Flywheel-Accumulator for Compact Hydraulic Energy Storage

A Major Qualifying Project Report
Submitted to the Faculty
of the
Worcester Polytechnic Institute
in partial fulfillment of the requirements for the
Degree of Bachelor of Science
in Mechanical Engineering

by

Rahul Mahtani

Angel Martinez

Rachel Salvatori

Robert Sayre

Date: April 29, 2010

Approved:

Prof. J. D. Van de Ven, MQP Advisor

Keywords:
1. Variable Inertia Flywheel
2. Hydraulic Accumulator
3. Increased Energy Density
Abstract

The energy density of a hydraulic hybrid drive train pales in comparison to current competing technologies in industry, such as electrical and mechanical systems. A solution to bridge this gap is to improve the energy storage per unit mass of a hydraulic accumulator by storing energy as potential and rotating kinetic energy in a flywheel-accumulator. A flywheel-accumulator is a cylindrical pressure vessel with an oil and gas volume separated by a piston, which is rotated about the central axis. The goal of this project is to verify the increase in energy density and to validate that a parabolic pressure distribution exists on the hydraulic fluid side of the accumulator due to centripetal acceleration. To meet this goal, a low-energy bench top prototype was designed and fabricated. The system utilizes multiple sensors for data acquisition that incorporates: strain measurements to verify a FEA model, a transparent acrylic chamber to observe fluid flow, video capture in order to monitor the piston position, and pressure sensor readings that are relayed via a wireless data acquisition system to confirm the pressure distribution. The verification of increased energy density has the potential to revolutionize compact hydraulic accumulator energy storage.
Acknowledgments

The group would like to thank Professor Van de Ven for his expert guidance and constructive criticism of this project. He allowed the group to formally come to their own designs and conclusions with enough involvement to fully develop ideas, while supporting independence. Without his supervision the project would have not been a success.

We would also like to thank Adam Allard of US Hydraulics for his advice on hydraulic aspects and components of the project. Additionally, we would like to thank him for the precision machining and polishing of the acrylic cylinder, which is a crucial component to the flywheel-accumulator.

We are grateful for the assistance from Adam Sears, Toby Bergstrom, and Dan Flavin of Washburn shops on the proper techniques for machining parts. Without their help this project would have taken much longer to complete.

We would furthermore like to thank Professor Nestinger for his general guidance on the project, particularly regarding the electronic aspects of the project.

We would also like to thank Professor Furlong for his assistance with the data acquisition system and setting up the strain gauges.
Table of Contents

Table of Figures ... v
List of Tables .. vii
1. Introduction .. 1
2. Background .. 3
 2.1. Hydraulics .. 3
 2.2. Flywheels .. 5
3. Design .. 9
 3.1. Goal Statement ... 9
 3.2. Task Specifications .. 9
 3.3. Conceptual Design of System .. 10
 3.4. Hydraulic Circuit ... 11
 3.5. Accumulator .. 13
 3.6. End Caps .. 16
 3.7. Analysis of Accumulator with End Caps ... 19
 3.8. Piston ... 24
 3.9. Sealing the Piston and End Caps ... 26
 3.10. Shafts ... 29
 3.11. Bearings ... 31
 3.12. Rotary Union .. 33
 3.13. Valves ... 34
 3.15. Clutch .. 39
 3.16. DAQ Selection .. 42
 3.16.1. Acquiring Data from a Rotating Body .. 43
 3.16.2. Sensors on Wireless Module .. 48
 3.16.3. Other Measurable Data .. 51
4. Testing Methodology .. 58
 XBee Modules .. 58
 Pressure Sensors .. 62
 Strain Gauges .. 64
 Tachometer ... 65
 Instrumentation Amplifier .. 67
 Load Cell ... 67
 Vision System .. 69
5. Results .. 73
 Torque Results ... 73
6. Discussion .. 75
 Torque Measurement .. 75
7. Conclusion ... 76
References ... 77
Nomenclature ... 80
Appendix A: Analytical Chamber Stress & Strain .. 82
Appendix B: Acrylic Material Properties ... 87
Appendix C: System Pressure Model ... 88
Appendix D: Chamber Selection Tables .. 91
Appendix E: Bolt Preload Calculation .. 93
Appendix F: Bolt Loading ... 94
Appendix G: Shaft Calculations .. 95
Appendix H: Tolerance Charts .. 98
Appendix I: PWM Circuit .. 100
Appendix J: Load Cell Force Calculations ... 101
Appendix K: Part Drawings ... 102
Appendix L: Shaking Force Balancing ... 108
Appendix M: Energy Density Calculations .. 111
Appendix N: Xbee Schematic .. 115
Appendix O: Vision System LabVIEW VI ... 116

Table of Figures

Figure 1: Basic Hydraulic Circuit [4] .. 3
Figure 2: Two of the Chambers used to Vary Inertia [15] ... 7
Figure 3: Conceptual Design of Rotating Assembly .. 10
Figure 4: Pressure Distribution .. 11
Figure 5: Double 2-way Valve Configuration .. 12
Figure 6: Hydraulic Circuit .. 12
Figure 7: Inline Pressure Sensor .. 13
Figure 8: Original End Cap Design .. 17
Figure 9: End Cap Groove .. 17
Figure 10: Tie Rod End Cap Design ... 17
Figure 11: Mass Balance of End Caps .. 18
Figure 12: Pressure Chamber Stresses and Strains ... 20
Figure 13: Safety Factor of the Pressure Chamber .. 21
Figure 14: Four Hole Configuration Stresses .. 22
Figure 15: Six Hole Configuration Stresses .. 22
Figure 16: Ten Hole Configuration Stresses ... 23
Figure 17: Piston 1 – Isometric View .. 24
Figure 18: Piston 2 – Isometric View .. 25
Figure 19: Piston 3 – Isometric View .. 25
Figure 20: Final Piston Design ... 26
Figure 21: O-Ring Schematic [20] .. 26
Figure 22: O-Ring Critical Dimension Considerations [20] ... 27
Figure 23: Cross-section of Multiseal® by Precision Associates [21] 28
Figure 24: Cross-section of Polyurethane Piston Seal [22] ... 28
Figure 25: Cross Section View of U-Seal [23] ... 29
Figure 26: Shaft Attached to End Cap .. 29
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>Fluid Side Shaft</td>
<td>31</td>
</tr>
<tr>
<td>28</td>
<td>Gas Side Shaft</td>
<td>31</td>
</tr>
<tr>
<td>29</td>
<td>Metal Shielded Deep Groove Ball Bearing [24]</td>
<td>32</td>
</tr>
<tr>
<td>30</td>
<td>Bearing Mount CAD Model</td>
<td>33</td>
</tr>
<tr>
<td>31</td>
<td>Live Swivel [25]</td>
<td>34</td>
</tr>
<tr>
<td>32</td>
<td>Rotary Union [26]</td>
<td>34</td>
</tr>
<tr>
<td>33</td>
<td>View of Load Cell Assembly</td>
<td>37</td>
</tr>
<tr>
<td>34</td>
<td>Isometric View of Custom Ring for Torque Arm</td>
<td>37</td>
</tr>
<tr>
<td>35</td>
<td>Isometric View of Torque Arm</td>
<td>38</td>
</tr>
<tr>
<td>36</td>
<td>Zoomed-in Photo of Load Cell Assembly</td>
<td>38</td>
</tr>
<tr>
<td>37</td>
<td>Clutch Mount Assembly</td>
<td>39</td>
</tr>
<tr>
<td>38</td>
<td>Coupler Shaft</td>
<td>40</td>
</tr>
<tr>
<td>39</td>
<td>LoveJoy Coupling</td>
<td>40</td>
</tr>
<tr>
<td>40</td>
<td>Final CAD Assembly</td>
<td>41</td>
</tr>
<tr>
<td>41</td>
<td>DAQ Flowchart</td>
<td>43</td>
</tr>
<tr>
<td>42</td>
<td>The Baby Orangutan B-48 Microcontroller [29]</td>
<td>45</td>
</tr>
<tr>
<td>43</td>
<td>XBee Wireless Antenna[30]</td>
<td>46</td>
</tr>
<tr>
<td>44</td>
<td>MSP Pressure Sensor [36]</td>
<td>51</td>
</tr>
<tr>
<td>45</td>
<td>Rotary Encoder Manufactured and CAD Model</td>
<td>53</td>
</tr>
<tr>
<td>46</td>
<td>Rotary Shaft Encoder</td>
<td>54</td>
</tr>
<tr>
<td>47</td>
<td>LVDT [38].</td>
<td>55</td>
</tr>
<tr>
<td>48</td>
<td>Magneto pot [39]</td>
<td>56</td>
</tr>
<tr>
<td>49</td>
<td>XBee Sensor Schematic</td>
<td>59</td>
</tr>
<tr>
<td>50</td>
<td>X-CTU Interface</td>
<td>60</td>
</tr>
<tr>
<td>51</td>
<td>LabVIEW Front Panel for XBee</td>
<td>61</td>
</tr>
<tr>
<td>52</td>
<td>LabVIEW Block Diagram for XBee</td>
<td>62</td>
</tr>
<tr>
<td>53</td>
<td>Pressure Sensor VI</td>
<td>63</td>
</tr>
<tr>
<td>54</td>
<td>Pressure Sensor Block Diagram</td>
<td>64</td>
</tr>
<tr>
<td>55</td>
<td>Quarter Bridge Configuration</td>
<td>65</td>
</tr>
<tr>
<td>56</td>
<td>Tachometer VI</td>
<td>66</td>
</tr>
<tr>
<td>57</td>
<td>Tachometer Block Diagram</td>
<td>66</td>
</tr>
<tr>
<td>58</td>
<td>Load Cell Circuit Diagram</td>
<td>67</td>
</tr>
<tr>
<td>59</td>
<td>Load Cell VI Front Panel</td>
<td>68</td>
</tr>
<tr>
<td>60</td>
<td>Load Cell VI Block Diagram</td>
<td>69</td>
</tr>
<tr>
<td>61</td>
<td>Grid Calibration</td>
<td>70</td>
</tr>
<tr>
<td>62</td>
<td>Color Threshold Operation</td>
<td>70</td>
</tr>
<tr>
<td>63</td>
<td>Filter Operations</td>
<td>71</td>
</tr>
<tr>
<td>64</td>
<td>Clamping Function</td>
<td>72</td>
</tr>
<tr>
<td>65</td>
<td>Torque Measurement – Run 1</td>
<td>73</td>
</tr>
<tr>
<td>66</td>
<td>Torque Measurement – Run 2</td>
<td>74</td>
</tr>
<tr>
<td>67</td>
<td>Torque Measurement – Run 3</td>
<td>74</td>
</tr>
</tbody>
</table>
List of Tables

