✓ 570.11
✓ 570.1
Hints:
- One way to think about subtracting is to change it to adding the opposite:
 One example: 1 - (-2) = 1 + 2 = 3, and
 Another example: -3 - 4 = -3 + -4 = -7

So you can rewrite 432.62 - (-137.49) as 432.62 + 137.49.
- Since both numbers are negative you are just adding a distance to the left with another distance to the left so just add the values.

\[
\begin{align*}
432.62 & \quad + \quad 137.49 \\
570.11 & \\
\end{align*}
\]

Type in 570.11.

9) Problem #PRAH4Z9 "PRAH4Z9 - Subtraction - one positive, one negative number"
What is -131.77 - 331.77 ?

Algebraic Expression:
✓ -463.54
✓ -463.5

Hints:
- One way to think about subtracting is to change it to adding the opposite:
 One example: 1 - (-2) = 1 + 2 = 3, and
 Another example: -3 - 4 = -3 + -4 = -7

So you can rewrite -131.77 - 331.77 as -131.77 + -331.77.
- Since both numbers are negative you are just adding a distance to the left with another distance to the left so just add the values.

\[
\begin{align*}
-131.77 & \quad + \quad -331.77 \\
-463.54 & \\
\end{align*}
\]

Type in -463.54.

10) Problem #PRAH4Z6 "PRAH4Z6 - Subtraction - one positive, one negative number"
What is 249.48 - (-392.44)?

Algebraic Expression:
Hints:

- One way to think about subtracting is to change it to adding the opposite:
 One example: 1 - (-2) = 1 + 2 = 3, and
 Another example: -3 - 4 = -3 + (-4) = -7

So you can rewrite 249.48 - (-392.44) as 249.48 + 392.44.

- Since both numbers are negative you are just adding a distance to the left with another distance to the left so just add the values.

 249.48
 + 392.44
 641.92

Type in 641.92.

11) Problem #PRAH4ZZ "PRAH4ZZ - Subtraction - one positive, one negative number"
What is -56.36 - 319.2?

Algebraic Expression:

✓ -375.56
✓ -375.6

Hints:

- One way to think about subtracting is to change it to adding the opposite:
 One example: 1 - (-2) = 1 + 2 = 3, and
 Another example: -3 - 4 = -3 + (-4) = -7

So you can rewrite -56.36 - 319.2 as -56.36 + -319.2.

- Since both numbers are negative you are just adding a distance to the left with another distance to the left so just add the values.

 -56.36
 + -319.2
 -375.56

Type in -375.56.

12) Problem #PRABE9D "PRABE9D - Addition - Decimals: carry over of tenths"
What is 1.1 + -2.9?

Algebraic Expression:
Scaffold:
First, you can simplify this problem, by simplifying the signs.
1.1 + -2.9 is the same as 1.1 - 2.9

Next, to subtract the decimals, you can start by subtracting their digits at the tenths place.

What is 0.1 - 0.9?

Algebraic Expression:

Hints:
• Let us remove the decimal points from the sum and subtract them.
 Subtract 9 from 1.
 • 1 - 9 = -8
 Now, put the decimal points back.
 • When we put the decimal points back we get,
 0.1 - 0.9 = -0.8

Type in -0.8.

Scaffold:
You know the difference of the tenths digits is -0.8.

Now subtract the whole numbers of the two decimals.

What is 1 - 2?

Algebraic Expression:

Hints:
• Start at 1 and count down 2
 1 - 2 = -1
 Type in -1.

Scaffold:
You know the difference of the tenths digits is -0.8,

and the difference of the whole numbers is -1.

Now try the original problem.

What is 1.1 - 2.9?

Algebraic Expression:

Hints:
• The difference of the tenths digits is -0.8,
 and the difference of the whole numbers is -1.
 • Add the above two differences to get the result.
 • 3 - 1 = -1.8

Thus,
1.1 - 2.9 = -1.8
Type in -1.8.

13) Problem #PRAH4ZV "PRAH4ZV - Subtraction - one positive, one negative number"
What is 220.56 - (-298.71)?

Algebraic Expression:
✓ 519.27
✓ 519.3

Hints:
• One way to think about subtracting is to change it to adding the opposite:
 One example: 1 - (-2) = 1 + 2 = 3, and
 Another example: -3 - 4 = -3 + (-4) = -7

So you can rewrite 220.56 - (-298.71) as 220.56 + 298.71.
• Since both numbers are negative you are just adding a distance to the left with another distance to the left so just add the values.

\[
\begin{align*}
220.56 \\
+ 298.71 \\
\end{align*}
\]

519.27
Type in 519.27.

14) Problem #PRAH4Z2 "PRAH4Z2 - Subtraction - one positive, one negative number"
What is -279.33 - 136.6?

Algebraic Expression:
✓ -415.93
✓ -415.9

Hints:
• One way to think about subtracting is to change it to adding the opposite:
 One example: 1 - (-2) = 1 + 2 = 3, and
 Another example: -3 - 4 = -3 + (-4) = -7

So you can rewrite -279.33 - 136.6 as -279.33 + (-136.6).
• Since both numbers are negative you are just adding a distance to the left with another distance to the left so just add the values.

\[
\begin{align*}
-279.33 \\
+ (-136.6) \\
\end{align*}
\]

-415.93
Type in -415.93.
-415.93

Type in -415.93.

15) Problem #PRABE9S "PRABE9S - Addition - Decimals: carry over of tenths"

What is $7.3 + -6.9$?

Algebraic Expression:

✓ 0.4

Scaffold:

First, you can simplify this problem, by simplifying the signs.

$7.3 + -6.9$ is the same as $7.3 - 6.9$

Next, to subtract the decimals, you can start by subtracting their digits at the tenths place.

What is $0.3 - 0.9$?

Algebraic Expression:

✓ -0.6

Hints:

- Let us remove the decimal points from the sum and subtract them.
 Subtract 9 from 3.
- $3 - 9 = -6$
 Now, put the decimal points back.
- When we put the decimal points back we get,
 $0.3 - 0.9 = -0.6$

Type in -0.6.

Scaffold:

You know the difference of the tenths digits is -0.6.

Now subtract the whole numbers of the two decimals.

What is $7 - 6$?

Algebraic Expression:

✓ 1

Hints:

- Start at 7 and count down 6

 - $7 - 6 = 1$
 Type in 1.

Scaffold:

You know the difference of the tenths digits is -0.6,

and the difference of the whole numbers is 1.

Now try the original problem.

What is $7.3 - 6.9$?
Algebraic Expression:

✓ 0.4

Hints:

- The difference of the tenths digits is -0.6, and the difference of the whole numbers is 1.
- Add the above two differences to get the result.
- 13 - 1.2 = 0.4

Thus,
7.3 - 6.9 = 0.4

Type in 0.4.

16) Problem #PRAH4ZC "PRAH4ZC - Addition - two negative numbers"
What is -113.353 + -479.091?

Algebraic Expression:

✓ -592.444
✓ -592.4

Hints:

- Adding two negative numbers is the same as adding two positive numbers, just with a negative answer.

For example, -1 + -2 = -3, and -3 + -4 = -7.

So what is -113.353 + -479.091?
- -113.353 + -479.091 = -592.444. Type in -592.444.

17) Problem #PRAH4YP "PRAH4YP - Subtraction - two negative numbers"
What is -466.73 - (-493.94)?

Algebraic Expression:

✓ 27.21
✓ 27.2

Hints:

- Subtracting a negative is the same as adding a positive, so you can rewrite this problem as:

-466.73 + 493.94

How would you add a positive and a negative number?
- When you add numbers of opposite signs, you just subtract their absolute values.

The answer has the same sign as the greater number.

For example, -2 + 1 = -1, and -3 + 4 = 1.
So what is -466.73 + 493.94?
(Remember, this is still the same as -466.73 - (-493.94))

-466.73 - (-493.94) = -466.73 + 493.94 = 27.21. Type in 27.21.

18) Problem #PRAH4ZY "PRAH4ZY - Subtraction - one positive, one negative number"
What is 48.18 - (-184.6)?

Algebraic Expression:
✓ 232.78
✓ 232.8

Hints:
- One way to think about subtracting is to change it to adding the opposite:
 One example: 1 - (-2) = 1 + 2 = 3, and
 Another example: -3 - 4 = -3 + -4 = -7

So you can rewrite 48.18 - (-184.6) as 48.18 + 184.6.
- Since both numbers are negative you are just adding a distance to the left with another distance to the left so just add the values.

\[
\begin{align*}
48.18 + 184.6 &= 232.78
\end{align*}
\]

Type in 232.78.

19) Problem #PRAH4ZF "PRAH4ZF - Addition - two negative numbers"
What is -438.376 + -191.175?

Algebraic Expression:
✓ -629.551
✓ -629.6

Hints:
- Adding two negative numbers is the same as adding two positive numbers, just with a negative answer.

For example, -1 + -2 = -3, and -3 + -4 = -7.

So what is -438.376 + -191.175?
- -438.376 + -191.175 = -629.551. Type in -629.551.

20) Problem #PRABE9U "PRABE9U - Addition - Decimals: carry over of tenths"
What is 10.5 + -6.5?

Algebraic Expression:
Scaffold:
First, you can simplify this problem, by simplifying the signs.
10.5 - 6.5 is the same as 10.5 - 6.5

Next, to subtract the decimals, you can start by subtracting their digits at the tenths place.

What is 0.5 - 0.5?

Algebraic Expression:

0

Hints:
- Let us remove the decimal points from the sum and subtract them.
 Subtract 5 from 5.
- 5 - 5 = 0
 Now, put the decimal points back.
- When we put the decimal points back we get, 0.5 - 0.5 = 0

Type in 0.

Scaffold:
You know the difference of the tenths digits is 0.

Now subtract the whole numbers of the two decimals.

What is 10 - 6?

Algebraic Expression:

4

Hints:
- Start at 10 and count down 6
- 10 - 6 = 4
 Type in 4.

Scaffold:
You know the difference of the tenths digits is 0, and the difference of the whole numbers is 4.

Now try the original problem.

What is 10.5 - 6.5?

Algebraic Expression:

4

Hints:
- The difference of the tenths digits is 0, and the difference of the whole numbers is 4.
- Add the above two differences to get the result.
- 16 - 1 = 4

Thus,
10.5 - 6.5 = 4

Type in 4.

21) Problem #PRAH4Z7 "PRAH4Z7 - Subtraction - one positive, one negative number"
What is 338.4 - (-123.15)?

Algebraic Expression:

- ✓ 461.55
- ✓ 461.6

Hints:

- One way to think about subtracting is to change it to adding the opposite:
 One example: 1 - (-2) = 1 + 2 = 3, and
 Another example: -3 - 4 = -3 + (-4) = -7

So you can rewrite 338.4 - (-123.15) as 338.4 + 123.15.

- Since both numbers are negative you are just adding a distance to the left with another distance to the left so just add the values.

\[
\begin{align*}
338.4 \\
+123.15 \\
\hline
461.55
\end{align*}
\]

Type in 461.55.

22) Problem #PRAH4Y7 "PRAH4Y7 - Addition - two negative numbers"
What is -43.013 + -462.555?

Algebraic Expression:

- ✓ -505.568
- ✓ -505.6

Hints:

- Adding two negative numbers is the same as adding two positive numbers, just with a negative answer.

For example, -1 + -2 = -3, and -3 + -4 = -7.

So what is -43.013 + -462.555?

- -43.013 + -462.555 = -505.568. Type in -505.568.

23) Problem #PRABE88 "PRABE88 - Addition - Decimals: carry over of tenths"
What is 4.6 + -7.6?

Algebraic Expression:
Scaffold:
First, you can simplify this problem, by simplifying the signs.
4.6 + (-7.6) is the same as 4.6 - 7.6

Next, to subtract the decimals, you can start by subtracting their digits at the tenths place.

What is 0.6 - 0.6?

Algebraic Expression:
0

Hints:
- Let us remove the decimal points from the sum and subtract them.
 Subtract 6 from 6.
 - 6 - 6 = 0
 Now, put the decimal points back.
 - When we put the decimal points back we get,
 0.6 - 0.6 = 0

Type in 0.

Scaffold:
You know the difference of the tenths digits is 0.

Now subtract the whole numbers of the two decimals.

What is 4 - 7?

Algebraic Expression:
-3

Hints:
- Start at 4 and count down 7
 - 4 - 7 = -3
 Type in -3.

Scaffold:
You know the difference of the tenths digits is 0,
and the difference of the whole numbers is -3.

Now try the original problem.

What is 4.6 - 7.6?

Algebraic Expression:
-3

Hints:
- The difference of the tenths digits is 0,
 and the difference of the whole numbers is -3.
- Add the above two differences to get the result.
 - 11 - 1.2 = -3

Thus,
4.6 - 7.6 = -3
Type in -3.

- 24) Problem #PRAH4YZ "PRAH4YZ - Subtraction - two negative numbers"
What is -27.29 - (-377.67)?

Algebraic Expression:
- ✓ 350.38
- ✓ 350.4

Hints:
- Subtracting a negative is the same as adding a positive, so you can rewrite this problem as:

 \[-27.29 + 377.67\]

 How would you add a positive and a negative number?
 - When you add numbers of opposite signs, you just subtract their absolute values.

 The answer has the same sign as the greater number.

 For example, -2 + 1 = -1, and -3 + 4 = 1.

 So what is -27.29 + 377.67?
 (Remember, this is still the same as -27.29 - (-377.67))
 - -27.29 - (-377.67) = -27.29 + 377.67 = 350.38. Type in 350.38.

- 25) Problem #PRABE86 "PRABE86 - Addition - Decimals: carry over of tenths"
What is 2.4 + -6.7?

Algebraic Expression:
- ✓ -4.3

Scaffold:
First, you can simplify this problem, by simplifying the signs.
2.4 + -6.7 is the same as 2.4 - 6.7

Next, to subtract the decimals, you can start by subtracting their digits at the tenths place.

What is 0.4 - 0.7?

Algebraic Expression:
- ✓ -0.3

Hints:
- Let us remove the decimal points from the sum and subtract them.
 Subtract 7 from 4.
 - 4 - 7 = -3
 Now, put the decimal points back.
 - When we put the decimal points back we get, 0.4 - 0.7 = -0.3

Type in -0.3.
Scaffold:
You know the difference of the tenths digits is -0.3.

Now subtract the whole numbers of the two decimals.

What is 2 - 6?

Algebraic Expression:

✅ -4

Hints:

- Start at 2 and count down 6

- \(2 - 6 = -4\)

Type in -4.

Scaffold:
You know the difference of the tenths digits is -0.3, and the difference of the whole numbers is -4.

Now try the original problem.

What is 2.4 - 6.7?

Algebraic Expression:

✅ -4.3

Hints:

- The difference of the tenths digits is -0.3, and the difference of the whole numbers is -4.
- Add the above two differences to get the result.
- \(8 - 1.1 = -4.3\)

Thus,
\[2.4 - 6.7 = -4.3\]

Type in -4.3.

26) Problem #PRAH4ZJ "PRAH4ZJ - Addition - two negative numbers"

What is \(-28.032 + -475.496\)?

Algebraic Expression:

✅ -503.528

✅ -503.5

Hints:

- Adding two negative numbers is the same as adding two positive numbers, just with a negative answer.

For example, \(-1 + -2 = -3\), and \(-3 + -4 = -7\).

So what is \(-28.032 + -475.496\)?

- \(-28.032 + -475.496 = -503.528\). Type in -503.528.
27) Problem #PRABE9Q "PRABE9Q - Addition - Decimals: carry over of tenths"

What is 2.1 + -5.9?

Algebraic Expression:

-3.8

Scaffold:

First, you can simplify this problem, by simplifying the signs.

2.1 + -5.9 is the same as 2.1 - 5.9

Next, to subtract the decimals, you can start by subtracting their digits at the tenths place.

What is 0.1 - 0.9?

Algebraic Expression:

-0.8

Hints:

- Let us remove the decimal points from the sum and subtract them.
 Subtract 9 from 1.
 1 - 9 = -8
 Now, put the decimal points back.
- When we put the decimal points back we get,
 0.1 - 0.9 = -0.8

Type in -0.8.

Scaffold:

You know the difference of the tenths digits is -0.8.

Now subtract the whole numbers of the two decimals.

What is 2 - 5?

Algebraic Expression:

-3

Hints:

- Start at 2 and count down 5
 - 2 - 5 = -3
 Type in -3.

Scaffold:

You know the difference of the tenths digits is -0.8,
and the difference of the whole numbers is -3.

Now try the original problem.

What is 2.1 - 5.9?

Algebraic Expression:

-3.8

Hints:

- The difference of the tenths digits is -0.8,
 and the difference of the whole numbers is -3.
• Add the above two differences to get the result.
• $7 - 1 = -3.8$

Thus,
$2.1 - 5.9 = -3.8$

Type in -3.8.

28) Problem #PRABE85 "PRABE85 - Addition - Decimals: carry over of tenths"
What is $3.3 + -9.8$?

Algebraic Expression:

-6.5

Scaffold:

First, you can simplify this problem, by simplifying the signs.
$3.3 + -9.8$ is the same as $3.3 - 9.8$

Next, to subtract the decimals, you can start by subtracting their digits at the tenths place.

What is $0.3 - 0.8$?

Algebraic Expression:

-0.5

Hints:

• Let us remove the decimal points from the sum and subtract them.
• Subtract 8 from 3.
• $3 - 8 = -5$
 Now, put the decimal points back.
• When we put the decimal points back we get,
 $0.3 - 0.8 = -0.5$

Type in -0.5.

Scaffold:

You know the difference of the tenths digits is -0.5.

Now subtract the whole numbers of the two decimals.

What is $3 - 9$?

Algebraic Expression:

-6

Hints:

• Start at 3 and count down 9
 • $3 - 9 = -6$
 Type in -6.

Scaffold:

You know the difference of the tenths digits is -0.5, and the difference of the whole numbers is -6.

Now try the original problem.
What is 3.3 - 9.8?

Algebraic Expression:

✓ -6.5

Hints:

- The difference of the tenths digits is -0.5, and the difference of the whole numbers is -6.
- Add the above two differences to get the result.
- 12 - 1.1 = -6.5

Thus,

3.3 - 9.8 = -6.5

Type in -6.5.

29) Problem #PRAH4ZS "PRAH4ZS - Subtraction - one positive, one negative number"

What is -206.41 - 348.03 ?

Algebraic Expression:

✓ -554.44

✓ -554.4

Hints:

- One way to think about subtracting is to change it to adding the opposite:
 One example: 1 - (-2) = 1 + 2 = 3, and
 Another example: -3 - 4 = -3 + -4 = -7

So you can rewrite -206.41 - 348.03 as -206.41 + -348.03.

- Since both numbers are negative you are just adding a distance to the left with another distance to the left so just add the values.

Type in -554.44.

30) Problem #PRAH4Z4 "PRAH4Z4 - Subtraction - one positive, one negative number"

What is -451.24 - 25.03 ?

Algebraic Expression:

✓ -476.27
Hints:

- One way to think about subtracting is to change it to adding the opposite:
 One example: \(1 - (-2) = 1 + 2 = 3\), and
 Another example: \(-3 - 4 = -3 + -4 = -7\)

So you can rewrite \(-451.24 - 25.03\) as \(-451.24 + -25.03\).
- Since both numbers are negative you are just adding a distance to the left with another distance to the left so just add the values.

\[
\begin{align*}
-451.24 \\
+ -25.03 \\
= -476.27
\end{align*}
\]

Type in -476.27.

31) Problem #PRABE9N "PRABE9N - Addition - Decimals: carry over of tenths"

What is 5.9 + -2.6?

Algebraic Expression:

\[\checkmark \ 3.3\]

Scaffold:

First, you can simplify this problem, by simplifying the signs.

\(5.9 + -2.6\) is the same as \(5.9 - 2.6\)

Next, to subtract the decimals, you can start by subtracting their digits at the tenths place.

What is 0.9 - 0.6?

Algebraic Expression:

\[\checkmark \ 0.3\]

Hints:

- Let us remove the decimal points from the sum and subtract them.
 Subtract 6 from 9.
 \(9 - 6 = 3\)
 Now, put the decimal points back.
 When we put the decimal points back we get, \(0.9 - 0.6 = 0.3\)

Type in 0.3.

Scaffold:

You know the difference of the tenths digits is 0.3.

Now subtract the whole numbers of the two decimals.

What is 5 - 2?

Algebraic Expression:

\[\checkmark \ 3\]

Hints:
• Start at 5 and count down 2

• 5 - 2 = 3
 Type in 3.

Scaffold:
You know the difference of the tenths digits is 0.3,
and the difference of the whole numbers is 3.

Now try the original problem.

What is 5.9 - 2.6?

Algebraic Expression:
✓ 3.3

Hints:
• The difference of the tenths digits is 0.3,
 and the difference of the whole numbers is 3.
• Add the above two differences to get the result.
 7 - 1.5 = 3.3

Thus,
5.9 - 2.6 = 3.3

Type in 3.3.

32) **Problem #PRAH4Y9** "PRAH4Y9 - Addition - two negative numbers"
What is -476.877 + -372.951?

Algebraic Expression:
✓ -849.828
✓ -849.8

Hints:
• Adding two negative numbers is the same as adding two positive numbers, just with a negative answer.

For example, -1 + -2 = -3, and -3 + -4 = -7.

So what is -476.877 + -372.951?

33) **Problem #PRABE9T** "PRABE9T - Addition - Decimals: carry over of tenths"
What is 9.4 + -9.6?

Algebraic Expression:
✓ -0.2

Scaffold:
First, you can simplify this problem, by simplifying the signs.
9.4 + -9.6 is the same as 9.4 - 9.6
Next, to subtract the decimals, you can start by subtracting their digits at the tenths place.

What is 0.4 - 0.6?

Algebraic Expression:

✓ -0.2

Hints:

- Let us remove the decimal points from the sum and subtract them. Subtract 6 from 4.
- 4 - 6 = -2
 Now, put the decimal points back.
- When we put the decimal points back we get, 0.4 - 0.6 = -0.2

Type in -0.2.

Scaffold:

You know the difference of the tenths digits is -0.2.

Now subtract the whole numbers of the two decimals.

What is 9 - 9?

Algebraic Expression:

✓ 0

Hints:

- Start at 9 and count down 9
 - 9 - 9 = 0
 Type in 0.

Scaffold:

You know the difference of the tenths digits is -0.2,

and the difference of the whole numbers is 0.

Now try the original problem.

What is 9.4 - 9.6?

Algebraic Expression:

✓ -0.2

Hints:

- The difference of the tenths digits is -0.2, and the difference of the whole numbers is 0.
 - Add the above two differences to get the result.
 - 18 - 1 = -0.2

Thus,

9.4 - 9.6 = -0.2

Type in -0.2.
What is $94.31 - (-416.88)$?

Algebraic Expression:

- 511.19
- 511.2

Hints:

- One way to think about subtracting is to change it to adding the opposite:
 - One example: $1 - (-2) = 1 + 2 = 3$, and
 - Another example: $-3 - 4 = -3 + (-4) = -7$

So you can rewrite $94.31 - (-416.88)$ as $94.31 + 416.88$.

- Since both numbers are negative you are just adding a distance to the left with another distance to the left so just add the values.

\[
\begin{align*}
94.31 \\
+ 416.88 \\
\hline
511.19
\end{align*}
\]

Type in 511.19.

35) Problem #PRAH4Z3 "PRAH4Z3 - Subtraction - one positive, one negative number"

What is $223.39 - (-267.64)$?

Algebraic Expression:

- 491.03
- 491.0

Hints:

- One way to think about subtracting is to change it to adding the opposite:
 - One example: $1 - (-2) = 1 + 2 = 3$, and
 - Another example: $-3 - 4 = -3 + (-4) = -7$

So you can rewrite $223.39 - (-267.64)$ as $223.39 + 267.64$.

- Since both numbers are negative you are just adding a distance to the left with another distance to the left so just add the values.

\[
\begin{align*}
223.39 \\
+ 267.64 \\
\hline
491.03
\end{align*}
\]

Type in 491.03.
36) Problem #PRAH4ZM "PRAH4ZM - Addition - two negative numbers"
What is \(-213.837 + -206.21\)?

Algebraic Expression:
-420.047
-420.0

Hints:
- Adding two negative numbers is the same as adding two positive numbers, just with a negative answer.

For example, \(-1 + -2 = -3\), and \(-3 + -4 = -7\).

So what is \(-213.837 + -206.21\)?
- \(-213.837 + -206.21 = -420.047\). Type in -420.047.

37) Problem #PRAH4YY "PRAH4YY - Subtraction - two negative numbers"
What is \(-88.94 - (-128.03)\)?

Algebraic Expression:
39.09
39.1

Hints:
- Subtracting a negative is the same as adding a positive, so you can rewrite this problem as:

\(-88.94 + 128.03\)

How would you add a positive and a negative number?
- **When you add numbers of opposite signs, you just subtract their absolute values.**

The answer has the same sign as the greater number.

For example, \(-2 + 1 = -1\), and \(-3 + 4 = 1\).

So what is \(-88.94 + 128.03\)?
(Remember, this is still the same as \(-88.94 - (-128.03)\))
- \(-88.94 - (-128.03) = -88.94 + 128.03 = 39.09\). Type in 39.09.

38) Problem #PRABE9G "PRABE9G - Addition - Decimals: carry over of tenths"
What is \(4.4 + -3.9\)?

Algebraic Expression:
0.5

Scaffold:
First, you can simplify this problem, by simplifying the signs.
\(4.4 + -3.9\) is the same as \(4.4 - 3.9\)
Next, to subtract the decimals, you can start by subtracting their digits at the tenths place.

What is 0.4 - 0.9?

Algebraic Expression:

✓ -0.5

Hints:

- Let us remove the decimal points from the sum and subtract them.
 Subtract 9 from 4.
- 4 - 9 = -5
 Now, put the decimal points back.
- When we put the decimal points back we get,
 0.4 - 0.9 = -0.5

Type in -0.5.

Scaffold:

You know the difference of the tenths digits is -0.5.

Now subtract the whole numbers of the two decimals.

What is 4 - 3?

Algebraic Expression:

✓ 1

Hints:

- Start at 4 and count down 3
- 4 - 3 = 1
 Type in 1.

Scaffold:

You know the difference of the tenths digits is -0.5,

and the difference of the whole numbers is 1.

Now try the original problem.

What is 4.4 - 3.9?

Algebraic Expression:

✓ 0.5

Hints:

- The difference of the tenths digits is -0.5,
 and the difference of the whole numbers is 1.
- Add the above two differences to get the result.
- 7 - 1.3 = 0.5

Thus,

4.4 - 3.9 = 0.5

Type in 0.5.
What is -282.671 + -261.414?

Algebraic Expression:

✓ -544.085
✓ -544.1

Hints:
- Adding two negative numbers is the same as adding two positive numbers, just with a negative answer.

For example, -1 + -2 = -3, and -3 + -4 = -7.

So what is -282.671 + -261.414?

40) Problem #PRABE9B "PRABE9B - Addition - Decimals: carry over of tenths"

What is 8.9 + -3.7?

Algebraic Expression:

✓ 5.2

Scaffold:
- First, you can simplify this problem, by simplifying the signs.
 8.9 + -3.7 is the same as 8.9 - 3.7

Next, to subtract the decimals, you can start by subtracting their digits at the tenths place.

What is 0.9 - 0.7?

Algebraic Expression:

✓ 0.2

Hints:
- Let us remove the decimal points from the sum and subtract them.
 Subtract 7 from 9.
- 9 - 7 = 2
 Now, put the decimal points back.
 - When we put the decimal points back we get, 0.9 - 0.7 = 0.2

Type in 0.2.

Scaffold:
- You know the difference of the tenths digits is 0.2.
- Now subtract the whole numbers of the two decimals.

What is 8 - 3?

Algebraic Expression:

✓ 5

Hints:
- Start at 8 and count down 3
- 8 - 3 = 5
Type in 5.

Scaffold:

You know the difference of the tenths digits is 0.2,

and the difference of the whole numbers is 5.

Now try the original problem.

What is 8.9 - 3.7?

Algebraic Expression:

✔ 5.2

Hints:

- The difference of the tenths digits is 0.2,
 and the difference of the whole numbers is 5.
- Add the above two differences to get the result.
- 11 - 1.6 = 5.2

Thus,

8.9 - 3.7 = 5.2

Type in 5.2.

41) Problem #PRAH4YV "PRAH4YV - Subtraction - two negative numbers"

What is -356.66 - (-472.16)?

Algebraic Expression:

✔ 115.5

✔ 115.5

Hints:

- Subtracting a negative is the same as adding a positive, so you can rewrite this problem as:

-356.66 + 472.16

How would you add a positive and a negative number?

- When you add numbers of opposite signs, you just subtract their absolute values.

The answer has the same sign as the greater number.

For example, -2 + 1 = -1, and -3 + 4 = 1.

So what is -356.66 + 472.16?

(Remember, this is still the same as -356.66 - (-472.16))

- -356.66 - (-472.16) = -356.66 + 472.16 = 115.5. Type in 115.5.

42) Problem #PRAH4YW "PRAH4YW - Subtraction - two negative numbers"

What is -188.21 - (-117.25)?
Algebraic Expression:
✓ -70.96
✓ -71.0

Hints:
- Subtracting a negative is the same as adding a positive, so you can rewrite this problem as:

\[-188.21 + 117.25\]

How would you add a positive and a negative number?
- When you add numbers of opposite signs, you just subtract their absolute values.

The answer has the same sign as the greater number.

For example, \(-2 + 1 = -1\), and \(-3 + 4 = 1\).

So what is \(-188.21 + 117.25\)?
(Remember, this is still the same as \(-188.21 - (-117.25)\))
- \(-188.21 - (-117.25) = -188.21 + 117.25 = -70.96\). Type in \(-70.96\).

43) Problem #PRAH4ZE "PRAH4ZE - Addition - two negative numbers"
What is \(-302.448 + -391.502\)?

Algebraic Expression:
✓ -693.95
✓ -694.0

Hints:
- Adding two negative numbers is the same as adding two positive numbers, just with a negative answer.

For example, \(-1 + -2 = -3\), and \(-3 + 4 = -7\).

So what is \(-302.448 + -391.502\)?
- \(-302.448 + -391.502 = -693.95\). Type in \(-693.95\).

44) Problem #PRAH4ZW "PRAH4ZW - Subtraction - one positive, one negative number"
What is \(-232.6 - 155\)?

Algebraic Expression:
✓ -387.6
✓ -387.6

Hints:
- One way to think about subtracting is to change it to adding the opposite:
 One example: \(1 - (-2) = 1 + 2 = 3\), and
Another example: -3 - 4 = -3 + -4 = -7

So you can rewrite -232.6 - 155 as -232.6 + -155.
- Since both numbers are negative you are just adding a distance to the left with another distance to the left so just add the values.

-232.6
+ -155
-387.6

Type in -387.6.

45) Problem #PRAH4YK "PRAH4YK - Subtraction - two negative numbers"
What is -63.38 - (-447.82)?

Algebraic Expression:
✔ 384.44
✔ 384.4

Hints:
- Subtracting a negative is the same as adding a positive, so you can rewrite this problem as:

-63.38 + 447.82

How would you add a positive and a negative number?
- When you add numbers of opposite signs, you just subtract their absolute values.

The answer has the same sign as the greater number.

For example, -2 + 1 = -1, and -3 + 4 = 1.

So what is -63.38 + 447.82?
(Remember, this is still the same as -63.38 - (-447.82))
- -63.38 - (-447.82) = -63.38 + 447.82 = 384.44. Type in 384.44.

46) Problem #PRAH4Y6 "PRAH4Y6 - Addition - two negative numbers"
What is -391.291 + -172.255?

Algebraic Expression:
✔ -563.546
✔ -563.5

Hints:
- Adding two negative numbers is the same as adding two positive numbers, just with a negative answer.
For example, \(-1 + -2 = -3\), and \(-3 + -4 = -7\).

So what is \(-391.291 + -172.255\)?
- \(-391.291 + -172.255 = -563.546\). Type in \(-563.546\).

47) Problem #PRAH4Z8 "PRAH4Z8 - Subtraction - one positive, one negative number"
What is 213.03 - (-351.2)?

Algebraic Expression:
- ✔ 564.23
- ✔ 564.2

Hints:
- One way to think about subtracting is to change it to adding the opposite:
- One example: \(1 - (-2) = 1 + 2 = 3\), and
- Another example: \(-3 - 4 = -3 + -4 = -7\)

So you can rewrite 213.03 - (-351.2) as 213.03 + 351.2.
- Since both numbers are negative you are just adding a distance to the left with another distance to the left so just add the values.

\[
\begin{align*}
213.03 & \\
+ 351.2 & \\
564.23 &
\end{align*}
\]

Type in 564.23.

48) Problem #PRAH4YS "PRAH4YS - Subtraction - two negative numbers"
What is \(-378.88 - (-353.5)\)?

Algebraic Expression:
- ✔ -25.38
- ✔ -25.4

Hints:
- Subtracting a negative is the same as adding a positive, so you can rewrite this problem as:

\[-378.88 + 353.5\]

How would you add a positive and a negative number?
- When you add numbers of opposite signs, you just subtract their absolute values.

The answer has the same sign as the greater number.
For example, \(-2 + 1 = -1\), and \(-3 + 4 = 1\).

So what is \(-378.88 + 353.5\)?
(Remember, this is still the same as \(-378.88 - (353.5)\))

- \(-378.88 - (353.5) = -378.88 + 353.5 = -25.38\). Type in \(-25.38\).

49) Problem #PRAH4ZA "PRAH4ZA - Addition - two negative numbers"
What is \(-161.459 + -302.061\)?

Algebraic Expression:

✓ -463.52
✓ -463.5

Hints:

- Adding two negative numbers is the same as adding two positive numbers, just with a negative answer.

For example, \(-1 + -2 = -3\), and \(-3 + -4 = -7\).

So what is \(-161.459 + -302.061\)?

- \(-161.459 + -302.061 = -463.52\). Type in \(-463.52\).

50) Problem #PRAH4ZB "PRAH4ZB - Addition - two negative numbers"
What is \(-98.048 + -32.912\)?

Algebraic Expression:

✓ -130.96
✓ -131.0

Hints:

- Adding two negative numbers is the same as adding two positive numbers, just with a negative answer.

For example, \(-1 + -2 = -3\), and \(-3 + -4 = -7\).

So what is \(-98.048 + -32.912\)?

- \(-98.048 + -32.912 = -130.96\). Type in \(-130.96\).

51) Problem #PRABE9M "PRABE9M - Addition - Decimals: carry over of tenths"
What is \(6.8 + -7.3\)?

Algebraic Expression:

✓ -0.5

Scaffold:

First, you can simplify this problem, by simplifying the signs.

\(6.8 + -7.3\) is the same as \(6.8 - 7.3\)

Next, to subtract the decimals, you can start by subtracting their digits at the tenths place.

What is \(0.8 - 0.3\)?
Algebraic Expression:

0.5

Hints:

- Let us remove the decimal points from the sum and subtract them.
 Subtract 3 from 8.
- 8 - 3 = 5
 Now, put the decimal points back.
- When we put the decimal points back we get,
 0.8 - 0.3 = 0.5

Type in 0.5.

Scaffold:

You know the difference of the tenths digits is 0.5.

Now subtract the whole numbers of the two decimals.

What is 6 - 7?

Algebraic Expression:

-1

Hints:

- Start at 6 and count down 7

 6 - 7 = -1
 Type in -1.

Scaffold:

You know the difference of the tenths digits is 0.5,

and the difference of the whole numbers is -1.

Now try the original problem.

What is 6.8 - 7.3?

Algebraic Expression:

-0.5

Hints:

- The difference of the tenths digits is 0.5,
 and the difference of the whole numbers is -1.
- Add the above two differences to get the result.
 13 - 1.1 = -0.5

Thus,

6.8 - 7.3 = -0.5

Type in -0.5.

☐ 52) Problem #PRAH4Y5 "PRAH4Y5 - Addition - two negative numbers"

What is -467.427 + -133.82?
Algebraic Expression:
✓ -601.247
✓ -601.2

Hints:
- Adding two negative numbers is the same as adding two positive numbers, just with a negative answer.

For example, -1 + -2 = -3, and -3 + -4 = -7.

So what is -467.427 + -133.82?
- -467.427 + -133.82 = -601.247. Type in -601.247.

53) Problem #PRAH4ZT "PRAH4ZT - Subtraction - one positive, one negative number"
What is 133.34 - (-405.39)?

Algebraic Expression:
✓ 538.73
✓ 538.7

Hints:
- One way to think about subtracting is to change it to adding the opposite:
 One example: 1 - (-2) = 1 + 2 = 3, and
 Another example: -3 - 4 = -3 + -4 = -7

So you can rewrite 133.34 - (-405.39) as 133.34 + 405.39.
- Since both numbers are negative you are just adding a distance to the left with another distance to the left so just add the values.

133.34
+ 405.39
538.73

Type in 538.73.

54) Problem #PRAH4YX "PRAH4YX - Subtraction - two negative numbers"
What is -267.63 - (-493.97)?

Algebraic Expression:
✓ 226.34
✓ 226.3

Hints:
- Subtracting a negative is the same as adding a positive, so you can rewrite this problem as:
-267.63 + 493.97

How would you add a positive and a negative number?

- When you add numbers of opposite signs, you just subtract their absolute values.

The answer has the same sign as the greater number.

For example, -2 + 1 = -1, and -3 + 4 = 1.

So what is -267.63 + 493.97?
(Remember, this is still the same as -267.63 - (-493.97))

-267.63 - (-493.97) = -267.63 + 493.97 = 226.34. Type in 226.34.

55) Problem #PRAH4YH "PRAH4YH - Subtraction - two negative numbers"
What is -281.66 - (-12.36)?

Algebraic Expression:
✓ -269.3
✓ -269.3

Hints:
- Subtracting a negative is the same as adding a positive, so you can rewrite this problem as:

-281.66 + 12.36

How would you add a positive and a negative number?
- When you add numbers of opposite signs, you just subtract their absolute values.

The answer has the same sign as the greater number.

For example, -2 + 1 = -1, and -3 + 4 = 1.

So what is -281.66 + 12.36?
(Remember, this is still the same as -281.66 - (-12.36))

-281.66 - (-12.36) = -281.66 + 12.36 = -269.3. Type in -269.3.

56) Problem #PRABE9P "PRABE9P - Addition - Decimals: carry over of tenths"
What is 3.9 + -9.1?

Algebraic Expression:
✓ -5.2

Scaffold:
First, you can simplify this problem, by simplifying the signs.
3.9 + -9.1 is the same as 3.9 - 9.1

Next, to subtract the decimals, you can start by subtracting their digits at the tenths place.

What is 0.9 - 0.1?

Algebraic Expression:
✓ 0.8
Hints:
- Let us remove the decimal points from the sum and subtract them.
 Subtract 1 from 9.
- 9 - 1 = 8
 Now, put the decimal points back.
- When we put the decimal points back we get,
 0.9 - 0.1 = 0.8

Type in 0.8.