Table 1: Chamber Design Parameter .. 15
Table 2: FEA and Analytical Data Comparison .. 20
Table 3: Weights of Components in Accumulator Assembly ... 30
Table 4: Sensor Function .. 42
Table 5: Comparison of Microcontrollers ... 45
Table 6: Battery Specs ... 47
Table 7: Pressure Sensor Guidelines .. 49
Table 8: Pressure Sensor Specifications ... 50
Table 9: Configuration Commands for XBee Modules .. 60
1. Introduction

The energy crisis has sparked widespread investigations by automotive manufacturers into greater energy density storage units and alternative fuels. A notable outcome of this research is the advent of the hybrid electric vehicle, which has become fairly popular amongst leading car manufacturers. Methods to improve performance, durability, and longevity are the primary goals in furthering hybrid research technology.

An alternative system that provides these desired characteristics is a hydraulic system. Hydraulic components, such as pumps and motors, have a larger power density than competing technologies, such as electrical systems. The leading drawback to hydraulics is the accumulator, which provides energy storage in the system. Accumulators have a lower energy density in comparison to batteries in competing electrical systems [1]. The significant difference in energy density between the two domains is one of the main reasons the electric hybrid system is the preferred method of energy storage in a hybrid vehicle. Overcoming the problem of low energy density in hydraulic systems enhances the feasibility of its implementation into hybrid vehicle designs.

Another method of storing energy is through the use of a flywheel. Flywheels are one of the oldest and more commonly used mechanical kinetic energy storage mechanisms. Flywheels have an average energy density that is in the same order of magnitude as electrical systems and is discussed later in the paper. Energy is extracted from a conventional flywheel by reducing its angular velocity. To further manipulate the energy output, the mass moment of inertia can be varied, thus making it a variable inertia flywheel. Consequently, the energy capacity depends on not only the angular velocity, but the changing inertia as well. The types of variable inertia flywheels range from band variable flywheels to those that modify their inertia by adding and subtracting fluid.

An innovative solution to improving the energy density of an accumulator is to utilize a flywheel-accumulator that involves rotating a cylindrical piston-style accumulator. By rotating the accumulator like a flywheel, it can store energy in two forms: the traditional potential energy and the added rotating kinetic component. Potential energy is stored by compressing the gas by adding hydraulic fluid, causing the gas side acts as a spring. When there is a need for the energy, the oil is released. Rotating kinetic energy is stored in the flywheel portion of the system. In the rotating flywheel-accumulator, a parabolic pressure distribution is predicted to develop in the
hydraulic fluid due to the centripetal acceleration on the high-density fluid. This results in a decrease in the system pressure at the center, but a higher pressure at the outer walls. This combined system is theorized to increase the energy density of the system by about one order of magnitude.

The flywheel-accumulator is expected to provide higher durability and a longer life compared to electrical systems. A typical battery is a chemical storage device that unfortunately does not support a large number of cycle times prior to replacement. On the other hand, compressed gas storage and flywheels excel because the number of cycles are dependent on the fatigue strength of the material. These systems are frequently designed to withstand 10,000 cycles or more as compared to about 1,000 cycles of a lead acid battery [2]. Thus, compressed gas storage mediums and flywheels have a much longer lifespan than their battery storage counterparts.

The integration of hydraulic and mechanical flywheel power that yields a flywheel-accumulator is a potential solution to the current drive train problem. The power density and durability advantages of hydraulic components coupled with the high energy density of flywheels results in an ideal system. This system can be applied to a hybrid hydraulic vehicle and in other hydraulic applications.

The goal of this project is to verify the increase in energy storage density and validate that a parabolic pressure distribution exists in the hydraulic fluid side of the accumulator by:

- Researching and developing system requirements and performance specifications,
- Designing a scaled prototype, and
- Manufacturing, assembling, and testing a bench top prototype.
2. Background

Understanding the dynamics and characteristics of flywheels and hydraulic systems is critical in developing design parameters to create a working prototype. First, the team researched the basic characteristics of hydraulics, as well as the advantages and disadvantages of the system. An investigation on possible techniques to increase the energy density in hydraulic systems was also performed. Next, the team conducted research into flywheels, more specifically variable inertia flywheels in the form of existing technologies and previous patents. These examples provided insight into the various methods that can be utilized to vary the inertia, which reflects the behavior of the flywheel-accumulator.

2.1. Hydraulics

The subject of fluid power is defined by transmitting energy via the use of a fluid under pressure. The reliability, durability, and the power density of hydraulics are a few of the reasons the team is considering it as a replacement for electric hybrid drive trains. The largest disadvantage and the motivation for this project is the low energy density of hydraulics systems, specifically the limitations to the hydraulic accumulator.

Hydraulics utilizes oil or water to transmit energy through a system in a confined space [3]. A basic hydraulic circuit involves a pump that is connected to a reservoir that stores the hydraulic fluid for the system. The pump generates fluid flow at an increased pressure, which is conducted through pipes or hoses and can be stored in an accumulator or diverted into other components via the outflow in Figure 1.

![Figure 1: Basic Hydraulic Circuit](image)

Figure 1: Basic Hydraulic Circuit [4]
A hydraulic accumulator is a means of storing energy in a hydraulic system. A common configuration consists of liquid and gas chambers separated by a sliding piston, which can be considered as a “closed” design. The gas chamber is pre-charged to a nominal pressure, after which energy is stored by pumping pressurized oil into the accumulator, thus reducing the volume of the stored gas. Energy is extracted when the gas forces the oil back out the accumulator. Accumulators supplement the hydraulic pump by releasing energy when more power is required than the pump can supply. Consequently, less pump power is needed to achieve the same transient peak performance with an accumulator, and thus operating costs are reduced and enhanced efficiency is attained [5]. Also, an accumulator can act as a safety device if the pump fails or if a leak forms in the system by providing power to components for a short period of time [6]. If there is a rapid temperature change, the accumulator can provide a place for the fluid to go if there is no expansion tank, which prevents lines from bursting under sudden pressure.

The hydraulic system can maintain a constant pressure because it requires no additional energy to sustain the applied force, as opposed to electrical systems that require a continuous voltage or current to maintain the same amount of force [7]. The high power density of hydraulics in comparison to electrical systems reduces the size of components required to maintain the same performance. The large power density of hydraulics varies from 500 to 1000 W/kg compared to electrical systems that range from 30 to 100 W/kg [8].

The durability difference between hydraulics and electrical components is another factor that favors the use of a hydraulic system. The primary method of storing energy in electrical systems is the battery. This chemical storage device unfortunately does not support a large number of cycle times. This is an area where compressed gas storage, and other technologies, such as flywheels excel. Since the maximum number of cycles for compressed gas storage and flywheels is dependent on the fatigue strength of the material, these devices are typically designed to withstand 10,000 cycles or more [2]. This is many more cycles than a chemical is capable of; therefore, compressed gas storage mediums and flywheels have a much longer lifespan than their battery storage counterparts.

Drawbacks of hydraulics include working with flammable fluids with the possibility of hazardous leaks and the low energy density in comparison to other systems. In general, leaks and flammable fluids are not of a concern, as long as the system is properly installed and maintained.
The limitation of the energy storage in a hydraulic accumulator is a major reason for hydraulics not being used commercially in hybrid cars. The energy density of a composite accumulator is about 6 kJ/kg, which is significantly less than a battery that provides about 432 kJ/kg [1]. Improvements to the accumulator’s efficiency could make hydraulics a better fit in the application of hybrid vehicles than an electrical system.

A method of increasing the hydraulic energy storage density is by allowing the compression and expansion of the gas in the accumulator to be as isothermal as possible. This is attempted by placing an elastomeric foam in the gas chamber, which absorbs heat energy during gas compression and releases the heat during expansion. The foam aids in maintaining the gas temperature at a relatively constant value, which could increase the energy density by up to 40%. Another way to improve the isothermal nature of the process involves the use of fine metallic strands bonded to the casing, which improves heat exchange with the surroundings [9].

An alternative method to storing energy in an accumulator is the “open” approach, in which compressed gas is expelled to and drawn from the atmosphere. This approach is able to obtain considerably more energy from the same compressed gas since it is able to expand all the way down to atmospheric pressure. The system is not required to accommodate the volume of gas or oil, so the energy density has potential to improve up to twenty fold over that of the closed accumulator system [9]. Energy is stored and extracted through a pneumatic compressor or motor.

2.2. **Flywheels**

Flywheels have many benefits, including high energy and power density, long life, and minimal wear over its lifespan [10] [11]. The energy capacity of a flywheel is primarily dependent upon the mass, speed, and geometry of the rotor [12]. One method to further increasing flywheel energy capacity is to utilize a variable inertia flywheel, which changes the energy output by altering the mass of the system. The three most relevant variable inertia flywheel designs that came out of the group’s research were the band variable inertia flywheel and two fluidic based flywheel patents.
Band Variable Inertia Flywheel

One of the first existing technologies that the team researched was the band variable inertia flywheel (BVIF) concept. One of the configurations consists of an inner hub and an outer cylindrical casing with a flexible band in between. Since these two components rotate independently, their varying velocities result in winding and unwinding of the band. The change in the amount the flexible band is wrapped around the inner hub represents versus the outer hub dictates the mass moment of inertia of the flywheel [13].

Proper function of the BVIF depends on the method of connection of the hub to the casing. The inner hub is connected to the carrier arm of a planetary gear set, the outer casing to the ring gear of the set, and the sun gear is linked to the inertial load. The concept is successful if the band can store enough energy to accelerate the load to a certain speed and then decelerate it for a fixed period of time. Also, it can replace the original drive train in performing this task at the same speed and with the same acceleration. The size of the system is determined by the amount of stored energy that is required to perform this task. When tested, the band initially winds about the inner hub and then unwinds inside the outer casing.

The BVIF concept will not work if enough energy is not stored in the band to accelerate the load to the required speed. If the stored energy does not provide the same speed and same acceleration as the original drive train, it will not be a suitable replacement. It is also heavier as compared to a continuously variable transmission. For the application of this MQP, the BVIF method would not be suitable. Therefore, the following patents introduce two different variable inertia flywheels that use fluid to modify the inertia.

Energy Storage Flywheels Using Fluid Transfer to Vary Moments of Inertia (US 5,086,664)

The patent, titled “Energy Storage Flywheels Using Fluid Transfer to Vary Moments of Inertia,” uses a pair of variable inertia flywheels to store energy within a continuously variable transmission (CVT). An older design of these flywheels, for the same application, utilized radial displacement of solid masses to vary moments of inertia. In this new design, fluid may be added to or removed from the flywheel, which is much like the concept for this MQP [14]. Relative advantages include ease of control of fluidic flywheel and high ratio of maximum to minimum moments of inertia. The operator has greater control over the system by manipulating the fluid intake and thus changing the inertia. This patent is important to note because it promotes similar
benefits to those proposed in this MQP, such as higher energy density by using fluid to create a variable inertia flywheel.

Variable Inertia Flywheel (US 6,883,399)

US patent 6,883,399, which is titled “Variable Inertia Flywheel,” describes a flywheel that has multiple chambers that can be filled with a fluid to change the inertia. The system uses chambers that are spaced radially on the flywheel and can be filled with electrolytic fluid using electromagnetic pumps [15]. A portion of the chamber system can be seen below in Figure 2. The patent describes how this flywheel design is more robust than the mostly mechanical design of variable flywheels due to the use of electromagnetic pumps that do not use moving parts. The pumps use the electro-osmotic flow to transfer the fluid, which can change the inertia of the flywheel. Slip rings are used to maintain the electrical connections during operation. The flywheel’s control was designed to react quickly to the requirements of an operating process, which has been a disadvantage to using variable flywheels of the past that took too long to adjust and react.

![Figure 2: Two of the Chambers used to Vary Inertia [15]](Image)

This flywheel is similar to the flywheel-accumulator, but unlike the general design because there will be mechanical parts to compress the oil in the accumulator. Also, this design allows the fluid to be transferred to multiple locations and controlled independently, which is not
the case in the flywheel-accumulator. This patent provides useful information on multiple ways of changing the inertia of a flywheel, one of which is employing a fluid to change the inertia.

In the end, the group came to the conclusion that there are not any existing designs that directly compare to the flywheel-accumulator created for this MQP. Implementation of hydraulic systems yields many benefits, including high power density, but one major disadvantage is the low energy density of the storage unit. This obstacle must be overcome before widespread usage occurs. To resolve this issue, this MQP team designed and manufactured a prototype of the flywheel-accumulator.
3. **Design**

This section begins with a goal statement and task specifications that were determined in the early stages of the project. Every design decision was made carefully by evaluating each concept against these two parameters.

3.1. **Goal Statement**

To design and prototype a fluidic variable inertia flywheel-accumulator that can be applied to a hydraulic hybrid vehicle.

3.2. **Task Specifications**

- The maximum pressure allowable by the system should be 500 psi.
- The shaft and flywheel will not exceed a maximum of 3000 RPM.
- The diameter of the flywheel-accumulator will be within the range of 3-8 inches.
- The motion of the fluid must be observed visually during operation.
- Material must not yield under applied loads and pressure.
- Hydraulic oil must be able to be pumped into accumulator while rotating.
- Pressure, strain, angular velocity, and piston position must be recorded while the system is rotating.
- A dynamic piston seal must isolate the gas from the oil side of accumulator and vice versa.
- The supports for the system must withstand all loads and maximum torque generated during operation.
- The pressure and hoop stress along the walls of the flywheel must be monitored.
- Data acquisition should be compared to the theoretical.
- Footprint of the system less than 48” x 12” x 12”.
- The system should not exceed a power requirement of 110VAC at 20A.
- The entire system must be enclosed in a safety structure in case any parts fail.
3.3. Conceptual Design of System

Before detailed design could commence, a conceptual design of the system was developed. The preliminary conceptual design can be viewed below in Figure 3.

The description of all the components in the drawing is as follows:

Since this system is a piston type accumulator, there is a sealed gas on the left side of the cylinder, isolated by a piston with two seals, followed by hydraulic fluid on the right side. The accumulator is mounted horizontally and rotates about a central axis; in this orientation the load is shared equally between two bearings. The system requires fluid to enter and exit while rotating and under pressure, so a rotary union is used to facilitate this fluid movement, which can be seen on the right in the figure above. Also, the entire system must be securely fastened to a surface and have a safety enclosure to ensure safety while the system is running. An aluminum base plate that is 46 inches long and 12 inches wide was available in the lab, along with a Lexan™ and wood enclosure. Thus, the plate and safety enclosure was adapted to fit the system including motor and clutch, so significant cost and time savings were achieved.

In a hybrid hydraulic vehicle, the torque would be applied using a pump, powered either by a combustion engine or through regenerative braking. Since this is a controlled experiment, there needs to be a way to apply torque to the system and control the angular velocity. Therefore, a DC or AC motor is attached to the accumulator.

In a typical piston type accumulator, the pressure distribution on both sides of the piston would both be linear and uniform. Since the system is rotating and the oil has a higher density
than the gas, the centripetal acceleration on the oil is expected to result in a parabolic pressure distribution that varies with radius. As the angular velocity increases, the centripetal acceleration increases, thereby increasing the pressure at the edges of the accumulator. A main objective of this project is to verify and characterize this non-linear pressure distribution, which is illustrated in Figure 4. Thus, there are three pressure sensors on the hydraulic side, two on the end cap, and a third at the center in the hydraulic line. Since there will be three data points, an exponential or linear curve fit can be determined. On the gas side, it is believed there is a uniform, linear pressure distribution. To confirm this, there are two pressure sensors on the left side, which will indicate if there is uniform pressure trend or not.

![Figure 4: Pressure Distribution](image)

In addition to the four onboard pressure sensors, there are two strain gauges on the outer wall of the pressure chamber; one is mounted in the radial direction, and one is mounted in the axial direction. These two strain gauges serve the purpose of verifying the deflections calculated by hand, as well as the FEA model deflections.

Once this preliminary design concept was established, the individual components, such as the end caps, piston, shafts, and DAQ system were further investigated and final designs were chosen. First, it must be determined if a clear chamber is even achievable for this MQP and if it can be machined to our specifications.

3.4. Hydraulic Circuit

The hydraulic circuit is used to pump fluid in and out of the system. Two designs were considered for the circuit: a double 2-way, 2-position valve setup and a 4-way, 3-position valve. The two valve configuration can be seen in Figure 5. Both circuits contain several components, including a gear pump with a built-in relief valve, tank, valve, pressure transducer, and
accumulator. A two valve setup would allow for fluid to enter and exit at the same time; however, this increases the number of components, cost, and complexity of the system. Due to this increased complexity and the fact that a 4-way, 3-position valve was already present in the lab, the double valve configuration was not pursued.