Scaffold:
- You know the difference of the tenths digits is 0.8.

Now subtract the whole numbers of the two decimals.

What is 3 - 9?

Algebraic Expression:
-6

Hints:
- Start at 3 and count down 9
- 3 - 9 = -6
 Type in -6.

Scaffold:
- You know the difference of the tenths digits is 0.8,
- and the difference of the whole numbers is -6.

Now try the original problem.

What is 3.9 - 9.1?

Algebraic Expression:
-6

Hints:
- The difference of the tenths digits is 0.8,
 and the difference of the whole numbers is -6.
- Add the above two differences to get the result.
- 12 - 1 = -5.2

Thus,
3.9 - 9.1 = -5.2

Type in -5.2.

57) Problem #PRABE9E "PRABE9E - Addition - Decimals: carry over of tenths"
What is 4.2 + -1.8?

Algebraic Expression:
2.4

Scaffold:
First, you can simplify this problem, by simplifying the signs.
4.2 + -1.8 is the same as 4.2 - 1.8

Next, to subtract the decimals, you can start by subtracting their digits at the tenths place.

What is 0.2 - 0.8?

Algebraic Expression:

-0.6

Hints:

- Let us remove the decimal points from the sum and subtract them. Subtract 8 from 2.
- 2 - 8 = -6
- Now, put the decimal points back. When we put the decimal points back we get, 0.2 - 0.8 = -0.6

Type in -0.6.

Scaffold:

You know the difference of the tenths digits is -0.6.

Now subtract the whole numbers of the two decimals.

What is 4 - 1?

Algebraic Expression:

3

Hints:

- Start at 4 and count down 1
- 4 - 1 = 3
- Type in 3.

Scaffold:

You know the difference of the tenths digits is -0.6, and the difference of the whole numbers is 3.

Now try the original problem.

What is 4.2 - 1.8?

Algebraic Expression:

2.4

Hints:

- The difference of the tenths digits is -0.6, and the difference of the whole numbers is 3.
- Add the above two differences to get the result.
- 5 - 1 = 2.4

Thus,
4.2 - 1.8 = 2.4

Type in 2.4.
58) Problem #PRAH4YM "PRAH4YM - Subtraction - two negative numbers"
What is -293.26 - (-270.99)?

Algebraic Expression:

✓ -22.27
✓ -22.3

Hints:

- Subtracting a negative is the same as adding a positive, so you can rewrite this problem as:

-293.26 + 270.99

How would you add a positive and a negative number?

- When you add numbers of opposite signs, you just subtract their absolute values.

The answer has the same sign as the greater number.

For example, -2 + 1 = -1, and -3 + 4 = 1.

So what is -293.26 + 270.99?
(Remember, this is still the same as -293.26 - (-270.99))

- -293.26 - (-270.99) = -293.26 + 270.99 = -22.27. Type in -22.27.

59) Problem #PRABE9J "PRABE9J - Addition - Decimals: carry over of tenths"
What is 8.6 + -1.4?

Algebraic Expression:

✓ 7.2

Scaffold:

First, you can simplify this problem, by simplifying the signs.
8.6 + -1.4 is the same as 8.6 - 1.4

Next, to subtract the decimals, you can start by subtracting their digits at the tenths place.

What is 0.6 - 0.4?

Algebraic Expression:

✓ 0.2

Hints:

- Let us remove the decimal points from the sum and subtract them. Subtract 4 from 6.

- 6 - 4 = 2
Now, put the decimal points back.

- When we put the decimal points back we get,
0.6 - 0.4 = 0.2

Type in 0.2.

Scaffold:

You know the difference of the tenths digits is 0.2.

Now subtract the whole numbers of the two decimals.
What is 8 - 1?

Algebraic Expression:

\[7 \]

Hints:
- Start at 8 and count down 1
- \(8 - 1 = 7 \)

 Type in 7.

Scaffold:

You know the difference of the tenths digits is 0.2,

and the difference of the whole numbers is 7.

Now try the original problem.

What is 8.6 - 1.4?

Algebraic Expression:

\[7.2 \]

Hints:
- The difference of the tenths digits is 0.2,

 and the difference of the whole numbers is 7.
- Add the above two differences to get the result.
- \(9 - 1 = 7.2 \)

Thus,

\[8.6 - 1.4 = 7.2 \]

Type in 7.2.

60) Problem #PRAH4YQ “PRAH4YQ - Subtraction - two negative numbers”

What is -48.15 - (-69.75)?

Algebraic Expression:

\[21.6 \]

Hints:
- Subtracting a negative is the same as adding a positive, so you can rewrite this problem as:

 \[-48.15 + 69.75\]

How would you add a positive and a negative number?
- When you add numbers of opposite signs, you just subtract their absolute values.

The answer has the same sign as the greater number.

For example, -2 + 1 = -1, and -3 + 4 = 1.
So what is -48.15 + 69.75?
(Remember, this is still the same as -48.15 - (-69.75))

61) Problem #PRABE9Y "PRABE9Y - Addition - Decimals: carry over of tenths"
What is 7.9 + -7.9?

Algebraic Expression:
✓ 0

Scaffold:
First, you can simplify this problem, by simplifying the signs.
7.9 + -7.9 is the same as 7.9 - 7.9

Next, to subtract the decimals, you can start by subtracting their digits at the tenths place.

What is 0.9 - 0.9?

Algebraic Expression:
✓ 0

Hints:
- Let us remove the decimal points from the sum and subtract them.
 Subtract 9 from 9.
- 9 - 9 = 0
 Now, put the decimal points back.
- When we put the decimal points back we get,
 0.9 - 0.9 = 0

Type in 0.

Scaffold:
You know the difference of the tenths digits is 0.
Now subtract the whole numbers of the two decimals.

What is 7 - 7?

Algebraic Expression:
✓ 0

Hints:
- Start at 7 and count down 7
 - 7 - 7 = 0
 Type in 0.

Scaffold:
You know the difference of the tenths digits is 0,
and the difference of the whole numbers is 0.

Now try the original problem.

What is 7.9 - 7.9?

Algebraic Expression:
0
Hints:

- The difference of the tenths digits is 0, and the difference of the whole numbers is 0.
- Add the above two differences to get the result.
- $14 - 1.8 = 0$

Thus,
$7.9 - 7.9 = 0$

Type in 0.

62) Problem #PRAH4ZU "PRAH4ZU - Subtraction - one positive, one negative number"
What is $-34.41 - 294.88$?

Algebraic Expression:

- -329.29
- -329.3

Hints:

- One way to think about subtracting is to change it to adding the opposite:
 One example: $1 - (-2) = 1 + 2 = 3$, and
 Another example: $-3 - 4 = -3 + -4 = -7$

So you can rewrite $-34.41 - 294.88$ as $-34.41 + -294.88$.

- Since both numbers are negative you are just adding a distance to the left with another distance to the left so just add the values.

 $\begin{align*}
 -34.41 + &-294.88 \\
 &\quad -329.29
 \end{align*}$

Type in -329.29.

63) Problem #PRABE9W "PRABE9W - Addition - Decimals: carry over of tenths"
What is $6.7 + -2.6$?

Algebraic Expression:

- 4.1

Scaffold:
First, you can simplify this problem, by simplifying the signs.
$6.7 + -2.6$ is the same as $6.7 - 2.6$

Next, to subtract the decimals, you can start by subtracting their digits at the tenths place.

What is $0.7 - 0.6$?
Algebraic Expression:
✓ 0.1

Hints:
• Let us remove the decimal points from the sum and subtract them. Subtract 6 from 7.
• 7 - 6 = 1
 Now, put the decimal points back.
• When we put the decimal points back we get,
 0.7 - 0.6 = 0.1

Type in 0.1.

Scaffold:
You know the difference of the tenths digits is 0.1.

Now subtract the whole numbers of the two decimals.

What is 6 - 2?

Algebraic Expression:
✓ 4

Hints:
• Start at 6 and count down 2
 • 6 - 2 = 4
 Type in 4.

Scaffold:
You know the difference of the tenths digits is 0.1,

and the difference of the whole numbers is 4.

Now try the original problem.

What is 6.7 - 2.6?

Algebraic Expression:
✓ 4.1

Hints:
• The difference of the tenths digits is 0.1,
 and the difference of the whole numbers is 4.
• Add the above two differences to get the result.
 • 8 - 1.3 = 4.1

Thus,
6.7 - 2.6 = 4.1

Type in 4.1.

64) Problem #PRAH4YT "PRAH4YT - Subtraction - two negative numbers"
What is -341.06 - (-10.5)?
Algebraic Expression:

-330.56
-330.6

Hints:
- Subtracting a negative is the same as adding a positive, so you can rewrite this problem as:

-341.06 + 10.5

How would you add a positive and a negative number?
- When you add numbers of opposite signs, you just subtract their absolute values.

The answer has the same sign as the greater number.

For example, -2 + 1 = -1, and -3 + 4 = 1.

So what is -341.06 + 10.5?
(Remember, this is still the same as -341.06 - (-10.5))
- -341.06 - (-10.5) = -341.06 + 10.5 = -330.56. Type in -330.56.

65) Problem #PRABE9C "PRABE9C - Addition - Decimals: carry over of tenths"

What is 6.9 + -10.1?

Algebraic Expression:

-3.2

Scaffold:
First, you can simplify this problem, by simplifying the signs.
6.9 + -10.1 is the same as 6.9 - 10.1

Next, to subtract the decimals, you can start by subtracting their digits at the tenths place.

What is 0.9 - 0.1?

Algebraic Expression:
0.8

Hints:
- Let us remove the decimal points from the sum and subtract them.
 Subtract 1 from 9.
- 9 - 1 = 8
 Now, put the decimal points back.
- When we put the decimal points back we get,
 0.9 - 0.1 = 0.8

Type in 0.8.

Scaffold:
You know the difference of the tenths digits is 0.8.

Now subtract the whole numbers of the two decimals.

What is 6 - 10?

Algebraic Expression:
-4

Hints:
- Start at 6 and count down 10
 - 6 - 10 = -4
 Type in -4.

Scaffold:
You know the difference of the tenths digits is 0.8,
and the difference of the whole numbers is -4.

Now try the original problem.
What is 6.9 - 10.1?

Algebraic Expression:

-3.2

Hints:
- The difference of the tenths digits is 0.8,
 and the difference of the whole numbers is -4.
- Add the above two differences to get the result.
 - 16 - 1 = -3.2

Thus,
6.9 - 10.1 = -3.2

Type in -3.2.

66) Problem #PRAH4ZD "PRAH4ZD - Addition - two negative numbers"
What is -98.886 + -466.668?

Algebraic Expression:

-565.554

-565.6

Hints:
- Adding two negative numbers is the same as adding two positive numbers, just with a negative answer.
 For example, -1 + -2 = -3, and -3 + -4 = -7.

So what is -98.886 + -466.668?
 - -98.886 + -466.668 = -565.554. Type in -565.554.

67) Problem #PRABE9X "PRABE9X - Addition - Decimals: carry over of tenths"
What is 10.8 + -8.4?

Algebraic Expression:

2.4

Scaffold:
First, you can simplify this problem, by simplifying the signs.
10.8 + -8.4 is the same as 10.8 - 8.4

Next, to subtract the decimals, you can start by subtracting their digits at the tenths place.

What is 0.8 - 0.4?

Algebraic Expression:

☑ 0.4

Hints:
- Let us remove the decimal points from the sum and subtract them.
- Subtract 4 from 8.
- 8 - 4 = 4
- Now, put the decimal points back.
- When we put the decimal points back we get,

 0.8 - 0.4 = 0.4

Type in 0.4.

Scaffold:

You know the difference of the tenths digits is 0.4.

Now subtract the whole numbers of the two decimals.

What is 10 - 8?

Algebraic Expression:

☑ 2

Hints:
- Start at 10 and count down 8

- 10 - 8 = 2
- Type in 2.

Scaffold:

You know the difference of the tenths digits is 0.4,
and the difference of the whole numbers is 2.

Now try the original problem.

What is 10.8 - 8.4?

Algebraic Expression:

☑ 2.4

Hints:
- The difference of the tenths digits is 0.4,
and the difference of the whole numbers is 2.
- Add the above two differences to get the result.
- 18 - 1.2 = 2.4

Thus,
10.8 - 8.4 = 2.4

Type in 2.4.
68) Problem #PRAH4ZR "PRAH4ZR - Subtraction - one positive, one negative number"
What is -479.39 - 463.07?

Algebraic Expression:

-942.46

-942.5

Hints:

- One way to think about subtracting is to change it to adding the opposite:

 One example: 1 - (-2) = 1 + 2 = 3, and

 Another example: -3 - 4 = -3 + (-4) = -7

So you can rewrite -479.39 - 463.07 as -479.39 + (-463.07).

- Since both numbers are negative you are just adding a distance to the left with another distance to the left so just add the values.

-479.39

+ -463.07

-942.46

Type in -942.46.

69) Problem #PRAH4YN "PRAH4YN - Subtraction - two negative numbers"
What is -367.39 - (-79.21)?

Algebraic Expression:

-288.18

-288.2

Hints:

- Subtracting a negative is the same as adding a positive, so you can rewrite this problem as:

-367.39 + 79.21

How would you add a positive and a negative number?

- When you add numbers of opposite signs, you just subtract their absolute values.

The answer has the same sign as the greater number.

For example, -2 + 1 = -1, and -3 + 4 = 1.

So what is -367.39 + 79.21?
(Remember, this is still the same as -367.39 - (-79.21))

70) Problem #PRABE9A "PRABE9A - Addition - Decimals: carry over of tenths"

What is 5.8 + -6.3?

Algebraic Expression:

-0.5

Scaffold:

First, you can simplify this problem, by simplifying the signs.

5.8 + -6.3 is the same as 5.8 - 6.3

Next, to subtract the decimals, you can start by subtracting their digits at the tenths place.

What is 0.8 - 0.3?

Algebraic Expression:

0.5

Hints:

- Let us remove the decimal points from the sum and subtract them.
 Subtract 3 from 8.
 - 8 - 3 = 5
 Now, put the decimal points back.
 - When we put the decimal points back we get, 0.8 - 0.3 = 0.5

Type in 0.5.

Scaffold:

You know the difference of the tenths digits is 0.5.

Now subtract the whole numbers of the two decimals.

What is 5 - 6?

Algebraic Expression:

-1

Hints:

- Start at 5 and count down 6
 - 5 - 6 = -1
 Type in -1.

Scaffold:

You know the difference of the tenths digits is 0.5,

and the difference of the whole numbers is -1.

Now try the original problem.

What is 5.8 - 6.3?

Algebraic Expression:

-0.5

Hints:

- The difference of the tenths digits is 0.5,
 and the difference of the whole numbers is -1.
Add the above two differences to get the result.

11 - 1.1 = -0.5

Thus,

5.8 - 6.3 = -0.5

Type in -0.5.

71) Problem #PRABE9F "PRABE9F - Addition - Decimals: carry over of tenths"

What is 10.3 + -4.9?

Algebraic Expression:

5.4

Scaffold:

First, you can simplify this problem, by simplifying the signs.

10.3 + -4.9 is the same as 10.3 - 4.9

Next, to subtract the decimals, you can start by subtracting their digits at the tenths place.

What is 0.3 - 0.9?

Algebraic Expression:

-0.6

Hints:

- Let us remove the decimal points from the sum and subtract them.
- Subtract 9 from 3.
- 3 - 9 = -6
- Now, put the decimal points back.
- When we put the decimal points back we get,
- 0.3 - 0.9 = -0.6

Type in -0.6.

Scaffold:

You know the difference of the tenths digits is -0.6.

Now subtract the whole numbers of the two decimals.

What is 10 - 4?

Algebraic Expression:

6

Hints:

- Start at 10 and count down 4
- 10 - 4 = 6
- Type in 6.

Scaffold:

You know the difference of the tenths digits is -0.6, and the difference of the whole numbers is 6.

Now try the original problem.
What is 10.3 - 4.9?

Algebraic Expression:

✓ 5.4

Hints:

- The difference of the tenths digits is -0.6, and the difference of the whole numbers is 6.
- Add the above two differences to get the result.
- 14 - 1.2 = 5.4

Thus,

10.3 - 4.9 = 5.4

Type in 5.4.

72) Problem #PRAH4YU "PRAH4YU - Subtraction - two negative numbers"
What is -438.21 - (-466.82)?

Algebraic Expression:

✓ 28.61
✓ 28.6

Hints:

- Subtracting a negative is the same as adding a positive, so you can rewrite this problem as:

-438.21 + 466.82

How would you add a positive and a negative number?
- When you add numbers of opposite signs, you just subtract their absolute values.

The answer has the same sign as the greater number.

For example, -2 + 1 = -1, and -3 + 4 = 1.

So what is -438.21 + 466.82?
(Remember, this is still the same as -438.21 - (-466.82))

- -438.21 - (-466.82) = -438.21 + 466.82 = 28.61. Type in 28.61.

73) Problem #PRABE9K "PRABE9K - Addition - Decimals: carry over of tenths"
What is 8.7 + -3.3?

Algebraic Expression:

✓ 5.4

Scaffold:

First, you can simplify this problem, by simplifying the signs.
8.7 + -3.3 is the same as 8.7 - 3.3

Next, to subtract the decimals, you can start by subtracting their digits at the tenths place.

What is 0.7 - 0.3?
Algebraic Expression:

✓ 0.4

Hints:
- Let us remove the decimal points from the sum and subtract them.
 Subtract 3 from 7.
- 7 - 3 = 4
 Now, put the decimal points back.
- When we put the decimal points back we get,
 0.7 - 0.3 = 0.4

Type in 0.4.

Scaffold:

You know the difference of the tenths digits is 0.4.

Now subtract the whole numbers of the two decimals.

What is 8 - 3?

Algebraic Expression:

✓ 5

Hints:
- Start at 8 and count down 3

 8 - 3 = 5
 Type in 5.

Scaffold:

You know the difference of the tenths digits is 0.4,
and the difference of the whole numbers is 5.

Now try the original problem.

What is 8.7 - 3.3?

Algebraic Expression:

✓ 5.4

Hints:
- The difference of the tenths digits is 0.4,
 and the difference of the whole numbers is 5.
- Add the above two differences to get the result.
 11 - 1 = 5.4

Thus,

8.7 - 3.3 = 5.4

Type in 5.4.

74) Problem #PRABE87 "PRABE87 - Addition - Decimals: carry over of tenths"
What is 10.5 + -6.9?

Algebraic Expression:

✓ 3.6
Scaffold:
First, you can simplify this problem, by simplifying the signs.
10.5 + -6.9 is the same as 10.5 - 6.9

Next, to subtract the decimals, you can start by subtracting their digits at the tenths place.

What is 0.5 - 0.9?

Algebraic Expression:

✓ -0.4

Hints:
- Let us remove the decimal points from the sum and subtract them.
 Subtract 9 from 5.
- 5 - 9 = -4
 Now, put the decimal points back.
- When we put the decimal points back we get,
 0.5 - 0.9 = -0.4

Type in -0.4.

Scaffold:
You know the difference of the tenths digits is -0.4.

Now subtract the whole numbers of the two decimals.

What is 10 - 6?

Algebraic Expression:

✓ 4

Hints:
- Start at 10 and count down 6
- 10 - 6 = 4
 Type in 4.

Scaffold:
You know the difference of the tenths digits is -0.4,
and the difference of the whole numbers is 4.

Now try the original problem.

What is 10.5 - 6.9?

Algebraic Expression:

✓ 3.6

Hints:
- The difference of the tenths digits is -0.4,
 and the difference of the whole numbers is 4.
- Add the above two differences to get the result.
- 16 - 1.4 = 3.6

Thus,
10.5 - 6.9 = 3.6
Type in 3.6.

75) Problem #PRABE9H "PRABE9H - Addition - Decimals: carry over of tenths"
What is 10.5 \(+\) -10.6?

Algebraic Expression:
-0.1

Scaffold:
First, you can simplify this problem, by simplifying the signs.
10.5 \(+\) -10.6 is the same as 10.5 \(-\) 10.6

Next, to subtract the decimals, you can start by subtracting their digits at the tenths place.

What is 0.5 \(-\) 0.6?

Algebraic Expression:
-0.1

Hints:
- Let us remove the decimal points from the sum and subtract them. Subtract 6 from 5.
- 5 \(-\) 6 = -1
 Now, put the decimal points back.
- When we put the decimal points back we get, 0.5 \(-\) 0.6 = -0.1

Type in -0.1.

Scaffold:
You know the difference of the tenths digits is -0.1.

Now subtract the whole numbers of the two decimals.

What is 10 \(-\) 10?

Algebraic Expression:
0

Hints:
- Start at 10 and count down 10
- 10 \(-\) 10 = 0
 Type in 0.

Scaffold:
You know the difference of the tenths digits is -0.1, and the difference of the whole numbers is 0.

Now try the original problem.

What is 10.5 \(-\) 10.6?

Algebraic Expression:
-0.1

Hints:
- The difference of the tenths digits is -0.1,
and the difference of the whole numbers is 0.

- Add the above two differences to get the result.
 - 20 - 1.1 = -0.1

Thus,
10.5 - 10.6 = -0.1

Type in -0.1.

76) Problem #PRAH4ZB "PRAH4ZB - Addition - two negative numbers"

What is -466.25 + -91.528?

Algebraic Expression:

-557.778
-557.8

Hints:

- Adding two negative numbers is the same as adding two positive numbers, just with a negative answer.

For example, -1 + -2 = -3, and -3 + -4 = -7.

So what is -466.25 + -91.528?
-466.25 + -91.528 = -557.778. Type in -557.778.

77) Problem #PRAH4YJ "PRAH4YJ - Subtraction - two negative numbers"

What is -86.2 - (-0.8)?

Algebraic Expression:

-85.4

Hints:

- Subtracting a negative is the same as adding a positive, so you can rewrite this problem as:

-86.2 + 0.8

How would you add a positive and a negative number?
- When you add numbers of opposite signs, you just subtract their absolute values.

The answer has the same sign as the greater number.

For example, -2 + 1 = -1, and -3 + 4 = 1.

So what is -86.2 + 0.8?
(Remember, this is still the same as -86.2 - (-0.8))

-86.2 - (-0.8) = -86.2 + 0.8 = -85.4. Type in -85.4.
78) Problem #PRABE9V "PRABE9V - Addition - Decimals: carry over of tenths"

What is 1.6 + -7.8?

Algebraic Expression:

✓ -6.2

Scaffold:

First, you can simplify this problem, by simplifying the signs.

1.6 + -7.8 is the same as 1.6 - 7.8

Next, to subtract the decimals, you can start by subtracting their digits at the tenths place.

What is 0.6 - 0.8?

Algebraic Expression:

✓ -0.2

Hints:

- Let us remove the decimal points from the sum and subtract them.
 Subtract 8 from 6.
- 6 - 8 = -2
 Now, put the decimal points back.
- When we put the decimal points back we get,
 0.6 - 0.8 = -0.2

Type in -0.2.

Scaffold:

You know the difference of the tenths digits is -0.2.

Now subtract the whole numbers of the two decimals.

What is 1 - 7?

Algebraic Expression:

✓ -6

Hints:

- Start at 1 and count down 7
 1 - 7 = -6
 Type in -6.

Scaffold:

You know the difference of the tenths digits is -0.2,

and the difference of the whole numbers is -6.

Now try the original problem.

What is 1.6 - 7.8?

Algebraic Expression:

✓ -6.2

Hints:

- The difference of the tenths digits is -0.2,
 and the difference of the whole numbers is -6.
- Add the above two differences to get the result.
• 8 - 1.4 = -6.2

Thus,
1.6 - 7.8 = -6.2

Type in -6.2.

79) Problem #PRAH4ZN "PRAH4ZN - Addition - two negative numbers"
What is -492.584 + -11.805?

Algebraic Expression:
✓ -504.389
✓ -504.4

Hints:
• Adding two negative numbers is the same as adding two positive numbers, just with a negative answer.

For example, -1 + -2 = -3, and -3 + -4 = -7.

So what is -492.584 + -11.805?
• -492.584 + -11.805 = -504.389. Type in -504.389.

80) Problem #PRABE89 "PRABE89 - Addition - Decimals: carry over of tenths"
What is 7.7 + -10.6?

Algebraic Expression:
✓ -2.9

Scaffold:
First, you can simplify this problem, by simplifying the signs.
7.7 + -10.6 is the same as 7.7 - 10.6

Next, to subtract the decimals, you can start by subtracting their digits at the tenths place.

What is 0.7 - 0.6?

Algebraic Expression:
✓ 0.1

Hints:
• Let us remove the decimal points from the sum and subtract them.
Subtract 6 from 7.
• 7 - 6 = 1
Now, put the decimal points back.
• When we put the decimal points back we get,
0.7 - 0.6 = 0.1

Type in 0.1.

Scaffold:
You know the difference of the tenths digits is 0.1.

Now subtract the whole numbers of the two decimals.
What is 7 - 10?

Algebraic Expression:

✓ -3

Hints:

- Start at 7 and count down 10
- 7 - 10 = -3
 Type in -3.

Scaffold:

You know the difference of the tenths digits is 0.1, and the difference of the whole numbers is -3.

Now try the original problem.

What is 7.7 - 10.6?

Algebraic Expression:

✓ -2.9

Hints:

- The difference of the tenths digits is 0.1, and the difference of the whole numbers is -3.
- Add the above two differences to get the result.
- 17 - 1.3 = -2.9

Thus,

7.7 - 10.6 = -2.9

Type in -2.9.

81) Problem #PRAH4Y8 "PRAH4Y8 - Addition - two negative numbers"

What is -132.571 + -310.224?

Algebraic Expression:

✓ -442.795
✓ -442.8

Hints:

- Adding two negative numbers is the same as adding two positive numbers, just with a negative answer.

 For example, -1 + -2 = -3, and -3 + -4 = -7.

So what is -132.571 + -310.224?

- -132.571 + -310.224 = -442.795. Type in -442.795.

82) Problem #PRAH4ZK "PRAH4ZK - Addition - two negative numbers"

What is -267.766 + -257.288?
Algebraic Expression:

-525.054
-525.1

Hints:
- Adding two negative numbers is the same as adding two positive numbers, just with a negative answer.

For example, -1 + -2 = -3, and -3 + -4 = -7.

So what is -267.766 + -257.288?
-267.766 + -257.288 = -525.054. Type in -525.054.

83) Problem #PRAH4Z5 "PRAH4Z5 - Subtraction - one positive, one negative number"

What is 221.01 - (-466.01)?

Algebraic Expression:

687.02
687.0

Hints:
- One way to think about subtracting is to change it to adding the opposite:
One example: 1 - (-2) = 1 + 2 = 3, and
Another example: -3 - 4 = -3 + -4 = -7

So you can rewrite 221.01 - (-466.01) as 221.01 + 466.01.
- Since both numbers are negative you are just adding a distance to the left with another distance to the left so just add the values.

221.01
+ 466.01
687.02

Type in 687.02.

84) Problem #PRABE9Z "PRABE9Z - Addition - Decimals: carry over of tenths"

What is 7.9 + -1.1?

Algebraic Expression:

6.8

Scaffold:
First, you can simplify this problem, by simplifying the signs.
7.9 + -1.1 is the same as 7.9 - 1.1

Next, to subtract the decimals, you can start by subtracting their digits at the tenths place.
What is 0.9 - 0.1?

Algebraic Expression:

☑️ 0.8

Hints:
- Let us remove the decimal points from the sum and subtract them. Subtract 1 from 9.
- 9 - 1 = 8
 Now, put the decimal points back.
- When we put the decimal points back we get, 0.9 - 0.1 = 0.8

Type in 0.8.

Scaffold:
- You know the difference of the tenths digits is 0.8.
- Now subtract the whole numbers of the two decimals.

What is 7 - 1?

Algebraic Expression:

☑️ 6

Hints:
- Start at 7 and count down 1

- 7 - 1 = 6
 Type in 6.

Scaffold:
- You know the difference of the tenths digits is 0.8,
- and the difference of the whole numbers is 6.

Now try the original problem.

What is 7.9 - 1.1?

Algebraic Expression:

☑️ 6.8

Hints:
- The difference of the tenths digits is 0.8,
 and the difference of the whole numbers is 6.
- Add the above two differences to get the result.
- 8 - 1 = 6.8

Thus,

7.9 - 1.1 = 6.8

Type in 6.8.

85) Problem #PRAH4Y4 "PRAH4Y4 - Addition - two negative numbers"

What is -56.659 + -350.995?
Algebraic Expression:

-407.654
-407.7

Hints:

- Adding two negative numbers is the same as adding two positive numbers, just with a negative answer.

For example, -1 + -2 = -3, and -3 + -4 = -7.

So what is -56.659 + -350.995?

86) Problem #PRABE9R "PRABE9R - Addition - Decimals: carry over of tenths"

What is 7.2 + -4.8?

Algebraic Expression:

2.4

Scaffold:

First, you can simplify this problem, by simplifying the signs.
7.2 + -4.8 is the same as 7.2 - 4.8

Next, to subtract the decimals, you can start by subtracting their digits at the tenths place.

What is 0.2 - 0.8?

Algebraic Expression:

-0.6

Hints:

- Let us remove the decimal points from the sum and subtract them.
 Subtract 8 from 2.

- 2 - 8 = -6
Now, put the decimal points back.
- When we put the decimal points back we get,
 0.2 - 0.8 = -0.6

Type in -0.6.

Scaffold:

You know the difference of the tenths digits is -0.6.

Now subtract the whole numbers of the two decimals.

What is 7 - 4?

Algebraic Expression:

3

Hints:

- Start at 7 and count down 4

 - 7 - 4 = 3
Type in 3.
Scaffold:
You know the difference of the tenths digits is -0.6, and the difference of the whole numbers is 3.

Now try the original problem.

What is 7.2 - 4.8?

Algebraic Expression:

2.4

Hints:
- The difference of the tenths digits is -0.6, and the difference of the whole numbers is 3.
- Add the above two differences to get the result.
- 11 - 1 = 2.4

Thus,
7.2 - 4.8 = 2.4

Type in 2.4.

87) Problem #PRAH4YR "PRAH4YR - Subtraction - two negative numbers"
What is -89.94 - (-466.83)?

Algebraic Expression:

376.89

Hints:
- Subtracting a negative is the same as adding a positive, so you can rewrite this problem as:
-89.94 + 466.83

How would you add a positive and a negative number?
- When you add numbers of opposite signs, you just subtract their absolute values.

The answer has the same sign as the greater number.

For example, -2 + 1 = -1, and -3 + 4 = 1.

So what is -89.94 + 466.83?
(Remember, this is still the same as -89.94 - (-466.83))
- -89.94 - (-466.83) = -89.94 + 466.83 = 376.89. Type in 376.89.
Problem Set "Adding and Subtracting Mixed Fractions 5.NF.A.1" id:PSABKKW

Select All

1) Problem #PRAJEBU "PRAJEBU - 224054 - Subtracting Mixed Numbers"
Find the difference:

\[
\begin{array}{c}
3 \\
11 \ - \ 8 \\
7 \\
12
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):
✓ 2 71/84

Hints:
- The denominators 7 and 12 have no common factors greater than 1.

Because the denominators have no common factors, find the least common denominator by multiplying 7 by 12:

\[
7 \times 12 = 84
\]

Find equivalent fractions using the denominator 84.
- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{array}{c}
3 \\
11 \ - \ 8 \\
7 \\
12
\end{array}
\]

Since the second numerator is greater than the first, we have to borrow. Borrow 1 from the first whole number, 11, and represent it in fractional form using the common denominator: 11 = 10+1 = 10+84/84

\[
\begin{array}{c}
3+12 \\
11 \times 12 \\
84 \\
84
\end{array}
\]

\[
\begin{array}{c}
84+36 \\
10 \ - \ 8 \\
84 \\
84
\end{array}
\]

Next, group the numerator and whole numbers:

\[
10 \ 120 \ - \ 8 \ 49 = (10-8) \ 120 \ - \ 49
\]
Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:
 $\frac{120 - 49}{84} = \frac{71}{84}$
 $(10 - 8) = 2$

Enter $2 \frac{71}{84}$

2) Problem #PRAEBX "PRAEBX - 224054 - Subtracting Mixed Numbers"

Find the difference:

$$\begin{align*}
3 & \quad 3 \\
6 & \quad - \quad 3 \\
10 & \quad 11
\end{align*}$$

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 3 3/110

Hints:

- The denominators 10 and 11 have no common factors greater than 1.

$$\begin{align*}
3 & \quad 3 \\
6 & \quad - \quad 3 \\
10 & \quad 11
\end{align*}$$

Because the denominators have no common factors, find the least common denominator by multiplying 10 by 11:

$10 \times 11 = 110$

Find equivalent fractions using the denominator 110.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

$$\begin{align*}
\frac{3 \times 11}{6 \times 11} & \quad - \quad \frac{3 \times 10}{11 \times 10} \\
= & \quad \frac{33}{110} \quad - \quad \frac{30}{110}
\end{align*}$$

Since the second numerator is not greater than the first, we do not have to borrow.

$$\begin{align*}
\frac{33}{110} & \quad - \quad \frac{3}{110}
\end{align*}$$
Next, group the numerator and whole numbers:

\[
\frac{33}{6} - \frac{30}{110} = \frac{33 - 30}{110}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
\frac{33 - 30}{110} = \frac{3}{110}
\]

Enter \(3 \frac{3}{110}\)

3) Problem #PRAJDKH "PRAJDKH - Adding Mixed Numbers"

Find the sum:

\[
\frac{1}{8} + \frac{2}{3} - \frac{1}{6} + \frac{2}{5}
\]

Answers must be in the form of a \textit{reduced proper fraction} (example 2/7) or a \textit{mixed number} with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 11 17/30

Hints:

The denominators 6 and 5 have no common factors greater than 1.
Because the denominators have no common factors, find the least common denominator by multiplying 6 by 5:

\[6 \times 5 = 30 \]

Find equivalent fractions using the denominator 30.

\[\frac{5}{30} + \frac{12}{30} = \frac{5 + 12}{30} \]

Next, group the numerator and whole numbers:

\[\frac{5}{30} + \frac{12}{30} = \frac{5 + 12}{30} \]
Summing the numerator and the whole numbers gives:

\[
\frac{5 + 12}{30} + \frac{17}{30} = \frac{11}{30}
\]

Enter 11 \(\frac{17}{30}\)

4) Problem #PRAJDKE "PRAJDKE - Adding Mixed Numbers"

Find the sum:

\[
\frac{1}{10} + \frac{9}{11}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8).

Exact Match (case sensitive):

✓ 14 101/110

Hints:

- The denominators 10 and 11 have no common factors greater than 1.

Because the denominators have no common factors, find the least common denominator by multiplying 10 by 11:

\[
10 * 11 = 110
\]

Find equivalent fractions using the denominator 110.
Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\frac{1\cdot 11}{10\cdot 11} + \frac{9\cdot 10}{11\cdot 10} = \frac{11}{10} + \frac{90}{110}
\]

Next, group the numerator and whole numbers:

\[
\frac{11}{7} + \frac{90}{110} = (7 + \frac{7}{110})
\]

Now, sum the numerator and whole numbers.

Summing the numerator and the whole numbers gives:

\[
\frac{11 + 90}{110} = \frac{11 + 90}{110} = \frac{11}{10} + \frac{90}{110}
\]

Enter 14 101/110

5) Problem #PRAJEB2 "PRAJEB2 - 224054 - Subtracting Mixed Numbers"
Find the difference:

\[
\frac{1}{7} - \frac{2}{3}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 1 5/6

Hints:
- The denominators 2 and 3 have no common factors greater than 1.

Because the denominators have no common factors, find the least common denominator by multiplying 2 by 3:

\[
2 \cdot 3 = 6
\]
Find equivalent fractions using the denominator 6.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\frac{1 \times 3}{2 \times 3} - \frac{2 \times 2}{3 \times 2} = \frac{3}{6} - \frac{4}{6}
\]

Since the second numerator is greater than the first, we have to borrow. Borrow 1 from the first whole number, 7, and represent it in fractional form using the common denominator: \(7 = 6+1 = 6+6/6\)

\[
\frac{6+3}{6} - \frac{4}{6} = \frac{9}{6} - \frac{4}{6}
\]

Next, group the numerator and whole numbers:

\[
\frac{9}{6} - \frac{4}{6} = (6-5) \frac{9-4}{6} = (6-5) \frac{5}{6}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
(6 - 5) \frac{9 - 4}{6} = 1 \frac{5}{6}
\]

Enter 1 5/6

6) Problem #PRAJEB4 "PRAJEB4 - 224054 - Subtracting Mixed Numbers"

Find the difference:

\[
\frac{3}{11} - \frac{2}{10} - \frac{2}{8} = \frac{3}{9}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✅ 1 11/72

Hints:

- The denominators 8 and 9 have no common factors greater than 1.

11 3 - 10 2
Because the denominators have no common factors, find the least common denominator by multiplying 8 by 9:

\[8 \times 9 = 72 \]

Find equivalent fractions using the denominator 72.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{align*}
\frac{3 \times 8}{11} & - \frac{2 \times 9}{10} = \frac{27}{72} - \frac{16}{72} \\
\frac{8 \times 9}{8} & - \frac{9 \times 8}{9} = \frac{72}{72} - \frac{72}{72}
\end{align*}
\]

Since the second numerator is not greater than the first, we do not have to borrow.

\[
\begin{align*}
\frac{27}{72} & - \frac{16}{72} = \frac{11}{72}
\end{align*}
\]

Next, group the numerator and whole numbers:

\[
\begin{align*}
\frac{27}{72} & - \frac{16}{72} = (11 - 10) \frac{27 - 16}{72}
\end{align*}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
(11 - 10) \frac{27 - 16}{72} = 1 \frac{1}{72}
\]

Enter \(1 \frac{11}{72}\)

7) Problem #PRAJDKB "PRAJDKB - Adding Mixed Numbers"

Find the sum:

\[
\begin{align*}
\frac{5}{2} & + \frac{1}{7} \\
\frac{1}{12}
\end{align*}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)
Exact Match (case sensitive):

✓ 4 67/84

Hints:

- The denominators 7 and 12 have no common factors greater than 1.

\[
\begin{align*}
5 & \quad 1 \\
\frac{2}{7} & + \quad \frac{2}{12} \\
\end{align*}
\]

Because the denominators have no common factors, find the least common denominator by multiplying 7 by 12:

\[
7 \times 12 = 84
\]

Find equivalent fractions using the denominator 84.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{align*}
\frac{5 \times 12}{7 \times 12} & + \frac{1 \times 7}{12 \times 7} = \frac{60}{84} + \frac{7}{84} \\
\end{align*}
\]

Next, group the numerator and whole numbers:

\[
\begin{align*}
\frac{60}{84} & + \frac{7}{84} = \frac{60+7}{84} \\
\end{align*}
\]

Now, sum the numerator and whole numbers.

\[
\begin{align*}
\frac{60+7}{84} & = \frac{67}{84} \\
\end{align*}
\]

Summing the numerator and the whole numbers gives:

\[
\frac{60+7}{84} = \frac{67}{84}
\]

Enter 4 67/84

8) Problem #PRAJDJ8 "PRAJDJ8 - Adding Mixed Numbers"

Find the sum:

\[
\begin{align*}
\frac{1}{2} & + \frac{2}{3} \\
\end{align*}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space.
between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✔️ 4 1/6

Hints:

- The denominators 2 and 3 have no common factors greater than 1.

 \[
 \begin{array}{cc}
 1 & 2 \\
 1 & 2 \\
 \hline
 2 & 3 \\
 \end{array}
 \]

 Because the denominators have no common factors, find the **least common denominator** by multiplying 2 by 3:

 \[
 2 \times 3 = 6
 \]

 Find equivalent fractions using the denominator 6.

 - Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

 \[
 \begin{array}{cccc}
 1 & \times & 3 & = 3 \\
 1 & 2 & 2 & 3 \\
 \hline
 2 & \times & 3 & = 6 \\
 \end{array}
 \]

 Next, group the numerator and whole numbers:

 \[
 \frac{3}{6} + \frac{4}{6} = \frac{3 + 4}{6}
 \]

 Now, sum the numerator and whole numbers.

 \[
 \frac{3 + 4}{6} = \frac{7}{6}
 \]

 Summing the numerator and the whole numbers gives:

 \[
 \frac{3 + 4}{6} = \frac{7}{6} = 3 \frac{1}{6}
 \]

 Enter 4 1/6

9) Problem #PRAJDKK "PRAJDKK - Adding Mixed Numbers"

Find the sum:

\[
\frac{2}{6} + \frac{8}{7} = \frac{2 \times 7}{6 \times 7} + \frac{8 \times 6}{6 \times 7}
\]
Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✅ 15 5/63

Hints:

- The denominators 9 and 7 have no common factors greater than 1.

\[
\begin{align*}
6 & - 8 \\
9 & \quad 7
\end{align*}
\]

Because the denominators have no common factors, find the least common denominator by multiplying 9 by 7:

\[
9 \times 7 = 63
\]

Find equivalent fractions using the denominator 63.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction’s numerator and denominator by the other fraction’s denominator:

\[
\begin{align*}
\frac{2 \times 7}{9 \times 7} & + \frac{6 \times 9}{7 \times 9} = \frac{14}{63} + \frac{54}{63} \\
\frac{6}{9} & + \frac{8}{7}
\end{align*}
\]

Next, group the numerator and whole numbers:

\[
\frac{14}{63} + \frac{54}{63} = \frac{14 + 54}{63}
\]

Now, sum the numerator and whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\frac{14 + 54}{63} = \frac{68}{63}
\]

\[
= 14 + 1 \frac{5}{63}
\]

\[
= 15 \frac{5}{63}
\]

Enter 15 5/63

10) Problem #PRAJD9U "PRAJD9U - 224053 - Subtracting Mixed Numbers"

Find the difference:

\[
7 \quad 1 - 3 \quad 1
\]
Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✅ 4 1/18

Hints:

- Notice 12 is a factor of 36.

\[
\begin{array}{c}
7 - 3 \\
12 \quad 36
\end{array}
\]

Because 12 is a factor of 36, the least common denominator is 36.

- Convert the first fraction to an equivalent fraction with a denominator of 36: multiply its numerator and denominator by \(\frac{36}{12} = 3\) (note: 12*3=36):

\[
\begin{array}{c}
7 - 3 \\
12 \quad 36
\end{array} \quad \begin{array}{c}
7 - 3 \\
36 \quad 36
\end{array}
\]

Since the second numerator is not greater than the first, we do not have to borrow.

\[
\begin{array}{c}
7 - 3 \\
36 \quad 36
\end{array}
\]

Next, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{array}{c}
7 - 3 \\
36 \quad 36
\end{array} = (7-3) \quad \frac{3}{36}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
\begin{array}{c}
7 - 3 \\
36 \quad 36
\end{array} = 4 \quad \frac{1}{18}
\]

Enter 4 1/18

11) Problem #PRAJEEN "PRAJEEN - 224054 - Subtracting Mixed Numbers"

Find the difference:

\[9 \quad 4 - 6 \quad 1\]
Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 3 3/10

Hints:

- The denominators 5 and 2 have no common factors greater than 1.

\[
\begin{array}{c}
4 & 1 \\
9 - & 6 - \\
5 & 2
\end{array}
\]

Because the denominators have no common factors, find the least common denominator by multiplying 5 by 2:

\[5 \times 2 = 10\]

Find equivalent fractions using the denominator 10.
- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{array}{c}
4*2 & 1*5 \\
9 & 6 - \\
5*2 & 2*5
\end{array} = \begin{array}{c}
8 & 5 \\
9 & 6 - \\
10 & 10
\end{array}
\]

Since the second numerator is not greater than the first, we do not have to borrow.

\[
\begin{array}{c}
8 & 5 \\
9 - & 6 - \\
10 & 10
\end{array}
\]

Next, group the numerator and whole numbers:

\[
\begin{array}{c}
8 & 5 \\
9 & 6 - \\
10 & 10
\end{array} = \frac{(9-6)}{10}
\]

Now, find the difference in the numerator and in the whole numbers.
- Subtracting gives:

\[
\begin{array}{c}
8 - 5 & 3 \\
(9-6) & \frac{3}{10}
\end{array}
\]

Enter 3 3/10
12) Problem #PRAJDNS "PRAJDNS - Adding Mixed Numbers"

Find the sum:

\[
\begin{array}{c}
1 & 8 \\
4 & 8 \\
- & - \\
8 & 9
\end{array}
\]

Answers must be in the form of a \textit{reduced proper fraction} (example 2/7) or a \textit{mixed number} with a space between the whole number and the fraction (example 3 5/8)

\textbf{Exact Match (case sensitive):}

\checkmark 9 1/72

\textbf{Hints:}

- The denominators 8 and 9 have no common factors greater than 1.

\[
\begin{array}{c}
1 & 8 \\
4 & 8 \\
- & - \\
8 & 9
\end{array}
\]

Because the denominators have no common factors, find the least common denominator by multiplying 8 by 9:

\[8 \times 9 = 72\]

Find equivalent fractions using the denominator 72.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{array}{c}
1 \times 9 & 8 \times 8 \\
4 & 4 \\
- & - \\
8 \times 9 & 9 \times 8 \\
72 & 72
\end{array}
\]

Next, group the numerator and whole numbers:

\[
\begin{array}{c}
9 \\
4 \\
72
\end{array} + \begin{array}{c}
64 \\
4 \\
72
\end{array} = \begin{array}{c}
9 + 64 \\
72
\end{array}
\]

Now, sum the numerator and whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\begin{array}{c}
9 + 64 \\
72
\end{array} = \begin{array}{c}
8 \\
72
\end{array} = 8 + 1 \frac{1}{72}
\]
13) Problem #PRAJEBY "PRAJEBY - 224053 - Subtracting Mixed Numbers"
Find the difference:

\[
\begin{array}{c}
1 \\
4 - 2 \\
\hline
6, 18
\end{array}
\]

Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 2 1/9

Hints:
- Notice 6 is a factor of 18.

\[
\begin{array}{c}
1 \\
4 - 2 \\
\hline
6, 18
\end{array}
\]

Because 6 is a factor of 18, the least common denominator is 18.
- Convert the first fraction to an equivalent fraction with a denominator of 18: multiply its numerator and denominator by \(\frac{18}{6}=3\) (note: \(6\times3=18\)):

\[
\begin{array}{c}
1 \\
4 - 2 \\
\hline
6, 18
\end{array}
\]

\[
\begin{array}{c}
3 \\
4 - 2 \\
\hline
18, 18
\end{array}
\]

Since the second numerator is not greater than the first, we do not have to borrow.

Next, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{array}{c}
3 \\
4 - 2 \\
\hline
18, 18
\end{array}
\]

\[
\begin{array}{c}
3 - 1 \\
(4 - 2) \\
\hline
18
\end{array}
\]

Now, find the difference in the numerator and in the whole numbers.
- Subtracting gives:

\[
(4 - 2) \begin{array}{c}
3 - 1 \\
\hline
18
\end{array} = 2
\]

Enter 9 1/72
18 \quad 18 \\
\quad \quad = \quad 2 \quad 1/9 \\
Enter \quad 2 \quad 1/9

1) Problem #PRAJEAQ "PRAJEAQ - 224053 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{array}{c}
1 \\
5 - - 4 \\
9 \quad 18
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 1 1/18

Hints:
- Notice 9 is a factor of 18.

Because 9 is a factor of 18, the least common denominator is 18.
- Convert the first fraction to an equivalent fraction with a denominator of 18: multiply its numerator and denominator by 18/9 = 2 (note: 9*2=18):

\[
\begin{array}{c}
1*2 \\
5 - - 4 \\
9*2 \quad 18
\end{array}
\]

Since the second numerator is not greater than the first, we do not have to borrow.

\[
\begin{array}{c}
2 \\
5 - - 4 \\
18 \quad 18
\end{array}
\]

Next, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{array}{c}
2 \quad 1 \\
5 - - 4 \\
18 \quad 18
\end{array}
\]

Now, find the difference in the numerator and in the whole numbers.
- Subtracting gives:
Enter 1 1/8

15) Problem #PRAJDH4 "PRAJDH4 - Adding Mixed Numbers"

Find the sum:

\[
\begin{array}{c}
3 \\
7 \\
5 \\
\end{array} + \begin{array}{c}
9 \\
5 \\
10 \\
\end{array} = \frac{13}{2}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 13 1/2

Hints:
- Notice 5 is a factor of 10.

\[
\begin{array}{c}
3 \\
7 \\
5 \\
\end{array} + \begin{array}{c}
9 \\
5 \\
10 \\
\end{array} = \frac{3*2}{5*2} = \frac{6}{10} + \frac{9}{10} = \frac{15}{10} = 1.5
\]

Because 5 is a factor of 10, the least common denominator is 10.

- Convert the first fraction to an equivalent fraction with a denominator of 10: multiply its numerator and denominator by 10/2 (note: 5*2=10):

\[
\begin{array}{c}
3*2 \\
7 \\
5 \\
\end{array} = \frac{6}{10} = \frac{6+3}{10} = \frac{9}{10}
\]

Then, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{array}{c}
6 \\
7 \\
10 \\
\end{array} + \begin{array}{c}
9 \\
5 \\
10 \\
\end{array} = \frac{15}{10} = \frac{12+3}{10} = \frac{5}{10}
\]

Now, sum the numerator and the whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\begin{array}{c}
6+9 \\
7+5 \\
\end{array} = \frac{15}{10} = \frac{12}{10} + \frac{3}{10} = \frac{5}{10} = 13 \frac{1}{2}
\]

Enter 13 1/2
16) Problem #PRAJEES "PRAJEES - 224054 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{array}{c}
1 \\
10 - 3 \\
2 \\
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 7 1/6

Hints:

- The denominators 2 and 3 have no common factors greater than 1.

\[
\begin{array}{c}
1 \\
10 - 3 \\
2 \\
\end{array}
\]

Because the denominators have no common factors, find the least common denominator by multiplying 2 by 3:

\[2 \times 3 = 6\]

Find equivalent fractions using the denominator 6.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{array}{c}
1 \times 3 \\
10 - 3 \\
2 \times 3 \\
\end{array} = \begin{array}{c}
1 \times 2 \\
3 - 2 \\
3 \times 2 \\
6 - 6 \\
\end{array}
\]

Since the second numerator is not greater than the first, we do not have to borrow.

\[
\begin{array}{c}
3 \\
10 - 3 \\
6 \\
\end{array}
\]

Next, group the numerator and whole numbers:

\[
\begin{array}{c}
3 \\
10 - 3 \\
6 \\
\end{array} = \begin{array}{c}
2 \\
3 - 2 \\
6 - 6 \\
\end{array}
\]

Now, find the difference in the numerator and in the whole numbers.
Subtracting gives:
\[
\begin{array}{r}
3 - 2 & 1 \\
\hline
6 & 6 \\
\end{array}
\]
\[
(10 - 3) - \frac{1}{6} = \frac{7}{6}
\]

Enter \(7 \frac{1}{6} \)

17) Problem #PRAJEBG "PRAJEBG - 224053 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{array}{r}
\hline
1 & 5 \\
10 & - 6 \\
2 & 8 \\
\hline
\end{array}
\]

Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 3 7/8

Hints:

- Notice 2 is a factor of 8.

\[
\begin{array}{r}
\hline
1 & 5 \\
10 & - 6 \\
2 & 8 \\
\hline
\end{array}
\]

Because 2 is a factor of 8, the least common denominator is 8.

- Convert the first fraction to an equivalent fraction with a denominator of 8: multiply its numerator and denominator by \(\frac{8}{2} = 4 \) (note: \(2*4=8 \)):

\[
\begin{array}{c}
1*4 & 5 & 4 & 5 \\
10 - 6 - = 10 - 6 - \\
2*4 & 8 & 8 & 8
\end{array}
\]

Since the second numerator is greater than the first, we have to borrow. Borrow 1 from the first whole number, 10, and represent it in fractional form using the common denominator: \(10 = 9+1 = 9+\frac{8}{8} \)

\[
\begin{array}{c}
8+4 & 5 \\
9 - 6 - \\
8 & 8 & 8
\end{array}
\]

Next, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{array}{c}
12 & 5 \\
9 - 6 - = \frac{(9-6)}{8} \\
8 & 8 & 8
\end{array}
\]
Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:
 \[
 \frac{12 - 6}{8} - \frac{5 - 2}{8} = \frac{3}{8} - \frac{3}{8} = \frac{3}{8}
 \]

Enter 3 7/8

18) Problem #PRAJEBE "PRAJEBE - 224053 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{align*}
\frac{10}{2} & - \frac{3}{8} \\
\frac{5}{8} & - \frac{5}{8}
\end{align*}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 6 7/8

Hints:
- Notice 2 is a factor of 8.

Because 2 is a factor of 8, the least common denominator is 8.
- Convert the first fraction to an equivalent fraction with a denominator of 8: multiply its numerator and denominator by \(\frac{8}{2}=4\) (note: \(2\times4=8\):

\[
\begin{align*}
\frac{1x4}{8} & - \frac{3}{8} \\
\frac{4}{8} & - \frac{3}{8} = \frac{10-3}{8} \\
\frac{2x4}{8} & \quad \frac{8}{8} \quad \frac{8}{8}
\end{align*}
\]

Since the second numerator is greater than the first, we have to borrow. Borrow 1 from the first whole number, 10, and represent it in fractional form using the common denominator: \(10 = 9+1 = 9+\frac{8}{8}\)

\[
\begin{align*}
\frac{8+4}{8} & - \frac{3}{8} \\
\frac{5}{8} & - \frac{3}{8}
\end{align*}
\]

Next, group the whole number terms and put both fractions together over the common denominator:
9 12 - 3 5 = (9-3) 12 - 5

\[
\begin{array}{c c c}
9 & 12 & - \\
8 & 8 & - \\
\end{array} =
\begin{array}{c c c}
6 & 2 & - \\
8 & 8 & - \\
\end{array}
\]

Now, find the difference in the numerator and in the whole numbers.
- Subtracting gives:
 \[
 \begin{array}{c c c}
 12 & - & 5 \\
 8 & - & 3 \\
 \end{array} = 6 - \\
 \begin{array}{c c c}
 8 & - & 8 \\
 \end{array}
 \]

Enter \(6 \frac{7}{8}\)

19) Problem #PRAJDMG "PRAJDMG - Adding Mixed Numbers"
Find the sum:

\[
\begin{array}{c c c}
1 & 2 \\
2 & + & 2 \\
6 & 5 \\
\end{array}
\]

Answers must be in the form of a \textit{reduced proper fraction} (example \(2/7\)) or a \textit{mixed number} with a space between the whole number and the fraction (example \(3\ 5/8\))

Exact Match (case sensitive):

✓ \(4\ 17/30\)

Hints:
- The denominators \(6\) and \(5\) have no common factors greater than 1.

Because the denominators have no common factors, find the \textit{least common denominator} by multiplying \(6\) by \(5\):

\[6 \times 5 = 30\]

Find equivalent fractions using the denominator \(30\).
- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{array}{c c c c c c c c}
1 & \times & 5 & & & & & \\
2 & - & + & 2 & - & + & 2 & - \\
6 & \times & 5 & & & & & \\
\end{array}
\]

\[
\begin{array}{c c c c c}
5 & & & & 12 \\
30 & & & & 30 \\
\end{array}
\]

Next, group the numerator and whole numbers:

\[
\begin{array}{c c c c c c c c}
2 & 5 & + & 2 & 12 & = & (2+2) & 5 & + & 12 \\
\end{array}
\]

\[
\begin{array}{c c c c c c c c}
\ & & & & & & & & \\
30 & & & & & & & & \\
\end{array}
\]

\[
\begin{array}{c c c c c c c c}
& & & & & & & & \\
30 & & & & & & & & \\
\end{array}
\]
Now, sum the numerator and whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\frac{5 + 12}{30} = \frac{17}{30}
\]

Enter \(4 \frac{17}{30}\)

**20) Problem #PRAJD97 "PRAJD97 - 224053 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{align*}
4 & \quad 7 \\
10 & \quad 2 \\
11 & \quad 22
\end{align*}
\]

Answers must be in the form of a **reduced proper fraction** (example \(2/7\)) or a **mixed number** with a space between the whole number and the fraction (example \(3 \frac{5}{8}\))

Exact Match (case sensitive):

✓ \(8 \frac{1}{22}\)

Hints:
- Notice \(11\) is a factor of \(22\).

\[
\begin{align*}
4 & \quad 7 \\
10 & \quad 2 \\
11 & \quad 22
\end{align*}
\]

Because \(11\) is a factor of \(22\), the least common denominator is \(22\).
- Convert the **first** fraction to an equivalent fraction with a denominator of \(22\): multiply its numerator and denominator by \(22/11\) (note: \(11\times2=22\)):

\[
\begin{align*}
\frac{4\times2}{10} & \quad \frac{7}{22} \\
\frac{8}{22} & \quad \frac{7}{22}
\end{align*}
\]

Since the second numerator is not greater than the first, we do not have to borrow.

\[
\begin{align*}
8 & \quad 7 \\
10 & \quad 2 \\
22 & \quad 22
\end{align*}
\]
Next, group the whole number terms and put both fractions together over the common denominator:

\[
\frac{8}{22} - \frac{7}{22} = \frac{8 - 7}{22}
\]

Now, find the difference in the numerator and in the whole numbers.
- Subtracting gives:
 \[
 \frac{8 - 7}{22} = \frac{1}{22}
 \]

Enter \(8\frac{1}{22}\)

21) Problem #PRAJDMH "PRAJDMH - Adding Mixed Numbers"

Find the sum:

\[
\frac{3}{10} + \frac{7}{4}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ \(17\frac{1}{3}\)

Hints:
- Notice 4 is a factor of 12.

Because 4 is a factor of 12, the least common denominator is 12.
- Convert the first fraction to an equivalent fraction with a denominator of 12: multiply its numerator and denominator by \(\frac{3}{3}\) (note: \(4*3=12\)):

\[
\frac{3*3}{10} + \frac{7}{12}
\]

Then, group the whole number terms and put both fractions together over the common denominator:

\[
\frac{9}{12} + \frac{7}{12} = \frac{9 + 7}{12}
\]
Now, sum the numerator and the whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\begin{align*}
(10 + 6) & \quad 16 \\
\frac{9 + 7}{12} & = \frac{16}{12} \\
& = 16 + 1 \quad \frac{4}{12} \\
& = 17 \quad \frac{1}{3}
\end{align*}
\]

Enter 17 1/3

22) Problem #PRAJD8W "PRAJD8W - 224053 - Subtracting Mixed Numbers"

Find the difference:

\[
\frac{3}{10} - \frac{5}{4} = \frac{5}{12}
\]

Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✔ 5 1/3

Hints:
- Notice 4 is a factor of 12.

\[
\begin{align*}
10 & - 5 \\
\frac{3}{4} & - \frac{5}{12}
\end{align*}
\]

Because 4 is a factor of 12, the least common denominator is 12.
- Convert the first fraction to an equivalent fraction with a denominator of 12: multiply its numerator and denominator by 3 \(\times 4 = 12\):

\[
\begin{align*}
\frac{3}{10} & - \frac{5}{12} \\
\frac{3 \times 3}{4 \times 3} & = \frac{9}{12} - \frac{5}{12}
\end{align*}
\]

Since the second numerator is not greater than the first, we do not have to borrow.

\[
\begin{align*}
10 & - 5 \\
\frac{9}{12} & - \frac{5}{12}
\end{align*}
\]

Next, group the whole number terms and put both fractions together over the common denominator:

\[
10 \quad 9 \quad - \quad 5 \quad 5 = (10 - 5) \quad 9 - 5
\]
Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:
 \[
 \begin{array}{c}
 10 - 5 \\
 12
 \end{array}
 = \frac{5}{12}
 = 5 \frac{1}{3}
 \]

Enter 5 1/3

23) Problem #PRAJDM2 "PRAJDM2 - Adding Mixed Numbers"

Find the sum:

\[
\begin{array}{c}
5 \\
6
\end{array} + \begin{array}{c}
7 \\
4
\end{array}
\]

\[
\begin{array}{c}
8 \\
9
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 11 29/72

Hints:

- The denominators 8 and 9 have no common factors greater than 1.

Because the denominators have no common factors, find the least common denominator by multiplying 8 by 9:

\[
\begin{array}{c}
6 \\
8
\end{array} + \begin{array}{c}
4 \\
9
\end{array}
\]

Find equivalent fractions using the denominator 72.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{array}{c}
5 \times 9 \\
6
\end{array} + \begin{array}{c}
7 \times 8 \\
4
\end{array} = \begin{array}{c}
45 \\
72
\end{array} + \begin{array}{c}
56 \\
72
\end{array} = \begin{array}{c}
6+4 \\
72
\end{array}
\]

Next, group the numerator and whole numbers:

\[
\begin{array}{c}
45 \\
72
\end{array} + \begin{array}{c}
56 \\
72
\end{array} = \frac{45 + 56}{72}
\]
Now, sum the numerator and whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\frac{45 + 56}{72} = \frac{101}{72} = 10 + \frac{29}{72}
\]

Enter **11 29/72**

24) Problem #PRAJD9H "PRAJD9H - 224053 - Subtracting Mixed Numbers"

Find the difference:

\[
\frac{4}{7} - \frac{5}{9}
\]

Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 4 1/6

Hints:

- Notice 9 is a factor of 18.

\[
\frac{4}{9} - \frac{5}{18}
\]

Because 9 is a factor of 18, the least common denominator is **18**.

- Convert the **first** fraction to an equivalent fraction with a denominator of 18: multiply its numerator and denominator by 18/9 = 2 (note: 9*2=18):

\[
\frac{4*2}{9*2} - \frac{5}{18} = \frac{8}{18} - \frac{5}{18}
\]

Since the second numerator is not greater than the first, we do not have to borrow.

\[
\frac{8}{18} - \frac{5}{18}
\]

Next, group the whole number terms and put both fractions together over the common
denominator:

\[
\frac{8}{7} \quad \frac{5}{18} \quad \frac{8-5}{18} = \frac{(7-3)}{18}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:
 \[
 \frac{8-5}{18} = \frac{3}{18} = \frac{4}{18} = \frac{4}{6}
 \]
 Enter \(4 \frac{1}{6}\)

25) Problem #PRAJDME "PRAJDME - Adding Mixed Numbers"

Find the sum:

\[
\frac{8}{11} + \frac{3}{10} = \frac{8}{11} + \frac{3}{10}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 11 19/22

Hints:

- Notice 11 is a factor of 22.

Because 11 is a factor of 22, the least common denominator is 22.

- Convert the first fraction to an equivalent fraction with a denominator of 22: multiply its numerator and denominator by \(22/11\) (note: 11*2=22):

\[
\frac{8*2}{11*2} + \frac{3}{22} = \frac{16}{22} + \frac{3}{22}
\]

Then, group the whole number terms and put both fractions together over the common denominator:

\[
\frac{16}{22} + \frac{3}{22} = \frac{16+3}{22} = \frac{19}{22}
\]
Now, sum the numerator and the whole numbers.

- Summing the numerator and the whole numbers gives:
 \[
 \frac{16 + 3}{22} + \frac{19}{22} = \frac{11}{22}
 \]

Enter \(\frac{11}{22}\)

26) Problem #PRAJDKV "PRAJDKV - Adding Mixed Numbers"

Find the sum:

\[
\frac{9}{7} + \frac{1}{12}
\]

Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✅ 10 73/84

Hints:

- The denominators 7 and 12 have no common factors greater than 1.
 \[
 \frac{2}{7} + \frac{1}{12}
 \]

Because the denominators have no common factors, find the **least common denominator** by multiplying 7 by 12:

\[7 \times 12 = 84\]

Find equivalent fractions using the denominator 84.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\frac{2 \times 12}{7 \times 12} + \frac{7 \times 7}{12 \times 7} = \frac{24}{84} + \frac{49}{84}
\]

Next, group the numerator and whole numbers:

\[
\frac{24}{84} + \frac{49}{84} = \frac{24 + 49}{84}
\]
Now, sum the numerator and whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\frac{24 + 49}{84} + \frac{73}{84} = \frac{103}{84}
\]

Enter \(10\ \frac{73}{84}\)

27) Problem #PRAJK3 "PRAJK3 - Adding Mixed Numbers"

Find the sum:

\[
\frac{3}{8} + \frac{8}{10} - \frac{8}{9}
\]

Answers must be in the form of a reduced proper fraction (example \(2/7\)) or a mixed number with a space between the whole number and the fraction (example \(3 \ 5/8\))

Exact Match (case sensitive):

✓ 19 \(\frac{19}{72}\)

Hints:

- The denominators 8 and 9 have no common factors greater than 1.

\[
\frac{3}{8} + \frac{8}{10} - \frac{8}{9}
\]

Because the denominators have no common factors, find the least common denominator by multiplying 8 by 9:

\[
8 \times 9 = 72
\]

Find equivalent fractions using the denominator 72.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\frac{3 \times 9}{8} + \frac{8 \times 8}{10} = \frac{27}{72} + \frac{64}{72}
\]

Next, group the numerator and whole numbers:

\[
\frac{27}{72} + \frac{64}{72} = \frac{27 + 64}{72}
\]
Now, sum the numerator and whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\begin{align*}
(8 + 10) &= \frac{27 + 64}{72} \\
&= \frac{91}{72} \\
&= 18 + \frac{19}{72} \\
&= 19 \frac{19}{72}
\end{align*}
\]

Enter 19 19/72

28) Problem #PRAJEK "PRAJEK - 224054 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{align*}
8 \frac{1}{2} - 1 \frac{2}{3}
\end{align*}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 6 5/6

Hints:
- The denominators 2 and 3 have no common factors greater than 1.

Because the denominators have no common factors, find the least common denominator by multiplying 2 by 3:

\[
2 \times 3 = 6
\]

Find equivalent fractions using the denominator 6.
- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{align*}
\frac{1}{2} \times \frac{3}{3} &= \frac{3}{6} \\
\frac{2}{3} \times \frac{2}{2} &= \frac{4}{6}
\end{align*}
\]

Since the second numerator is greater than the first, we have to borrow. Borrow 1 from the first whole number, 8, and represent it in fractional form using the common denominator: 8 = 7+1 = 7+6/6

\[
\begin{align*}
7 \frac{6+3}{6} &- 1 \frac{4}{6}
\end{align*}
\]
Next, group the numerator and whole numbers:

\[
\begin{array}{c}
\frac{9}{7} - \frac{4}{6} = \frac{(7-1)}{6} - \frac{6}{6}
\end{array}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
\begin{array}{c}
\frac{9 - 4}{6} = \frac{5}{6}
\end{array}
\]

Enter 6 5/6

29) Problem #PRAJDJT "PRAJDJT - Adding Mixed Numbers"
Find the sum:

\[
\begin{array}{c}
\frac{3}{8} + \frac{1}{7}
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

\[
9 \frac{11}{14}
\]

Hints:

- Notice 7 is a factor of 14.

Because 7 is a factor of 14, the least common denominator is 14.

- Convert the first fraction to an equivalent fraction with a denominator of 14: multiply its numerator and denominator by 14/7 (note: 7*2=14):

\[
\begin{array}{c}
\frac{3*2}{8} + \frac{5}{14} = \frac{6}{14} + \frac{5}{14}
\end{array}
\]

Then, group the whole number terms and put both fractions together over the common
denominator:

\[
\begin{align*}
\frac{6}{8} &+ \frac{5}{14} = \frac{6+5}{14} \\
&= \frac{(8+1)}{14}
\end{align*}
\]

Now, sum the numerator and the whole numbers.
- Summing the numerator and the whole numbers gives:

\[
\frac{6+5}{14} + \frac{11}{14} = \frac{9}{14}
\]

Enter \(9 \frac{11}{14}\)

30) Problem #PRAJDKA "PRAJDKA - Adding Mixed Numbers"

Find the sum:

\[
\begin{align*}
\frac{6}{5} &+ \frac{3}{11} \\
\frac{11}{22} &+ \frac{2}{22}
\end{align*}
\]

Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✅ 7 15/22

Hints:
- Notice 11 is a factor of 22.

Because 11 is a factor of 22, the least common denominator is 22.
- Convert the **first** fraction to an equivalent fraction with a denominator of 22: multiply its numerator and denominator by \(\frac{22}{11}=2\) (note: \(11*2=22\)):

\[
\begin{align*}
\frac{6*2}{11} &+ \frac{3}{22} = \frac{12}{22} + \frac{3}{22} \\
\frac{11*2}{22} &+ \frac{2}{22}
\end{align*}
\]

Then, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{align*}
\frac{12}{22} &+ \frac{3}{22} = \frac{12+3}{22} \\
\frac{5}{22} &+ \frac{2}{22}
\end{align*}
\]
Now, sum the numerator and the whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\frac{12 + 3}{22} = \frac{15}{22}
\]

\[
(5 + 2) \quad = \quad \frac{7}{22}
\]

Enter \(7 \frac{15}{22}\)

31) Problem #PRAJDQB "PRAJDQB - Adding Mixed Numbers"

Find the sum:

\[
\frac{7}{8} + \frac{7}{9}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):
✓ 16 47/72

Hints:
- The denominators 8 and 9 have no common factors greater than 1.

Because the denominators have no common factors, find the least common denominator by multiplying 8 by 9:
\[
8 \times 9 = 72
\]

Find equivalent fractions using the denominator 72.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\frac{7 \times 9}{8} + \frac{7 \times 8}{9} = \frac{63}{72} + \frac{56}{72}
\]

Next, group the numerator and whole numbers:

\[
\frac{63}{72} + \frac{56}{72} = \frac{63 + 56}{72}
\]
Now, sum the numerator and whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\begin{align*}
(8 + 7) \frac{63 + 56}{72} &= \frac{119}{72} \\
&= 15 + \frac{47}{72} \\
&= 16 + \frac{47}{72}
\end{align*}
\]

Enter \(16 \frac{47}{72} \)

32) Problem #PRAJECZ "PRAJECZ - 224054 - Subtracting Mixed Numbers"

Find the difference:

\[
\frac{5}{3} - \frac{9}{11}
\]

Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 1 61/110

Hints:

- The denominators 11 and 10 have no common factors greater than 1.

\[
\begin{align*}
\frac{5}{3} - \frac{9}{11} &= \frac{5}{11} - \frac{9}{11} \\
&= \frac{5}{11} - \frac{9}{11}
\end{align*}
\]

Because the denominators have no common factors, find the least common denominator by multiplying 11 by 10:

\[
11 \times 10 = 110
\]

Find equivalent fractions using the denominator 110.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{align*}
\frac{5 \times 10}{3 \times 10} - \frac{9 \times 11}{10 \times 11} &= \frac{50}{110} - \frac{99}{110} \\
&= \frac{50}{110} - \frac{99}{110}
\end{align*}
\]

Since the second numerator is greater than the first, we have to borrow. Borrow 1 from the first whole number, 3, and represent it in fractional form using the common denominator: 3 = 2+1 = 2+110/110

\[
2 \frac{110}{110} + 50 - 1 \frac{99}{110}
\]
Next, group the numerator and whole numbers:

\[
\frac{160}{2} - \frac{99}{1} = \frac{160 - 99}{110}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
\frac{160 - 99}{110} = \frac{61}{110}
\]

Enter \(1 \frac{61}{110}\)

33) Problem #PRAJD9G "PRAJD9G - 224053 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{array}{c}
2 \\
10 - 1 \\
3
\end{array} - \begin{array}{c}
1 \\
1 \\
6
\end{array} = \begin{array}{c}
2 \\
1 \\
3
\end{array}
\]

Answers must be in the form of a \textit{reduced proper fraction} (example 2/7) or a \textit{mixed number} with a space between the whole number and the fraction (example 3 5/8)

\textbf{Exact Match (case sensitive):}

\(9 \frac{1}{2}\)

\textbf{Hints:}

- Notice 3 is a factor of 6.

\[
\begin{array}{c}
2 \\
10 - 1 \\
3
\end{array} - \begin{array}{c}
1 \\
1 \\
6
\end{array} = \begin{array}{c}
2*2 \\
10 - 1 = 10 - 1 \\
3*2
\end{array}
\]

\textit{Because 3 is a factor of 6}, the least common denominator is 6.

- Convert the first fraction to an equivalent fraction with a denominator of 6: multiply its numerator and denominator by \(\frac{6}{3} = 2\) (note: \(3*2=6\):

\[
\begin{array}{c}
2*2 \\
10 - 1 = 10 - 1 \\
3*2
\end{array}
\]

Since the second numerator is not greater than the first, we do not have to borrow.
Next, group the whole number terms and put both fractions together over the common denominator:

\[
\frac{10 - 1}{6} = \frac{(10-1)}{6}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:
 \[
 \frac{4 - 1}{6} = \frac{3}{6} = \frac{9}{6} = 9 \frac{1}{2}
 \]

Enter 9 1/2

34) Problem #PRAJDHU "PRAJDHU - Adding Mixed Numbers"

Find the sum:

\[
\frac{3}{7} + \frac{1}{14}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 3 1/2

Hints:

- Notice 7 is a factor of 14.

\[
\frac{3}{7} + \frac{1}{14}
\]

Because 7 is a factor of 14, the least common denominator is 14.

- Convert the first fraction to an equivalent fraction with a denominator of 14: multiply its numerator and denominator by 14/7 (note: 7*2=14):

\[
\frac{3*2}{7*2} + \frac{1}{14} = \frac{6}{14} + \frac{1}{14}
\]

Then, group the whole number terms and put both fractions together over the common denominator:
5/25/2018

Assistment - Printing Content

Now, sum the numerator and the whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\frac{6 + 1}{14} = \frac{7}{14}
\]

Enter \(3 \frac{1}{2}\)

35) Problem #PRAJECF "PRAJECF - 224054 - Subtracting Mixed Numbers"

Find the difference:

\[
\frac{1}{11} - \frac{1}{5} - \frac{1}{2}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 5 7/10

Hints:
- The denominators 5 and 2 have no common factors greater than 1.

Because the denominators have no common factors, find the least common denominator by multiplying 5 by 2:

\[5 \times 2 = 10\]

Find equivalent fractions using the denominator 10.
- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\frac{1\times2}{11} - \frac{1\times5}{5} = \frac{2}{5}
\]

Since the second numerator is greater than the first, we have to borrow. Borrow 1 from the first whole number, 11, and represent it in fractional form using the common denominator: 11 = 10+1 =
Next, group the numerator and whole numbers:

\[
\begin{align*}
\frac{12}{10} - \frac{5}{10} &= (10-5) \frac{7}{10} \\
\end{align*}
\]

Now, find the difference in the numerator and in the whole numbers.
- Subtracting gives:
 \[
 \frac{12-5}{10} = \frac{7}{10}
 \]

Enter \(5\frac{7}{10}\)

36) Problem #PRAJD9S "PRAJD9S - 224053 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{align*}
\frac{3}{8} - \frac{1}{10} &= \frac{30}{30} - \frac{10}{30} \\
\end{align*}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 7 4/15

Hints:
- Notice 10 is a factor of 30.

\[
\begin{align*}
\frac{3}{8} - \frac{1}{10} &= \frac{30}{30} - \frac{10}{30} \\
\end{align*}
\]

Because 10 is a factor of 30, the least common denominator is 30.
- Convert the first fraction to an equivalent fraction with a denominator of 30: multiply its numerator and denominator by \(30/10=3\) (note: 10*3=30):

\[
\begin{align*}
\frac{3\times3}{8} - \frac{1}{10} &= \frac{9}{30} - \frac{1}{30} \\
\end{align*}
\]
Since the second numerator is not greater than the first, we do not have to borrow.

\[
\begin{array}{c}
9 \\
8 \\
\hline
30 \\
\end{array}
- \frac{1}{30}
\]

Next, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{array}{c}
9 \\
8 \\
\hline
30 \\
\end{array}
- \frac{1}{30} = (8-1) \frac{9}{30}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
\begin{array}{c}
9 - 1 \\
(8 - 1) \\
\hline
30 \\
\end{array}
= 7 \frac{9}{30}
\]

- Subtracting gives:

\[
\begin{array}{c}
9 - 1 \\
30 \\
\hline
\end{array}
= 7 \frac{4}{15}
\]

Enter 7 $\frac{4}{15}$

37) Problem #PRAJDPG “PRAJDPG - Adding Mixed Numbers”

Find the sum:

\[
\begin{array}{c}
3 \\
2 \\
\hline
8 \\
\end{array}
+ \frac{7}{9}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 $\frac{5}{8}$)

Exact Match (case sensitive):

4 $\frac{11}{72}$

Hints:

- The denominators 8 and 9 have no common factors greater than 1.

\[
\begin{array}{c}
3 \\
2 \\
\hline
8 \\
\end{array}
+ \frac{7}{9}
\]

Because the denominators have no common factors, find the least common denominator by multiplying 8 by 9:

\[8 \times 9 = 72\]

Find equivalent fractions using the denominator 72.
Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{align*}
\frac{3}{2} \cdot \frac{9}{8} &+ \frac{7}{9} \cdot \frac{8}{9} = \frac{27}{72} + \frac{56}{72} \\
\end{align*}
\]

Next, group the numerator and whole numbers:

\[
\begin{align*}
\frac{27}{72} + \frac{56}{72} &= (2+1) \frac{27+56}{72} \\
&= 3+1 \frac{11}{72} \\
&= 4 \frac{11}{72}
\end{align*}
\]

Now, sum the numerator and whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\begin{align*}
\frac{27+56}{72} &= \frac{83}{72} \\
&= 3+1 \frac{11}{72} \\
&= 4 \frac{11}{72}
\end{align*}
\]

Enter 4 \(\frac{11}{72} \)

38) Problem #PRAJDH2 "PRAJDH2 - Adding Mixed Numbers"

Find the sum:

\[
\begin{align*}
\frac{8}{10} + \frac{1}{9} = \frac{8+1}{18} = \frac{9}{18}
\end{align*}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 12 \(\frac{17}{18} \)

Hints:

- Notice 9 is a factor of 18.

\[
\begin{align*}
\frac{8}{10} + \frac{1}{9} &= \frac{8*2}{18} + \frac{1}{18} \\
&= \frac{16}{18} + \frac{1}{18} \\
&= \frac{17}{18}
\end{align*}
\]

Because 9 is a factor of 18, the least common denominator is 18.