![Double 2-way Valve Configuration](image)

Figure 5: Double 2-way Valve Configuration

The final hydraulic circuit can be seen in Figure 6: Hydraulic Circuit. The accumulator can be seen at the top in its simplified form with an electronic pressure gauge attached. The valve is a 4-position, 3-way valve with one port blocked. The center position of the valve blocks all ports, which results in increased pump pressure since flow cannot move to the tank. While this is fine for testing purposes, it should be noted a valve that allows the pump to flow into the tank at the center position would be advantageous. Again, the valve available to the group in the lab fit the needs of the system and was of no additional cost.

![Hydraulic Circuit](image)

Figure 6: Hydraulic Circuit
Between the valve and accumulator there is a 4-way fitting, along with two quick disconnects, a mechanical pressure transducer, and an electronic pressure transducer, which is identical to the ones onboard the accumulator. Any pressure drop observed by the external sensor should be negligible. The fitting can be seen attached below in Figure 7, along with the two pressure transducers.

![Figure 7: Inline Pressure Sensor](image)

3.5. Accumulator

The first requirement of the accumulator is for it to be transparent in order to facilitate in observing experiments and fluid motion within the chamber. This specification was interesting because most hydraulic accumulators are made from steel or aluminum to accommodate for the high pressures being generated. These materials are not feasible in this project since they are not transparent; therefore, research into high impact polymer tubes that could be spun under the maximum running pressure of 500 psi and not fail was conducted.

The first material that was considered was high impact polycarbonate because it is transparent and has a reasonable yield strength of about 8400 psi [16]. The manufacturers were able to provide various tubes sizes with different thicknesses. Given the properties of the polycarbonate, the team calculated the stresses and safety factor of the tube under our maximum operating conditions.

The method for calculating the stresses and safety factor utilized the principal stresses in the tangential, radial, and axial directions due to pressure and the effects of acting as a flywheel
due to the angular velocity that the system encounters [17]. The analysis involved input values based on the material properties of yield strength, S_y, weight density, γ, Poisson’s ratio, ν, and elastic modulus, E. The dimensions and characteristics of the cylinder were also used with the desired safety factor, which the team chose to be three in order to maintain a certain level of assurance. By adding each component of stress together, the Von Mises stress can be calculated and used to determine the safety factor for the chamber via the yield strength. Given the calculated stresses, the expected maximum strain of the cylinder can be evaluated using Young’s modulus of elasticity for polycarbonate.

Pressure Induced Stresses:

Axial Stress

$$\sigma_{ap} (p_i) = \frac{p_i r_i^2}{r_0^2 - r_i^2} \quad \text{(Eq. 1)}$$

Tangential Stress

$$\sigma_{tp} (p_i) = \frac{r_i^2 p_i}{r_0^2 - r_i^2} (1 + \frac{r_0^2}{r_i^2}) \quad \text{(Eq. 2)}$$

Radial Stress

$$\sigma_{rp} (p_i) = \frac{r_i^2 p_i}{r_0^2 - r_i^2} (1 - \frac{r_0^2}{r_i^2}) \quad \text{(Eq. 3)}$$

Flywheel Stresses:

Tangential Stress

$$\sigma_{tf} = \frac{\gamma g \omega^2}{8} \left(r_i^2 + r_0^2 + \frac{r_i^2 r_0^2}{r^2} - \frac{1+3\nu}{3+\nu} r^2 \right) \quad \text{(Eq. 4)}$$

Radial Stress

$$\sigma_{rf} = \frac{\gamma g \omega^2}{8} \left(r_i^2 + r_0^2 - \frac{r_i^2 r_0^2}{r^2} - \frac{1+3\nu}{3+\nu} r^2 \right) \quad \text{(Eq. 5)}$$

The process, parameters, and equations for the chamber stress calculations are provided in Appendix A: Analytical Chamber Stress & Strain. During the data analysis, it was observed that the majority of the stresses were caused by the pressure that is exerted on the system, and a remaining portion was attributed to the flywheel stresses. Additionally, provided the material properties of polycarbonate and the possible cylinder dimensions were determined the chamber was found to not be adequate enough to handle the system pressure. Not to mention, polycarbonate is difficult to machine. After determining that polycarbonate was not an option, one other polymer was considered.
Acrylic was the next option because it had a similar tensile yield strength ranging from 6 to 75.8 MPa (11 ksi) and is easier to machine than polycarbonate [18]. The modulus of elasticity for the acrylic is 2.93 MPa, while all other properties of the material can be reviewed in Appendix B: Acrylic Material Properties. Once again, given the material properties and cylinder dimensions, the stresses, the strains, and the safety factor were computed using the method in Appendix A: Analytical Chamber Stress & Strain. Table 1, which is provided below, depicts the targeted chamber size and angular velocity given several pressures with corresponding safety factor, strain, and the change in pressure from the center to the outer edge of the chamber. The change in pressure, Δp, was computed given the system operating parameters of pressure and angular velocity. Equations describing the gas, system, and radial pressure in the system were utilized to calculate a theoretical pressure gradient assuming that the pressure would follow a parabolic distribution. The calculation of the pressure gradient given maximum operating conditions can be reviewed in Appendix C: System Pressure Model.

Table 1: Chamber Design Parameter

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>3000</td>
<td>2.943</td>
<td>20.47</td>
<td>8</td>
<td>1.583*10^-3</td>
<td>9.937*10^-3</td>
<td>3.647</td>
<td>20.47</td>
<td>8</td>
<td>8.046*10^-3</td>
</tr>
<tr>
<td>400</td>
<td>6000</td>
<td>4.792</td>
<td>20.47</td>
<td>8</td>
<td>6.155*10^-3</td>
<td>4.792*10^-3</td>
<td>2.047</td>
<td>20.47</td>
<td>8</td>
<td>1.055*10^-3</td>
</tr>
<tr>
<td>300</td>
<td>7000</td>
<td>2.143</td>
<td>20.47</td>
<td>8</td>
<td>8.155*10^-3</td>
<td>2.143*10^-3</td>
<td>4.792</td>
<td>20.47</td>
<td>8</td>
<td>1.055*10^-3</td>
</tr>
</tbody>
</table>

The chamber selection table aided in noticing the relationship between the angular velocity and the rate at which the pressure gradient increases the complete table is provided in Appendix D: Chamber Selection Tables. The pressure gradient in interest varies according to the rate at which the chamber is spinning and the pressure inside the chamber. The equation for the energy of a flywheel has an angular velocity term that is squared the gradient rate of change increases at a larger rate when the angular velocity is modified due to this term. A reasonable pressure gradient is necessary in order to use pressure sensors that will be able to record the pressure gradient with enough resolution. The gradient that was deemed suitable for the project was computed to be about 141.2 kPa (20.5 psi). Analyzing of the data revealed that the most effective way to increase the pressure gradient, while keeping stresses at a minimum, was to increase the angular velocity of the system and decrease the pressure.
The dimensions of the vessel determine the amount of pressure the chamber can withstand and provide a gradient with sufficient resolution for sensors to register data. Inputting the data into table format allowed the team to narrow down the selection of a feasible design that would perform all the requirements needed safely. The total Von Mises stresses the chamber would experience at maximum operating conditions would be about 14.14 MPa. A complete table of parameters that was used to determine the proper chamber selection is provided in Appendix D: Chamber Selection Tables. The tables also contributed in setting the operating parameters of the prototype, which are defined in the task specifications. The results of Table 1 confirmed that a transparent chamber with an outside diameter of 152.4 mm (6 inches) and a thickness of 19.05 mm (0.75 inches) could be utilized.

3.6. End Caps

Once the initial chamber design was completed, the next logical step was to determine a way to enclose the ends of the chamber. The end caps are the components that will effectively clamp the chamber on both sides and retain the pressure of the system. Additionally, the end caps need to incorporate the shafts that the accumulator would be supported by during rotation. The end caps would be made of 6061 aluminum in order to withstand the pressure that would be exerted inside the chamber. Making the end caps out of a lightweight material would aid in the manufacturability of a rather large stock material. Two designs were considered; one attaches the end caps directly to the acrylic tube, and the other clamps the end caps together externally.

The original design required physically attaching the end caps into the tube walls. The tube itself would need to be tapped, and the end caps would be fastened using threaded bolts. This concept would function in theory because the end caps would rigidly fasten onto the chamber, but a problem arose in the fact that acrylic threads are fairly weak. Additionally, the pressure the end caps would need to oppose could strip the threads and cause the chamber to fail. In terms of sealing, this chamber design posed a problem in sealing the chamber because of the limited contact area. Not to mention, the acrylic would be difficult to drill and tap because of its brittle nature, and the group did not have the machining capabilities on site. The following CAD model in Figure 8 illustrates the original design.
The implemented design clamps the end caps together using threaded rod (see Figure 10). The tie rod design avoids the risk of damaging the chamber and still maintains a proper clamping force on the chamber. A secondary addition to the concept adds a feature that partially fits into and over the acrylic to increase the contact surface, which is provided in Figure 9: End Cap Groove. These features also limit the amount the chamber is able to deflect at the clamping areas in order to facilitate proper sealing.
In addition to clamping to the chamber, the end caps have to accommodate the accumulator shafts, as well as provide a place to mount the pressure sensors to record data. The end caps need to support the shafts while allowing flow through the center into the chamber. A standard method to achieve this is to use a porting tool. In this case, a dash six porting tool that utilizes o-rings to create a seal on the surface of the part and provides a through hole in the end cap. The end caps must also allow for sufficient space to mount two pressure sensors to record the mid and outer pressure range of the accumulator.

In order to reduce vibration and maintain dynamic balance, it is necessary to counterbalance the pressure sensors. The sensors not only needed to be balanced, but required a power source that was determined could help in statically balancing the end caps. Since the mass of the sensors is known to be 24 grams, and the mass of a 9V battery is known to be 45.6 grams, the battery can be placed on the end cap to offset the mass of the sensors and power the sensor simultaneously. If a force balance is performed, on the end caps, the equation becomes \(m_1r_1 + m_2r_2 - m_b r_b = 0 \). Since the mass of the sensors and batteries are known and the pressure sensors should be spaced equally with the one closest to the edge leaving enough material to not fail, the balance distance of the battery can be determined. The balance diagram can be seen in Figure 11. With accounting for the material removed for the sensor holes and battery pocket, the battery cancels the shaking force at 1.7 inches away from the center. Thus, there is a battery on each end cap to counter balance the sensors. Since the batteries and pressure sensors are in relatively the same plane compared to the distance away from the center a static balance was performed and not a dynamic balance.

![Figure 11: Mass Balance of End Caps](image-url)
3.7. **Analysis of Accumulator with End Caps**

Further analysis using finite element analysis (FEA) was required to confirm the results of the hand calculations in Appendix A: Analytical Chamber Stress & Strain. The use of FEA was required due to the complex interactions between the end caps and the chamber; an analytical approach would be more difficult to calculate. The FEA was completed given the design of the end caps that seal the chamber.

The FEA model began with importing a computer-aided design (CAD) model of the flywheel-accumulator into ANSYS 12. Building the model began by defining the material properties of the acrylic chamber and the components that would constrain the chamber and maintain pressure in the system. The problem boundary conditions were defined based on the task specifications and the system configuration. The conditions used for the FEA model involved cylindrical supports that would allow for the system to rotate around the central axis and still be constrained. An addition frictionless support was inserted at the ends of the end caps in order to prevent any horizontal motion. The chamber CAD model used in ANSYS was a simplified version in order to decrease processing time without major effects to the analysis. The holes for the pressure sensors and the porting tool geometry were suppressed. The mesh was generated using the programs default mesh parameters and inputting a medium resolution setting. The maximum pressure of 3.44 MPa (500 psi) was applied on the inner face of the cylinder and a rotational velocity of 3000 rpm was placed on the outer circumference of the chamber.

The model evaluated the solution to the problem and plotted graphs depicting the stress and strains of the chamber, which Figure 12 below demonstrate.
The data also more accurately modeled the complex interactions between the clamping components that were not included in the hand calculations. The comparison between the analytical data calculated and the FEA data is provided in Table 2: FEA and Analytical Data Comparison. The table verifies the accuracy of the FEA model because its values closely correlate to the analytical model of estimated the strains and safety factor with an error of about twenty percent. The error can most likely be attributed to the fact that the analytical solution does not incorporate the end cap geometry. The largest discrepancy occurs with how the stresses are concentrated at the interaction areas and due to the complexity of the end cap design. Utilizing the analytical solution the FEA model can be verified because it is within the range of values that were calculated and are slightly more conservative in regards to illustrating that larger stresses exist that would lower the safety factor.

<table>
<thead>
<tr>
<th>FEA Model Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Von Mises Stress (MPa)</td>
</tr>
<tr>
<td>-----------------------------</td>
</tr>
<tr>
<td>FEA Model</td>
</tr>
<tr>
<td>Analytical Model</td>
</tr>
<tr>
<td>Percent Error (%)</td>
</tr>
</tbody>
</table>

The safety factor of the accumulator is portrayed below in Figure 13. The FEA model was able to account for the interactions with the sealing surfaces and determine that the chamber would fail before any other component.
The FEA model aided in the selection of seals because the proper sealing method depends on the amount the chamber deflects. Given the evaluated strain measurement of about 6 μ-strain, appropriate seals can be chosen for the piston seal and clamping components, which will be discussed in a later section.

The number of tie rods that would be used on the diameter of the end caps was also determined using FEA to compute the stresses. The model actually uses the original design in which bolts were to be inserted into the chamber. An analysis evaluating the difference in utilizing different hole configurations was useful to determine a setup that balances the number of holes and the reduction of stresses. Three different models were generated with configurations of six, eight, and ten holes.

The analysis used modified end caps that had small inserts in the positions for the tie rods that would be inserted into the acrylic cylinder. Using the same parameters as the previous FEA model except for new boundary conditions in order to constrain the cylinder to only the inserts. By bonding the inserts to the cylinder all the reaction forces will act on the inserts and not on the end caps. The first analysis is portrayed in Figure 14 under the maximum loading condition.
The figure displays the maximum stress as 498.83 MPa after evaluating the problem. The force will be dispersed along the inserts, so in a small number of insert configuration larger stresses will be experienced throughout the inserts. As the number of holes increases the area of contact increases and the stresses are divided into each insert lowering the stress that individual inserts exhibit. The figure portrays that the largest stress concentrations occur at the base of the insert.

The next analysis is illustrated in Figure 15 where the number of holes is increased in order to reduce the stresses distributed throughout the insert. The maximum stress in this model is 72.251 MPa, which is significant difference of about 426 MPa from the previous analysis.

The final analysis increases the number of holes again in Figure 16 to further improve the stress distribution. The maximum stress is about 69 MPa, which is only about a 3 MPa difference. Comparing each of the models against each other facilitated in the determination of the appropriate hole configuration.
Given the values that were determined using the FEA models the eight hole design yields the best results. It was the pattern that balanced the number of holes and the stress distribution effectively. The analysis done on the original design were the fastening points were closer to the center of the accumulator compared to the tie rod design can still be utilized to generalize the final design. The tie rod diameter size was determined by defining the clamping force that is needed during operation to counteract the force induced by the pressure inside the chamber.

The maximum force generated by the pressure at the end caps is 35.373 kN. The tie rods need to be able to exert a larger force in order to prevent the end caps from becoming detached from the cylinder. With an effective configuration of holes determined the diameter of the rods was needed to be determined.

An investigation into threaded rod began due to the availability, cost, and functionality that threaded rod can provide. The first common size that was explored was 6.35 mm (0.25 in) diameter steel rod, which generates a clamping force of 56.368 kN. The clamping force is obtained by multiplying the number of rods by the preload force \[19\]. The calculation of preload force involves multiplying a certain percentage of the proof strength of a fastener by its tensile area, the entire calculation of the preload force and torque is provided in Appendix E: Bolt Preload Calculation. To preload these bolts to exert the appropriate force the preload torque was calculated using Equation 6 that relates the coefficient of friction, the preload force, and the diameter of the fastener to yield a torque. This value can then be used to clamp the accumulator according to the amount the fasteners are torque.

\[T_i = K_i F_i d \]

(Eq. 6)

The loads that the rods will encounter vary during operation due to the reacting forces of the pressure and the small deflections of the cylinder. The rods will essentially compress the
cylinder and during operation will deflect. These deflections can be related to the loads that the tie rods will experience. Under maximum operating parameters the tie rods will experience a load of about 83.785 N, which was computed using relative stiffness relationship that are provided in a full analysis in Appendix F: Bolt Loading (Norton 2009).

The amount of analysis that the accumulator underwent was to properly size and design it to function properly. Most of the analysis of the accumulator was used to aid in the design of other components.

3.8. Piston

The first part that relied on the FEA analysis previously discussed above was the piston. There were three conceptual designs that the team considered for the piston. The first was the simplest, which essentially is a thin cylindrical part. It was created by extruding a circle and adding a single slot for a seal (see Figure 17). The piston could also be made thicker in order to accommodate two channels for two seals that would improve the chance of success.

![Figure 17: Piston 1 – Isometric View](image)

The second piston design builds off of the first by adding an extruded rod for stabilization (see Figure 18). The rod, which would need to be attached to an end cap, was added because the group worried that the piston might become unstable and possibly become lodged and negatively affect the system. The drawback of this design is that the interface between the rod and end cap would be complex. Since gas or fluid need to be pumped in through the end caps, the piston rod
would be challenging to design. Not to mention, an additional seal would be required at the end cap.

Figure 18: Piston 2 – Isometric View

The final proposed design adds additional stability in relation to the first concept, but is more compact than the second option (see Figure 19). Unlike the last two designs, this piston was created by revolving a sketch of the cross section about the central axis. This design incorporates two notches for two piston seals and a tapered pocket on either side. The pockets allow for greater thickness at the outer edge, but decrease the mass of the piston and do not take away as much volume from the fluid and gas chambers as a solid piston would.