- Convert the first fraction to an equivalent fraction with a denominator of 18: multiply its numerator and denominator by 18/9=2 (note: 9*2=18):

\[
10 \frac{8*2}{18} + 2 \frac{1}{18} = 10 \frac{16}{18} + 2 \frac{1}{18}
\]

\[
\begin{align*}
\frac{16}{18} + \frac{1}{18} &= \frac{17}{18}
\end{align*}
\]
Then, group the whole number terms and put both fractions together over the common denominator:

\[
\frac{16}{18} + \frac{1}{18} = \frac{16+1}{18} = \frac{17}{18}
\]

Now, sum the numerator and the whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\frac{16+1}{18} = \frac{17}{18}
\]

Enter 12 17/18

39) Problem #PRAJEC6 "PRAJEC6 - 224054 - Subtracting Mixed Numbers"

Find the difference:

\[
\frac{1}{10} - \frac{3}{6} - \frac{4}{5} = \frac{1 - 3}{6} - \frac{4}{5}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✔️ 6 11/30

Hints:

- The denominators 6 and 5 have no common factors greater than 1.

\[
\frac{1}{6} - \frac{3}{5}
\]

Because the denominators have no common factors, find the least common denominator by multiplying 6 by 5:

\[
6 \times 5 = 30
\]

Find equivalent fractions using the denominator 30.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\frac{10}{15} - \frac{4}{6} = \frac{10}{5} - \frac{3}{24}
\]
Since the second numerator is greater than the first, we have to borrow. Borrow 1 from the first whole number, 10, and represent it in fractional form using the common denominator: \(10 = 9 + 1 = 9 + \frac{30}{30}\)

\[
\begin{align*}
\frac{30}{30} + 5 & = 24 \\
9 & - 3 \\
\frac{30}{30} - \frac{30}{30} & = \frac{24 - 3}{30}
\end{align*}
\]

Next, group the numerator and whole numbers:

\[
\frac{35}{30} - \frac{24}{30} = (9 - 3) \frac{11}{30}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:
 \[
 \frac{35}{30} - \frac{24}{30} = \frac{11}{30}
 \]

Enter \(6 \frac{11}{30}\)

40) Problem #PRAJEAS "PRAJEAS - 224053 - Subtracting Mixed Numbers"

Find the difference:

\[
\frac{1}{4} - \frac{7}{12}
\]

Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

-\(3 \frac{1}{6}\)

Hints:

- Notice 4 is a factor of 12.

Because 4 is a factor of 12, the least common denominator is 12.

- Convert the first fraction to an equivalent fraction with a denominator of 12: multiply its numerator and
denominator by \(\frac{12}{4} = 3\) (note: \(4 \times 3 = 12\)):

\[
\begin{array}{c}
1 \times 3 & 1 \\
10 & 7 \\
\frac{10}{12} & \frac{7}{12} \\
4 \times 3 & 12
\end{array}
\]

Since the second numerator is not greater than the first, we do not have to borrow.

\[
\begin{array}{c}
3 & 1 \\
10 & 7 \\
\frac{10}{12} & \frac{7}{12}
\end{array}
\]

Next, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{array}{c}
3 & 1 \\
10 & 7 \\
\frac{10}{12} & \frac{7}{12}
\end{array} = \frac{(10-7) - 1}{12}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
\begin{array}{c}
3 - 1 & 2 \\
\frac{(10 - 7)}{12} & \frac{1}{12}
\end{array} = \frac{3}{12} - \frac{1}{12} = \frac{3}{12}
\]

Enter 3 \(\frac{1}{6}\)

41) Problem #PRAJEDG "PRAJEDG - 224054 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{array}{c}
6 & 2 \\
2 & 3
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 3 5/6

Hints:

- The denominators 2 and 3 have no common factors greater than 1.

\[
\begin{array}{c}
1 & 2 \\
6 & 2 \\
\frac{2}{3}
\end{array}
\]
Because the denominators have no common factors, find the least common denominator by multiplying 2 by 3:

\[2 \times 3 = 6 \]

Find equivalent fractions using the denominator 6.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{align*}
\frac{1 \times 3}{6} - \frac{2 \times 2}{6} &= \frac{3}{6} - \frac{4}{6} \\
\frac{2 \times 3}{6} - \frac{3 \times 2}{6} &= \frac{6}{6} - \frac{6}{6}
\end{align*}
\]

Since the second numerator is greater than the first, we have to borrow. Borrow 1 from the first whole number, 6, and represent it in fractional form using the common denominator: \(6 = 5 + 1 = \frac{5}{6} + \frac{6}{6}\)

\[
\begin{align*}
\frac{6 + 3}{6} &= \frac{4}{6} \\
\frac{5}{6} - \frac{2}{6} &= \frac{3}{6}
\end{align*}
\]

Next, group the numerator and whole numbers:

\[
\begin{align*}
\frac{9}{6} - \frac{4}{6} &= (5 - 2) - \frac{4}{6}
\end{align*}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
\begin{align*}
9 - 4 &= \frac{5}{6} \\
(5 - 2) &= \frac{3}{6}
\end{align*}
\]

Enter 3 5/6

42) Problem #PRAJDM8 "PRAJDM8 - Adding Mixed Numbers"

Find the sum:

\[
\begin{align*}
\frac{3}{6} + \frac{5}{9} &= \frac{5}{11}
\end{align*}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):
15 83/110

Hints:
- The denominators 10 and 11 have no common factors greater than 1.

\[
\begin{align*}
\frac{3}{10} + \frac{5}{11} &= \frac{3 \times 11 + 5 \times 10}{10 \times 11} \\
&= \frac{33 + 50}{110} \\
&= \frac{83}{110}
\end{align*}
\]

Because the denominators have no common factors, find the least common denominator by multiplying 10 by 11:

\[
10 \times 11 = 110
\]

Find equivalent fractions using the denominator 110.
- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{align*}
\frac{6}{10} + \frac{9}{11} &= \frac{6 \times 11 + 9 \times 10}{110} \\
&= \frac{66 + 90}{110} \\
&= \frac{156}{110}
\end{align*}
\]

Next, group the numerator and whole numbers:

\[
\begin{align*}
\frac{33 + 50}{110} &= \left(\frac{33}{110} + \frac{50}{110}\right) \\
&= \frac{83}{110}
\end{align*}
\]

Now, sum the numerator and whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\begin{align*}
\frac{66 + 90}{110} &= \frac{156}{110} \\
&= \frac{(66 + 90)}{110}
\end{align*}
\]

Enter 15 83/110

43) Problem #PRAJDQP "PRAJDQP - Adding Mixed Numbers"
Find the sum:

\[
\begin{align*}
\frac{1}{5} + \frac{3}{6} &= \frac{1 \times 6 + 3 \times 5}{5 \times 6} \\
&= \frac{6 + 15}{30} \\
&= \frac{21}{30} \\
&= \frac{7}{10}
\end{align*}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)
Exact Match (case sensitive):

✓ 8 23/30

Hints:

- The denominators 6 and 5 have no common factors greater than 1.

\[
\begin{array}{c}
\frac{1}{5} + \frac{3}{6} - \\
\frac{3}{5} - \frac{1}{6}
\end{array}
\]

Because the denominators have no common factors, find the least common denominator by multiplying 6 by 5:

\[6 \times 5 = 30\]

Find equivalent fractions using the denominator 30.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{array}{c}
\frac{1 \times 5}{6 \times 5} + \frac{3 \times 6}{5 \times 6} = \frac{5}{30} + \frac{18}{30} \\
\frac{6 \times 5}{6 \times 5} + \frac{5 \times 6}{5 \times 6} = \frac{30}{30} + \frac{30}{30}
\end{array}
\]

Next, group the numerator and whole numbers:

\[
\begin{array}{c}
\frac{5}{30} + \frac{18}{30} = \frac{(5 + 3) \times 18}{30}
\end{array}
\]

Now, sum the numerator and whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\begin{array}{c}
\frac{5 + 18}{30} = \frac{23}{30}
\end{array}
\]

Enter 8 23/30

44) Problem #PRAJEDN "PRAJEDN - 224054 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{array}{c}
\frac{5}{6} - \frac{1}{5}
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space.
between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✅ 1 19/30

Hints:

- The denominators 6 and 5 have no common factors greater than 1.

\[
\begin{array}{c}
5 \\
2 - 1 \quad \equiv \\
6 \\
5
\end{array}
\]

Because the denominators have no common factors, find the least common denominator by multiplying 6 by 5:

\[6 \times 5 = 30\]

Find equivalent fractions using the denominator 30.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{array}{c}
2 \times 5 = 10 \\
30 \\
2 \times 5 = 10 \\
30
\end{array}
\]

\[
\begin{array}{c}
1 \times 6 = 6 \\
30 \\
1 \times 6 = 6 \\
30
\end{array}
\]

\[
\begin{array}{c}
25 \\
30 \\
6 \\
30
\end{array}
\]
\[
\begin{array}{c}
25 - 1 \equiv \\
30 \\
25 - 1 \equiv \\
30
\end{array}
\]

Since the second numerator is not greater than the first, we do not have to borrow.

\[
\begin{array}{c}
25 \\
30 \\
6 \\
30
\end{array}
\]

Next, group the numerator and whole numbers:

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
\begin{array}{c}
25 - 6 \\
30 \\
19 \\
30
\end{array}
\]

Enter 1 19/30
Answers must be in the form of a *reduced proper fraction* (example 2/7) or a *mixed number* with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✅ 5 3/10

Hints:

- The denominators 5 and 2 have no common factors greater than 1.

Because the denominators have no common factors, find the least common denominator by multiplying 5 by 2:

\[
5 \times 2 = 10
\]

Find equivalent fractions using the denominator 10.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{align*}
\frac{4}{5} & \times \frac{2}{2} = \frac{8}{10} \\
\frac{1}{2} & \times \frac{2}{2} = \frac{2}{10}
\end{align*}
\]

Since the second numerator is not greater than the first, we do not have to borrow.

\[
\frac{8}{10} - \frac{2}{10} = \frac{6}{10}
\]

Next, group the numerator and whole numbers:

\[
\frac{8}{10} - \frac{2}{10} = (7-2) \frac{6}{10}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
\frac{8}{10} - \frac{5}{10} = \frac{3}{10}
\]
Enter $5\ 3/10$

46) Problem #PRAJDMZ "PRAJDMZ - Adding Mixed Numbers"

Find the sum:

\[
\begin{array}{c}
1 & 2 \\
8 & + \\
4 & 7
\end{array}
\]

Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 10 15/28

Hints:

- The denominators 4 and 7 have no common factors greater than 1.

\[
\begin{array}{c}
1 & 2 \\
8 & + \\
4 & 7
\end{array}
\]

Because the denominators have no common factors, find the **least common denominator** by multiplying 4 by 7:

\[
4 \times 7 = 28
\]

Find equivalent fractions using the denominator 28.

- *Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions* by multiplying each fraction’s numerator and denominator by the other fraction’s denominator:

\[
\frac{1 \times 7}{4 \times 7} + \frac{2 \times 4}{7 \times 4} = \frac{8}{28} + \frac{8}{28}
\]

Next, group the numerator and whole numbers:

\[
\frac{7}{8} + \frac{8}{28} = \frac{(8+2)\ 7 + 8}{28}
\]

Now, sum the numerator and whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\frac{7 + 8}{28} = \frac{15}{28}
\]
Enter 10 15/28

47) Problem #PRAJD94 "PRAJD94 - 224053 - Subtracting Mixed Numbers"
Find the difference:

\[
\begin{array}{c}
5 \\
7 - 5 \\
6 \\
\hline
5 \\
6 \\
18 \\
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 2 5/9

Hints:
- Notice 6 is a factor of 18.

Because 6 is a factor of 18, the least common denominator is 18.
- Convert the first fraction to an equivalent fraction with a denominator of 18: multiply its numerator and denominator by 18/6=3 (note: 6*3=18):

\[
\begin{array}{c}
5*3 \\
7 - 5 \\
6 \\
\hline
5 \\
18 \\
18 \\
\end{array}
\]

Since the second numerator is not greater than the first, we do not have to borrow.

\[
\begin{array}{c}
15 \\
7 - 5 \\
18 \\
\hline
15 \\
18 \\
18 \\
\end{array}
\]

Next, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{array}{c}
15 \\
7 - 5 \\
18 \\
\hline
15 \\
18 \\
18 \\
\end{array}
\]

Now, find the difference in the numerator and in the whole numbers.
- Subtracting gives:
48) Problem #PRAJEDC "PRAJEDC - 224054 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{array}{ccc}
\frac{3}{9} & - & \frac{1}{8} \\
9 & - & 3 \\
\frac{8}{9}
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 6 19/72

Hints:

- The denominators 8 and 9 have no common factors greater than 1.

Because the denominators have no common factors, find the least common denominator by multiplying 8 by 9:

\[8 \times 9 = 72\]

Find equivalent fractions using the denominator 72.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{array}{ccc}
\frac{3\times9}{9} & - & \frac{1\times8}{8} \\
9 & - & 3 \\
\frac{8\times9}{72} & - & \frac{9\times8}{72}
\end{array}
\]

Since the second numerator is not greater than the first, we do not have to borrow.

\[
\begin{array}{ccc}
27 & - & 8 \\
9 & - & 3 \\
72 & - & 72
\end{array}
\]

Next, group the numerator and whole numbers:

\[9 \frac{27}{8} = (9-3) 27 - 8\]
Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:
 \[
 \frac{27 - 8}{72} = \frac{19}{72}
 \]

Enter \(6\ 19/72\)

49) Problem #PRAJDKY "PRAJDKY - Adding Mixed Numbers"

Find the sum:

\[
\begin{array}{c}
3 \\
2 \quad + \quad 1 \\
5 \\
\end{array}
\]

Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✔ 13 1/10

Hints:

PSABKKK 2.1

The denominators 5 and 2 have no common factors greater than 1.

\[
\begin{array}{c}
3 \\
2 \quad + \quad 1 \\
5 \\
\end{array}
\]

Because the denominators have no common factors, find the **least common denominator** by multiplying 5 by 2:

\[
5 \times 2 = 10
\]
Find equivalent fractions using the denominator 10.

Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\frac{3 \times 2}{5 \times 2} + \frac{1 \times 5}{2 \times 5} = \frac{6}{10} + \frac{5}{10}
\]

Next, group the numerator and whole numbers:

\[
\frac{6}{10} + \frac{5}{10} = \frac{(2+10)6+5}{10}
\]

Now, sum the numerator and whole numbers.
Summing the numerator and the whole numbers gives:

\[
\begin{align*}
6 + 5 &= \frac{11}{10} \\
10 &= 12 + 1 \\
\text{ Enter } 13 \frac{1}{10}
\end{align*}
\]

50) Problem #PRAJDK6 "PRAJDK6 - Adding Mixed Numbers"

Find the sum:

\[
\begin{align*}
\frac{1}{6} + \frac{3}{10} -
\end{align*}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 16 23/30

Hints:

- The denominators 6 and 5 have no common factors greater than 1.

Because the denominators have no common factors, find the least common denominator by multiplying 6 by 5:

\[
6 \times 5 = 30
\]

Find equivalent fractions using the denominator 30.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{align*}
\frac{1 \times 5}{6} + \frac{3 \times 6}{10} &= \frac{5}{6} + \frac{18}{10} \\
\frac{6 \times 5}{6} + \frac{5 \times 6}{30} &= \frac{30}{30} + \frac{30}{30}
\end{align*}
\]

Next, group the numerator and whole numbers:

\[
\begin{align*}
\frac{5}{6} + \frac{18}{30} &= (6+10) \frac{5+18}{30}
\end{align*}
\]

Now, sum the numerator and whole numbers.
- Summing the numerator and the whole numbers gives:

\[
\frac{5 + 18}{30} + \frac{23}{30} = \frac{16}{30}
\]

Enter 16 23/30

51) Problem #PRAJD95 "PRAJD95 - 224053 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{array}{c}
\text{1} \\
\text{2} - \text{1} - \\
\text{2} \\
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

\[1 3/8\]

Hints:

- Notice 2 is a factor of 8.

Because 2 is a factor of 8, the least common denominator is 8.

- Convert the first fraction to an equivalent fraction with a denominator of 8: multiply its numerator and denominator by 8/2=4 (note: 2*4=8):

\[
\begin{array}{c}
1*4 \\
2 - 1 - \\
2*4 \\
\end{array}
\]

Since the second numerator is not greater than the first, we do not have to borrow.

\[
\begin{array}{c}
4 \\
2 - 1 - \\
8 \\
\end{array}
\]

Next, group the whole number terms and put both fractions together over the common denominator:
Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:
 \[
 \frac{4}{8} - \frac{1}{8} = \frac{3}{8}
 \]

Enter \(1 \frac{3}{8}\)

52) Problem #PRAJD99 "PRAJD99 - 224053 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{array}{c}
5 \\
10 \\
- \\
5 \\
- \\
6 \\
- \\
18
\end{array}
\]

Answers must be in the form of a \textit{reduced proper fraction} (example 2/7) or a \textit{mixed number} with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 9 5/9

Hints:

- Notice 6 is a factor of 18.

\[
\begin{array}{c}
5 \\
10 \\
- \\
5 \\
- \\
6 \\
- \\
18
\end{array}
\]

Because 6 is a factor of 18, the least common denominator is 18.

- Convert the first fraction to an equivalent fraction with a denominator of 18: multiply its numerator and denominator by 18/6 = 3 (note: 6*3 = 18).

\[
\begin{array}{c}
5 \\
10 \\
- \\
5 \\
- \\
18 \\
- \\
18
\end{array}
\]

Since the second numerator is not greater than the first, we do not have to borrow.

\[
\begin{array}{c}
15 \\
10 \\
- \\
5 \\
- \\
18 \\
- \\
18
\end{array}
\]

Next, group the whole number terms and put both fractions together over the common denominator:

\[
10 \frac{15}{18} - 1 \frac{5}{18} = (10-1) \frac{15-5}{18}
\]
Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:
 \[
 \begin{align*}
 (10 - 1) & \quad 10 \\
 18 & \quad 18 \\
 = & \quad 9 \quad \frac{5}{9}
 \end{align*}
 \]

Enter \(9\ \frac{5}{9}\).

53) Problem #PRAJEC8 "PRAJEC8 - 224054 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{align*}
1 & \quad 5 \\
10 - & \quad 8 - \\
9 & \quad 7
\end{align*}
\]

Answers must be in the form of a reduced proper fraction (example \(\frac{2}{7}\)) or a mixed number with a space between the whole number and the fraction (example \(3\ \frac{5}{8}\))

Exact Match (case sensitive):

\(1\ \frac{25}{63}\)

Hints:

- The denominators 9 and 7 have no common factors greater than 1.

Because the denominators have no common factors, find the least common denominator by multiplying 9 by 7:

\(9 \times 7 = 63\)

Find equivalent fractions using the denominator 63.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{align*}
1 \times 7 & \quad 5 \times 9 & \quad 7 & \quad 45 \\
10 - & \quad 8 - & \quad 10 - & \quad 8 - \\
9 \times 7 & \quad 7 \times 9 & \quad 63 & \quad 63
\end{align*}
\]

Since the second numerator is greater than the first, we have to borrow. Borrow 1 from the first whole number, 10, and represent it in fractional form using the common denominator: \(10 = 9+1 = 9\frac{63}{63}\)

\[
9\ \frac{63}{63}+7 - \quad 8\ 45
\]
Next, group the numerator and whole numbers:

\[
\begin{align*}
&\frac{70}{63} - \frac{45}{63} = \frac{70 - 45}{63} \\
&= \frac{25}{63}
\end{align*}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
\frac{70 - 45}{63} = \frac{25}{63}
\]

Enter 1 25/63

54) Problem #PRAJDKF "PRAJDKF - Adding Mixed Numbers"

Find the sum:

\[
\begin{align*}
&\frac{5}{6} + \frac{5}{18} \\
&= \frac{5 \times 3}{6 \times 3} + \frac{5}{18}
\end{align*}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 15 1/9

Hints:

- Notice 6 is a factor of 18.

Because 6 is a factor of 18, the least common denominator is 18.

- Convert the first fraction to an equivalent fraction with a denominator of 18: multiply its numerator and denominator by 18/6=3 (note: 6*3=18):

\[
\begin{align*}
&\frac{5 \times 3}{6 \times 3} + \frac{5}{18} \\
&= \frac{15}{18} + \frac{5}{18}
\end{align*}
\]

Then, group the whole number terms and put both fractions together over the common denominator:
\[
\begin{align*}
6 \frac{15}{18} + 8 \frac{5}{18} &= (6 + 8) \frac{15 + 5}{18} \\
&= 14 \frac{20}{18} \\
&= 14 + 1 \frac{2}{18} \\
&= 15 \frac{1}{9}
\end{align*}
\]

Now, sum the numerator and the whole numbers.

- Summing the numerator and the whole numbers gives:
 \[
 \frac{15 + 5}{18} = \frac{20}{18} = 14 \frac{2}{18} = 15 \frac{1}{9}
 \]

Enter **15 1/9**

55) Problem #PRAJD9W "PRAJD9W - 224053 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{align*}
7 \frac{1}{4} - 1 \frac{11}{12} = \frac{1}{4} - \frac{11}{12}
\end{align*}
\]

Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number with a space** between the whole number and the fraction (example 3 5/8).

Exact Match (case sensitive):

\[
\checkmark 5 1/3
\]

Hints:

- Notice 4 is a factor of 12.

\[
\begin{align*}
7 \frac{1}{4} - 1 \frac{11}{12} = \frac{1}{4} - \frac{11}{12}
\end{align*}
\]

Because 4 is a factor of 12, the least common denominator is **12**.

- Convert the first fraction to an equivalent fraction with a denominator of 12: multiply its numerator and denominator by 12/4 = 3 (note: 4*3 = 12):

\[
\begin{align*}
\frac{1*3}{4*3} - \frac{11}{12} = \frac{3}{12} - \frac{11}{12}
\end{align*}
\]

Since the second numerator is greater than the first, we have to borrow. Borrow 1 from the first whole number, 7, and represent it in fractional form using the common denominator: 7 = 6+1 = 6+12/12

\[
\begin{align*}
6 \frac{12+3}{12} + 1 \frac{11}{12} = 6 + \frac{12}{12}
\end{align*}
\]
Next, group the whole number terms and put both fractions together over the common denominator:

\[
\frac{15}{6} - \frac{11}{12} = \frac{15 - 11}{6 - 1} = \frac{15 - 11}{12} = \frac{4}{12} = \frac{1}{3}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:
 \[
 \frac{15 - 11}{12} = \frac{5}{12}
 \]

Enter 5 1/3

56) Problem #PRAJDKN "PRAJDKN - Adding Mixed Numbers"
Find the sum:

\[
\frac{5}{3} + \frac{8}{6}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 12 1/9

Hints:

- Notice 6 is a factor of 18.

Because 6 is a factor of 18, the least common denominator is 18.

- Convert the first fraction to an equivalent fraction with a denominator of 18: multiply its numerator and denominator by 18/6 = 3 (note: 6*3 = 18):

\[
\frac{5\times3}{6\times3} + \frac{8}{18} = \frac{15}{18} + \frac{8}{18} = \frac{23}{18}
\]

Then, group the whole number terms and put both fractions together over the common denominator:

\[
\frac{3}{1} + \frac{15}{6} + \frac{8}{18} = (3+8) \frac{15}{18}
\]
Now, sum the numerator and the whole numbers.

- Summing the numerator and the whole numbers gives:
 \[
 \frac{15 + 5}{18} = \frac{20}{18} = \frac{11}{2} \text{ or } 11 + \frac{1}{2}
 \]

Enter \(11\frac{1}{2}\)

57) Problem #PRAJEAD "PRAJEAD - 224053 - Subtracting Mixed Numbers"

Find the difference:

\[
\frac{3}{8} - \frac{4}{24}
\]

Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

- 5/6

Hints:

- Notice 8 is a factor of 24.

Because 8 is a factor of 24, the least common denominator is 24.

- Convert the first fraction to an equivalent fraction with a denominator of 24: multiply its numerator and denominator by 24/8 = 3 (note: 8*3=24):

\[
\frac{3*3}{5*8} = \frac{9}{24} - \frac{4}{24}
\]

Since the second numerator is greater than the first, we have to borrow. Borrow 1 from the first whole number, 5, and represent it in fractional form using the common denominator: 5 = 4+1 = 4+24/24

\[
\frac{24+9}{24} = \frac{33}{24}
\]

Next, group the whole number terms and put both fractions together over the common
Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
\begin{align*}
\frac{33}{24} - \frac{13}{24} &= \frac{20}{24} \\
&= \frac{5}{6}
\end{align*}
\]

Enter \(\frac{5}{6}\)

58) Problem #PRAJEBM "PRAJEBM - 224053 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{align*}
10 - 9 &= \frac{13}{30} - \frac{9}{30} \\
&= \frac{4}{30}
\end{align*}
\]

Answers must be in the form of a **reduced proper fraction** (example \(\frac{2}{7}\)) or a **mixed number** with a space between the whole number and the fraction (example \(3 \frac{5}{8}\))

Exact Match (case sensitive):

\[\checkmark \frac{2}{3}\]

Hints:

- Notice 10 is a factor of 30.

\[
\begin{align*}
10 - 9 &= \frac{13}{30} - \frac{9}{30} \\
&= \frac{4}{30}
\end{align*}
\]

Because 10 is a factor of 30, the least common denominator is 30.

- Convert the first fraction to an equivalent fraction with a denominator of 30: multiply its numerator and denominator by \(\frac{30}{10} = 3\) (note: \(10*3 = 30\)):

\[
\begin{align*}
10 - 9 &= \frac{13}{30} - \frac{9}{30} \\
&= \frac{4}{30}
\end{align*}
\]

Since the second numerator is greater than the first, we have to borrow. Borrow 1 from the first whole number, 10, and represent it in fractional form using the common denominator: \(10 = 9 + 1 = 9 + \frac{30}{30}\)

\[
\begin{align*}
\frac{30}{30} + 3 &= \frac{13}{30} - \frac{9}{30} \\
&= \frac{4}{30}
\end{align*}
\]
Next, group the whole number terms and put both fractions together over the common denominator:

\[
\frac{33}{30} - \frac{13}{30} = \frac{33 - 13}{30} = \frac{20}{30} = \frac{2}{3}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
\frac{33 - 13}{30} = \frac{0}{30} = \frac{2}{3}
\]

Enter \(\frac{2}{3}\)

59) Problem #PRAJEBJ "PRAJEBJ - 224053 - Subtracting Mixed Numbers"

Find the difference:

\[
\frac{3}{4} - \frac{1}{8} = \frac{2}{24}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✔️ 2 \(\frac{1}{3}\)

Hints:

- Notice \(8\) is a factor of \(24\).

Because \(8\) is a factor of \(24\), the least common denominator is \(24\).

- Convert the first fraction to an equivalent fraction with a denominator of \(24\): multiply its numerator and denominator by \(24/8=3\) (note: \(8\times3=24\):

\[
\frac{3\times3}{4} - \frac{1}{8} = \frac{9}{24} - \frac{1}{24} = \frac{8}{24} - \frac{2}{24} = \frac{6}{24} = \frac{1}{4}
\]

Since the second numerator is not greater than the first, we do not have to borrow.
Next, group the whole number terms and put both fractions together over the common denominator:

\[
\frac{9}{24} - \frac{1}{24} = \frac{9 - 1}{24}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:
 \[
 \frac{9 - 1}{24} = \frac{2}{24} = 2 \frac{1}{3}
 \]

Enter 2 1/3

60) Problem #PRAJDKU “PRAJDKU - Adding Mixed Numbers”

Find the sum:

\[
\frac{4}{9} + \frac{11}{10} = \frac{4}{7} + \frac{11}{14}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 20 5/14

Hints:

- Notice 7 is a factor of 14.

Because 7 is a factor of 14, the least common denominator is 14.

- Convert the first fraction to an equivalent fraction with a denominator of 14: multiply its numerator and denominator by 14/7 = 2 (note: 7*2 = 14):

\[
\frac{4*2}{14} + \frac{11}{14} = \frac{9*2}{14} + \frac{8}{14}
\]

Then, group the whole number terms and put both fractions together over the common denominator:

\[
\frac{9}{8} + \frac{11}{11} = (9+10) \frac{8+11}{14} = 19 + \frac{19}{14}
\]
Now, sum the numerator and the whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\begin{align*}
\frac{8 + 11}{14} &= 19 \quad \frac{19}{14} \\
&= 19 + \frac{5}{14} \\
&= 20 \quad \frac{5}{14}
\end{align*}
\]

Enter 20 5/14

61) Problem #PRAJDPU "PRAJDPU - Adding Mixed Numbers"

Find the sum:

\[
\begin{array}{c}
1 \\
5 \quad - \quad 1 \\
\hline
4 \\
7
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 6 23/28

Hints:

- The denominators 4 and 7 have no common factors greater than 1.

Because the denominators have no common factors, find the least common denominator by multiplying 4 by 7:

\[4 \times 7 = 28\]

Find equivalent fractions using the denominator 28.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{align*}
\frac{1 \times 7}{5} + \frac{4 \times 4}{7} &= \frac{7}{28} + \frac{16}{28} \\
\frac{4 \times 7}{7 \times 4} &= \frac{28}{28}
\end{align*}
\]

Next, group the numerator and whole numbers:

\[
\begin{align*}
\frac{5}{28} + \frac{7}{28} &= \frac{(5+1) \times 7}{28} + \frac{16}{28}
\end{align*}
\]
Now, sum the numerator and whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\frac{7 + 16}{28} = \frac{23}{28}
\]

Enter \(\frac{6\ 23}{28}\)

62) Problem #PRAJDNC "PRAJDNC - Adding Mixed Numbers"

Find the sum:

\[
\frac{9}{10} + \frac{13}{30}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 7 1/3

Hints:
- Notice 10 is a factor of 30.

Because 10 is a factor of 30, the least common denominator is 30.

- Convert the first fraction to an equivalent fraction with a denominator of 30: multiply its numerator and denominator by \(\frac{30}{10}\) (note: \(10*3=30\)):

\[
\frac{9*3}{10*3} + \frac{13}{30} = \frac{27}{30} + \frac{13}{30}
\]

Then, group the whole number terms and put both fractions together over the common denominator:

\[
\frac{27}{30} + \frac{13}{30} = (4+2) \frac{27 + 13}{30} = \frac{4+2}{30}
\]

Now, sum the numerator and the whole numbers.
• Summing the numerator and the whole numbers gives:

\[
\begin{align*}
(4 + 2) \frac{27 + 13}{30} &= \frac{40}{30} \\
&= \frac{6 + 1}{10/30} \\
&= 7 \frac{1}{3}
\end{align*}
\]

Enter 7 1/3

63) Problem #PRAJEDE "PRAJEDE - 224054 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{array}{c@{\quad}c@{\quad}c}
5 & 5 \\
10 & - & 8 \\
9 & - & 7
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 1 53/63

Hints:

• The denominators 9 and 7 have no common factors greater than 1.

Because the denominators have no common factors, find the least common denominator by multiplying 9 by 7:

\[
9 \times 7 = 63
\]

Find equivalent fractions using the denominator 63.

Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{array}{c@{\quad}c@{\quad}c@{\quad}c}
5 \times 7 & 5 \times 9 & 35 & 45 \\
10 - 8 & = & 10 - 8 & = \\
9 \times 7 & 7 \times 9 & 63 & 63
\end{array}
\]

Since the second numerator is greater than the first, we have to borrow. Borrow 1 from the first whole number, 10, and represent it in fractional form using the common denominator: 10 = 9+1 = 9+63/63

\[
\begin{array}{c@{\quad}c@{\quad}c}
63 + 35 & 45 \\
9 & - & 8 \\
63 & - & 63
\end{array}
\]
Next, group the numerator and whole numbers:

\[
\frac{98}{9} - \frac{45}{8} = \frac{98 - 45}{63} = \frac{98 - 45}{63}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
\frac{98 - 45}{63} = \frac{53}{63}
\]

Enter \(\text{1} \frac{53}{63} \)

64) Problem #PRAJED8 "PRAJED8 - 224054 - Subtracting Mixed Numbers"
Find the difference:

\[
\frac{1}{8} - \frac{3}{5} - \frac{1}{6}
\]

Answers must be in the form of a reduced proper fraction (example \(\frac{2}{7} \)) or a mixed number with a space between the whole number and the fraction (example \(3 \frac{5}{8} \))

Exact Match (case sensitive):

✓ 6 17/30

Hints:

- The denominators 6 and 5 have no common factors greater than 1.

Because the denominators have no common factors, find the least common denominator by multiplying 6 by 5:

\[6 \times 5 = 30 \]

Find equivalent fractions using the denominator 30.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\frac{1 \times 5}{8} - \frac{3 \times 6}{1} = \frac{5}{6} - \frac{18}{30}
\]

Since the second numerator is greater than the first, we have to borrow. Borrow 1 from the first whole number, 8, and represent it in fractional form using the common denominator: 8 = 7 + 1 =
Next, group the numerator and whole numbers:

\[
\begin{align*}
35 & \quad 18 \\
7 & \quad 1 \\
\hline
30 & \quad 30
\end{align*}
\]

\[
(7-1) \quad 35 - 18 \quad 30
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
\frac{35 - 18}{30} = \frac{6}{30}
\]

Enter \(\frac{6}{30} \) as a mixed number.

65) Problem #PRAJDNV “PRAJDNV - Adding Mixed Numbers”

Find the sum:

\[
\begin{align*}
1 & \quad 6 \\
7 & \quad 5 \\
\hline
9 & \quad 7
\end{align*}
\]

Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✅ 12 61/63

Hints:

- The denominators 9 and 7 have no common factors greater than 1.

Because the denominators have no common factors, find the **least common denominator** by multiplying 9 by 7:

\[
9 \times 7 = 63
\]

Find equivalent fractions using the denominator 63.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent
fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\frac{1 \times 7}{7} + \frac{6 \times 9}{9} = \frac{7}{63} + \frac{54}{63}
\]

Next, group the numerator and whole numbers:

\[
\frac{7}{63} + \frac{54}{63} = \frac{(7+5)}{63}
\]

Now, sum the numerator and whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\frac{7 + 54}{63} = \frac{61}{63}
\]

Enter 12 61/63

66) Problem #PRAJECN "PRAJECN - 224054 - Subtracting Mixed Numbers"
Find the difference:

\[
\frac{2}{3} - \frac{1}{4}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✔ 5 11/12

Hints:
- The denominators 3 and 4 have no common factors greater than 1.

Because the denominators have no common factors, find the least common denominator by multiplying 3 by 4:

\[
3 \times 4 = 12
\]

Find equivalent fractions using the denominator 12.
Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{align*}
\frac{2 \cdot 4}{7} - \frac{3 \cdot 3}{12} &= \frac{8}{7} - \frac{9}{12} \\
\frac{3 \cdot 4}{4 \cdot 3} &= \frac{12}{12}
\end{align*}
\]

Since the second numerator is greater than the first, we have to borrow. Borrow 1 from the first whole number, 7, and represent it in fractional form using the common denominator: \(7 = \frac{6+1}{12} = \frac{6}{12} + \frac{1}{12}\)

\[
\begin{align*}
\frac{12}{6} + \frac{8}{12} - \frac{1}{12} &= \frac{12 - 1}{12} = \frac{11}{12}
\end{align*}
\]

Next, group the numerator and whole numbers:

\[
\begin{align*}
\frac{6}{12} \downarrow \quad \frac{20}{9} &= \frac{20 - 9}{12} \\
\frac{6}{12} - \frac{19}{12} &= \frac{6 - 1}{12} = \frac{5}{12}
\end{align*}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
\begin{align*}
\frac{20 - 9}{12} &= \frac{11}{12} \\
\frac{6 - 1}{12} &= \frac{5}{12}
\end{align*}
\]

Enter \(5 \frac{11}{12}\)

Find the sum:

\[
\begin{align*}
\frac{1}{7} + \frac{1}{5}
\end{align*}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

☑️ 9 3/10

Hints:

- Notice 5 is a factor of 10.
Because 5 is a factor of 10, the least common denominator is 10.

- Convert the first fraction to an equivalent fraction with a denominator of 10: multiply its numerator and denominator by \(\frac{10}{5} = 2 \) (note: \(5 \times 2 = 10 \)):

\[
\frac{1 \times 2}{7} + \frac{1}{10} = \frac{7}{10} + \frac{2}{10}
\]

Then, group the whole number terms and put both fractions together over the common denominator:

\[
\frac{2}{7} + \frac{1}{10} = \frac{(7 + 2)}{10}
\]

Now, sum the numerator and the whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\frac{2 + 1}{(7 + 2)} = \frac{3}{10}
\]

Enter 9 3/10

68) Problem #PRAJEDH "PRAJEDH - 224054 - Subtracting Mixed Numbers"

Find the difference:

\[
\frac{2}{8} - \frac{1}{5} = \frac{5}{2}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 3 9/10

Hints:

- The denominators 5 and 2 have no common factors greater than 1.