Figure 19: Piston 3 – Isometric View

The third piston design was further refined to its final state (Figure 20). The dimensions were optimized to allow for the largest bearing surface without drastically decreasing the volume of the gas and oil chambers. Additionally, the weight of the piston was minimized since it is a dynamic part.
The final piston design incorporates two grooves for two seals, and the specific seals that were chosen will be discussed next.

3.9. Sealing the Piston and End Caps

Various types of seals were implemented at different connections and interfaces within the system, but the two most crucial were for the piston and end caps. Both the piston and end caps seals interface with the acrylic cylinder, as well as seal off gas and/or hydraulic fluid. Although these parameters are similar, other requirements differ, so ultimately different seals were specified at the two locations. The end caps needed a static seal, while the piston seal had to be dynamic. Additionally for the piston seal, it had to account for radial strain at mid-length of the tube, but this was not a concern for the end caps. The first type of seal considered for either application was an o-ring.

O-rings are a type of mechanical seal that are frequently used in a variety of engineering applications. An o-ring is simply a closed loop that has a circular cross-section (see Figure 21).
Many companies sell o-rings in standardized sizes and tolerances, so various diameters are readily available. Once the o-ring is chosen, a groove should be sized based on the dimensions shown in Figure 22. The groove must be accurately dimensioned in order to create the appropriate seal squeeze, which ensures a proper seal between the mating surfaces.

O-rings can be used in static or dynamic applications. For the end caps, it was determined that o-rings would provide the necessary static seal for this MQP. Therefore, a 4.5 inch (11.43 cm) outer diameter was chosen for the seal with an eighth of an inch thickness (10.795 cm inner diameter). Based on this selection and the company’s specifications, the groove dimensions were determined.

In the case of the dynamic piston seal, lubrication would have to be utilized with the o-ring to prevent friction and thus excessive wear. It is not feasible to lubricate the piston seal on a regular basis because it would require excessive maintenance between runs. Not to mention, it would require the fluid to be drained and refilled each time, which adds time to the testing. The standard small amount of leakage (film) would probably provide sufficient lubrication, but the group was not willing to take those chances. Therefore, a more frictionless option was pursued for the piston seal.

The top options considered for the piston seal were the Multiseal® by Precision Associates, Inc, the polyurethane piston seal by Hercules, and the U-seal. Through research, the group was able to narrow down the choices based upon the defined specifications. The piston seal had to seal off both the gas and hydraulic fluid areas of the chamber, be dynamic, and strain with the acrylic cylinder.

The Multiseal® design by Precision Associates Inc. is similar to an o-ring in its application, but has an altered cross section. The company claims many benefits in comparison to standard o-rings, such as better seal and lubrication, resistance of spiral failure, and low
friction [21]. To ensure no contamination between the gas and liquid side, two of these seals would need to be used in tandem.

Figure 23: Cross-section of Multiseal® by Precision Associates [21]

The polyurethane piston seal was next researched for the piston seal (see Figure 24). Polyurethane allows for better wear resistance and lower friction compared to o-rings [22]. Additionally, only one would be necessary if used in conjunction with two outer bearings.

Figure 24: Cross-section of Polyurethane Piston Seal [22]

Ultimately, the best fit for this application was determined to be a U-seal, which is a lip type seal (see Figure 25). A U-seal was chosen for its greater tolerance in comparison to the other seals considered. Additional measures were taken to further improve the seal against the changing radius. The two U-seals were installed in an opposing manor, which means that the open ends face away from the center of the piston. Any gas or pressure that would push against the seal would actually increase the seal force because it pushes the lip of the seal against the surfaces being sealed. Also, the groove diameter was increased by 0.010 inches to ensure proper seal squeeze even when the acrylic is radially strained.
The company the team ordered the piston U-seal from was Hercules. The specific product is HRU25-4.00-25 with a 4.5 inch outer diameter and 4 inch inner diameter. The groove width was determined to be 0.281 inches plus or minus 0.010 inches, and the groove diameter is 4.010 +0/-0.003 inches.

3.10. Shafts

After the seals were specified, the shafts were designed to allow the transport of fluid in and out on one side and gas on the other and to support the weight of the complete accumulator assembly. The diameter of the shafts is limited to a maximum of 0.969 inches or 24.6 mm since this is the diameter of the spot face on the end caps into which the shaft fits. A dimensional constraint on the shafts is the length of the shoulder between the spot face on the end cap and the bearing. This distance has to be at least 1 inch to allow enough clearance between the pressure sensors that extrude from the end cap and the bearing, as shown in Figure 23.
In order to calculate the maximum shaking forces, a concentricity offset from the central axis of 1/8 inches or 3.175 mm was estimated for the accumulator system. The weight of each component in the accumulator assembly had to be measured, and are shown in Table 2 below:

<table>
<thead>
<tr>
<th>Component</th>
<th>End Cap (x2)</th>
<th>Piston</th>
<th>Chamber</th>
<th>Rods + Batteries</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (lb/kg)</td>
<td>3.5 / 1.6</td>
<td>2 / 0.9</td>
<td>6 / 2.7</td>
<td>2 / 0.9</td>
<td>17 / 7.7</td>
</tr>
</tbody>
</table>

Converted to kilograms, the mass of the empty accumulator system is 7.711 kg. The volume of the maximum amount of fluid that can be accommodated in the chamber is found when the piston is all the way towards the gas valve side. This is considered the extreme loading case for the bearings from which a maximum possible fluid weight is calculated given the density of Mobil DTE15 oil. Thus, the total mass of the accumulator system is 9.773 kg.

Given a rotational speed of 3000 rpm and an offset from the central axis of 3.175 mm, the maximum acceleration of the accumulator system is found. This results in a force of 3062 N in total. Since the force is distributed among two bearings, each one is required to withstand a maximum force of 1531 N. The calculations are shown in Appendix G: Shaft Calculations.

The low carbon steel 1018 was chosen as the material for the shafts as the stock was already available for use. This steel has yield strength of 303MPa and an ultimate tensile strength of 414MPa. It is also inexpensive and easily available.

The various factors considered when iterating to find a minimum required diameter for the shaft are listed in the calculations in Appendix G: Shaft Calculations. The effective ultimate tensile strength of the steel is then equated to the maximum stress experienced at the step in the shaft, after accounting for a safety factor of 1.7 and the stress concentration factor due to difference in diameters at the step.

The resulting recommended minimum diameter of the section supporting the bearing is 0.8 inches or 20.32 mm. Since bearings of 20 mm diameter are easily available, 20 mm is chosen for the outside diameter of the bearing end of the shaft. A k5 press fit is chosen for the shaft in the bearing, for which the tolerances in the shaft diameter can be obtained from the fit and tolerance chart in
Appendix H: Tolerance Charts.

The final shaft designs are shown in Figure 27 and Figure 28.

Figure 27: Fluid Side Shaft

Figure 28: Gas Side Shaft

3.11. Bearings

Once the shafts were dimensioned, the bearings were specified based on the following requirements. Two bearings are required to support the accumulator assembly, one on each side. Since there is no force applied in the axial direction of the accumulator, the bearing is not required to support any axial loads. Only radial forces need to be dealt with here. The inner diameter of the bearing has to support a shaft of 20 mm diameter. The bearings should also be able to support the shaking forces in the accumulator assembly when it is being run at its maximum speed of 3000 rpm.
A few different types of bearings meet the requirements, but the cheapest one that performs the desired function is the deep groove ball bearing from Simply Bearings [24] and is shown in Figure 29. It has an inner diameter of 20mm, an outer diameter of 47 mm, and width of 14 mm.

![Metal Shielded Deep Groove Ball Bearing](image)

Figure 29: Metal Shielded Deep Groove Ball Bearing [24]

The bearing is capable of supporting a maximum dynamic load of 13.5kN and a static load of 6.55kN. It has metal shields inserted into the outer raceway for protection against light mechanical damage, and the shields prevent the pre-filled grease from being contaminated. It does not require any additional lubrication.

Bearing mounts were designed as shown in Figure 30. The through hole in the bearing mount allows an H8 press fit for the bearing, and the machining tolerance can be obtained according to the fit and tolerance chart in
3.12. Rotary Union

Tackling the problem of pumping fluid into a body that is spinning at a high speed was one that needed to be addressed at the beginning of the project in order to pursue further design in the system. The entire accumulator is required to rotate and needs to have an attachment or fitting that would allow flow into the system in order to vary and record the pressure data as the fluid volume varies. The attachment would need to meet the task specification of being able to spin at 3000 rpm and withstand a maximum pressure of 500 psi. The component would also need to have a relatively low amount of friction compared to the friction in the bearings holding the accumulator. Commercial solutions were pursued in the selection of the rotating hydraulic fitting.

Utilizing a live swivel was recommended by the advisor who had previous experience with the fitting. The live swivel is a fitting that allows full 360 degrees of rotation while allowing fluid to flow through the body of the swivel. Figure 31, provided below, is a picture of a live swivel.
The live swivel, however, had a significant amount of friction while rotating. The friction prompted communication with the supplier to determine whether a high performance swivel is available to fit our application, but the live swivel is not intended to rotate at high speeds in a hydraulic system. The supplier did recommended looking into rotary unions that would most likely fit our needs.