Because the denominators have no common factors, find the least common denominator by multiplying 5 by 2:

\[5 \times 2 = 10 \]
Find equivalent fractions using the denominator 10.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{align*}
\frac{2 \times 2}{5 \times 2} \quad &\quad \frac{1 \times 5}{2 \times 5} \\
\frac{8}{10} &\quad - \quad \frac{4}{10} = \frac{8}{10} - \frac{4}{10}
\end{align*}
\]

Since the second numerator is greater than the first, we have to borrow. Borrow 1 from the first whole number, 8, and represent it in fractional form using the common denominator: \(8 = 7 + 1 = 7\frac{10}{10}\)

\[
\begin{align*}
\frac{10 + 4}{7} &\quad - \quad \frac{5}{10} \\
\frac{7}{10} &\quad - \quad \frac{4}{10}
\end{align*}
\]

Next, group the numerator and whole numbers:

\[
\begin{align*}
\frac{14}{7} &\quad - \quad \frac{5}{10} = (\frac{7 - 4}{10})
\end{align*}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
\begin{align*}
\frac{14 - 5}{10} &\quad - \quad \frac{9}{10} = \frac{3}{10}
\end{align*}
\]

Enter \(3 \frac{9}{10}\)

69) Problem #PRAJECT "PRAJECT - 224054 - Subtracting Mixed Numbers"
Find the difference:

\[
\begin{align*}
\frac{1}{10} &\quad - \quad \frac{7}{12}
\end{align*}
\]

Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✔️ 47/84

Hints:

- The denominators 7 and 12 have no common factors greater than 1.
Because the denominators have no common factors, find the least common denominator by multiplying 7 by 12:

\[7 \times 12 = 84 \]

Find equivalent fractions using the denominator 84.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{align*}
\frac{10}{7} & \cdot \frac{12}{7} = \frac{120}{49} \\
\frac{12}{7} & \cdot \frac{9}{7} = \frac{108}{49}
\end{align*}
\]

Since the second numerator is greater than the first, we have to borrow. Borrow 1 from the first whole number, 10, and represent it in fractional form using the common denominator: 10 = 9 + 1 = 9 + \frac{84}{84}

\[
\begin{align*}
\frac{96 + 12}{84} & \cdot \frac{49}{49} \\
\frac{9}{84} & \cdot \frac{9}{84} \\
\frac{96}{84} & \cdot \frac{49}{84}
\end{align*}
\]

Next, group the numerator and whole numbers:

\[
\begin{align*}
\frac{96 - 9}{84} & \cdot \frac{49}{49} \\
\frac{96 - 9}{84} & = \frac{0}{84}
\end{align*}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
\begin{align*}
\frac{96 - 9}{84} & = 0 \\
\frac{84}{84} & = \frac{47}{84}
\end{align*}
\]

Enter 47/84

70) Problem #PRAJDMS "PRAJDMS - Adding Mixed Numbers"

Find the sum:

\[
\frac{4}{5} + \frac{1}{2} = \frac{47}{84}
\]
Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):
✓ 7 3/10

Hints:
- The denominators 5 and 2 have no common factors greater than 1.

Because the denominators have no common factors, find the least common denominator by multiplying 5 by 2:

5 * 2 = 10

Find equivalent fractions using the denominator 10.
- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\frac{4}{5} \times \frac{2}{2} + \frac{1}{2} \times \frac{5}{5} = \frac{8}{10} + \frac{5}{10}
\]

Next, group the numerator and whole numbers:

\[
\frac{8}{10} + \frac{5}{10} = \frac{(3+3) + 8}{10}
\]

Now, sum the numerator and whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\frac{8 + 5}{10} = \frac{13}{10} = 6 + \frac{3}{10} = 7 \frac{3}{10}
\]

Enter 7 3/10

71) Problem #PRAJECH "PRAJECH - 224054 - Subtracting Mixed Numbers"
Find the difference:

\[
7 \frac{1}{1} - 6 \frac{1}{1}
\]
Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 29/30

Hints:

- The denominators 6 and 5 have no common factors greater than 1.

\[
\begin{align*}
7 &\quad - &\quad 6 \\
\frac{1}{6} &\quad - &\quad \frac{1}{5}
\end{align*}
\]

Because the denominators have no common factors, find the least common denominator by multiplying 6 by 5:

\[6 \times 5 = 30\]

Find equivalent fractions using the denominator 30.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{align*}
\frac{7}{6} &\quad - &\quad \frac{6}{5} \\
\frac{5 \times 6}{30} &\quad - &\quad \frac{6 \times 5}{30}
\end{align*}
\]

Next, group the numerator and whole numbers:

\[
\begin{align*}
\frac{35}{6} &\quad - &\quad \frac{6}{30} \\
\frac{35 - 6}{30} &\quad = &\quad \frac{35 - 6}{30}
\end{align*}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
\begin{align*}
\frac{35 - 6}{30} &\quad = &\quad \frac{29}{30}
\end{align*}
\]

\[
\begin{align*}
\frac{6 - 6}{30} &\quad = &\quad 0 \\
\frac{29}{30} &\quad = &\quad 29/30
\end{align*}
\]
72) Problem #PRAJDP5 "PRAJDP5 - Adding Mixed Numbers"

Find the sum:

\[
\begin{array}{c}
9 \quad 1 \\
\hline
12 \\
+ \\
\hline
8 \quad 5 \\
\hline
11
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 17 71/132

Hints:
- The denominators 12 and 11 have no common factors greater than 1.

Because the denominators have no common factors, find the least common denominator by multiplying 12 by 11:

\[12 \times 11 = 132\]

Find equivalent fractions using the denominator 132.
- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{array}{c}
9 \quad 1 \times 11 \\
\hline
12 \times 11 \\
+ \\
\hline
8 \quad 5 \times 12 \\
\hline
11 \times 12
\end{array}
= \begin{array}{c}
9 \quad 11 \\
\hline
132 \\
+ \\
\hline
8 \quad 60 \\
\hline
132
\end{array}
\]

Next, group the numerator and whole numbers:

\[
\begin{array}{c}
11 \\
\hline
132 \\
+ \\
\hline
60 \\
\hline
132
\end{array}
= \frac{(9+8) \times (11+60)}{132}
\]

Now, sum the numerator and whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\frac{11 + 60}{132} = \frac{71}{132}
\]
Enter **17 71/132**

73) Problem #PRAJD9Y "PRAJD9Y - 224053 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{array}{c}
\frac{5}{8} - \frac{5}{6} \\
\frac{5}{18}
\end{array}
\]

Answers must be in the form of a *reduced proper fraction* (example 2/7) or a *mixed number* with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

- ✓ **4 5/9**

Hints:

- Notice 6 is a factor of 18.

\[
\begin{array}{c}
\frac{5}{8} - \frac{5}{6} \\
\frac{5}{18}
\end{array}
\]

Because 6 is a factor of 18, the least common denominator is 18.

- Convert the *first* fraction to an equivalent fraction with a denominator of 18: multiply its numerator and denominator by \(18/6 = 3\) (note: \(6\times3 = 18\)):

\[
\begin{array}{c}
\frac{5\times3}{8} - \frac{5}{18} \\
\frac{15}{18} - \frac{5}{18}
\end{array}
\]

Since the second numerator is not greater than the first, we do not have to borrow.

\[
\begin{array}{c}
\frac{15}{18} - \frac{5}{18} \\
\frac{10}{18}
\end{array}
\]

Next, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{array}{c}
\frac{15}{18} - \frac{5}{18} = \frac{(8-4)}{18}
\end{array}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

 \(8 - 4\) \(15 - 5 = 10\)
74) Problem #PRAJE5 "PRAJE5 - 224053 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{array}{c}
1 \\
9
\end{array} - \begin{array}{c}
5 \\
9
\end{array} = \begin{array}{c}
2 \\
18
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 6 5/6

Hints:
- Notice 9 is a factor of 18.

Because 9 is a factor of 18, the least common denominator is 18.

- Convert the first fraction to an equivalent fraction with a denominator of 18: multiply its numerator and denominator by \(\frac{18}{9} = 2\) (note: \(9 \times 2 = 18\):

\[
\begin{array}{c}
1 \\
9
\end{array} - \begin{array}{c}
2 \\
9
\end{array} = \begin{array}{c}
2 \\
18
\end{array}
\]

Since the second numerator is greater than the first, we have to borrow. Borrow 1 from the first whole number, 9, and represent it in fractional form using the common denominator: \(9 = 8 + \frac{18}{18}\)

\[
\begin{array}{c}
18 + 2 \\
8
\end{array} - \begin{array}{c}
2 \\
18
\end{array}
\]

Next, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{array}{c}
20 \\
18
\end{array} - \begin{array}{c}
5 \\
18
\end{array} = (8 - 2) \frac{20 - 5}{18}
\]

Now, find the difference in the numerator and in the whole numbers.
Subtracting gives:

\[
\begin{align*}
(8 - 2) & = 6 \\
\frac{20 - 5}{18} & = \frac{15}{18} \\
& = \frac{6}{5/6}
\end{align*}
\]

Enter 6 5/6

75) Problem #PRAJDQG "PRAJDQG - Adding Mixed Numbers"

Find the sum:

\[
\begin{align*}
11 & \quad 8 \\
6 & + 9 \\
12 & 11
\end{align*}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 16 85/132

Hints:
- The denominators 12 and 11 have no common factors greater than 1.

Because the denominators have no common factors, find the least common denominator by multiplying 12 by 11:

\[12 * 11 = 132\]

Find equivalent fractions using the denominator 132.
- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{align*}
\frac{11 * 11}{6} + \frac{8 * 12}{11 * 12} & = \frac{121}{132} + \frac{96}{132} \\
\frac{6 * 11}{12 * 11} & = \frac{6 + 9}{132}
\end{align*}
\]

Next, group the numerator and whole numbers:

\[
\begin{align*}
\frac{121}{6} + \frac{96}{132} & = (6 + 9) \frac{121 + 96}{132}
\end{align*}
\]

Now, sum the numerator and whole numbers.
• Summing the numerator and the whole numbers gives:

\[
\frac{121 + 96}{132} = \frac{217}{132} = \frac{15 + 1}{132} = \frac{16}{132}
\]

Enter 16 85/132

76) Problem #PRAJKC "PRAJKC - Adding Mixed Numbers"

Find the sum:

\[
\frac{9}{5} + \frac{7}{10} = \frac{9 \times 10}{5 \times 10} + \frac{7 \times 5}{10 \times 5} = \frac{90}{50} + \frac{35}{50} = \frac{125}{50}
\]

Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✅ 16 2/15

Hints:

- Notice 10 is a factor of 30.

\[
\frac{9}{10} + \frac{7}{30} = \frac{9 \times 3}{10 \times 3} + \frac{7}{30} = \frac{27}{30} + \frac{7}{30} = \frac{34}{30}
\]

Because 10 is a factor of 30, the least common denominator is 30.

- Convert the first fraction to an equivalent fraction with a denominator of 30: multiply its numerator and denominator by 30/10 = 3 (note: 10*3=30):

\[
\frac{9 \times 3}{10 \times 3} + \frac{7}{30} = \frac{27 + 7}{30} = \frac{34}{30}
\]

Then, group the whole number terms and put both fractions together over the common denominator:

\[
\frac{27}{30} + \frac{7}{30} = (5+10) \frac{27 + 7}{30} = \frac{15}{30} + \frac{4}{30} = \frac{19}{30}
\]

Now, sum the numerator and the whole numbers.

- Summing the numerator and the whole numbers gives:

\[
(5 + 10) = \frac{34}{30} = \frac{15 + 1}{30} = 16 2/15
\]
Enter 16 2/15

77) Problem #PRAJDNB "PRAJDNB - Adding Mixed Numbers"
Find the sum:

\[
\begin{array}{c}
\frac{3}{11} + \frac{9}{10} \\
\hline
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):
✓ 7 19/110

Hints:
- The denominators 11 and 10 have no common factors greater than 1.

Because the denominators have no common factors, find the least common denominator by multiplying 11 by 10:

\[11 \times 10 = 110\]

Find equivalent fractions using the denominator 110.
- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{array}{c}
\frac{3 \times 10}{11 \times 10} + \frac{9 \times 11}{10 \times 11} = \frac{30}{110} + \frac{99}{110} \\
\hline
\end{array}
\]

Next, group the numerator and whole numbers:

\[
\frac{30}{110} + \frac{99}{110} = \frac{(4+2) \times 30 + 99}{110} = \frac{129}{110}
\]

Now, sum the numerator and whole numbers.

- Summing the numerator and the whole numbers gives:

\[
(4 + 2) \frac{30 + 99}{110} = \frac{6 \times 129}{110} = \frac{6 + 19}{110}
\]
78) Problem #PRAJK8 "PRAJK8 - Adding Mixed Numbers"

Find the sum:

\[
\begin{array}{cc}
4 & 1 \\
10 & 5 \\
+ & 4 & 2 \\
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✔ 15 3/10

Hints:

- The denominators 5 and 2 have no common factors greater than 1.

Because the denominators have no common factors, find the least common denominator by multiplying 5 by 2:

\[5 \times 2 = 10\]

Find equivalent fractions using the denominator 10.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{array}{c}
4 \times 2 \\
5 \times 2 \\
+ \\
1 \times 5 \\
2 \times 5 \\
\end{array}
\]

\[
\begin{array}{c}
10 \\
5 \\
\end{array}
\]

Next, group the numerator and whole numbers:

\[
\begin{array}{c}
8 \\
10 \\
+ \\
5 \\
10 \\
\end{array}
\]

= (10 + 4) \frac{8 + 5}{10}

Now, sum the numerator and whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\frac{8 + 5}{10} = \frac{13}{10}
\]
Find the sum:

\[
\begin{array}{c}
5 & 3 \\
4 & + & 6 \\
6 & & 5
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

11 13/30

Hints:

- The denominators 6 and 5 have no common factors greater than 1.

Because the denominators have no common factors, find the least common denominator by multiplying 6 by 5:

\[
6 \times 5 = 30
\]

Find equivalent fractions using the denominator 30.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{array}{c}
5 & 3 \\
4 & \times & 5 \\
6 & & 6 \\
\end{array}
\]

Next, group the numerator and whole numbers:

\[
\begin{array}{c}
25 \\
4 & + & 6 \\
30 & & 30
\end{array}
\]

Now, sum the numerator and whole numbers:

- Summing the numerator and the whole numbers gives:

\[
(4 + 6) \quad 25 + 18 = \quad 10 \quad 43
\]
80) Problem #PRAJEAN "PRAJEAN - 224053 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{array}{c}
30 \\
= 10 + 1 \\
= 11
\end{array}
\]

Enter \(11 \frac{13}{30}\)

Answers must be in the form of a **reduced proper fraction** (example \(\frac{2}{7}\)) or a **mixed number** with a space between the whole number and the fraction (example \(3 \frac{5}{8}\))

Exact Match (case sensitive):

✓ 3 5/6

Hints:

- Notice 9 is a factor of 18.

\[
\begin{array}{c}
1 \\
6 - 2
\end{array}
\]

Because 9 is a factor of 18, the least common denominator is 18.

- Convert the **first** fraction to an equivalent fraction with a denominator of 18: multiply its numerator and denominator by \(\frac{18}{9}=2\) (note: \(9*2=18\)):

\[
\begin{array}{c}
1 \\
6 - 2
\end{array}
\]

\[
\begin{array}{c}
5 \\
9*2
\end{array}
\]

Since the second numerator is greater than the first, we have to borrow. Borrow 1 from the first whole number, 6, and represent it in fractional form using the common denominator: \(6 = 5 + 1 = \frac{5+18}{18}\)

\[
\begin{array}{c}
\frac{18}{5} + 2 \\
- 2
\end{array}
\]

\[
\begin{array}{c}
5 \\
18
\end{array}
\]

Next, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{array}{c}
20 \\
5 - 2
\end{array}
\]

\[
\frac{20 - 5}{18}
\]

https://www.assistments.org/build/sequence/809734?mode=debug&op_scaf=false&op_hint=false&op_answer_op=false&op_answer=false&op_name=false&op_buggies=false&op_sections=false&short_answers=false
Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:
 \[
 \left(\frac{5}{18} - \frac{2}{18} \right) = \frac{3}{18} = \frac{1}{6}
 \]
 Enter 3 5/6

81) Problem #PRAJD82 "PRAJD82 - 224053 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{array}{ll}
 11 & 11 \\
 10 & - 2 \\
 12 & 36 \\
\end{array}
\]

Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 8 11/18

Hints:

- Notice 12 is a factor of 36.

Because 12 is a factor of 36, the least common denominator is 36.

- Convert the first fraction to an equivalent fraction with a denominator of 36: multiply its numerator and denominator by \(\frac{36}{12} = 3 \) (note: 12*3=36):

\[
\begin{array}{llllll}
 11 & 11 & 33 & 11 \\
 10 & - 2 & 36 & 36 \\
 12 & 36 & 36 & 36 \\
\end{array}
\]

Since the second numerator is not greater than the first, we do not have to borrow.

\[
\begin{array}{ll}
 33 & 11 \\
 10 & - 2 \\
 36 & 36 \\
\end{array}
\]

Next, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{array}{llll}
 33 & 11 & 33 - 11 \\
 10 & - 2 & (10-2) \\
 36 & 36 & 36 \\
\end{array}
\]
Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:
 \[\frac{33 - 11}{36} = \frac{22}{36} = \frac{8}{11}\frac{1}{18} \]

Enter \(8\ 11/18\)

82) Problem #PRAJD9Q "PRAJD9Q - 224053 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{array}{ccc}
5 & 7 \\
11 - & - & 8 \\
\hline
8 & 24
\end{array}
\]

Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 3 1/3

Hints:

- Notice 8 is a factor of 24.

\[
\begin{array}{ccc}
5 & 7 \\
11 - & - & 8 \\
\hline
8 & 24
\end{array}
\]

Because 8 is a factor of 24, the least common denominator is 24.

- Convert the first fraction to an equivalent fraction with a denominator of 24: multiply its numerator and denominator by \(24/8=3\) (note: \(8*3=24\)):

\[
\begin{array}{ccc}
5 & 7 \\
11 - & - & 8 \\
\hline
8*3 & 24 & 24
\end{array}
\]

Since the second numerator is not greater than the first, we do not have to borrow.

\[
\begin{array}{ccc}
15 & 7 \\
11 - & - & 8 \\
\hline
24 & 24
\end{array}
\]

Next, group the whole number terms and put both fractions together over the common denominator:

\[
11 \ 15 - 8 \ 7 = (11-8) 15 - 7
\]
Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:
 \[
 \frac{15 - 7}{24} - \frac{8}{24} = \frac{3}{24} = \frac{1}{8} \\
 \]

Enter 3 1/3
Next, group the numerator and whole numbers:

\[
\begin{array}{cccc}
\frac{25}{10} & - & \frac{12}{30} & = \frac{25-12}{30} \\
\frac{25}{30} - \frac{12}{30} & = & \frac{8}{30}
\end{array}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
\frac{25}{30} - \frac{12}{30} = \frac{13}{30}
\]

Enter 8 13/30

84) Problem #PRAJDJX "PRAJDJX - Adding Mixed Numbers"

Find the sum:

\[
\begin{array}{ccc}
\frac{9}{7} & + & \frac{3}{14} \\
\frac{15}{14} & + & \frac{3}{14} \\
\frac{18}{14} & = & \frac{9}{7}
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✅ 17 13/14

Hints:

- Notice 7 is a factor of 14.

Because 7 is a factor of 14, the least common denominator is 14.

- Convert the first fraction to an equivalent fraction with a denominator of 14: multiply its numerator and denominator by 14/7=2 (note: 7*2=14):

\[
\begin{array}{cccc}
\frac{5*2}{9} & + & \frac{3}{14} & = \frac{10}{14} + \frac{3}{14} \\
\frac{9}{14} & + & \frac{3}{14} & = \frac{12}{14}
\end{array}
\]

Then, group the whole number terms and put both fractions together over the common denominator:

\[
\frac{9}{10} + \frac{8}{3} = (9+8) \frac{10+3}{14}
\]
Now, sum the numerator and the whole numbers.

- Summing the numerator and the whole numbers gives:
 \[
 \frac{10 + 3}{14} = \frac{13}{14}
 \]

Enter 17 13/14

85) Problem #PRAJDKP "PRAJDP - Adding Mixed Numbers"

Find the sum:

\[
\begin{array}{c}
 1 & 8 \\
 10 & + \\
 8 & \frac{5}{9}
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 16 1/72

Hints:

- The denominators 8 and 9 have no common factors greater than 1.

Because the denominators have no common factors, find the least common denominator by multiplying 8 by 9:

\[
8 \times 9 = 72
\]

Find equivalent fractions using the denominator 72.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{array}{c}
 1*9 & 8*8 & 9 & 64 \\
 \frac{10}{8*9} & + & \frac{5}{9*8} & = & \frac{10}{72} & + & \frac{5}{72}
\end{array}
\]

Next, group the numerator and whole numbers:

\[
\begin{array}{c}
 10 & 9 & + & 5 & 64 \\
 \frac{10}{72} & & \frac{5}{72} & = & (10+5) & \frac{9}{72} & + & \frac{64}{72}
\end{array}
\]
Now, sum the numerator and whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\frac{9 + 64}{72} = \frac{73}{72} = 15 + 1/72 = 16 1/72
\]

Enter 16 1/72

Problem #PRAJPD “PRAJPD - Adding Mixed Numbers”

Find the sum:

\[
\frac{1}{2} + \frac{1}{3}
\]

Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

- 4 5/6

Hints:

- The denominators 2 and 3 have no common factors greater than 1.

\[
\frac{1}{2} + \frac{1}{3} = \frac{3 + 2}{6} = \frac{5}{6}
\]

Because the denominators have no common factors, find the least common denominator by multiplying 2 by 3:

\[
2 \times 3 = 6
\]

Find equivalent fractions using the denominator 6.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\frac{1 \times 3}{2 \times 3} + \frac{1 \times 2}{3 \times 2} = \frac{1 + 3}{6} + \frac{2}{6}
\]

Next, group the numerator and whole numbers:

\[
13 + 32 = (1+3)3 + 2
\]
Now, sum the numerator and whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\frac{3 + 2}{6} = \frac{5}{6} + 4
\]

Enter \(4 \frac{5}{6}\)

87) Problem #PRAJEAB "PRAJEAB - 224053 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{array}{ccc}
10 & 5 \\
5 & - & 1 \\
11 & 22
\end{array}
\]

Answers must be in the form of a \textit{reduced proper fraction} (example 2/7) or a \textit{mixed number} with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 4 15/22

Hints:

- Notice 11 is a factor of 22.

\[
\begin{array}{ccc}
10 & 5 \\
5 & - & 1 \\
11 & 22
\end{array}
\]

\textit{Because 11 is a factor of 22}, the least common denominator is 22.

- Convert the \textit{first} fraction to an equivalent fraction with a denominator of 22: multiply its numerator and denominator by \(\frac{22}{11}\) (note: \(11*2=22\)):

\[
\begin{array}{ccc}
10*2 & 5 \\
5 & - & 1 \\
11*2 & 22 & 22 & 22
\end{array}
\]

Since the second numerator is not greater than the first, we do not have to borrow.
Next, group the whole number terms and put both fractions together over the common denominator:

\[
\frac{20}{5} - \frac{5}{22} = \frac{20 - 5}{22} = \frac{15}{22}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
\frac{20 - 5}{22} - \frac{5 - 1}{22} = \frac{15}{22} - \frac{4}{22} = \frac{11}{22}
\]

Enter \(\frac{11}{22}\)

88) Problem #PRAJDJM "PRAJDJM - Adding Mixed Numbers"

Find the sum:

\[
\frac{1}{10} + \frac{1}{9} = \frac{1}{10} + \frac{1}{9}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

\(\checkmark\) 19 2/9

Hints:

- Notice 6 is a factor of 18.

Because 6 is a factor of 18, the least common denominator is 18.

- Convert the first fraction to an equivalent fraction with a denominator of 18: multiply its numerator and denominator by 18/6 = 3 (note: 6*3=18):

\[
\frac{1*3}{10} + \frac{1}{9} = \frac{3}{18} + \frac{1}{18} = \frac{10 + 9}{18}
\]

Then, group the whole number terms and put both fractions together over the common denominator:

\[
\frac{3}{10} + \frac{1}{9} = \frac{3 + 1}{18 + 9} = \frac{18}{18}
\]
Now, sum the numerator and the whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\begin{align*}
3 + 1 & = 4 \\
10 + 9 & = 19 \\
\frac{18}{18} & = 19 \quad \frac{4}{18} \\
19 & = 19 \quad \frac{2}{9}
\end{align*}
\]

Enter 19 2/9

89) Problem #PRAJDNG "PRAJDNG - Adding Mixed Numbers"
Find the sum:

\[
\begin{align*}
\frac{1}{8} + \frac{5}{11} & \\
\frac{10}{10} & = \frac{110}{110}
\end{align*}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 15 61/110

Hints:
- The denominators 10 and 11 have no common factors greater than 1.

\[
\begin{align*}
\frac{1}{8} + \frac{5}{11} & \\
\frac{10}{10} & = \frac{110}{110}
\end{align*}
\]

Because the denominators have no common factors, find the least common denominator by multiplying 10 by 11:

\[
\begin{align*}
10 * 11 & = 110
\end{align*}
\]

Find equivalent fractions using the denominator 110.
- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{align*}
\frac{1*11}{10*11} + \frac{5*10}{11*10} & = \frac{11}{110} + \frac{50}{110} \\
\frac{8}{10*11} + \frac{7}{11*10} & = \frac{8+7}{110}
\end{align*}
\]

Next, group the numerator and whole numbers:

\[
\begin{align*}
\frac{11}{10} + \frac{50}{110} & = \frac{11 + 50}{110}
\end{align*}
\]
Now, sum the numerator and whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\frac{11 + 50}{110} = \frac{61}{110}
\]

Enter 15 \(\frac{61}{110}\)

90) Problem #PRAJEDQ "PRAJEDQ - 224054 - Subtracting Mixed Numbers"

Find the difference:

\[
\frac{10}{2} - \frac{2}{3}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 7 \(\frac{5}{6}\)

Hints:

- The denominators 2 and 3 have no common factors greater than 1.

Because the denominators have no common factors, find the least common denominator by multiplying 2 by 3:

\[
2 \times 3 = 6
\]

Find equivalent fractions using the denominator 6.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\frac{1 \times 3}{10 \times 3} - \frac{2 \times 2}{2 \times 3} = \frac{3}{6} - \frac{4}{6}
\]

Since the second numerator is greater than the first, we have to borrow. Borrow 1 from the first whole number, 10, and represent it in fractional form using the common denominator: 10 = 9+1 = 9+\(\frac{6}{6}\)

\[9 \frac{6+3}{6} - 2 \frac{4}{6}\]
Next, group the numerator and whole numbers:

\[
\frac{9}{6} - \frac{4}{6} = \frac{(9-4)}{6} = \frac{5}{6}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:
 \[
 \frac{9-4}{6} = \frac{5}{6}
 \]

Enter \(\frac{7}{5/6} \)

91) Problem #PRAJEEC "PRAJEEC - 224054 - Subtracting Mixed Numbers"

Find the difference:

\[
\frac{1}{7} - \frac{9}{12} = \frac{1*12}{7*12} - \frac{9*11}{11*12}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 3 35/132

Hints:

- The denominators 12 and 11 have no common factors greater than 1.

Because the denominators have no common factors, find the least common denominator by multiplying 12 by 11:

\[
12 \times 11 = 132
\]

Find equivalent fractions using the denominator 132.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\frac{7*11}{132} - \frac{9*12}{132} = \frac{7}{11} - \frac{9}{108}
\]
Since the second numerator is greater than the first, we have to borrow. Borrow 1 from the first whole number, 7, and represent it in fractional form using the common denominator: $7 = 6 + 1 = 6 + \frac{132}{132}$

\[
\begin{align*}
\frac{132 + 11}{132} - \frac{108}{132} &= \frac{6}{132} - \frac{3}{132} \\
\end{align*}
\]

Next, group the numerator and whole numbers:

\[
\begin{align*}
6 & \frac{143}{132} - 3 \frac{108}{132} = (6 - 3) \frac{143 - 108}{132} \\
\end{align*}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
\frac{143 - 108}{132} = 3 \frac{35}{132}
\]

Enter $3 \frac{35}{132}$

92) Problem #PRAJEAH "PRAJEAH - 224053 - Subtracting Mixed Numbers"
Find the difference:

\[
\begin{align*}
\frac{7}{11} - \frac{3}{22} = \frac{3}{11} - \frac{2}{22} \quad (6 - 3)
\end{align*}
\]

Answers must be in the form of a reduced proper fraction (example $2/7$) or a mixed number with a space between the whole number and the fraction (example $3 5/8$)

Exact Match (case sensitive):

√ 1 1/2

Hints:

- Notice 11 is a factor of 22.

\[
\begin{align*}
3 & \frac{7}{11} - 2 \frac{3}{22} \\
\end{align*}
\]

Because 11 is a factor of 22, the least common denominator is 22.

- Convert the first fraction to an equivalent fraction with a denominator of 22: multiply its numerator and
denominator by \(\frac{22}{11} = 2 \) (note: \(11 \times 2 = 22 \)):

\[
\begin{align*}
7 \times 2 & \quad 3 \quad \frac{14}{2} \quad 3 \\
3 \times 2 & \quad 22 \quad 22 \quad 22
\end{align*}
\]

Since the second numerator is not greater than the first, we do not have to borrow.

\[
\begin{align*}
14 & \quad 3 \\
3 & \quad - \quad 2 \\
\frac{22}{22} & \quad \frac{22}{22}
\end{align*}
\]

Next, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{align*}
14 & \quad 3 \\
3 & \quad - \quad 2 \\
\frac{22}{22} & \quad \frac{22}{22}
\end{align*}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
(3-2) \quad \frac{11}{22} = 1 \quad \frac{1}{22}
\]

Enter \(1 \frac{1}{2} \)

93) Problem #PRAJEDW "PRAJEDW - 224054 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{align*}
11 & \quad - \quad 1 \\
9 & \quad 7
\end{align*}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 10 5/63

Hints:
- The denominators 9 and 7 have no common factors greater than 1.

\[
\begin{align*}
2 & \quad 1 \\
11 & \quad - \quad 1 \\
9 & \quad 7
\end{align*}
\]
Because the denominators have no common factors, find the least common denominator by multiplying 9 by 7:

\[9 \times 7 = 63 \]

Find equivalent fractions using the denominator 63.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\frac{2 \times 7}{11} - \frac{1 \times 9}{7 \times 9} = \frac{14}{63} - \frac{9}{63}
\]

Since the second numerator is not greater than the first, we do not have to borrow.

\[
\frac{14}{63} - \frac{9}{63} = \frac{14 - 9}{63}
\]

Next, group the numerator and whole numbers:

\[
\frac{14}{63} - \frac{9}{63} = \frac{(14 - 1) \times 9}{63}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
\frac{14 - 9}{63} = \frac{5}{63}
\]

Enter 10 5/63

94) Problem #PRAJDHW "PRAJDHW - Adding Mixed Numbers"

Find the sum:

\[
\frac{1}{4} + \frac{11}{12}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 7 1/6

Hints:
• Notice 4 is a factor of 12.

\[
\begin{array}{l}
\frac{1}{4} + \frac{2}{12} \\
\hline
\frac{11}{12}
\end{array}
\]

Because 4 is a factor of 12, the least common denominator is 12.

• Convert the first fraction to an equivalent fraction with a denominator of 12: multiply its numerator and denominator by $12/4=3$ (note: $4*3=12$):

\[
\begin{array}{l}
\frac{1*3}{4} + \frac{2*3}{12} = \frac{3}{12} + \frac{6}{12} \\
\hline
\frac{11}{12}
\end{array}
\]

Then, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{array}{l}
\frac{3}{12} + \frac{11}{12} = \frac{(4+2)3+11}{12} \\
\hline
\end{array}
\]

Now, sum the numerator and the whole numbers.

• Summing the numerator and the whole numbers gives:

\[
\frac{3 + 11}{12} = 6 + \frac{14}{12} = 6 + 1\frac{2}{12} = 7\ 1/6
\]

Enter 7 1/6

95) Problem #PRAJD92 "PRAJD92 - 224053 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{array}{l}
\frac{1}{7} - \frac{3}{6} - \frac{3}{2} + \frac{8}{8} \\
\hline
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✔️ 1 1/8

Hints:

• Notice 2 is a factor of 8.

\[
\begin{array}{l}
\frac{1}{7} - \frac{3}{6} - \frac{3}{2} + \frac{8}{8} \\
\hline
\end{array}
\]
Because 2 is a factor of 8, the least common denominator is 8.

- Convert the first fraction to an equivalent fraction with a denominator of 8: multiply its numerator and denominator by \(\frac{8}{2} = 4 \) (note: \(2 \times 4 = 8 \)):

\[
\begin{array}{cccc}
1 \times 4 & 3 & 4 & 3 \\
7 - & 6 & = & 7 - 6 - \\
2 \times 4 & 8 & 8 & 8
\end{array}
\]

Since the second numerator is not greater than the first, we do not have to borrow.

\[
\begin{array}{cccc}
4 & 3 \\
7 - & 6 & = & 7 - 6 - \\
8 & 8 & 8
\end{array}
\]

Next, group the whole number terms and put both fractions together over the common denominator:

\[
\frac{4}{8} - \frac{3}{8} = \frac{4 - 3}{8} = \frac{1}{8}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
\frac{4 - 3}{8} = \frac{1}{8}
\]

Enter 1 1/8

96) Problem #PRAJDQK "PRAJDQK - Adding Mixed Numbers"

Find the sum:

\[
\frac{4}{7} + \frac{11}{12}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

\[
\checkmark \quad 21 \quad 41/84
\]

Hints:
- The denominators 7 and 12 have no common factors greater than 1.

\[
\frac{10 \times 11}{10 + 11}
\]
Because the denominators have no common factors, find the least common denominator by multiplying 7 by 12:

\[7 \times 12 = 84 \]

Find equivalent fractions using the denominator 84.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{align*}
\frac{4\times12}{10} + \frac{11\times7}{12\times7} &= \frac{48}{84} + \frac{77}{84} \\
\frac{7\times12}{12\times7} + \frac{10}{84} &= \frac{84}{84} + \frac{84}{84}
\end{align*}
\]

Next, group the numerator and whole numbers:

\[
\begin{align*}
\frac{48}{10} + \frac{77}{84} &= \frac{48+77}{84} \\
\frac{84}{84} + \frac{84}{84} &= \frac{(10+10)}{84}
\end{align*}
\]

Now, sum the numerator and whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\begin{align*}
\frac{48+77}{84} &= \frac{125}{84} \\
&= \frac{20+1}{41/84} \\
&= 21 \frac{41}{84}
\end{align*}
\]

Enter \(21 \frac{41}{84} \)

Find the sum:

\[
\begin{align*}
\frac{3}{1} + \frac{13}{8} &= \frac{13}{24}
\end{align*}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

\(\checkmark \) 6 11/12

Hints:

- Notice 8 is a factor of 24.
Because 8 is a factor of 24, the least common denominator is 24.

- Convert the first fraction to an equivalent fraction with a denominator of 24: multiply its numerator and denominator by 24/8 = 3 (note: 8*3=24):

\[
\frac{1}{8} \times \frac{3}{3} = \frac{3}{24} + \frac{13}{24}
\]

Then, group the whole number terms and put both fractions together over the common denominator:

\[
\frac{9}{24} + \frac{13}{24} = \frac{9 + 13}{24}
\]

Now, sum the numerator and the whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\frac{9 + 13}{24} = \frac{22}{24} = 6 \frac{11}{24}
\]

Enter 6 11/12

98) Problem #PRAJDMD "PRAJDMD - Adding Mixed Numbers"

Find the sum:

\[
\frac{9}{2} + \frac{5}{3}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 15 1/6

Hints:

- The denominators 2 and 3 have no common factors greater than 1.
Because the denominators have no common factors, find the least common denominator by multiplying 2 by 3:

\[2 \times 3 = 6 \]

Find equivalent fractions using the denominator 6.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\frac{1 \times 3}{9} \quad \frac{2 \times 2}{5} = \frac{3}{9} + \frac{4}{5}
\]

Next, group the numerator and whole numbers:

\[
\frac{3}{9} + \frac{4}{6} = \frac{(9+5)}{6} \quad \frac{3+4}{6}
\]

Now, sum the numerator and whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\frac{3+4}{6} = \frac{7}{6} = 14 \frac{1}{6}
\]

Enter 15 1/6

Find the difference:

\[
8 \frac{5}{6} - 2 \frac{2}{5}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 6 13/30

Hints:

- The denominators 6 and 5 have no common factors greater than 1.
Because the denominators have no common factors, find the least common denominator by multiplying 6 by 5:

\[6 \times 5 = 30 \]

Find equivalent fractions using the denominator 30.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{align*}
\frac{5}{8} \times \frac{5}{5} &= \frac{25}{30} \\
\frac{6}{5} \times \frac{2}{2} &= \frac{12}{30}
\end{align*}
\]

Since the second numerator is not greater than the first, we do not have to borrow.

\[
\begin{align*}
\frac{25}{30} - \frac{12}{30} &= \frac{23}{30}
\end{align*}
\]

Next, group the numerator and whole numbers:

\[
\begin{align*}
\frac{25}{30} - \frac{12}{30} &= \frac{(8-2)25 - 12}{30}
\end{align*}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
\begin{align*}
25 - 12 &= 13 \\
(8-2)25 - 12 &= \frac{6}{30} - \frac{13}{30}
\end{align*}
\]

Enter \(6 \frac{13}{30}\)

100) Problem #PRAJED6 "PRAJED6 - 224054 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{align*}
\frac{1}{10} - \frac{5}{11}
\end{align*}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):
Hints:
- The denominators 10 and 11 have no common factors greater than 1.

Because the denominators have no common factors, find the least common denominator by multiplying 10 by 11:

$$10 \times 11 = 110$$

Find equivalent fractions using the denominator 110.
- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

$$\frac{10}{11} \times \frac{11}{10} = \frac{110}{110}$$

Since the second numerator is greater than the first, we have to borrow. Borrow 1 from the first whole number, 10, and represent it in fractional form using the common denominator: $10 = 9 + \frac{110}{110}$

$$\frac{110+1}{110} - \frac{8}{110} = \frac{111}{110} - \frac{8}{110} = \frac{103}{110}$$

Next, group the numerator and whole numbers:

$$\frac{121}{110} - \frac{8}{110} = \frac{113}{110}$$

Now, find the difference in the numerator and in the whole numbers.
- Subtracting gives:

$$\frac{121 - 50}{110} = \frac{71}{110}$$

Enter $1 \frac{71}{110}$

Find the difference:
\[
10 \quad 1 - 3 \quad 4
\]
\[
\quad \quad \quad \quad \quad \quad \quad 8 \quad 9
\]

Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 6 49/72

Hints:
- The denominators 8 and 9 have no common factors greater than 1.

\[
\begin{array}{c}
1 \\
10 - 3 \\
8 \quad 9
\end{array}
\]

Because the denominators have no common factors, find the **least common denominator** by multiplying 8 by 9:

\[
8 \times 9 = 72
\]

Find equivalent fractions using the denominator 72.
- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{array}{c}
1 \times 9 \\
10 - 3 \\
8 \times 9
\end{array} \quad \quad \begin{array}{c}
4 \times 8 \\
9 - 3 \\
9 \times 8
\end{array} = \begin{array}{c}
9 \\
72
\end{array} \quad \begin{array}{c}
32 \\
72
\end{array}
\]

Since the second numerator is greater than the first, we have to borrow. Borrow 1 from the first whole number, 10, and represent it in fractional form using the common denominator: 10 = 9+1 = 9+72/72

\[
\begin{array}{c}
9 \\
72
\end{array} - \begin{array}{c}
3 \\
72
\end{array}
\]

Next, group the numerator and whole numbers:

\[
\begin{array}{c}
81 \\
9 \\
72
\end{array} - \begin{array}{c}
32 \\
3 \\
72
\end{array} = \begin{array}{c}
(9-3) \\
72
\end{array}
\]

Now, find the difference in the numerator and in the whole numbers.
- Subtracting gives:

\[
(9 - 3) \quad 81 - 32 = 6 \quad 49
\]
Enter $\frac{6}{72}$

102) Problem #PRAJED4 "PRAJED4 - 224054 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{array}{c}
3 \\
8 - - \\
\hline
1 \\
8 - - \\
\hline
7 \\
9
\end{array}
\]

Answers must be in the form of a **reduced proper fraction** (example $\frac{2}{7}$) or a **mixed number** with a space between the whole number and the fraction (example $3 \ 5/8$)

Exact Match (case sensitive):

✓ $1 \ rac{19}{72}$

Hints:

- The denominators 8 and 9 have no common factors greater than 1.

\[
\begin{array}{c}
3 \\
8 - - \\
\hline
1 \\
8 - - \\
\hline
7 \\
9
\end{array}
\]

Because the denominators have no common factors, find the **least common denominator** by multiplying 8 by 9:

\[
8 \times 9 = 72
\]

Find equivalent fractions using the denominator 72.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{array}{c}
3 \times 9 \\
8 - - \\
\hline
1 \times 8 \\
8 - - \\
\hline
8 \times 9 \\
9 \times 8 \\
72 \\
72
\end{array}
\]

Since the second numerator is not greater than the first, we do not have to borrow.

\[
\begin{array}{c}
27 \\
8 \\
\hline
8 \\
72 \\
\hline
72
\end{array}
\]

Next, group the numerator and whole numbers:

\[
\begin{array}{c}
8 \\
\hline
27 - - \\
\hline
8 \\
72 \\
\hline
72
\end{array}
\]

\[
(8-7) \ 27 - 8 = \frac{20}{72} - \frac{56}{72} = \frac{20 - 56}{72} = \frac{-36}{72} = \frac{-18}{36} = \frac{-1}{2}
\]
Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:
 \[
 \frac{27 - 8}{72} = \frac{19}{72}
 \]

Enter \(1 \frac{19}{72}\)

103) Problem #PRAJDPA "PRAJDPA - Adding Mixed Numbers"

Find the sum:

\[
\begin{align*}
6 \frac{9}{10} & \quad + \quad 4 \frac{6}{11} \\
\end{align*}
\]

Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 11 49/110

Hints:

- The denominators 10 and 11 have no common factors greater than 1.

\[
\begin{align*}
\frac{9}{6} & \quad + \quad \frac{6}{10} \\
\end{align*}
\]

Because the denominators have no common factors, find the **least common denominator** by multiplying 10 by 11:

\[
10 \times 11 = 110
\]

Find equivalent fractions using the denominator 110.