Rotary unions are very similar to live swivels because they can rotate 360 degrees continuously and provide fluid flow through its body to a system. Unlike the live swivel, the rotary union is designed to rotate at high speeds ranging from hundreds to thousands of rpm. The rotary union has a unique bearing seal that allows it to rotate like a bearing meanwhile pumping fluid whether it is air or oil. Given the system parameters, the 008 series single passage union met all the requirements. It can spin up to 4000 rpm and withstand a maximum hydraulic pressure of 1000 psi and is a small compact unit that is provided below in Figure 32.

3.13. Valves

Along with the hydraulic pump, additional components are required to regulate the pressure and flow of liquid in the system. In this situation, a component is desired that regulates the rate of liquid flow in a particular direction, and this flow rate will be continuously monitored
by an input command. The ideal component for this purpose is either a proportional or servo valve, which are types of electro-hydraulic valves. Other factors that dictate the specification of the valve are the fluid used, supply pressure, force requirements, dynamic response required, and load resonant frequency.

Hydraulic valves are designed to be sensitive to changes in supply pressure as opposed to direct-driven valves, which are unaffected by changes in pressure. The fluid type is an important factor when considering changes in performance due to effectiveness of the seal and changing viscosities over varying temperatures. The force requirements include accounting for static and dynamic loading on the system, and inertia forces must be considered when sizing valves in high speed applications.

Servo valves are those that use closed-loop control. They monitor and feed back the main-stage spool position to a pilot stage or driver either mechanically or electronically. Thus, they have an in-built error correction capability. Proportional valves, on the other hand, move the main-stage spool in direct proportion to a command signal, but they usually do not have any means of automatic error correction (feedback) within the valve. The spool displacement is proportional to the current driving solenoids.

Another option is a continuously variable proportional valve in which a varying control current results in a controlled output variable, which could be flow, pressure, or position of the spool.

If manual operation of the valve is desired, a proportional valve connected to the output of a pulse width modulation circuit can be used. Since proportional valves are expensive, pulsing a solenoid valve on and off using a manual control such that it behaves like a proportional is a feasible solution that performs the same function.

A potentiometer connected to a pulse width modulation (PWM) circuit allows analogous control of the valve. The solenoid valve chosen is a 24V, 4-way, 3-position on-off solenoid valve. The 4-way valve has an extra port that is not required; however, this port can be blocked, making it a 3-way valve.

Since the valve only has on and off states, it is pulsed at a frequency of 4.35Hz. Using the formula for frequency of the output wave given by $f = \frac{1}{(2.3*R6*C3)}$, the capacitor value $C3$ and resistance $R6$ were chosen as 1μF and 100kΩ respectively, so that the input wave frequency is 4.35Hz. This is low enough to accurately affect the state of the valve.
The pulse width modulation circuit requires an input DC voltage of 12V, and using two operational amplifiers from the LM324 quad operational amplifier package, produces a triangle waveform. The frequency of this wave is determined by the formula below the schematic in Appendix I: PWM Circuit. Finally, a square wave is generated at node 13 using a third operational amplifier as shown. The positive input terminal of the valve is connected to a 24V rail, and the negative terminal to the square wave output by the PWM circuit.

By varying the duty cycle of the square wave received by the valve, the fraction of the time period for which the valve is open and closed can be varied, thus controlling the rate of fluid flow into the cylinder. The duty cycle is varied using a 100kΩ key ‘A’ potentiometer as shown in the schematic.

3.14. Motor and Torque Arm

In the lab, there was a 280W DC scooter motor available for use, the only problem being the maximum speed was 2300 RPM. This would require gearing the motor up in order to reach 3000 RPM. Neglecting friction if the motor were to be geared up to spin at 3,000 RPM the accumulator could be spun up in approximately 5 seconds, which indicated the motor was fine for use. However, now gears are required, as well as a DC power source which adds to the complexity of the design. Since the system required some sort of clutch as well, a ¾ HP AC motor, 22amp variac, and electromagnetic clutch were purchased for $180 altogether. While these parts are slightly used, it saved both time and money. By removing the motor mount built into the motor, the motor could be suspended on bearings, allowing it to rotate and allow the group to measure the torque applied by the motor.

The simplest method to measure the motor torque was to attach a torque arm to the motor and a load cell to the arm. A load cell measures force, so by using the relation that torque, \(\tau \), equals force, \(F \), times distance, \(d \), torque can be found (see the following equation, Eq. 7).

\[
\tau = F \times d \quad \text{(Eq. 7)}
\]

In order to make this possible, a new motor mount system had to be designed. The motor has to be able to freely rotate instead of being rigidly held in place. The design the team came up with is pictured below in Figure 33.
Two vertical plates serve as the basis of the design because all components connect to it. An oil-impregnated brass bushing is press fit into each plate (see Figure 34). Attached to the motor itself is a custom ring that interfaces with the bushing. The bushing and ring have a free running clearance.

The custom ring was designed so that the torque arm could be attached with two screws, which are equally spaced from the axis of rotation.

The torque arm, shown in Figure 35, is simply a rectangular block with a notch cut out for the load cell to sit in. Ideally, the load cell itself should be in line with the center of axis of
the motor; therefore, the load cell was aligned as close as possible with the screw holes without making the width of the torque arm greater than one inch.

The load cell is then attached from the torque arm to the ground block with the purchased kit, which can be seen assembled as shown in Figure 36 below.

The load cell chosen for this application was a full-bridge thin-beam load cell from Omega [27]. Each model is rated at a maximum force, ranging from 0.25 pounds to 40 pounds. To choose the right model for this MQP, the team calculated the maximum force the motor would produce at the given horsepower (see Appendix J: Load Cell Force Calculations for
calculations). The force was approximately 4.216 lbf; thus, the five pound load cell would be the best choice.

3.15. Clutch

The clutch design was fairly simple and for the most part provided to the team. Once the system parameters were determined, a clutch that could withstand 3000 rpm was all that was required. Through a colleague of our professor the team was able to procure an electromagnetic clutch at a reasonable price. The design aspect of the clutch was how to mount and couple it to the other components in the system.

The clutch had an existing hole patterns that could be utilized to mount parallel plates. Measurements were taken to fit the plates on the clutch and to elevate the clutch to 4.5 inches from the base plate in order to allow all other components to be able to rotate freely without contacting the base plate.

The plates then needed a method to attach to the base plate and in the use of modularity mounting blocks were designed to mount two blocks on each plate. These blocks would then be able to be used on the motor mounts that will be discussed later as well. In Figure 37 below the model of the clutch is depicted.

![Figure 37: Clutch Mount Assembly](image)

Another aspect of the clutch design arose when the clutch had only one input shaft when the project would require an input and output shaft. The clutch had an input shaft and a female coupler and by evaluating both sides, the female coupler had the least friction. The goal of reducing friction in order to obtain accurate test data in experiments, lead the team to utilize the female connector side to couple with the accumulator. This motivated the design of a coupler
shaft that would fit into the female connector and simply couple the clutch and the accumulator. The coupler shaft is provided below in Figure 38. The keyway is cut to match the keyway on the input side of the clutch, and the flat is to ensure the set screw of the Lovejoy adapter has a firm surface to rest on.

![Figure 38: Coupler Shaft](image)

The LoveJoy couplings were chosen to connect shaft due to the wide range of metric and U.S. bore sizes available and the flexibility to compensate for misalignments. The couplings are two steel hubs that are connected to a rubber spider that can deform to provide the flexibility in order to compensate for errors in alignment or mounting. Two sets of these couplings were required in order to connect the motor to the clutch and connect the clutch to the accumulator.

![Figure 39: LoveJoy Coupling](image)
Now that all the mechanical components of the system have been designed or chosen, a final CAD assembly was created in SolidWorks 2009, which can be seen in Figure 40. The CAD model was used to verify all the parts fit together and would fit on the plate. Detailed drawings of each component can be reviewed in Appendix K: Part Drawings.

Figure 40: Final CAD Assembly
3.16. DAQ Selection

One of the critical aspects of the system is the DAQ selection; several data measurements are required for experimental purposes as well as verifying the unique properties of this accumulator. The four onboard pressure sensors, two on each end cap and two strain gauges presented the biggest challenge in terms of complexity since they are rotating with the flywheel. There were multiple methods to transmit data off the unit including electro-mechanical and wireless connections. Each of the previously stated means of transferring data along with the remaining forms of data were all weighted against was cost, performance, power consumption, reliability, size, installation and setup. A summary of the components, their placement, and a brief description of their function can be seen in Table 4.