- *Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions* by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{align*}
\frac{9 \times 11}{6 \times 11} & \quad + \quad \frac{6 \times 10}{10 \times 11} \\
= \frac{99}{110} & \quad + \quad \frac{60}{110} \\
\end{align*}
\]

Next, group the numerator and whole numbers:

\[
\begin{align*}
\frac{99}{110} & \quad + \quad \frac{60}{110} \\
= \frac{99 + 60}{110} \\
\end{align*}
\]
Now, sum the numerator and whole numbers.

- Summing the numerator and the whole numbers gives:
 \[
 \frac{99 + 60}{(6 + 4)} = \frac{159}{110} = 10 \frac{49}{110} = 11 \frac{49}{110}
 \]
 Enter 11 49/110

104) Problem #PRAJDNY "PRAJDNY - Adding Mixed Numbers"
Find the sum:

\[
\frac{8}{11} + \frac{3}{10}
\]

Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 14 3/110

Hints:
- The denominators 11 and 10 have no common factors greater than 1.

Because the denominators have no common factors, find the **least common denominator** by multiplying 11 by 10:

\[
11 * 10 = 110
\]

Find equivalent fractions using the denominator 110.

- **Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions** by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\frac{8*10}{11*10} + \frac{3*11}{10*11} = \frac{80}{110} + \frac{33}{110}
\]

Next, group the numerator and whole numbers:

\[
\frac{8}{110} + \frac{5}{110} \frac{33}{110} = (8+5) \frac{80}{110} + \frac{33}{110}
\]
Now, sum the numerator and whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\begin{align*}
80 + 33 &= 113 \\
(8 + 5) &= 13 \\
\frac{80 + 33}{110} &= \frac{113}{110} \\
&= 13 + \frac{1}{10} \\
&= 14 + \frac{3}{110}
\end{align*}
\]

Enter \(14 \frac{3}{110}\)

105) Problem #PRAJEEA "PRAJEEA - 224054 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{array}{c}
6 \frac{2}{11} - 1 \frac{3}{10} \\
\hline
11 & 10
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✅ 4 \(\frac{97}{110}\)

Hints:

- The denominators 11 and 10 have no common factors greater than 1.

\[
\begin{align*}
\frac{2}{6} - \frac{3}{11} \\
\hline
11 & 10
\end{align*}
\]

Because the denominators have no common factors, find the least common denominator by multiplying 11 by 10:

\[
11 \times 10 = 110
\]

Find equivalent fractions using the denominator 110.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{align*}
\frac{2 \times 10}{11 \times 10} - \frac{3 \times 11}{10 \times 11} &= \frac{20}{110} - \frac{33}{110} \\
&= \frac{20}{110} - \frac{33}{110}
\end{align*}
\]

Since the second numerator is greater than the first, we have to borrow. Borrow 1 from the first whole number, 6, and represent it in fractional form using the common denominator: 6 = 5 + 1 =
5 + \frac{110}{110}

\begin{align*}
\frac{110}{5} + 20 & \quad \frac{33}{110} \\
5 & \quad - 1 \\
\frac{110}{110} & \quad = \frac{130 - 33}{110} \\
\end{align*}

Next, group the numerator and whole numbers:

\begin{align*}
\frac{130}{110} & \quad - \frac{33}{110} = \frac{(5-1)130 - 33}{110} \\
\end{align*}

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:
 \[
 \frac{130 - 33}{110} = \frac{97}{110}
 \]

Enter \(4\frac{97}{110}\)

\[106\) Problem #PRAJDM6 "PRAJDM6 - Adding Mixed Numbers"

Find the sum:

\[\frac{1}{9} + \frac{1}{3}\]

Answers must be in the form of a reduced proper fraction (example \(2/7\)) or a mixed number with a space between the whole number and the fraction (example \(3\frac{5}{8}\))

Exact Match (case sensitive):

\(\checkmark\) 18 1/2

Hints:

- Notice 3 is a factor of 6.

Because 3 is a factor of 6, the least common denominator is 6.

- Convert the first fraction to an equivalent fraction with a denominator of 6; multiply its numerator and denominator by \(6/3=2\) (note: \(3*2=6\):)

\[
\frac{1*2}{9} + \frac{1}{9} = \frac{9}{6} + \frac{9}{6}
\]
Then, group the whole number terms and put both fractions together over the common denominator:

\[
\frac{2}{9} + \frac{1}{9} = \frac{(2+1)}{9}\]

Now, sum the numerator and the whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\frac{2+1}{9} = \frac{3}{9} = \frac{18}{6} = 18 \frac{1}{2}
\]

Enter 18 1/2

107) Problem #PRAJEEQ "PRAJEEQ - 224054 - Subtracting Mixed Numbers"

Find the difference:

\[
\frac{3}{6} - \frac{6}{4}
\]

Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 3 25/28

Hints:
- The denominators 4 and 7 have no common factors greater than 1.
- **Because the denominators have no common factors,** find the **least common denominator** by multiplying 4 by 7:

\[
4 \times 7 = 28
\]

Find equivalent fractions using the denominator 28.
- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:
Since the second numerator is greater than the first, we have to borrow. Borrow 1 from the first whole number, 6, and represent it in fractional form using the common denominator: \(6 = 5 + 1 = 5 + \frac{28}{28}\)

\[
\begin{array}{c}
\frac{28}{28} + 1 \\
5 \\
\frac{28}{28} - 2 \\
\hline
\end{array}
\]

Next, group the numerator and whole numbers:

\[
\begin{array}{c}
49 \\
5 \\
\frac{28}{28} - 2 \\
(5 - 2) \\
\hline
\end{array} = \frac{49 - 24}{28} = (5 - 2) \frac{24}{28}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

 \[
 \frac{49 - 24}{28} = \frac{25}{28}
 \]

Enter \(3 \frac{25}{28}\)

108) Problem #PRAJDJF "PRAJDJF - Adding Mixed Numbers"

Find the sum:

\[
\frac{2}{4} + \frac{1}{6}
\]

Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 6 5/6

Hints:

- Notice 3 is a factor of 6.

\[
\begin{array}{c}
2 \\
4 \\
\hline
\end{array} + \begin{array}{c}
1 \\
2 \\
\hline
\end{array} = \begin{array}{c}
\frac{2}{3} + \frac{1}{6} \\
\frac{2}{3} \times \frac{2}{2}
\end{array}
\]

Because 3 is a factor of 6, the least common denominator is 6.

- Convert the first fraction to an equivalent fraction with a denominator of 6: multiply its numerator and denominator by \(\frac{2}{2}\) (note: \(3 \times 2 = 6\):)

\[
\begin{array}{c}
2 \\
3 \\
\hline
\end{array} + \begin{array}{c}
1 \\
6 \\
\hline
\end{array}
\]

Then, group the whole number terms and put both fractions together over the common denominator:

\[
\frac{4}{6} + \frac{1}{6} = \frac{4+1}{6}
\]

Now, sum the numerator and the whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\frac{4+1}{6} = \frac{5}{6}
\]

Enter 6 5/6

109) Problem #PRAJECD "PRAJECD - 224054 - Subtracting Mixed Numbers"

Find the difference:

\[
\frac{8}{9} - \frac{3}{7}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

5 20/63

Hints:
The denominators 9 and 7 have no common factors greater than 1.

\[
\begin{array}{cc}
8 & 4 \\
9 & 7
\end{array}
\]

Because the denominators have no common factors, find the least common denominator by multiplying 9 by 7:

\[
9 \times 7 = 63
\]

Find equivalent fractions using the denominator 63.

Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{array}{cccc}
8 \times 7 & 4 \times 9 & 56 & 36 \\
8 \div 3 & = & 8 \div 3 & \\
9 \times 7 & 7 \times 9 & 63 & 63
\end{array}
\]

Since the second numerator is not greater than the first, we do not have to borrow.
Next, group the numerator and whole numbers:

\[
\begin{array}{c}
 56 \\
 8 \\
 63 \\
\end{array}
\quad \begin{array}{c}
 36 \\
 3 \\
 63 \\
\end{array}
= \frac{56 - 36}{63 - 63} = (8 - 3) \frac{56 - 36}{63}
\]

Now, find the difference in the numerator and in the whole numbers.

\[
\begin{array}{c}
 56 \\
 8 \\
 63 \\
\end{array}
\quad \begin{array}{c}
 36 \\
 3 \\
 63 \\
\end{array}
= \frac{56 - 36}{63 - 63} = (8 - 3) \frac{56 - 36}{63}
\]

Enter \(\frac{520}{63} \)

110) Problem #PRAJDJK "PRAJDJK - Adding Mixed Numbers"

Find the sum:

\[
\frac{3}{1} + \frac{1}{10}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8).

Exact Match (case sensitive):

✓ 13 1/2

Hints:
• Notice \(3\) is a factor of \(6\).

\[
\begin{array}{c}
\frac{1}{3} + \frac{1}{10} \\
\frac{3}{3} + \frac{1}{6}
\end{array}
\]

Because \(3\) is a factor of \(6\), the least common denominator is \(6\).

• Convert the \textit{first} fraction to an equivalent fraction with a denominator of \(6\): multiply its numerator and denominator by \(6/3=2\) (note: \(3\times2=6\)):

\[
\frac{1\times2}{3} + \frac{1}{10} = \frac{3}{6} + \frac{1}{6}
\]

Then, group the whole number terms and put both fractions together over the common denominator:

\[
\frac{2}{3} + \frac{1}{10} = \frac{(3+10)}{6} = \frac{13}{6}
\]

Now, sum the numerator and the whole numbers.

• Summing the numerator and the whole numbers gives:

\[
\frac{2 + 1}{6} = \frac{3}{6} = \frac{13}{6}
\]

Enter \(13 \frac{1}{2}\)

111) Problem #PRAJDJP "PRAJDJP - Adding Mixed Numbers"

Find the sum:

\[
\frac{5}{9} + \frac{8}{18}
\]

Answers must be in the form of a \textit{reduced proper fraction} (example 2/7) or a \textit{mixed number} with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 13 7/18

Hints:

• Notice \(9\) is a factor of \(18\).

\[
\begin{array}{c}
\frac{1}{5} + \frac{5}{8} \\
\frac{9}{9} + \frac{18}{18}
\end{array}
\]
Because 9 is a factor of 18, the least common denominator is 18.

- Convert the first fraction to an equivalent fraction with a denominator of 18: multiply its numerator and denominator by \(\frac{18}{9} = 2 \) (note: \(9 \times 2 = 18 \)):

\[
\frac{1}{2}\left(\frac{5}{9}\right) + \frac{8}{18} = \frac{5}{18} + \frac{8}{18}
\]

Then, group the whole number terms and put both fractions together over the common denominator:

\[
\frac{2}{18} + \frac{5}{18} = \frac{(5+8)}{18}
\]

Now, sum the numerator and the whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\frac{2+5}{18} = \frac{13}{18}
\]

Enter \(13 \frac{7}{18} \)

112) Problem #PRAJEDA "PRAJEDA - 224054 - Subtracting Mixed Numbers"

Find the difference:

\[
\frac{5}{6} - \frac{2}{5}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

\(\checkmark \) 2 13/30

Hints:
- The denominators 6 and 5 have no common factors greater than 1.

Because the denominators have no common factors, find the least common denominator by multiplying 6 by 5:

\[
6 \times 5 = 30
\]
Find equivalent fractions using the denominator 30.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\frac{5 \times 5}{8} - \frac{2 \times 6}{6} = \frac{25}{30} - \frac{12}{30}
\]

Since the second numerator is not greater than the first, we do not have to borrow.

\[
\frac{25}{30} - \frac{12}{30} = \frac{13}{30}
\]

Next, group the numerator and whole numbers:

\[
\frac{25}{30} - \frac{12}{30} = \frac{(8-6) \times 25 - 12}{30}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
\frac{(8-6)}{30} = \frac{2}{30} = \frac{1}{15}
\]

Enter 2 13/30

Find the difference:

\[
\frac{1}{10} - \frac{9}{12}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 2/3

Hints:

- Notice 4 is a factor of 12.
Because 4 is a factor of 12, the least common denominator is 12.

- Convert the first fraction to an equivalent fraction with a denominator of 12: multiply its numerator and denominator by $\frac{12}{4}=3$ (note: $4 \times 3 = 12$):

\[
\begin{array}{c c c}
1 & 3 & 7 \\
10 & - & 9 \\
\hline
4 \times 3 & 12 & 12
\end{array}
\]

Since the second numerator is greater than the first, we have to borrow. Borrow 1 from the first whole number, 10, and represent it in fractional form using the common denominator: $10 = 9 + \frac{12}{12}$.

Next, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{array}{c c c}
12 + 3 & 7 \\
9 & - & 9 \\
\hline
12 & 12 & 12
\end{array}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
\begin{array}{c c c}
15 & - & 7 \\
(9 - 9) & = & 0 \\
\hline
12 & 12 & 12
\end{array}
\]

Enter $\frac{2}{3}$

114) Problem #PRAJEB7 "PRAJEB7 - 224054 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{array}{c c c}
11 & 3 \\
4 & - & 3 \\
\hline
12 & 11
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 1 85/132

Hints:
The denominators 12 and 11 have no common factors greater than 1.

\[
\begin{align*}
\frac{11}{12} - \frac{3}{11} &= \frac{11 \times 11 - 3 \times 12}{12 \times 11} \\
&= \frac{121 - 36}{132} \\
&= \frac{85}{132}
\end{align*}
\]

Because the denominators have no common factors, find the least common denominator by multiplying 12 by 11:

\[
12 \times 11 = 132
\]

Find equivalent fractions using the denominator 132.

Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{align*}
\frac{11}{12} \times \frac{11}{11} &= \frac{11 \times 11}{12 \times 11} \\
&= \frac{1121}{132} \\
\frac{3}{11} \times \frac{12}{12} &= \frac{3 \times 12}{11 \times 12} \\
&= \frac{36}{132}
\end{align*}
\]

Since the second numerator is not greater than the first, we do not have to borrow.

\[
\begin{align*}
\frac{121}{132} - \frac{36}{132} &= \frac{121 - 36}{132} \\
&= \frac{85}{132}
\end{align*}
\]

Next, group the numerator and whole numbers:

\[
\begin{align*}
\frac{121}{132} - \frac{36}{132} &= \frac{(4 \times 36) - (3 \times 132)}{132} \\
&= \frac{121 - 36}{132} \\
&= \frac{85}{132}
\end{align*}
\]

Now, find the difference in the numerator and in the whole numbers.

Subtracting gives:

\[
\begin{align*}
\frac{121 - 36}{132} &= 1 \\
\frac{(4 - 3) \times 36}{132} &= \frac{1 \times 36}{132} \\
&= \frac{85}{132}
\end{align*}
\]

Enter 1 85/132

Find the sum:

\[
\begin{align*}
\frac{3}{10} + \frac{1}{2} &= \frac{3 \times 2}{10 \times 2} + \frac{1 \times 5}{2 \times 5} \\
&= \frac{6}{20} + \frac{5}{10} \\
&= \frac{6 + 10}{20} \\
&= \frac{16}{20}
\end{align*}
\]
Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 12 5/6

Hints:

- Notice 4 is a factor of 12.

\[
\begin{array}{c}
3 \\
10 \\
4
\end{array} + \begin{array}{c}
1 \\
2 \\
12
\end{array} = \begin{array}{c}
9 \\
12
\end{array}
\]

Because 4 is a factor of 12, the least common denominator is 12.

- Convert the first fraction to an equivalent fraction with a denominator of 12: multiply its numerator and denominator by 12/4 = 3 (note: 4*3 = 12):

\[
\begin{array}{c}
3*3 \\
10 \\
4
\end{array} + \begin{array}{c}
1 \\
2 \\
12
\end{array} = \begin{array}{c}
9 \\
12
\end{array} + \begin{array}{c}
1 \\
2 \\
12
\end{array} = \begin{array}{c}
10 \\
12
\end{array}
\]

Then, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{array}{c}
9 \\
10 \\
12
\end{array} + \begin{array}{c}
1 \\
2 \\
12
\end{array} = (10+2) \begin{array}{c}
9 + 1 \\
12
\end{array}
\]

Now, sum the numerator and the whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\begin{array}{c}
9 + 1 \\
(10 + 2)
\end{array} = \begin{array}{c}
10 \\
12
\end{array} = \begin{array}{c}
12 \\
10/12
\end{array} = \begin{array}{c}
12 \\
5/6
\end{array}
\]

Enter 12 5/6

116) Problem #PRAJECV "PRAJECV - 224054 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{array}{c}
2 \\
8 \\
7
\end{array} - \begin{array}{c}
7 \\
4 \\
12
\end{array} = \begin{array}{c}
3 \\
59/84
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

3 59/84
Hints:

- The denominators 7 and 12 have no common factors greater than 1.

\[
\begin{array}{c}
2 \\
8 - 4 \\
7 \\
12
\end{array}
\]

Because the denominators have no common factors, find the least common denominator by multiplying 7 by 12:

\[7 \times 12 = 84\]

Find equivalent fractions using the denominator 84.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{array}{c}
\frac{2}{8} \times \frac{12}{12} = \frac{24}{84} \\
\frac{7}{12} \times \frac{7}{7} = \frac{49}{84}
\end{array}
\]

Since the second numerator is greater than the first, we have to borrow. Borrow 1 from the first whole number, 8, and represent it in fractional form using the common denominator: 8 = 7 + 1 = 7 + \frac{84}{84}

\[
\frac{84 + 24}{84} - \frac{49}{84}
\]

Next, group the numerator and whole numbers:

\[
\begin{array}{c}
7 \\
84 - 4 \\
84
\end{array}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
\frac{108 - 49}{84} = \frac{59}{84}
\]

Enter \(3 \frac{59}{84}\)
\[
\begin{array}{ccc}
11 & - & 10 \\
\hline
6 & 18
\end{array}
\]

Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 1 1/9

Hints:
- Notice 6 is a factor of 18.

\[
\begin{array}{ccc}
1 & - & 1 \\
11 & - & 10 \\
\hline
6 & 18
\end{array}
\]

Because 6 is a factor of 18, the least common denominator is 18.

- Convert the **first** fraction to an equivalent fraction with a denominator of 18: multiply its numerator and denominator by \(\frac{18}{6} = 3 \) (note: \(6 \times 3 = 18 \)):

\[
\begin{array}{ccc}
1 \times 3 & - & 1 \\
11 \times 3 & - & 10 \\
\hline
18 & - & 18
\end{array}
\]

Since the second numerator is not greater than the first, we do not have to borrow.

\[
\begin{array}{ccc}
3 & - & 1 \\
11 & - & 10 \\
\hline
18 & - & 18
\end{array}
\]

Next, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{array}{ccc}
3 & - & 1 \\
11 & - & 10 \\
\hline
18 & - & 18
\end{array}
\]

\[
\begin{array}{ccc}
3 - 1 \\
11 - 10 \\
\hline
18
\end{array}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
\frac{3 - 1}{18} = \frac{2}{18}
\]

\[
\frac{11 - 10}{18} = \frac{1}{18}
\]

\[
\frac{1}{18} + \frac{1}{18} = \frac{1}{1/9}
\]

Enter 1 1/9
Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 1 8/15

Hints:
- Notice 10 is a factor of 30.

Because 10 is a factor of 30, the least common denominator is 30.
- Convert the first fraction to an equivalent fraction with a denominator of 30: multiply its numerator and denominator by 30/10 = 3 (note: 10*3=30):

\[
\frac{9}{6} - \frac{5}{10} = \frac{27}{30} - \frac{11}{30} = \frac{16}{30} = \frac{8}{15}
\]

Since the second numerator is not greater than the first, we do not have to borrow.

Next, group the whole number terms and put both fractions together over the common denominator:

\[
\frac{6}{30} - \frac{5}{30} = \frac{1}{30}
\]

Now, find the difference in the numerator and in the whole numbers.
- Subtracting gives:

\[
\frac{27 - 11}{30} = \frac{16}{30} = \frac{8}{15}
\]

Enter 1 8/15
Find the sum:

\[
\begin{array}{c}
10 & 7 \\
7 & 8 \\
11 & 22 \\
\end{array}
\]

Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 16 5/22

Hints:

- Notice 11 is a factor of 22.

Because 11 is a factor of 22, the least common denominator is 22.

- Convert the first fraction to an equivalent fraction with a denominator of 22: multiply its numerator and denominator by 22/11 = 2 (note: 11*2=22):

\[
\begin{array}{c}
10 \times 2 & 7 \\
7 & 8 \\
\times 2 & 22 \\
11 \times 2 & 22 \\
\end{array}
\]

Then, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{array}{c}
20 & 7 \\
7 & 8 \\
22 & 22 \\
\end{array}
= \begin{array}{c}
20 + 7 \\
(7+8) \\
22 \\
\end{array}
\]

Now, sum the numerator and the whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\begin{array}{c}
20 + 7 \\
(7 + 8) \\
22 \\
\end{array}
= \begin{array}{c}
15 \\
\end{array}
\] 5/22

Enter 16 5/22
Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):
✓ 6 8/63

Hints:
- The denominators 9 and 7 have no common factors greater than 1.

\[
\begin{align*}
\frac{5}{9} &+ \frac{4}{7} \\
\frac{5}{9} &+ \frac{4}{7} \\
\frac{5 \times 7}{9 \times 7} &+ \frac{4 \times 9}{7 \times 9} \\
\frac{35}{63} &+ \frac{36}{63} \\
\frac{35 + 36}{63} &\quad (4+1) \frac{35 + 36}{63} \\
\frac{35 + 36}{63} &\quad \frac{71}{63} \\
&= 5+1 \quad \frac{8}{63} \\
&= 6 \quad \frac{8}{63}
\end{align*}
\]

Enter 6 8/63

121) Problem #PRAJEAZ "PRAJEAZ - 224053 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{align*}
\frac{11}{1} - \frac{8}{1} \\
\end{align*}
\]
Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

- **✓ 3 1/6**

Hints:
- Notice 4 is a factor of 12.

\[
\begin{align*}
\frac{1}{4} - \frac{8}{12} &= \frac{3}{12} - \frac{8}{12} \\
\text{Because 4 is a factor of 12, the least common denominator is 12.}
\end{align*}
\]

- Convert the first fraction to an equivalent fraction with a denominator of 12: multiply its numerator and denominator by \(\frac{12}{4}=3\) (note: \(4\times3=12\)):

\[
\frac{1\times3}{4\times3} - \frac{8}{12} = \frac{3}{12} - \frac{8}{12}
\]

- Since the second numerator is not greater than the first, we do not have to borrow.

\[
\begin{align*}
\frac{3}{12} - \frac{8}{12} &= (11-8) - \frac{1}{12} \\
\text{Next, group the whole number terms and put both fractions together over the common denominator:}
\end{align*}
\]

\[
\frac{11}{12} - \frac{8}{12} = \frac{3}{12} - \frac{1}{12}
\]

- Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
\frac{3}{12} - \frac{1}{12} = 3 - \frac{2}{12} = 3 \frac{1}{6}
\]

Enter 3 1/6

122) Problem #PRAJDK4 "PRAJDK4 - Adding Mixed Numbers"

Find the sum:

\[
6 \frac{1}{4} + 1 \frac{1}{11}
\]
Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 7 7/15

Hints:

- Notice 10 is a factor of 30.

\[
\begin{align*}
6 \; + \; 1 \; &= \; 10 \\
\frac{1}{6} \; + \; \frac{1}{10} &= \frac{11}{30}
\end{align*}
\]

Because 10 is a factor of 30, the least common denominator is 30.

- Convert the first fraction to an equivalent fraction with a denominator of 30: multiply its numerator and denominator by \(\frac{30}{10}=3\) (note: \(10\times3=30\)):

\[
\begin{align*}
6 \; + \; 1 \; &= \; \frac{11}{30} \\
\frac{1}{6} \; + \; \frac{1}{10} &= \frac{11}{30}
\end{align*}
\]

Then, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{align*}
\frac{3}{30} \; + \; \frac{11}{30} \; &= \; \frac{3+11}{30} \\
\frac{6}{30} \; + \; \frac{1}{30} &= \frac{6+1}{30}
\end{align*}
\]

Now, sum the numerator and the whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\begin{align*}
\frac{3}{30} \; + \; \frac{11}{30} \; &= \; \frac{3+14}{30} \\
\frac{3+11}{30} &= \frac{14}{30} \\
&= 7 \; \frac{14}{30} \\
&= 7 \; \frac{7}{15}
\end{align*}
\]

Enter 7 7/15

123) Problem #PRAJEBT "PRAJEBT - 224053 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{align*}
\frac{1}{11} \; - \; \frac{1}{6} &= \frac{1}{11} - \frac{1}{6} \\
\frac{1}{11} \; - \; \frac{1}{6} &= \frac{1}{11} - \frac{1}{6}
\end{align*}
\]

Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):
10 1/6

Hints:
- Notice 3 is a factor of 6.

\[
\begin{array}{c c c c}
1 & 1 \\
11 & - & 1 & - \\
3 & 6 \\
\end{array}
\]

Because 3 is a factor of 6, the least common denominator is 6.
- Convert the first fraction to an equivalent fraction with a denominator of 6: multiply its numerator and denominator by \(\frac{6}{3}=2\) (note: \(3\times2=6\)):

\[
\begin{array}{c c c c}
1\times2 & 1 & 2 & 1 \\
11 & - & 1 & - \\
3\times2 & 6 & 6 & 6 \\
\end{array}
\]

Since the second numerator is not greater than the first, we do not have to borrow.

\[
\begin{array}{c c c c}
2 & 1 \\
11 & - & 1 & - \\
6 & 6 \\
\end{array}
\]

Next, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{array}{c c c c}
2 & 1 \\
11 & - & 1 & - \\
6 & 6 \\
\end{array} = (11-1) \frac{2 - 1}{6}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
\begin{array}{c c c c}
2 & 1 \\
(11 - 1) & = & 10 & - \\
6 & 6 \\
\end{array}
\]

Enter 10 1/6

124) Problem #PRAJDN2 "PRAJDN2 - Adding Mixed Numbers"

Find the sum:

\[
\begin{array}{c c c c}
1 & 1 \\
1 & + & 5 & - \\
12 & 11 \\
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space
between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✅ 6 23/132

Hints:
- The denominators 12 and 11 have no common factors greater than 1.

\[
\frac{1}{12} + \frac{5}{11}
\]

Because the denominators have no common factors, find the least common denominator by multiplying 12 by 11:

\[
12 \times 11 = 132
\]

Find equivalent fractions using the denominator 132.
- *Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:*

\[
\frac{1 \times 11}{132} + \frac{5 \times 12}{132} = \frac{11}{132} + \frac{60}{132}
\]

Next, group the numerator and whole numbers:

\[
\frac{11}{132} + \frac{60}{132} = \frac{(1+5) \times 12}{132}
\]

Now, sum the numerator and whole numbers.

Summing the numerator and the whole numbers gives:

\[
\frac{11 + 60}{132} = \frac{23}{132}
\]

Enter 6 23/132

125) Problem #PRAJDM3 "PRAJDM3 - Adding Mixed Numbers"

Find the sum:

\[
\frac{2}{8} + \frac{1}{9} + \frac{10}{18}
\]
Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):
✓ 18 5/18

Hints:
- Notice 9 is a factor of 18.

\[
\begin{align*}
8 - & + 10 \quad \}
Hints:
- Notice 5 is a factor of 10.

\[
\begin{align*}
\frac{2}{6} + \frac{7}{10} &= \frac{2*2}{5*2} + \frac{7}{10} \\
&= \frac{6}{10} + \frac{14}{10} \\
&= \frac{6+14}{10} \\
&= \frac{20}{10} \\
&= 2
\end{align*}
\]

Because 5 is a factor of 10, the least common denominator is 10.
- Convert the first fraction to an equivalent fraction with a denominator of 10: multiply its numerator and denominator by \(\frac{10}{5} = 2 \) (note: 5*2=10):

\[
\begin{align*}
\frac{6}{10} + \frac{1}{10} &= \frac{6}{10} + \frac{1}{10} \\
&= \frac{6+1}{10} \\
&= \frac{7}{10}
\end{align*}
\]

Then, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{align*}
\frac{4}{10} + \frac{7}{10} &= \frac{4+7}{10} \\
&= \frac{11}{10}
\end{align*}
\]

Now, sum the numerator and the whole numbers.
- Summing the numerator and the whole numbers gives:

\[
\begin{align*}
\frac{4+7}{10} &= \frac{11}{10} \\
&= 7 + \frac{1}{10} \\
&= 8 \frac{1}{10}
\end{align*}
\]

Enter 8 1/10

Find the sum:

\[
\begin{align*}
\frac{1}{2} + \frac{5}{3} &= \frac{1}{2} + \frac{5}{3} \\
&= \frac{1*3}{2*3} + \frac{5*2}{3*2} \\
&= \frac{3}{6} + \frac{10}{6} \\
&= \frac{13}{6}
\end{align*}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):
✓ 7 1/6

Hints:
- The denominators 2 and 3 have no common factors greater than 1.
Because the denominators have no common factors, find the least common denominator by multiplying 2 by 3:

\[2 \times 3 = 6 \]

Find equivalent fractions using the denominator 6.
- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{align*}
\frac{1}{2} \times \frac{3}{3} &= \frac{3}{6} \\
\frac{2}{3} \times \frac{2}{2} &= \frac{4}{6}
\end{align*}
\]

Next, group the numerator and whole numbers:

\[
\frac{3}{6} + \frac{4}{6} = \frac{(1+5)3+4}{6}
\]

Now, sum the numerator and whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\frac{3+4}{6} = \frac{7}{6} \quad \text{or} \quad 7 \frac{1}{6}
\]

Enter 7 1/6

Find the sum:

\[
\frac{1}{8} + \frac{1}{5} = \frac{1+5}{40} = \frac{6}{40} = \frac{3}{20}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

- 9 7/10

Hints:
- The denominators 5 and 2 have no common factors greater than 1.
Because the denominators have no common factors, find the least common denominator by multiplying 5 by 2:

\[5 \times 2 = 10 \]

Find equivalent fractions using the denominator 10.
- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{align*}
\frac{8}{5} \times \frac{2}{2} + \frac{1}{1} \times \frac{2}{2} &= \frac{8}{10} + \frac{2}{10} \\
\frac{2}{8} \times \frac{2}{2} + \frac{5}{10} \times \frac{2}{2} &= \frac{5}{10} + \frac{2}{10}
\end{align*}
\]

Next, group the numerator and whole numbers:

\[
\frac{2}{8} + \frac{5}{10} = \frac{(8 + 1)2 + 5}{10}
\]

Now, sum the numerator and whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\frac{2 + 5}{10} = \frac{7}{10}
\]

Enter 9 7/10

129) Problem #PRAJECK "PRAJECK - 224054 - Subtracting Mixed Numbers"

Find the difference:

\[
\frac{1}{5} - \frac{1}{7} - \frac{4}{12}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✅ 1 5/84

Hints:
• The denominators 7 and 12 have no common factors greater than 1.
\[
\begin{array}{c}
1 \\
5 \\
7
\end{array} - \begin{array}{c}
1 \\
4 \\
12
\end{array}
\]

Because the denominators have no common factors, find the least common denominator by multiplying 7 by 12:
\[7 \times 12 = 84\]

Find equivalent fractions using the denominator 84.
• Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:
\[
\begin{array}{c}
1 \times 12 \\
5 \\
7 \times 12
\end{array} - \begin{array}{c}
1 \times 7 \\
4 \\
12 \times 7
\end{array} = \begin{array}{c}
12 \\
84 \\
7 \\
84
\end{array} - \begin{array}{c}
1 \\
84 \\
4 \\
84
\end{array}
\]

Since the second numerator is not greater than the first, we do not have to borrow.
\[
\begin{array}{c}
12 \\
5 \\
84
\end{array} - \begin{array}{c}
7 \\
4 \\
84
\end{array}
\]

Next, group the numerator and whole numbers:
\[
\begin{array}{c}
12 \\
5 \\
84
\end{array} - \begin{array}{c}
7 \\
4 \\
84
\end{array} = \begin{array}{c}
(5-4) \\
84
\end{array}
\]

Now, find the difference in the numerator and in the whole numbers.
• Subtracting gives:
\[
\begin{array}{c}
12 - 7 \\
(5 - 4)
\end{array} = 1 \begin{array}{c}
5 \\
84
\end{array}
\]

Enter 1 5/84

130) Problem #PRAJDMB "PRAJDMB - Adding Mixed Numbers"
Find the sum:
\[
\begin{array}{c}
1 \\
10 \quad + \quad 1 \\
6 \\
5
\end{array}
\]
Answers must be in the form of a *reduced proper fraction* (example 2/7) or a *mixed number* with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

11 29/30

Hints:
- The denominators 6 and 5 have no common factors greater than 1.

\[
\begin{align*}
1 & \quad 4 \\
10 & + 1 \\
6 & \quad 5
\end{align*}
\]

Because the denominators have no common factors, find the least common denominator by multiplying 6 by 5:

\[6 \times 5 = 30\]

Find equivalent fractions using the denominator 30.
- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{align*}
\frac{1 \times 5}{6 \times 5} & + \frac{4 \times 6}{5 \times 6} \\
= & \frac{5}{30} + \frac{24}{30} \\
= & \frac{5 + 24}{30} \\
= & \frac{29}{30}
\end{align*}
\]

Next, group the numerator and whole numbers:

\[
\frac{5}{30} + \frac{24}{30} = (10 + 1) \frac{5 + 24}{30}
\]

Now, sum the numerator and whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\frac{5 + 24}{30} = 11 \frac{29}{30}
\]

Enter 11 29/30

131) Problem #PRAJDJH "PRAJDJH - Adding Mixed Numbers"

Find the sum:

\[
\begin{align*}
4 & _3 \\
+ & _5
\end{align*}
\]
Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 7 1/6

Hints:

- Notice 4 is a factor of 12.

\[
\begin{array}{c}
3 & 5 \\
4 & 2 \\
\hline
4 & 12
\end{array}
\]

Because 4 is a factor of 12, the least common denominator is 12.

- Convert the first fraction to an equivalent fraction with a denominator of 12: multiply its numerator and denominator by \(\frac{12}{4}=3\) (note: \(4*3=12\)):

\[
\begin{array}{c}
3*3 & 5 \\
4 & 2 \\
\hline
12 & 12
\end{array}
\]

Then, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{array}{c}
9 & 5 \\
4 & 2 \\
\hline
12 & 12
\end{array} = (4+2) \frac{9+5}{12}
\]

Now, sum the numerator and the whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\begin{array}{c}
9+5 & 14 \\
12 & 12
\end{array} = \frac{6+1}{2/12} = 7 \frac{1}{6}
\]

Enter 7 1/6

132) Problem #PRAJEB6 "PRAJEB6 - 224054 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{array}{c}
5 & 5 \\
9 & 1 \\
\hline
8 & 9
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)
Exact Match (case sensitive):

✓ 8 5/72

Hints:

The denominators 8 and 9 have no common factors greater than 1.

\[
\frac{5}{8} - \frac{5}{9} = \frac{45}{72} - \frac{40}{72}
\]

Because the denominators have no common factors, find the least common denominator by multiplying 8 by 9:

\[
8 \times 9 = 72
\]

Find equivalent fractions using the denominator 72.

Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\frac{9 \times 9}{72} - \frac{5 \times 8}{72} = \frac{45}{72} - \frac{40}{72}
\]
Since the second numerator is not greater than the first, we do not have to borrow.

\[
\begin{align*}
45 & \quad 40 \\
9 & \quad 1 \\
\frac{45}{72} & - \frac{40}{72} = \frac{45 - 40}{72} \\
\end{align*}
\]

Next, group the numerator and whole numbers:

\[
\begin{align*}
45 & \quad 40 \\
9 & \quad 1 \\
\frac{45}{72} & - \frac{40}{72} = (9-1) \frac{45 - 40}{72} \\
\end{align*}
\]

Now, find the difference in the numerator and in the whole numbers.

Subtracting gives:

\[
\begin{align*}
45 - 40 & = 8 \\
(9 - 1) & = 8 \\
\frac{45 - 40}{72} & = \frac{8}{72} \\
\end{align*}
\]

Enter 8 5/72

133) Problem #PRAJDMQ "PRAJDMQ - Adding Mixed Numbers"

Find the sum:

\[
\begin{align*}
\frac{1}{6} & + \frac{7}{10} \\
\frac{7}{30} & \\
\end{align*}
\]

Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):
16 1/3

Hints:
- Notice 10 is a factor of 30.

\[
\begin{array}{c}
1 \\
6 \\
\hline
7 \\
10 \\
\hline
30
\end{array}
\]

Because 10 is a factor of 30, the least common denominator is 30.
- Convert the first fraction to an equivalent fraction with a denominator of 30: multiply its numerator and denominator by 30/10 = 3 (note: 10*3=30):

\[
\begin{array}{c}
1*3 \\
6 \\
\hline
7 \\
10*3 \\
\hline
30
\end{array}
\]

Then, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{array}{c}
3 \\
6 \\
\hline
7 \\
30 \\
\hline
30
\end{array}
= (6+10) \frac{3 + 7}{30}
\]

Now, sum the numerator and the whole numbers.
- Summing the numerator and the whole numbers gives:

\[
\begin{array}{c}
3 + 7 \\
(6 + 10) \\
\hline
30 \\
\end{array}
= 16 \frac{10}{30}
= 16 \frac{1}{3}
\]

Enter 16 1/3

134) Problem #PRAJDP8 "PRAJDP8 - Adding Mixed Numbers"
Find the sum:

\[
\begin{array}{c}
5 \\
5 \\
\hline
4 \\
6 \\
\hline
5
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✔️ 10 19/30

Hints:
- The denominators 6 and 5 have no common factors greater than 1.
Because the denominators have no common factors, find the least common denominator by multiplying 6 by 5:

\[6 \times 5 = 30\]

Find equivalent fractions using the denominator 30.
- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{align*}
\frac{5}{6} & \times \frac{5}{5} = \frac{25}{30} \\
\frac{4}{5} & \times \frac{6}{6} = \frac{24}{30}
\end{align*}
\]

Next, group the numerator and whole numbers:

\[
\frac{25}{30} + \frac{24}{30} = \frac{25 + 24}{30} = \frac{5 + 4}{30} = \frac{9}{30}
\]

Now, sum the numerator and whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\frac{25 + 24}{30} = \frac{49}{30}
\]

\[
= 9 + \frac{19}{30}
\]

Enter 10 19/30

Find the sum:

\[
\frac{1}{10} + \frac{6}{8} = \frac{11}{24}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

\[
\checkmark 16 \frac{7}{12}
\]

Hints:
- Notice 8 is a factor of 24.
Because 8 is a factor of 24, the least common denominator is 24.

- Convert the first fraction to an equivalent fraction with a denominator of 24: multiply its numerator and denominator by \(\frac{24}{8} = 3 \) (note: \(8 \times 3 = 24 \)):

\[
\frac{10}{8} + \frac{6}{24} = \frac{10 \times 3}{24} + \frac{6}{24}
\]

Then, group the whole number terms and put both fractions together over the common denominator:

\[
\frac{3}{24} + \frac{11}{24} = \frac{3 + 11}{24}
\]

Now, sum the numerator and the whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\frac{3 + 11}{24} = \frac{14}{24}
\]

Enter 16 7/12

136) Problem #PRAJDJ7 "PRAJDJ7 - Adding Mixed Numbers"

Find the sum:

\[
\frac{3}{12} + \frac{1}{36}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✅ 4 7/9

Hints:

- Notice 12 is a factor of 36.

Because 12 is a factor of 36, the least common denominator is 36.
• Convert the first fraction to an equivalent fraction with a denominator of 36: multiply its numerator and denominator by 36/12=3 (note: 12*3=36):

\[
\frac{7*3}{36} + \frac{7}{36} = \frac{21}{36} + \frac{7}{36} = \frac{21+7}{36} = \frac{28}{36} = \frac{4}{9}
\]

Then, group the whole number terms and put both fractions together over the common denominator:

\[
\frac{21}{36} + \frac{7}{36} = \frac{(3+1)21 + 7}{36} = \frac{428}{36} = \frac{4}{9}
\]

Now, sum the numerator and the whole numbers.

• Summing the numerator and the whole numbers gives:

\[
\frac{21 + 7}{36} = \frac{28}{36} = \frac{4}{9}
\]

Enter 4 7/9

137) Problem #PRAJDNE "PRAJDNE - Adding Mixed Numbers"

Find the sum:

\[
\frac{9}{11} + \frac{9}{10}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

\[\checkmark\] 11 39/110

Hints:

• The denominators 11 and 10 have no common factors greater than 1.

\[
\frac{5}{11} + \frac{9}{10}
\]

Because the denominators have no common factors, find the least common denominator by multiplying 11 by 10:

\[11 \times 10 = 110\]

Find equivalent fractions using the denominator 110.

• Since, in this case, the least common denominator is the product of the two denominators, find equivalent
fractions by multiplying each fraction’s numerator and denominator by the other fraction’s denominator:

\[
\frac{9}{11} \times \frac{10}{11} + \frac{9}{10} \times \frac{11}{10} = \frac{90}{121} + \frac{99}{110}
\]

Next, group the numerator and whole numbers:

\[
\frac{50}{110} + \frac{99}{110} = (9+1) \frac{50+99}{110}
\]

Now, sum the numerator and whole numbers.

- Summing the numerator and the whole numbers gives:

\[
(9+1) \frac{50+99}{110} = 10 \frac{149}{110} = 10+1 \frac{39}{110} = 11 \frac{39}{110}
\]

Enter \(11 \frac{39}{110}\)

138) Problem #PRAJD9N "PRAJD9N - 224053 - Subtracting Mixed Numbers"

Find the difference:

\[
\frac{2}{10} - \frac{1}{11} = \frac{2}{11} - \frac{1}{22}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 3 3/22

Hints:
- Notice 11 is a factor of 22.

Because 11 is a factor of 22, the least common denominator is 22.
- Convert the first fraction to an equivalent fraction with a denominator of 22: multiply its numerator and denominator by \(22/11=2\) (note: \(11\times2=22\):

\[
\frac{10}{2} \times \frac{2}{2} - \frac{7}{11} = 10 - 7 \frac{1}{11}
\]
Since the second numerator is not greater than the first, we do not have to borrow.

\[
\begin{array}{c}
10 \\
\hline
22
\end{array} - \begin{array}{c}
7 \\
\hline
22
\end{array} = \begin{array}{c}
4 \\
\hline
22
\end{array} - \begin{array}{c}
1 \\
\hline
22
\end{array}
\]

Next, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{array}{c}
4 \\
\hline
22
\end{array} - \begin{array}{c}
1 \\
\hline
22
\end{array} = (10 - 7) \begin{array}{c}
4 - 1 \\
\hline
22
\end{array}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:
 \[
 (10 - 7) \begin{array}{c}
3 \\
\hline
22
\end{array}
 \]

Enter 3 3/22

139) Problem #PRAJEBV "PRAJEBV - 224053 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{array}{c}
1 \\
\hline
6
\end{array} - \begin{array}{c}
1 \\
\hline
18
\end{array}
\]

Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 6 1/9

Hints:

- Notice 6 is a factor of 18.

Because 6 is a factor of 18, the least common denominator is 18.

- Convert the first fraction to an equivalent fraction with a denominator of 18: multiply its numerator and denominator by 18/6=3 (note: 6*3=18):

\[
10 \begin{array}{c}
1 \\
\hline
6
\end{array} - 4 \begin{array}{c}
1 \\
\hline
18
\end{array}
\]

\[
10 1*3 - 4 1 = 10 3 - 4 1
\]
Since the second numerator is not greater than the first, we do not have to borrow.

\[
\frac{3}{10} - \frac{1}{18}
\]

Next, group the whole number terms and put both fractions together over the common denominator:

\[
\frac{3}{10} - \frac{1}{18} = \frac{3-1}{10-4}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
\frac{3-1}{10-4} = \frac{6}{18} = \frac{2}{9}
\]

Enter 6 1/9

140) Problem #PRAJDPJ "PRAJDPJ - Adding Mixed Numbers"

Find the sum:

\[
\frac{1}{4} + \frac{1}{6}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 10 7/10

Hints:

- The denominators 5 and 2 have no common factors greater than 1.

Because the denominators have no common factors, find the least common denominator by multiplying 5 by 2:

\[5 \times 2 = 10\]
Find equivalent fractions using the denominator 10.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{align*}
\frac{1 \times 2}{4} + \frac{1 \times 5}{6} &= \frac{2}{4} + \frac{5}{6} \\
\frac{5 \times 2}{10} + \frac{2 \times 5}{10} &= \frac{10}{10} + \frac{10}{10}
\end{align*}
\]

Next, group the numerator and whole numbers:

\[
\frac{2}{4} + \frac{5}{6} = (4 + 6) \frac{2 + 5}{10}
\]

Now, sum the numerator and whole numbers.

- Summing the numerator and the whole numbers gives:

\[
(4 + 6) \frac{2 + 5}{10} = 10 \frac{7}{10}
\]

Enter 10 7/10

141) Problem #PRAJDNK "PRAJDNK - Adding Mixed Numbers"

Find the sum:

\[
\frac{7}{10} + \frac{4}{8} + \frac{6}{9}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 17 23/72

Hints:
- The denominators 8 and 9 have no common factors greater than 1.

Because the denominators have no common factors, find the least common denominator by multiplying 8 by 9:
Find equivalent fractions using the denominator 72.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{array}{cccc}
7*9 & 4*8 & 63 & 32 \\
10 & 6 & = & 10 + 6 \\
8*9 & 9*8 & 72 & 72 \\
\end{array}
\]

Next, group the numerator and whole numbers:

\[
\begin{array}{c}
63 \\
10 + 6 \\
72 \\
\end{array}
\quad +
\begin{array}{c}
32 \\
+ \\
72 \\
\end{array}
=
\begin{array}{c}
63 + 32 \\
(10 + 6) \\
72 \\
\end{array}
\]

Now, sum the numerator and whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\begin{array}{c}
63 + 32 \\
(10 + 6) \\
72 \\
\end{array}
=
\begin{array}{c}
95 \\
16 \\
72 \\
\end{array}
\]

\[
= 16 + 1 \frac{23}{72}
\]

\[
= 17 \frac{23}{72}
\]

Enter 17 23/72

**142) Problem #PRAJDMY "PRAJDMY - Adding Mixed Numbers"

Find the sum:

\[
\begin{array}{c}
6 - + 7 - \\
3 & 6 \\
\end{array}
\]

Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 13 1/2

Hints:

- Notice 3 is a factor of 6.

\[
\begin{array}{c}
1 \\
6 - + 7 - \\
3 & 6 \\
\end{array}
\]

Because **3 is a factor of 6**, the least common denominator is 6.
• Convert the first fraction to an equivalent fraction with a denominator of 6: multiply its numerator and denominator by \(\frac{6}{3} = 2 \) (note: \(3 \times 2 = 6 \)):

\[
\begin{array}{ccc}
1 \times 2 & 1 & 2 \\
6 & 7 & 6 + 7 \\
3 \times 2 & 6 & 6 \\
\end{array}
\]

Then, group the whole number terms and put both fractions together over the common denominator:

\[
\frac{2}{6} + \frac{1}{6} = \frac{2 + 1}{6 + 7} = \frac{3}{(6 + 7)6}
\]

Now, sum the numerator and the whole numbers.
• Summing the numerator and the whole numbers gives:

\[
\frac{2 + 1}{6} = \frac{3}{6} = \frac{13}{3/6} = \frac{13}{1/2}
\]

Enter 13 1/2

143) Problem #PRAJD9K "PRAJD9K - 224053 - Subtracting Mixed Numbers"
Find the difference:

\[
\begin{array}{cc}
1 & 1 \\
10 & 4 \\
6 & 18
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8).

Exact Match (case sensitive):
✓ 6 1/9

Hints:
• Notice 6 is a factor of 18.

Because 6 is a factor of 18, the least common denominator is 18.
• Convert the first fraction to an equivalent fraction with a denominator of 18: multiply its numerator and denominator by \(\frac{18}{6} = 3 \) (note: \(6 \times 3 = 18 \)):

\[
\begin{array}{ccc}
10 \times 3 & 4 & 1 \\
10 & 3 & 4 \\
\end{array}
\]
Since the second numerator is not greater than the first, we do not have to borrow.

\[
\begin{align*}
\frac{3}{18} - \frac{1}{18} &= \frac{3 - 1}{18} \\
&= \frac{2}{18} \\
&= \frac{1}{9}
\end{align*}
\]

Next, group the whole number terms and put both fractions together over the common denominator:

\[
\frac{3}{18} - \frac{1}{18} = \frac{(10 - 4)}{18} \\
= \frac{6}{18}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:
 \[
 \frac{3 - 1}{18} = \frac{2}{18} \\
 = \frac{1}{9}
 \]

Enter 6 1/9

144) Problem #PRAJEBP "PRAJEBP - 224053 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{align*}
\frac{1}{6} - \frac{1}{18} &= \frac{18}{18} - \frac{1}{18} \\
&= \frac{17}{18}
\end{align*}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

- 4 1/9

Hints:

- Notice 6 is a factor of 18.

Because 6 is a factor of 18, the least common denominator is 18.

- Convert the first fraction to an equivalent fraction with a denominator of 18: multiply its numerator and denominator by 18/6=3 (note: 6*3=18):

\[
6 \frac{1*3}{1} - 2 \frac{1}{18} = 6 \frac{3}{18} - 2 \frac{1}{18}
\]
Since the second numerator is not greater than the first, we do not have to borrow.

\[
\begin{array}{c}
\frac{3}{6} - \frac{1}{18} \\
\hline
\frac{18}{18} - \frac{2}{18}
\end{array}
\]

Next, group the whole number terms and put both fractions together over the common denominator:

\[
\frac{3}{6} - \frac{1}{18} = \frac{3 - 1}{(6-2)}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:
 \[
 \frac{3 - 1}{18} = \frac{4}{18}
 \]
 \[
 = \frac{4}{1} - \frac{1}{9}
 \]

Enter \(4\ \frac{1}{9}\)

145) Problem #PRAJEEH "PRAJEEH - 224054 - Subtracting Mixed Numbers"
Find the difference:

\[
\begin{array}{c}
\frac{8}{7} - \frac{2}{9} \\
\hline
\frac{7}{7} - \frac{3}{7}
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 4 38/63

Hints:

- The denominators 9 and 7 have no common factors greater than 1.

Because the denominators have no common factors, find the least common denominator by multiplying 9 by 7:

\(9 \times 7 = 63\)
Find equivalent fractions using the denominator 63.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{align*}
8 \cdot 7 & \quad 2 \cdot 9 \\
7 \quad \quad 3 & \quad 7 \quad \quad 3 \\
9 \cdot 7 & \quad 7 \cdot 9 \\
63 & \quad 63
\end{align*}
\]

Since the second numerator is not greater than the first, we do not have to borrow.

\[
\begin{align*}
56 & \quad 18 \\
7 & \quad 3 \\
63 & \quad 63
\end{align*}
\]

Next, group the numerator and whole numbers:

\[
\begin{align*}
56 & \quad 18 \\
7 & \quad 3 \\
63 & \quad 63
\end{align*}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
\begin{align*}
56 - 18 & \quad 38 \\
(7 - 3) & \quad 63 - 63
\end{align*}
\]

Enter \(4 \frac{38}{63}\)

92) Problem #PRAJDKJ "PRAJDKJ - Adding Mixed Numbers"

Find the sum:

\[
\frac{4}{5} + \frac{9}{10}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

\[\checkmark 15 \frac{7}{10}\]

Hints:

- Notice 5 is a factor of 10.
Because 5 is a factor of 10, the least common denominator is 10.

- Convert the first fraction to an equivalent fraction with a denominator of 10: multiply its numerator and denominator by $\frac{10}{5} = 2$ (note: $5 \times 2 = 10$):

$$\frac{4 \times 2}{5} + \frac{9}{10} = \frac{8}{10} + \frac{9}{10}$$

Then, group the whole number terms and put both fractions together over the common denominator:

$$\frac{8}{10} + \frac{9}{10} = \frac{8 + 9}{10} = \frac{17}{10}$$

Now, sum the numerator and the whole numbers.

- Summing the numerator and the whole numbers gives:

$$\frac{8 + 9}{10} = \frac{17}{10}$$

Enter 15 7/10

147) Problem #PRAJDMT “PRAJDMT - Adding Mixed Numbers”

Find the sum:

$$\frac{5}{9} + \frac{5}{18}$$

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 6 5/6

Hints:

- Notice 9 is a factor of 18.

$$\frac{5}{9} + \frac{5}{18}$$

Because 9 is a factor of 18, the least common denominator is 18.

- Convert the first fraction to an equivalent fraction with a denominator of 18: multiply its numerator and
denominator by $\frac{18}{9}=2$ (note: $9\times2=18$):

$$\frac{5\times2}{9\times2} + \frac{5}{18} = \frac{2}{18} + \frac{5}{18}$$

Then, group the whole number terms and put both fractions together over the common denominator:

$$\frac{10}{18} + \frac{5}{18} = \frac{10 + 5}{18}$$

Now, sum the numerator and the whole numbers.

- Summing the numerator and the whole numbers gives:
 $$\frac{10 + 5}{18} = \frac{15}{18}$$
 $$= \frac{6}{18}$$
 $$= \frac{5}{6}$$

Enter 6 5/6

148) Problem #PRAJEB9 "PRAJEB - 224054 - Subtracting Mixed Numbers"

Find the difference:

$$\frac{2}{8} - \frac{1}{5} - \frac{3}{4}$$

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 3 5/12

Hints:
PSABKKR 1.1

The denominators 3 and 4 have no common factors greater than 1.

\[
\frac{2}{3} - \frac{1}{4}
\]

Because the denominators have no common factors, find the least common denominator by multiplying 3 by 4:

\[3 \times 4 = 12\]

Find equivalent fractions using the denominator 12.

PSABKKR 1.2

Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\frac{2 \times 4}{3 \times 4} - \frac{1 \times 3}{4 \times 3} = \frac{8}{12} - \frac{3}{12}
\]

Since the second numerator is not greater than the first, we do not have to borrow.
Next, group the numerator and whole numbers:

\[
\begin{array}{c}
\frac{8}{12} - \frac{5}{12} = \frac{(8-5)}{12}
\end{array}
\]

Now, find the difference in the numerator and in the whole numbers.

Subtracting gives:

\[
\begin{array}{c}
\frac{8-5}{12} = \frac{3}{12}
\end{array}
\]

Enter \(3\frac{5}{12}\)

149) Problem #PRAJDN7 "PRAJDN7 - Adding Mixed Numbers"

Find the sum:

\[
\begin{array}{c}
\frac{7}{12} + \frac{4}{11}
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

\(17\frac{125}{132}\)
Hints:
- The denominators 12 and 11 have no common factors greater than 1.

\[
\begin{array}{c}
7 \\
9 \\
12
\end{array} +
\begin{array}{c}
4 \\
8 \\
11
\end{array} =
\begin{array}{c}
7 \\
12
\end{array} +
\begin{array}{c}
4 \\
11
\end{array}
\]

Because the denominators have no common factors, find the least common denominator by multiplying 12 by 11:

\[
12 \times 11 = 132
\]

Find equivalent fractions using the denominator 132.
- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{array}{c}
7 \\
9 \\
12
\end{array} \times \begin{array}{c}
11 \\
1 \end{array} +
\begin{array}{c}
4 \\
8 \\
11
\end{array} \times \begin{array}{c}
12 \\
1 \end{array} =
\begin{array}{c}
77 \\
132
\end{array} +
\begin{array}{c}
48 \\
132
\end{array}
\]

Next, group the numerator and whole numbers:

\[
\begin{array}{c}
77 \\
9 \\
132
\end{array} +
\begin{array}{c}
48 \\
8 \\
132
\end{array} =
\begin{array}{c}
(9+8) \\
132
\end{array}
\]

Now, sum the numerator and whole numbers.

- Summing the numerator and the whole numbers gives:

\[
(9 + 8) \frac{77 + 48}{132} = 17 \frac{125}{132}
\]

Enter 17 125/132

150) Problem #PRAJEAF "PRAJEAF - 224053 - Subtracting Mixed Numbers"
Find the difference:

\[
\begin{array}{c}
4 \\
5 \\
10
\end{array} -
\begin{array}{c}
1 \\
4 \\
10
\end{array} =
\begin{array}{c}
4 \\
5
\end{array} -
\begin{array}{c}
1 \\
10
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 5 7/10
Hints:
- Notice 5 is a factor of 10.

\[
\begin{array}{cc}
4 & 1 \\
9 & -4 \\
\hline
5 & 10
\end{array}
\]

Because 5 is a factor of 10, the least common denominator is **10**.
- Convert the first fraction to an equivalent fraction with a denominator of 10: multiply its numerator and denominator by \(10/5\) (note: \(5*2=10\)):

\[
\begin{array}{cc}
4*2 & 1 \\
9 & -4 \\
\hline
5*2 & 10 \\
10 & 10 \\
\end{array}
\]

Since the second numerator is not greater than the first, we do not have to borrow.

\[
\begin{array}{cc}
8 & 1 \\
9 & -4 \\
\hline
10 & 10 \\
\end{array}
\]

Next, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{array}{cc}
8 & 1 \\
9 & -4 \\
\hline
10 & 10 \\
\end{array}
= (9-4) \frac{8-1}{10}
\]

Now, find the difference in the numerator and in the whole numbers.
- Subtracting gives:

\[
\begin{array}{cc}
(9-4) & \frac{8-1}{10} \\
\hline
10 & 10 \\
\end{array}
\]

Enter \(5 \frac{7}{10}\)

151) Problem #PRAJEBA "PRAJEBA - 224053 - Subtracting Mixed Numbers"
Find the difference:

\[
\begin{array}{cc}
3 & 1 \\
8 & -2 \\
\hline
7 & 14 \\
\end{array}
\]

Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):
Hints:

- Notice 7 is a factor of 14.

\[
\frac{3}{8} - \frac{1}{7} = \frac{6}{14} - \frac{2}{14}
\]

Because 7 is a factor of 14, the least common denominator is 14.

- Convert the first fraction to an equivalent fraction with a denominator of 14: multiply its numerator and denominator by \(\frac{14}{7} = 2\) (note: \(7 \times 2 = 14\)):

\[
\frac{3 \times 2}{8} - \frac{1}{14} = \frac{6}{14} - \frac{2}{14}
\]

Since the second numerator is not greater than the first, we do not have to borrow.

\[
\frac{6}{8} - \frac{1}{14} = \frac{6 - 1}{14}
\]

Next, group the whole number terms and put both fractions together over the common denominator:

\[
\frac{6}{14} - \frac{1}{14} = \frac{6 - 1}{14}
\]

Now, find the difference in the numerator and in the whole numbers.

Subtracting gives:

\[
\frac{6}{14} - \frac{1}{14} = \frac{6 - 1}{14}
\]

Enter 6 5/14

152) Problem #PRAJEAT "PRAJEAT - 224053 - Subtracting Mixed Numbers"

Find the difference:

\[
\frac{3}{10} - \frac{1}{8} = \frac{1}{24}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)
Exact Match (case sensitive):

✓ 6 1/3

Hints:
- Notice 8 is a factor of 24.

\[
\begin{array}{c}
3 \\
10 - 4 \\
8 \\
\hline
24
\end{array}
\]

Because 8 is a factor of 24, the least common denominator is 24.
- Convert the first fraction to an equivalent fraction with a denominator of 24: multiply its numerator and denominator by \(\frac{24}{8} = 3 \) (note: \(8 \times 3 = 24 \)):

\[
\begin{array}{c}
3 \times 3 \\
10 - 4 \\
8 \times 3 \\
\hline
24 \\
24 \\
24
\end{array}
\]

Since the second numerator is not greater than the first, we do not have to borrow.

\[
\begin{array}{c}
9 \\
10 - 4 \\
24 \\
\hline
24
\end{array}
\]

Next, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{array}{c}
9 \\
10 - 4 \\
24 \\
\hline
24
\end{array}
= (10 - 4)
\]

Now, find the difference in the numerator and in the whole numbers.
- Subtracting gives:

\[
\begin{array}{c}
9 - 1 \\
\hline
24
\end{array}
= 6 \frac{1}{3}
\]

Enter 6 1/3

153) Problem #PRAJEED "PRAJEED - 224054 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{array}{c}
2 \\
4 - 1 \\
7 \\
\hline
12
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space
between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✔ 2 73/84

Hints:
- The denominators 7 and 12 have no common factors greater than 1.

$$\begin{array}{c}
\frac{2}{4} = \frac{5}{12} \\
7 & 12
\end{array}$$

Because the denominators have no common factors, find the least common denominator by multiplying 7 by 12:

$$7 \times 12 = 84$$

Find equivalent fractions using the denominator 84.
- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

$$\begin{array}{c}
\frac{2}{4} \times \frac{12}{12} = \frac{24}{84} \\
\frac{5}{12} \times \frac{7}{7} = \frac{35}{84}
\end{array}$$

Since the second numerator is greater than the first, we have to borrow. Borrow 1 from the first whole number, 4, and represent it in fractional form using the common denominator: 4 = 3+1 = 3+84/84

$$\begin{array}{c}
\frac{3}{84} + \frac{24}{84} = \frac{35}{84}
\end{array}$$

Next, group the numerator and whole numbers:

$$\begin{array}{c}
\frac{108}{3} - \frac{35}{84} = \frac{108 - 35}{3 \times 84}
\end{array}$$

Now, find the difference in the numerator and in the whole numbers.
- Subtracting gives:

$$\begin{array}{c}
\frac{108 - 35}{3 - 1} = \frac{73}{84}
\end{array}$$

Enter 2 73/84
154) Problem #PRAJDJZ "PRAJDJZ - Adding Mixed Numbers"

Find the sum:

\[
\begin{array}{c}
7 \\
4 \\
10
\end{array} + \begin{array}{c}
11 \\
3 \\
30
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

\[8 \ 1/15\]

Hints:
- Notice **10** is a factor of **30**.

Because **10** is a factor of **30**, the least common denominator is **30**.
- Convert the **first** fraction to an equivalent fraction with a denominator of **30**: multiply its numerator and denominator by \(\frac{30}{10}=3\) \(\text{note: } 10*3=30\):

\[
\begin{array}{c}
7 \\
4 \\
10
\end{array} + \begin{array}{c}
11 \\
3 \\
30
\end{array} = \begin{array}{c}
21 \\
3 \\
30
\end{array} + \begin{array}{c}
11 \\
3 \\
30
\end{array}
\]

Then, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{array}{c}
21 \\
4 \\
30
\end{array} + \begin{array}{c}
11 \\
3 \\
30
\end{array} = \frac{(4+3) \ 21 + 11}{30}
\]

Now, sum the numerator and the whole numbers.
- Summing the numerator and the whole numbers gives:

\[
\frac{(4+3) \ 21 + 11}{30} = \begin{array}{c}
7 \\
30
\end{array} + \begin{array}{c}
32 \\
30
\end{array} = 7 + \frac{2}{30} = 8 \ 1/15
\]

Enter 8 1/15

155) Problem #PRAJECX "PRAJECX - 224054 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{array}{c}
3 \\
1
\end{array} - \begin{array}{c}
2 \\
1
\end{array}
\]
Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 1 1/6

Hints:
- The denominators 2 and 3 have no common factors greater than 1.

 \[
 \begin{array}{c}
 1 \\
 - \\
 3 - 2 - \\
 2 \\
 - \\
 3
 \end{array}
 \]

Because the denominators have no common factors, find the least common denominator by multiplying 2 by 3:

\[
2 \times 3 = 6
\]

Find equivalent fractions using the denominator 6.
- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{array}{c}
1 \times 3 \\
3 - 2 - \\
2 \times 3
\end{array}
\quad \begin{array}{c}
1 \times 2 \\
3 - 2 - \\
3 \times 2
\end{array}
\quad \begin{array}{c}
3 \\
3 - 2 - \\
6 - 6
\end{array}
\]

Since the second numerator is not greater than the first, we do not have to borrow.

\[
\begin{array}{c}
3 \\
3 - 2 - \\
6 - 6
\end{array}
\]

Next, group the numerator and whole numbers:

\[
\begin{array}{c}
3 \\
3 - 2 - \\
6 - 6
\end{array}
\quad (3 - 2) \quad \frac{3 - 2}{6}
\]

Now, find the difference in the numerator and in the whole numbers.
- Subtracting gives:

\[
\begin{array}{c}
3 - 2 \\
(3 - 2) \quad \frac{1}{6}
\end{array}
\]

Enter 1 1/6
Find the sum:

\[
\begin{array}{c}
\frac{9}{11} + \frac{1}{10} \\
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✔️ 14 101/110

Hints:

- The denominators 11 and 10 have no common factors greater than 1.

\[
\begin{array}{c}
\frac{9}{11} + \frac{1}{10} \\
\end{array}
\]

Because the denominators have no common factors, find the least common denominator by multiplying 11 by 10:

\[
11 \times 10 = 110
\]

Find equivalent fractions using the denominator 110.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{array}{c}
\frac{9 \times 10}{11 \times 10} + \frac{1 \times 11}{10 \times 11} = \frac{90}{110} + \frac{11}{110} \\
\end{array}
\]

Next, group the numerator and whole numbers:

\[
\begin{array}{c}
\frac{90}{110} + \frac{11}{110} = (8 + 6) \frac{11}{110} \\
\end{array}
\]

Now, sum the numerator and whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\begin{array}{c}
(8 + 6) \frac{90 + 11}{110} = 14 \frac{101}{110} \\
\end{array}
\]

Enter 14 101/110
157) Problem #PRAJDKX "PRAJDKX - Adding Mixed Numbers"
Find the sum:

\[
\begin{align*}
8 \frac{1}{6} + 6 \frac{1}{18} &= \frac{1}{6} + \frac{1}{18} \\
&= \frac{3 + 1}{18} \\
&= \frac{4}{18} \\
&= 2 \frac{2}{9}
\end{align*}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 14 2/9

Hints:
- Notice 6 is a factor of 18.

Because 6 is a factor of 18, the least common denominator is 18.

- Convert the first fraction to an equivalent fraction with a denominator of 18: multiply its numerator and denominator by 18/6 = 3 (note: 6*3=18):

\[
\begin{align*}
\frac{1}{6} + \frac{1}{18} &= \frac{1*3}{6*3} + \frac{1}{18} \\
&= \frac{3}{18} + \frac{1}{18} \\
&= \frac{4}{18}
\end{align*}
\]

Then, group the whole number terms and put both fractions together over the common denominator:

\[
\frac{3 + 1}{18} = \frac{4}{18}
\]

Now, sum the numerator and the whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\frac{3 + 1}{18} = 14 \frac{4}{18} = 14 \frac{2}{9}
\]

Enter 14 2/9

158) Problem #PRAJD88 "PRAJD88 - 224053 - Subtracting Mixed Numbers"
Find the difference:
Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✔️ 7 17/18

Hints:

- Notice 9 is a factor of 18.

\[
\begin{array}{c}
\frac{2}{9} - \frac{5}{18} \\
\end{array}
\]

Because 9 is a factor of 18, the least common denominator is 18.

- Convert the first fraction to an equivalent fraction with a denominator of 18: multiply its numerator and denominator by \(\frac{18}{9}=2\) (note: 9*2=18):

\[
\begin{array}{c}
\frac{2*2}{9} - \frac{5}{18} = \frac{9}{9} - \frac{1}{18} \\
\end{array}
\]

Since the second numerator is greater than the first, we have to borrow. Borrow 1 from the first whole number, 9, and represent it in fractional form using the common denominator: 9 = 8+1 = \(\frac{8+1}{18}\)

\[
\begin{array}{c}
\frac{18+4}{18} - \frac{1}{18} \\
\end{array}
\]

Next, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{array}{c}
\frac{22 - 1}{18} = (8-1) \frac{22 - 5}{18} \\
\end{array}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
\frac{22 - 5}{18} = 7 - \frac{17}{18}
\]

Enter 7 17/18
Problem #PRAJEA8 "PRAJEA8 - 224053 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{array}{c}
1 \\
8
\end{array} - \begin{array}{c}
7 \\
2
\end{array} = \begin{array}{c}
7 \\
8
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 5/8

Hints:

- Notice 2 is a factor of 8.

Because 2 is a factor of 8, the least common denominator is 8.

- Convert the first fraction to an equivalent fraction with a denominator of 8: multiply its numerator and denominator by \(\frac{8}{2} = 4 \) (note: 2*4=8):

\[
\begin{array}{c}
1 \\
8
\end{array} - \begin{array}{c}
7 \\
2
\end{array} = \begin{array}{c}
4 \\
8
\end{array}
\]

Since the second numerator is greater than the first, we have to borrow. Borrow 1 from the first whole number, 8, and represent it in fractional form using the common denominator: 8 = 7+1 = 7+8/8

\[
\begin{array}{c}
8 \\
8
\end{array} - \begin{array}{c}
7 \\
8
\end{array} = \begin{array}{c}
8+4 \\
8
\end{array}
\]

Next, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{array}{c}
12 \\
7
\end{array} - \begin{array}{c}
7 \\
8
\end{array} = \begin{array}{c}
12 - 7 \\
8
\end{array}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
\begin{array}{c}
12 - 7 \\
8
\end{array} = \begin{array}{c}
5 \\
8
\end{array} = 5/8
\]

https://www.assistments.org/build/print/sequence/809734?mode=debug&op_scaf=false&op_hint=false&op_answer_op=false&op_answer=false&op_name=false&op_buggies=false&op_sections=false&short_answers=false
Enter 5/8

160) Problem #PRAJEBR "PRAJEBR - 224053 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{array}{c}
1 \\
8 & - & 5 \\
8 & - & 24
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 2 5/6

Hints:
- Notice 8 is a factor of 24.

Because 8 is a factor of 24, the least common denominator is 24.
- Convert the first fraction to an equivalent fraction with a denominator of 24: multiply its numerator and denominator by 24/8 = 3 (note: 8*3=24):

\[
\begin{array}{c}
1 \\
8 & - & 5 \\
8 & - & 24
\end{array}
\]

Since the second numerator is greater than the first, we have to borrow. Borrow 1 from the first whole number, 8, and represent it in fractional form using the common denominator: 8 = 7+1 = 7+24/24

Next, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{array}{c}
27 \\
7 & - & 5 \\
24 & - & 24
\end{array}
\]

Now, find the difference in the numerator and in the whole numbers.
- Subtracting gives:

\[
(7 - 5) 27 - 7 = 20
\]
Enter 2 5/6

161) Problem #PRAJEA3 "PRAJEA3 - 224053 - Subtracting Mixed Numbers"
Find the difference:

\[
\begin{align*}
\frac{2}{10} & - \frac{5}{11} \\
\frac{1}{22} & - \frac{5}{22}
\end{align*}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 5 21/22

Hints:
- Notice 11 is a factor of 22.

Because 11 is a factor of 22, the least common denominator is 22.
- Convert the first fraction to an equivalent fraction with a denominator of 22: multiply its numerator and denominator by \(\frac{22}{11} = 2\) (note: 11*2=22):

\[
\begin{align*}
\frac{2}{10} & - \frac{5}{11} \\
\frac{1}{22} & - \frac{5}{22}
\end{align*}
\]

Since the second numerator is greater than the first, we have to borrow. Borrow 1 from the first whole number, 10, and represent it in fractional form using the common denominator: 10 = 9+1 = 9+22/22

\[
\begin{align*}
\frac{22 + 4}{22} & - \frac{5}{22} \\
\frac{9}{22} & - \frac{4}{22}
\end{align*}
\]

Next, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{align*}
\frac{26}{22} & - \frac{5}{22} = \frac{26 - 5}{22}
\end{align*}
\]
Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:
 \[
 \frac{26}{22} - \frac{5}{22} = \frac{21}{22}
 \]

Enter \(\frac{5}{21/22}\)

162) Problem #PRAJED2 "PRAJED2 - 224054 - Subtracting Mixed Numbers"

Find the difference:

\[
\frac{1}{5} - \frac{1}{2} = \frac{1}{5} - \frac{1}{2}
\]

Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

- 7/10

Hints:

- The denominators 5 and 2 have no common factors greater than 1.

Because the denominators have no common factors, find the **least common denominator** by multiplying 5 by 2:

\[
5 \times 2 = 10
\]

Find equivalent fractions using the denominator 10.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\frac{1}{5} \times \frac{5}{2} = \frac{5}{10} - \frac{4}{5} \times \frac{2}{5} = \frac{8}{10}
\]

Since the second numerator is greater than the first, we have to borrow. Borrow 1 from the first whole number, 5, and represent it in fractional form using the common denominator: 5 = 4+1 = 4+10/10

\[
\frac{10}{10} + \frac{2}{4} - \frac{4}{10} = \frac{5}{10}
\]
Next, group the numerator and whole numbers:

\[
\begin{align*}
\frac{12}{4} - \frac{5}{10} &= (4-4) \frac{12-5}{10} \\
&= 0 \frac{7}{10}
\end{align*}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
\begin{align*}
\frac{12 - 5}{10} &= \frac{7}{10} \\
(4 - 4) &= 0 \frac{7}{10}
\end{align*}
\]

Enter \(\frac{7}{10}\)

163) Problem #PRAJDH9 "PRAJDH9 - Adding Mixed Numbers"

Find the sum:

\[
\begin{align*}
\frac{1}{6} + \frac{1}{12} + \frac{1}{36}
\end{align*}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

\(\checkmark\) 15 1/9

Hints:

- Notice 12 is a factor of 36.

\[
\begin{align*}
\frac{1}{6} + \frac{1}{12} + \frac{1}{36}
\end{align*}
\]

Because 12 is a factor of 36, the least common denominator is 36.

- Convert the first fraction to an equivalent fraction with a denominator of 36: multiply its numerator and denominator by \(\frac{3}{3}\) (note: \(12 \times 3 = 36\)):

\[
\begin{align*}
\frac{1 \times 3}{12} + \frac{1}{36} &= \frac{1}{36} + \frac{1}{36} \\
&= \frac{3}{36} + \frac{1}{36}
\end{align*}
\]

Then, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{align*}
\frac{3}{36} + \frac{1}{36} &= (6+9) \frac{3+1}{36}
\end{align*}
\]
Now, sum the numerator and the whole numbers.
- Summing the numerator and the whole numbers gives:
 \[
 \frac{3 + 1}{6 + 9} = \frac{4}{36} = \frac{15}{4} = \frac{15}{36} = \frac{15}{1}/9
 \]

Enter 15 1/9

164) Problem #PRAJD9E "PRAJD9E - 224053 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{array}{cccc}
 2 & 7 \\
 3 - & 1 - \\
 5 & 10 \\
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

\[\checkmark\] 1 7/10

Hints:
- Notice 5 is a factor of 10.

Because 5 is a factor of 10, the least common denominator is 10.
- Convert the first fraction to an equivalent fraction with a denominator of 10: multiply its numerator and denominator by \[\frac{5}{2}\] (note: 5*2 = 10)

\[
\begin{array}{cccc}
 2 & 7 \\
 3 - & 1 - \\
 5 & 10 \\
\end{array}
\]

Since the second numerator is greater than the first, we have to borrow. Borrow 1 from the first whole number, 3, and represent it in fractional form using the common denominator: \[3 = \frac{2+1}{10/10}\]

\[
\begin{array}{cccc}
 10+4 & 7 \\
 2 & 1 - \\
 10 & 10 \\
\end{array}
\]

Next, group the whole number terms and put both fractions together over the common
denominator:

\[
\frac{14}{2} - \frac{7}{10} = (2-1) \frac{7}{10}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:
 \[
 \frac{14 - 7}{(2 - 1)} = 1 \frac{7}{10}
 \]

Enter \(1 7/10\)

165) Problem #PRAJD84 "PRAJD84 - 224053 - Subtracting Mixed Numbers"

Find the difference:

\[
\frac{1}{10} - \frac{7}{2} = \frac{10}{8} - \frac{7}{8}
\]

Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 2 5/8

Hints:

- Notice 2 is a factor of 8.

\[
\frac{1}{10} - \frac{7}{2} = \frac{10}{8} - \frac{7}{8}
\]

Because 2 is a factor of 8, the least common denominator is 8.

- Convert the first fraction to an equivalent fraction with a denominator of 8: multiply its numerator and denominator by \(8/2=4\) (note: \(2*4=8\)):

\[
\frac{1*4}{10} - \frac{7}{8} = \frac{10}{8} - \frac{7}{8}
\]

Since the second numerator is greater than the first, we have to borrow. Borrow 1 from the first whole number, 10, and represent it in fractional form using the common denominator: \(10 = 9+1 = 9+8/8\)

\[
\frac{8+4}{9} - \frac{7}{8}
\]
Next, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{align*}
\frac{12}{9} - \frac{7}{8} &= \frac{12 - 7}{8} \\
\end{align*}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
(9 - 7) = 2
\]

Enter \(2\) \(\frac{5}{8}\)

Find the difference:

\[
\begin{align*}
\frac{9}{7} - \frac{4}{10} &= \frac{9*3}{30} - \frac{4}{30} \\
7 - 4 &= 7 - 4 \\
\frac{7}{10} &= \frac{7}{30}
\end{align*}
\]

Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

- \(3\) \(2/3\)

Hints:
- Notice \(10\) is a factor of \(30\).

Because \(10\) is a factor of \(30\), the least common denominator is \(30\).

- Convert the first fraction to an equivalent fraction with a denominator of \(30\): multiply its numerator and denominator by \(30/10=3\) (note: \(10*3=30\):

\[
\begin{align*}
\frac{9*3}{7} - \frac{4}{10} &= \frac{9*3}{30} - \frac{4}{30} \\
\end{align*}
\]

Since the second numerator is not greater than the first, we do not have to borrow.

\[
\begin{align*}
7 - 4 &= 7 - 4 \\
\frac{7}{30} &= \frac{7}{30}
\end{align*}
\]
Next, group the whole number terms and put both fractions together over the common denominator:

\[
\frac{27}{30} - \frac{7}{30} = \frac{(7-4)}{30}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
\frac{27 - 7}{30} = \frac{20}{30} = \frac{3}{30} = 3\frac{2}{3}
\]

Enter 3 2/3

167) Problem #PRAJD8Y "PRAJD8Y - 224053 - Subtracting Mixed Numbers"

Find the difference:

\[
\frac{5}{6} - \frac{5}{18}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

\[\text{\checkmark} \ 2 \frac{5}{9}\]

Hints:
- Notice 6 is a factor of 18.

Because 6 is a factor of 18, the least common denominator is 18.
- Convert the first fraction to an equivalent fraction with a denominator of 18: multiply its numerator and denominator by 18/6=3 (note: 6*3=18):

\[
\frac{5*3}{6*3} \ - \ \frac{5}{18}
\]

Since the second numerator is not greater than the first, we do not have to borrow.
Next, group the whole number terms and put both fractions together over the common denominator:

\[
\frac{15}{18} - \frac{5}{18} = \frac{15 - 5}{18}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:
 \[
 \frac{15 - 5}{18} = \frac{2}{18}
 \]
 \[
 = \frac{2}{9}
 \]

Enter 2 \frac{5}{9}

168) Problem #PRAJDKZ "PRAJDKZ - Adding Mixed Numbers"

Find the sum:

\[
\frac{5}{5} + \frac{1}{8}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 13 2/3

Hints:

- Notice 8 is a factor of 24.

Because 8 is a factor of 24, the least common denominator is 24.

- Convert the first fraction to an equivalent fraction with a denominator of 24: multiply its numerator and denominator by 24/8 = 3 (note: 8*3 = 24):

\[
\frac{5*3}{8*3} + \frac{1}{24} = \frac{5}{24} + \frac{1}{24}
\]

Then, group the whole number terms and put both fractions together over the common denominator:
Now, sum the numerator and the whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\frac{15 + 1}{24} = \frac{16}{24} = \frac{13}{24}
\]

Enter 13 2/3

169) Problem #PRAJDP2 "PRAJDP2 - Adding Mixed Numbers"

Find the sum:

\[
\begin{array}{c}
1 \\
1 - + 10 - \\
2 \\
3 \\
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 11 5/6

Hints:

- The denominators 2 and 3 have no common factors greater than 1.

Because the denominators have no common factors, find the least common denominator by multiplying 2 by 3:

\[
2 \times 3 = 6
\]

Find equivalent fractions using the denominator 6.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction’s numerator and denominator by the other fraction’s denominator:

\[
\begin{array}{c}
\frac{1\times3}{2\times3} + \frac{1\times2}{3\times2} \\
1 + 10 = \frac{3}{6} + \frac{2}{6} \\
\end{array}
\]

Next, group the numerator and whole numbers:

\[
13 + 102 = (1+10)3 + 2
\]
Now, sum the numerator and whole numbers.

- Summing the numerator and the whole numbers gives:
 \[
 \frac{3 + 2}{6} + \frac{5}{6} = \frac{11}{6}
 \]

Enter 11 5/6

170) Problem #PRAJDJB "PRAJDJB - Adding Mixed Numbers"

Find the sum:

\[
\begin{array}{cccc}
9 & 11 & 12 & 3 \\
\hline \\
9 & + & 3 & \\
12 & & 36 & \\
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 13 2/9

Hints:
- Notice 12 is a factor of 36.

Because 12 is a factor of 36, the least common denominator is 36.
- Convert the first fraction to an equivalent fraction with a denominator of 36: multiply its numerator and denominator by 36/12=3 (note: 12*3=36):

\[
\begin{array}{cccc}
11 & 11 & 33 & 11 \\
\hline \\
9 & + & 3 & \\
12 & 36 & 36 & 36 \\
\end{array}
\]

Then, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{array}{cccc}
33 & 11 & 33 + 11 \\
\hline \\
9 & + & 3 & = (9+3) \\
36 & 36 & 36 & 36 \\
\end{array}
\]
Now, sum the numerator and the whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\frac{33 + 11}{36} = \frac{44}{36} = 12 + \frac{8}{36} = 13 \frac{2}{9}
\]

Enter \(13 \frac{2}{9}\)

171) Problem #PRAJEDY "PRAJEDY - 224054 - Subtracting Mixed Numbers"

Find the difference:

\[
\frac{5}{8} - \frac{1}{9}
\]

Answers must be in the form of a **reduced proper fraction** (example \(\frac{2}{7}\)) or a **mixed number** with a space between the whole number and the fraction (example \(3 \frac{5}{8}\))

Exact Match (case sensitive):

✓ \(8 \frac{37}{72}\)

Hints:

- The denominators 8 and 9 have no common factors greater than 1.

\[
\frac{5}{8} - \frac{1}{9}
\]

Because the denominators have no common factors, find the **least common denominator** by multiplying 8 by 9:

\[
8 \times 9 = 72
\]

Find equivalent fractions using the denominator 72.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\frac{5 \times 9}{10} \quad \frac{1 \times 8}{2} \quad \frac{45}{72} \quad \frac{8}{72}
\]

Since the second numerator is not greater than the first, we do not have to borrow.

\[
\frac{45}{72} - \frac{8}{72}
\]
Next, group the numerator and whole numbers:

\[
\begin{array}{c}
\frac{45}{72} - \frac{8}{72} = \frac{45 - 8}{72}
\end{array}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
\begin{array}{c}
(10 - 2) = 8
\end{array}
\]

Enter \(\frac{8}{72} \)

172) Problem "PRAJEC5 - 224054 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{array}{c}
\frac{4}{5} - \frac{1}{2}
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 3 3/10

Hints:

- The denominators 5 and 2 have no common factors greater than 1.

Because the denominators have no common factors, find the least common denominator by multiplying 5 by 2:

\[
5 \times 2 = 10
\]

Find equivalent fractions using the denominator 10.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{array}{c}
\frac{4 \times 2}{6 - 3} = \frac{8}{5} \\
\frac{1 \times 5}{5 - 2} = \frac{10}{10}
\end{array}
\]

Since the second numerator is not greater than the first, we do not have to borrow.
Next, group the numerator and whole numbers:

\[
\begin{array}{c}
8 \\
6 \\
10
\end{array}
- \begin{array}{c}
3 \\
5 \\
10
\end{array} = \begin{array}{c}
(8 - 3) \\
10
\end{array}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
\begin{array}{c}
8 - 5 \\
6 - 3 \\
10
\end{array}
= \begin{array}{c}
3 \\
10
\end{array}
\]

Enter \(3\ \frac{3}{10}\)

173) Problem #PRAJK7 "PRAJK7 - Adding Mixed Numbers"

Find the sum:

\[
\begin{array}{c}
1 \\
8 \\
5
\end{array}
+ \begin{array}{c}
1 \\
1 \\
10
\end{array}
\]

Answers must be in the form of a \textit{reduced proper fraction} (example 2/7) or a \textit{mixed number} with a space between the whole number and the fraction (example 3 \(\frac{5}{8}\))

Exact Match (case sensitive):

✓ 9 3/10

Hints:

- Notice 5 is a factor of 10.

\[
\begin{array}{c}
1 \\
8 \\
5
\end{array}
+ \begin{array}{c}
1 \\
1 \\
10
\end{array}
\]

Because 5 is a factor of 10, the least common denominator is 10.

- Convert the first fraction to an equivalent fraction with a denominator of 10: multiply its numerator and denominator by 10/5=2 (note: 5\(\times\)2=10):

\[
\begin{array}{c}
1 \times 2 \\
8 \\
5 \times 2
\end{array}
+ \begin{array}{c}
1 \\
1 \\
10
\end{array}
= \begin{array}{c}
2 \\
8 \\
10
\end{array}
+ \begin{array}{c}
1 \\
1 \\
10
\end{array}
\]
Then, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{align*}
\frac{2}{10} + \frac{1}{10} &= \frac{2+1}{10} \\
&= \frac{3}{10}
\end{align*}
\]

Now, sum the numerator and the whole numbers.

- Summing the numerator and the whole numbers gives:
 \[
 (8 + 1) \quad 2 \quad + \quad 1 \quad = \quad 9 \quad \frac{3}{10}
 \]

Enter 9 3/10

174) Problem #PRAJDPN "PRAJDPN - Adding Mixed Numbers"

Find the sum:

\[
\frac{1}{8} + \frac{2}{9}
\]

Answers must be in the form of a *reduced proper fraction* (example 2/7) or a *mixed number* with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 7 25/72

Hints:

- The denominators 8 and 9 have no common factors greater than 1.

Because the denominators have no common factors, find the least common denominator by multiplying 8 by 9:

\[
8 \times 9 = 72
\]

Find equivalent fractions using the denominator 72.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{align*}
\frac{1 \times 9}{8 \times 9} + \frac{2 \times 8}{9 \times 8} &= \frac{9}{72} + \frac{16}{72} \\
&= \frac{25}{72}
\end{align*}
\]
Next, group the numerator and whole numbers:

\[
\frac{9}{72} + \frac{16}{72} = (1+6) \frac{25}{72}
\]

Now, sum the numerator and whole numbers.

- Summing the numerator and the whole numbers gives:

\[
(1+6) \frac{25}{72} = 7 \frac{25}{72}
\]

Enter 7 25/72

175) Problem #PRAJECR "PRAJECR - 224054 - Subtracting Mixed Numbers"

Find the difference:

\[
\frac{1}{6} - \frac{1}{3} - \frac{1}{4}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 4 1/12

Hints:

- The denominators 3 and 4 have no common factors greater than 1.

Because the denominators have no common factors, find the least common denominator by multiplying 3 by 4:

\[
3 * 4 = 12
\]

Find equivalent fractions using the denominator 12.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\frac{1*4}{6} - \frac{1*3}{4} = \frac{4}{3} - \frac{2}{12} = \frac{3}{12}
\]
Since the second numerator is not greater than the first, we do not have to borrow.

\[
\begin{array}{cc}
4 & 3 \\
\hline
6 & 2 \\
\end{array}
\quad \frac{12}{12} \quad \frac{12}{12}
\]

Next, group the numerator and whole numbers:

\[
\begin{array}{cc}
4 & 3 \\
\hline
6 & 2 \\
\end{array} \\
\frac{12}{12} = (6-2) \frac{4-3}{12}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
(6-2) \frac{4-3}{12} = 4 \frac{1}{12}
\]

Enter \(4 \frac{1}{12}\)

176) Problem #PRAJEC3 "PRAJEC3 - 224054 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{array}{cc}
1 & 2 \\
\hline
8 & 6 \\
\end{array}
\quad \frac{2}{3}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 1 5/6

Hints:

- The denominators 2 and 3 have no common factors greater than 1.

\[
\begin{array}{cc}
1 & 2 \\
\hline
8 & 6 \\
\end{array}
\quad \frac{2}{3}
\]

Because the denominators have no common factors, find the least common denominator by multiplying 2 by 3:

\[
2 \times 3 = 6
\]

Find equivalent fractions using the denominator 6.
Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{array}{c}
1 \times 3 & 2 \times 2 & 3 & 4 \\
8 & - & 6 & = & 8 & - & 6 \\
2 \times 3 & 3 \times 2 & 6 & 6 \\
\end{array}
\]

Since the second numerator is greater than the first, we have to borrow. Borrow 1 from the first whole number, 8, and represent it in fractional form using the common denominator: \(8 = 7 + \frac{1}{6}\)

\[
\begin{array}{c}
6 + 3 & 4 \\
7 & - 6 \\
6 & 6 \\
\end{array}
\]

Next, group the numerator and whole numbers:

\[
\begin{array}{c}
9 & 4 \\
7 & - 6 \\
6 & 6 \\
\end{array} = (7 - 6) \frac{9 - 4}{6}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
\begin{array}{c}
9 - 4 & 5 \\
(7 - 6) & = 1 \\
6 & 6 \\
\end{array}
\]

Enter 1 \(\frac{5}{6}\)

Find the sum:

\[
\frac{4}{9} + \frac{1}{18}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✔️ 11 1/2

Hints:

- Notice 9 is a factor of 18.
Because 9 is a factor of 18, the least common denominator is 18.

- Convert the first fraction to an equivalent fraction with a denominator of 18: multiply its numerator and denominator by $\frac{18}{9}=2$ (note: $9\times2=18$):

\[
\begin{align*}
\frac{1}{9} & \quad + \quad \frac{1}{18} \\
\frac{4}{18} & \quad + \quad \frac{1}{18} \\
\frac{8}{18} & \quad + \quad \frac{1}{18} \\
\frac{9}{18} & \quad + \quad \frac{2}{18}
\end{align*}
\]

Then, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{align*}
\frac{8}{18} & \quad + \quad \frac{1}{18} \\
\frac{1}{18} & \quad + \quad \frac{10}{18} \\
\frac{8 + 1}{18} & = \frac{8}{18} + \frac{10}{18} \\
(1+10) & = 11
\end{align*}
\]

Now, sum the numerator and the whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\begin{align*}
\frac{8 + 1}{18} & = \frac{11}{18}
\end{align*}
\]

Enter 11 1/2
denominator by \(\frac{18}{9} = 2 \) (note: \(9 \times 2 = 18 \)):

\[
\begin{array}{ccc}
1 \times 2 & 1 & 2 \\
2 & + & 7 & = & 2 & + & 7 \\
9 \times 2 & 18 & 18 & 18
\end{array}
\]

Then, group the whole number terms and put both fractions together over the common denominator:

\[
\frac{2}{18} + \frac{1}{18} = \frac{2 + 1}{18}
\]

Now, sum the numerator and the whole numbers.
- Summing the numerator and the whole numbers gives:

\[
\frac{2 + 1}{18} = \frac{3}{18} = \frac{9}{3} = \frac{9}{6} = \frac{9}{6}
\]

Enter 9 1/6

179) Problem #PRAJECQ "PRAJECQ - 224054 - Subtracting Mixed Numbers"
Find the difference:

\[
\begin{array}{ccc}
7 & 5 \\
10 & - & 9 - \\
9 & 7
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 1 4/63

Hints:
- The denominators 9 and 7 have no common factors greater than 1.

Because the denominators have no common factors, find the least common denominator by multiplying 9 by 7:

\[
9 \times 7 = 63
\]

Find equivalent fractions using the denominator 63.
- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:
Since the second numerator is not greater than the first, we do not have to borrow.

\[
\begin{align*}
\frac{49}{10} &- \frac{45}{9} \\
\frac{63}{63} &- \frac{63}{63}
\end{align*}
\]

Next, group the numerator and whole numbers:

\[
\begin{align*}
\frac{49}{10} &- \frac{45}{9} \\
\frac{63}{63} &- \frac{63}{63}
\end{align*} = \frac{49 - 45}{63}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:

\[
\begin{align*}
\frac{49 - 45}{63} &- \frac{4}{63}
\end{align*}
\]

Enter \(\text{1 4/63} \)

180) Problem #PRAJDNF "PRAJDNF - Adding Mixed Numbers"

Find the sum:

\[
\begin{align*}
\frac{9}{4} &+ \frac{2}{12} \\
\frac{7}{4} &+ \frac{7}{12}
\end{align*}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

\(\checkmark \text{11 5/6} \)

Hints:

- Notice 4 is a factor of 12.

\[
\begin{align*}
\frac{1}{9} &+ \frac{7}{4} \\
\frac{12}{12}
\end{align*}
\]

Because 4 is a factor of 12, the least common denominator is 12.
- Convert the first fraction to an equivalent fraction with a denominator of 12: multiply its numerator and denominator by $12/4=3$ (note: $4*3=12$):

$$\frac{1*3}{4*3} \cdot \frac{7}{12} = \frac{3}{12} + \frac{7}{12} = \frac{3+7}{12}$$

Then, group the whole number terms and put both fractions together over the common denominator:

$$\frac{3}{12} + \frac{7}{12} = \frac{(3+7)}{12}$$

Now, sum the numerator and the whole numbers.
- Summing the numerator and the whole numbers gives:

$$\frac{(9+2)}{12} = \frac{11}{12} + \frac{10}{12} = \frac{11}{12} \cdot \frac{5}{6}$$

Enter $11\ 5/6$

181) Problem #PRAJDM "PRAJDM - Adding Mixed Numbers"

Find the sum:

$$\frac{1}{6} + \frac{1}{3}$$

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✔ 16 1/2

Hints:
- Notice 3 is a factor of 6.

Because 3 is a factor of 6, the least common denominator is 6.
- Convert the first fraction to an equivalent fraction with a denominator of 6: multiply its numerator and denominator by $6/3=2$ (note: $3*2=6$):

$$\frac{1*2}{3*2} \cdot \frac{1}{6} + \frac{1}{6} = \frac{2}{6} + \frac{1}{6} \cdot \frac{1}{6}$$
Then, group the whole number terms and put both fractions together over the common denominator:

\[
\frac{2}{6} + \frac{1}{10} = \frac{(6+10)}{6} + \frac{2+1}{6}
\]

Now, sum the numerator and the whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\left(\frac{6+10}{6}\right) + \frac{3}{6} = \frac{16}{6} + \frac{3}{6} = \frac{19}{6} = 16 \frac{1}{2}
\]

Enter \(16 \frac{1}{2}\)

182) Problem #PRAJDNN "PRAJDNN - Adding Mixed Numbers"

Find the sum:

\[
\frac{9}{7} + \frac{12}{36}
\]

Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 18 7/9

Hints:

- Notice 12 is a factor of 36.

Because 12 is a factor of 36, the least common denominator is 36.

- Convert the first fraction to an equivalent fraction with a denominator of 36: multiply its numerator and denominator by \(\frac{36}{12}=3\) \(\text{note: } 12*3=36\):

\[
\frac{7*3}{9} + \frac{7}{12} = \frac{21}{36} + \frac{7}{36} = \frac{28}{36}
\]

Then, group the whole number terms and put both fractions together over the common denominator:

\[
9 \frac{21}{36} + 9 \frac{7}{36} = (9+9) \frac{21}{36} + \frac{7}{36} = \frac{28}{36}
\]
Now, sum the numerator and the whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\begin{align*}
(9 + 9) \quad & = 18 \\
(18) \quad & = 18 \quad 28/36 \\
= & \quad = 18 \quad 7/9
\end{align*}
\]

Enter 18 7/9

183) Problem #PRAJEA7 "PRAJEA7 - 224053 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{array}{c}
4 \\
3 \\
7
\end{array} - \begin{array}{c}
5 \\
2 \\
14
\end{array} = \frac{3}{14} - \frac{2}{14}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 1 3/14

Hints:

- Notice 7 is a factor of 14.

Because 7 is a factor of 14, the least common denominator is 14.

- Convert the first fraction to an equivalent fraction with a denominator of 14: multiply its numerator and denominator by 14/7 (note: 7*2=14):

\[
\begin{array}{c}
4 \times 2 \\
3 \\
7 \times 2
\end{array} - \begin{array}{c}
5 \\
2 \\
14
\end{array} = \frac{3}{14} - \frac{2}{14}
\]

Since the second numerator is not greater than the first, we do not have to borrow.

\[
\begin{array}{c}
8 \\
3 \\
14
\end{array} - \begin{array}{c}
5 \\
2 \\
14
\end{array}
\]

Next, group the whole number terms and put both fractions together over the common
Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:
 \[
 \frac{8 - 5}{14} = \frac{3}{14}
 \]

Enter \(1 \frac{3}{14}\)

184) Problem #PRAJDM9 "PRAJDM9 - Adding Mixed Numbers"

Find the sum:

\[
\frac{8}{9} + \frac{1}{18}
\]

Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✔️ 13 17/18

Hints:

- Notice \(9\) is a factor of \(18\).

Because \(9\) is a factor of \(18\), the least common denominator is \(18\).

- Convert the first fraction to an equivalent fraction with a denominator of \(18\): multiply its numerator and denominator by \(\frac{18}{9}=2\) (note: \(9\times2=18\)):

\[
\frac{8 \times 2}{9} = \frac{16}{18} + \frac{1}{18}
\]

Then, group the whole number terms and put both fractions together over the common denominator:

\[
\frac{16}{18} + \frac{1}{18} = \frac{16 + 1}{18} = \frac{17}{18}
\]
Now, sum the numerator and the whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\frac{16 + 1}{18} \quad \frac{17}{18} = \frac{13}{18}
\]

Enter \(13 \frac{17}{18}\)

185) Problem #PRAJEAK "PRAJEAK - 224053 - Subtracting Mixed Numbers"

Find the difference:

\[
\begin{array}{c}
7 \\
\hline
9 - 4 \\
\hline
10
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 5 2/3

Hints:
- Notice 10 is a factor of 30.

\[
\begin{array}{c}
7 \\
\hline
9 - 4 \\
\hline
10
\end{array}
\]

Because 10 is a factor of 30, the least common denominator is 30.
- Convert the first fraction to an equivalent fraction with a denominator of 30: multiply its numerator and denominator by 30/10=3 (note: 10*3=30):

\[
\begin{array}{c}
9 - 4 \\
\hline
10*3
\end{array}
\]

Since the second numerator is not greater than the first, we do not have to borrow.

\[
\begin{array}{c}
21 \\
\hline
9 - 4 \\
\hline
30
\end{array}
\]

Next, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{array}{c}
9 \\
\hline
21 - 4 \\
\hline
30
\end{array}
\]
Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:
 \[
 \frac{21 - 1}{30} - \frac{20}{30} = \frac{5}{30} = \frac{5}{6}
 \]

Enter \(5\ 2/3\)

186) Problem #PRAJDH7 "PRAJDH7 - Adding Mixed Numbers"

Find the sum:

\[
\begin{align*}
\frac{1}{4} - &+ \frac{1}{5} - \\
\frac{1}{3} - &+ \frac{1}{6} - \\
\end{align*}
\]

Answers must be in the form of a \textit{reduced proper fraction} (example 2/7) or a \textit{mixed number} with a space between the whole number and the fraction (example 3 5/8)

\textbf{Exact Match (case sensitive):}

\(\checkmark\) 9 1/2

\textbf{Hints:}

- Notice 3 is a factor of 6.

\[
\begin{align*}
\frac{1}{4} - &+ \frac{1}{5} - \\
\frac{1}{3} - &+ \frac{1}{6} - \\
\end{align*}
\]

Because 3 is a factor of 6, the least common denominator is 6.

- Convert the first fraction to an equivalent fraction with a denominator of 6: multiply its numerator and denominator by \(6/3=2\) (note: \(3*2=6\)):

\[
\begin{align*}
\frac{1*2}{4 -} &+ \frac{1}{5 -} \\
\frac{3*2}{6} - &+ \frac{1}{6} - \\
\end{align*}
\]

Then, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{align*}
\frac{2}{6} - &+ \frac{1}{6} - (4+5) \\
\frac{6}{6} - &+ \frac{6}{6} \\
\end{align*}
\]

Now, sum the numerator and the whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\frac{2 + 1}{6} - = \frac{3}{6}
\]

\(\checkmark\) 9 1/2
Find the difference:

\[
\begin{array}{c}
\frac{1}{10} - \frac{1}{12} \\
\frac{1}{12} - \frac{1}{36}
\end{array}
\]

Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 6 1/18

Hints:

- Notice 12 is a factor of 36.

Because 12 is a factor of 36, the least common denominator is 36.

- Convert the first fraction to an equivalent fraction with a denominator of 36: multiply its numerator and denominator by 36/12=3 (note: 12*3=36):

\[
\begin{array}{c}
\frac{1}{10} - \frac{1}{12} \\
\frac{3}{36} - \frac{1}{36}
\end{array}
\]

Since the second numerator is not greater than the first, we do not have to borrow.

\[
\begin{array}{c}
\frac{3}{10} - \frac{1}{36}
\end{array}
\]

Next, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{array}{c}
\frac{3}{36} - \frac{1}{36} = \frac{3 - 1}{36}
\end{array}
\]

Now, find the difference in the numerator and in the whole numbers.

- Subtracting gives:
Find the difference:

\[
\begin{array}{c}
10 - 4 \\
\hline
3 \\
\end{array}
- \n\begin{array}{c}
1 \\
\hline
6 \\
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 6 1/6

Hints:

- Notice 3 is a factor of 6.

Because 3 is a factor of 6, the least common denominator is 6.

- Convert the first fraction to an equivalent fraction with a denominator of 6: multiply its numerator and denominator by 6/3 = 2 (note: 3*2 = 6):

\[
\begin{array}{c}
1 \\
\hline
3 \\
\end{array}
\times \begin{array}{c}
2 \\
\hline
3 \\
\end{array} = \begin{array}{c}
2 \\
\hline
6 \\
\end{array}
= \begin{array}{c}
10 - 4 \\
\hline
\end{array}
\]

Since the second numerator is not greater than the first, we do not have to borrow.

Next, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{array}{c}
10 - 4 \\
\hline
6 \\
\end{array} = (10 - 4) \quad \begin{array}{c}
2 - 1 \\
\hline
6 \\
\end{array}
\]

Now, find the difference in the numerator and in the whole numbers.
• Subtracing gives:
\[
\begin{align*}
(10 - 4) \quad & = \quad 6 - 1 \\
\hline
6 & \quad 6
\end{align*}
\]
Enter 6 1/6

189) Problem #PRAJDJV "PRAJDJV - Adding Mixed Numbers"
Find the sum:

\[
\begin{align*}
\frac{1}{4} + \frac{7}{8} - \frac{2}{8}
\end{align*}
\]

Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✔ 13 3/8

Hints:

• Notice 2 is a factor of 8.

Because 2 is a factor of 8, the least common denominator is 8.

• Convert the first fraction to an equivalent fraction with a denominator of 8: multiply its numerator and denominator by \(\frac{8}{2} = 4 \) (note: \(2 \times 4 = 8 \)):

\[
\begin{align*}
\frac{1 \times 4}{2} + \frac{7}{8} - \frac{4}{8} & = \frac{4}{8} + \frac{7}{8} - \frac{4}{8} \\
\frac{2 \times 4}{8} & = \frac{8}{8}
\end{align*}
\]

Then, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{align*}
\frac{4 + 7}{8} & = \frac{4 + 7}{8} \\
\frac{4 + 7}{8} & = \frac{4 + 7}{8}
\end{align*}
\]

Now, sum the numerator and the whole numbers.

• Summing the numerator and the whole numbers gives:

\[
\begin{align*}
\frac{4 + 7}{8} & = \frac{11}{8} \\
\frac{11}{8} & = 12 + 3/8 \\
12 + 3/8 & = 13 3/8
\end{align*}
\]

Enter 13 3/8
190) Problem #PRAJDMW "PRAJDMW - Adding Mixed Numbers"

Find the sum:

\[
\begin{array}{c}
6 & + & 8 \\
\hline
4 & & 12
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):
- 15 1/6

Hints:
- Notice 4 is a factor of 12.

\[
\begin{array}{c}
1 & + & 11 \\
\hline
6 & & 12
\end{array}
\]

Because 4 is a factor of 12, the least common denominator is 12.

- Convert the first fraction to an equivalent fraction with a denominator of 12: multiply its numerator and denominator by 12/4 = 3 (note: 4*3 = 12):

\[
\begin{array}{c}
1*3 & & 11 \\
\hline
6 & + & 8 \\
4*3 & & 12
\end{array}
\]

Then, group the whole number terms and put both fractions together over the common denominator:

\[
\begin{array}{c}
3 & + & 11 \\
\hline
12 & & 12
\end{array}
\]

Now, sum the numerator and the whole numbers.
- Summing the numerator and the whole numbers gives:

\[
\begin{array}{c}
3 + 11 \\
\hline
12
\end{array}
\]

Enter 15 1/6

191) Problem #PRAJDKS "PRAJDKS - Adding Mixed Numbers"

Find the sum:
\[
\begin{array}{c}
\frac{2}{7} + \frac{7}{2} \\
\hline
8 \quad 9
\end{array}
\]

Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 10 7/72

Hints:

The denominators 8 and 9 have no common factors greater than 1.

\[
\begin{array}{c}
2 \quad 2 \\
\hline
8 \quad 9
\end{array}
\]

Because the denominators have no common factors, find the **least common denominator** by multiplying 8 by 9:

\[
8 \cdot 9 = 72
\]

Find equivalent fractions using the denominator 72.
Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\frac{7}{9} \times \frac{8}{9} + \frac{2}{7} \times \frac{8}{9} = \frac{63}{72} + \frac{16}{72}
\]

Next, group the numerator and whole numbers:

\[
\frac{63}{72} + \frac{16}{72} = \frac{63 + 16}{72}
\]

Now, sum the numerator and whole numbers.

Summing the numerator and the whole numbers gives:

\[
(2 + 7) \frac{63}{72} + 16 = \frac{9}{79}
\]
72
72
= 9+1 7/72
= 10 7/72

Enter 10 7/72

192) Problem #PRAJDNP "PRAJDNP - Adding Mixed Numbers"
Find the sum:

\[
\begin{align*}
\frac{7}{9} + \frac{3}{7} &= \frac{7 \times 7 + 3 \times 9}{9 \times 7} \\
&= \frac{49 + 27}{63} \\
&= \frac{76}{63}
\end{align*}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):
✓ 12 13/63

Hints:
- The denominators 9 and 7 have no common factors greater than 1.

Because the denominators have no common factors, find the least common denominator by multiplying 9 by 7:

\[9 \times 7 = 63\]

Find equivalent fractions using the denominator 63.
- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{align*}
\frac{7}{9} \times \frac{9}{9} + \frac{3}{7} \times \frac{9}{9} &= \frac{7 \times 9 + 3 \times 7}{9 \times 9} \\
&= \frac{63 + 27}{81} \\
&= \frac{90}{81}
\end{align*}
\]

Next, group the numerator and whole numbers:

\[
\begin{align*}
\frac{49}{63} + \frac{27}{63} &= \frac{49 + 27}{63} \\
&= \frac{76}{63}
\end{align*}
\]

Now, sum the numerator and whole numbers.

- Summing the numerator and the whole numbers gives:
(3 + 8) \(\frac{49 + 27}{63} = \frac{11}{63} \)

\[= \frac{11+1}{13/63} \]

\[= \frac{12}{13/63} \]

Enter 12 13/63

☐ 193) Problem #PRAJDMA "PRAJDMA - Adding Mixed Numbers"

Find the sum:

\[\frac{5}{6} + \frac{11}{8} \]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 17 1/12

Hints:

- Notice 8 is a factor of 24.

\[\frac{5}{6} + \frac{11}{8} \]

Because 8 is a factor of 24, the least common denominator is 24.

- Convert the first fraction to an equivalent fraction with a denominator of 24: multiply its numerator and denominator by 24/8=3 (note: 8*3=24):

\[\frac{5*3}{6} + \frac{11}{8} \]

\[= \frac{15}{24} + \frac{11}{24} \]

Then, group the whole number terms and put both fractions together over the common denominator:

\[\frac{15}{24} + \frac{11}{24} = (6+10) \]

Now, sum the numerator and the whole numbers.

- Summing the numerator and the whole numbers gives:

\[\frac{15 + 11}{24} = \frac{26}{24} \]

\[= \frac{16+1}{2/24} \]

\[= 17 \]

Enter 17 1/12

https://www.assistments.org/build/print/sequence/809734?mode=debug&op_scaf=false&op_hint=false&op_answer_op=false&op_answer=false&op_name=false&op_buggies=false&op_sections=false&short_answers=false
194) Problem #PRAJDJ3 "PRAJDJ3 - Adding Mixed Numbers"

Find the sum:

\[
\frac{1}{2} + \frac{1}{4} = \frac{3}{6} + \frac{1}{18}
\]

Answers must be in the form of a **reduced proper fraction** (example 2/7) or a **mixed number** with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 6 2/9

Hints:

- Notice 6 is a factor of 18.

Because 6 is a factor of 18, the least common denominator is 18.

- Convert the first fraction to an equivalent fraction with a denominator of 18: multiply its numerator and denominator by 18/6=3 (note: 6*3=18):

\[
\frac{1 \times 3}{2 \times 3} + \frac{1}{18} = \frac{3 + 1}{18}
\]

Then, group the whole number terms and put both fractions together over the common denominator:

\[
\frac{3}{18} + \frac{1}{18} = \frac{3 + 1}{18}
\]

Now, sum the numerator and the whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\frac{3 + 1}{18} = \frac{4}{18}
\]

Enter 6 2/9

195) Problem #PRAJDQD "PRAJDQD - Adding Mixed Numbers"

Find the sum:
\[
\begin{align*}
8 \ 2 & + \ 8 \ 3 \\
- & - \\
3 & 4
\end{align*}
\]

Answers must be in the form of a \textit{reduced proper fraction} (example \(2/7\)) or a \textit{mixed number} with a space between the whole number and the fraction (example \(3 \ 5/8\))

Exact Match (case sensitive):

\(\checkmark\) 17 5/12

Hints:

- The denominators 3 and 4 have no common factors greater than 1.

\[
2 \ \ \ \ 3 \\
8 - + \ 8 - \\
3 \ \ 4
\]

\textit{Because the denominators have no common factors, find the least common denominator by multiplying 3 by 4:}

\(3 \times 4 = 12\)

Find equivalent fractions using the denominator 12.

- \textit{Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:}

\[
\begin{align*}
\frac{2\times4}{3\times4} + \frac{3\times3}{4\times3} &= \frac{8}{12} + \frac{9}{12} \\
&= \frac{8 + 9}{12} \\
&= \frac{17}{12}
\end{align*}
\]

Next, group the numerator and whole numbers:

\[
\frac{8}{12} + \frac{9}{12} = \frac{(8 + 8) + (9 + 9)}{12}
\]

Now, sum the numerator and whole numbers.

- Summing the numerator and the whole numbers gives:

\[
\frac{8 + 9}{12} = \frac{16 + \frac{5}{12}}{12} = 16 + \frac{5}{12} = 17 \ 5/12
\]

Enter 17 5/12

196) Problem #PRAJEEF "PRAJEEF - 224054 - Subtracting Mixed Numbers"

Find the difference:
Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):
✓ 6 5/6

Hints:
• The denominators 2 and 3 have no common factors greater than 1.

Because the denominators have no common factors, find the least common denominator by multiplying 2 by 3:

2 * 3 = 6

Find equivalent fractions using the denominator 6.
• Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

8 - 1 = 8 - 1
2 3

Since the second numerator is greater than the first, we have to borrow. Borrow 1 from the first whole number, 8, and represent it in fractional form using the common denominator: 8 = 7+1 = 7+6/6

Next, group the numerator and whole numbers:

7 - 1 = (7-1)
6 6

Now, find the difference in the numerator and in the whole numbers.
• Subtracting gives:
(7 - 1) 9 - 4 = 6 5
Enter 6 5/6

197) Problem #PRAJDMV "PRAJDMV - Adding Mixed Numbers"
Find the sum:

\[
\frac{7}{10} + \frac{8}{11}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 9 47/110

Hints:

- The denominators 10 and 11 have no common factors greater than 1.

Because the denominators have no common factors, find the least common denominator by multiplying 10 by 11:

\[10 \times 11 = 110\]

Find equivalent fractions using the denominator 110.

- Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\frac{2 \times 11}{110} + \frac{6 \times 10}{110} = \frac{22}{110} + \frac{60}{110}
\]

Next, group the numerator and whole numbers:

\[
\frac{77}{110} + \frac{80}{110} = (2+6) \frac{77 + 80}{110}
\]

Now, sum the numerator and whole numbers.

- Summing the numerator and the whole numbers gives:

\[8 \quad 157\]
Find the sum:

\[
\begin{array}{c}
\frac{11}{12} + \frac{6}{11} \\
4 + 3
\end{array}
\]

Answers must be in the form of a reduced proper fraction (example 2/7) or a mixed number with a space between the whole number and the fraction (example 3 5/8)

Exact Match (case sensitive):

✓ 8 61/132

Hints:

- The denominators 12 and 11 have no common factors greater than 1.

Because the denominators have no common factors, find the least common denominator by multiplying 12 by 11:

\[12 \times 11 = 132\]

Find equivalent fractions using the denominator 132.

Since, in this case, the least common denominator is the product of the two denominators, find equivalent fractions by multiplying each fraction's numerator and denominator by the other fraction's denominator:

\[
\begin{array}{c}
\frac{11}{12} + \frac{6}{11} = \frac{121}{132} + \frac{72}{132} \\
4 + 3
\end{array}
\]

Next, group the numerator and whole numbers:

\[
\frac{121}{132} + \frac{72}{132} = \frac{121 + 72}{132}
\]

Now, sum the numerator and whole numbers.

- Summing the numerator and the whole numbers gives:
(4 + 3) 121 + 72 = 193
= 7 + 1 61/132
= 8 61/132

Enter 8 61/132