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Placement</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strain gauges</td>
<td>Acrylic chamber</td>
<td>Measure strain, verify FEA</td>
</tr>
<tr>
<td>Gas side pressure sensors</td>
<td>Gas end cap</td>
<td>Measure pressure</td>
</tr>
<tr>
<td>Oil side pressure sensors</td>
<td>Oil side end cap</td>
<td>Measure pressure</td>
</tr>
<tr>
<td>Inline pressure sensor</td>
<td>In hydraulic line</td>
<td>Provide third data point to verify pressure distribution</td>
</tr>
<tr>
<td>Load cell</td>
<td>Mounted to motor</td>
<td>Measure torque applied by the motor</td>
</tr>
<tr>
<td>Rotary encoder</td>
<td>Mounted to lovejoy coupling</td>
<td>Measure angular velocity</td>
</tr>
<tr>
<td>Web cam</td>
<td>Placed in front of unit</td>
<td>Measure the piston location to find the volume of the fluid</td>
</tr>
</tbody>
</table>

A visual of the overall DAQ system can be seen in Figure 41. The six onboard sensors are connected to the analog to digital (ADC) converter, which is received by another XBee acting as a receiver, connected via USB to a computer running LabVIEW. Mounted to the motor is a torque arm with the load attached to the end. The excitation voltage to the pressure sensor and load cell is recorded as well. The ratio of the output voltage to the supply is taken, to make the measurements insensitive to voltage supply variations. Thirdly there is a rotary encoder, made from an acrylic disc, which passes through an optical interrupter to generate a pulse train. These previous three items are connected to a NI USB-6008 USB DAQ card. Lastly there is a webcam, connected to a computer running LabVIEW which processes the images to find the length of the hydraulic volume.
3.16.1. Acquiring Data from a Rotating Body

One of the most difficult aspects of the data acquisition system was finding a reliable method for acquiring data off of the spinning accumulator. The two modes that were researched were slip rings and wireless. Within wireless, there were additional applicable options of microcontrollers and wireless modules. Once a method was chosen, means to powering the unit was investigated.

Slip Rings

A slip ring is simply a series of wire rings with a wiper making contact, allowing an electrical connection even though the physical connection is rotating. One of the best examples of a slip ring in everyday use is in a car steering wheel; they allow electrical signals to pass through while rotating. Precision slip rings are available with 0.1Ω noise per revolution; however these proved to be too expensive to use. If a slip ring were used, then there would be no need to mount a power source to the end cap, and having to balance the mass accordingly. The slip ring which appeared to suit the needs of the project, an over shaft design with 8 circuits cost roughly $3,000 from Michigan Scientific. To save cost a used slip ring which was an end of shaft design and only had 6 circuits could be had for $300 (the normal cost is $600). Thus a slip ring within the budget would not suit the needs of the system. Slip rings can be purchased cheaply (around
$30) if the speed they are rotating at is below 500RPM, once this speed is passed the only devices that fit the needs of the project are precision instruments, and this precision makes them expensive. Since this electro-mechanical connection would not suit the needs of the project at the right price, wireless alternatives were investigated.

Wireless Sensors

While wireless sensors do exist, they are quite expensive, not only is the sensor costly, but the receiver is a cost as well. Since the wireless transmitter is included in each sensor, the packaging of the device tends to be much larger than their wired counterparts. The wired sensors tend to be bulky, and the wireless sensors are about twice this size. One wireless pressure sensor from Electrochem is about 2 inches long [28], whereas the current pressure sensors are about 0.5 inches long. These pressure sensors transmit over the standard WiFi spectrum used in wireless laptops, and are also compatible with the ZigBee standard. While these sensors would be useful in remote applications, the size of the devices is much too large for an object rotating at 3,000 RPM.

Microcontrollers

Another possible method for the data acquisition system is attaching a microcontroller to one of the end caps of the tube to perform on-board analog to digital conversion of the voltage signals received from the pressure sensors and strain gauges. This digital data will be sent to either a slip ring mounted at one end of the shaft, which will then transmit it to a computer, or the data can be sent from the microcontroller to a wireless data transmitter mounted on the cap of the tube. In the case of the wireless method, the data will be received by a receiver off board and then transmitted to the computer.

The requirements of the microcontroller being considered are that it should be extremely small and lightweight, and it should be easy to mount to the cap of the acrylic tube. Problems could surface relating to the functioning of the clock of the microcontroller at 3,000 rpm, and also relating to transmitting wireless data accurately at such a high angular velocity.

Two microcontrollers were considered: the Baby Orangutan B-48 and an Arduino microcontroller. The Baby Orangutan B-48 is a conveniently small microcontroller, measuring just 1.2in x 0.7in, or 3.05cm x 1.78cm. It does not have an LCD screen or any switches and so its
light weight will not pose a problem when it comes to static balancing of the accumulator. It has 18 user I/O lines and an operating voltage range of 5-13.5V [29].

![Image](image.png)

Figure 42: The Baby Orangutan B-48 Microcontroller [29]

An Arduino microcontroller was the second option considered. The Arduino mini, based on the ATmega168, ,the smallest Arduino offered, has 14 Digital I/O pins and 8 analog inputs. In order to make the Arduino wireless, an XBee shield will need to be used. The XBee module consists of a transmitter and receiver. The receiver would be connected to the computer and act as a serial port. The Arduino operates at a maximum of 9V, so a voltage reduction would be needed since the sensors are likely to be greater than 10V input. The pro mini Arduino is about the same size as the mini, but does not have any headers attached allowing for a lower profile mounting.

Table 3 below compares the specifications of the Pololu Baby Orangutan B-48 and the Arduino Mini for the purpose of selection.

<table>
<thead>
<tr>
<th></th>
<th>Pololu Baby Orangutan B-48</th>
<th>Arduino Mini</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Voltage</td>
<td>5-13.5V</td>
<td>5V</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>5-15V</td>
<td>7-9V</td>
</tr>
<tr>
<td>Digital I/O Pins</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>Analog Input Pins</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>DC Current per I/O Pin</td>
<td>40mA</td>
<td>40mA</td>
</tr>
<tr>
<td>Flash Memory</td>
<td>4KB</td>
<td>16KB</td>
</tr>
<tr>
<td>Clock Speed</td>
<td>20MHz</td>
<td>16MHz</td>
</tr>
</tbody>
</table>
Wireless Modules

The primary candidate for the wireless transmitter and receiver was the XBee Series 1 Chip Antenna. The antenna allows a maximum range of 122m, which is more than what is required for the application. It also comes with 6, 10-bit ADC input pins and 8 digital I/O pins, and a built-in antenna which allows for compact installation onto the tube cap. It is priced at $23 per module. Figure 34 shows a picture of the chip antenna wireless module from XBee.

![XBee Wireless Antenna](image)

Since these modules have 6 analog to digital (ADC) conversion pins and are compact and light, they are a better choice over the microcontrollers. They also do not require programming unlike the microcontrollers, which need to be setup to perform ADC conversions and transmit data. The wireless system can be expanded on by adding more modules, or by using a microcontroller to perform more ADC conversions and they have low power consumption. Therefore, these XBee units were selected as intermediaries between the sensors and the off-board computer.

Powering Unit

An obstacle was determining a method of powering the wireless system without introducing unnecessary mass that would be difficult to package. It appears a battery would be the simplest way to power the system; however every additional object attached to the flywheel must be counterbalanced. Some common battery dimensions and characteristics are presented in Table 6. The power draw of all the sensors and microcontroller will have to be added in order to determine the lifespan of the battery. For all the 3V batteries, it would take at least four batteries...
to have 10V or more of supply to power everything. For a rough calculation an Arduino draws about 40mA, and XBee wireless module about 40-50mA, the pressure sensors about 10mA (40mA total) and about 30mA for a strain gauge (assuming 10V supply and 350Ω strain gauge). This means there will be about a 40 + 50 + 40+ 30 = 160mA consumption. This means most of the small watch batteries would be depleted in less than an hour, so a larger battery would be more appropriate. A battery such as a 9V would supply ample voltage, although a 3.3V regulator for the XBee is required as well as another regulator for any other circuitry to account for the voltage of the battery decreasing.

Table 6: Battery Specs

<table>
<thead>
<tr>
<th>Battery name</th>
<th>Dimensions</th>
<th>Voltage (V)</th>
<th>Capacity (mA)</th>
<th>Cost $/ea (jameco)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr2032</td>
<td>0.787 in (thin)</td>
<td>3</td>
<td>180</td>
<td>1.25</td>
</tr>
<tr>
<td>DL2032</td>
<td>0.787 in (thin)</td>
<td>3</td>
<td>180</td>
<td>1.49</td>
</tr>
<tr>
<td>CR2325</td>
<td>0.906 in (thin)</td>
<td>3</td>
<td>165</td>
<td>1.79</td>
</tr>
<tr>
<td>CR123A</td>
<td>D0.67 X H1.36 in</td>
<td>3</td>
<td>1300</td>
<td>2.75</td>
</tr>
<tr>
<td>DL2450</td>
<td>0.97 in (thin)</td>
<td>3</td>
<td>500</td>
<td>2.25</td>
</tr>
<tr>
<td>AA rechargeable</td>
<td>D0.57 X H2 in</td>
<td>1.2</td>
<td>2500</td>
<td>2.95 (sparkfun)</td>
</tr>
<tr>
<td>A76</td>
<td>D11.6 X H5.4 (mm)</td>
<td>1.5</td>
<td>~150mA</td>
<td>1.95</td>
</tr>
<tr>
<td>9V</td>
<td>H48.5X L26.5X W17.5</td>
<td>9</td>
<td>45.6</td>
<td>~3</td>
</tr>
</tbody>
</table>

The choices to extract data from the rotating system were narrowed down to the XBee unit, with or without micro controller, or a slip ring. Since the slip ring which was affordable would not quite suit the needs of the project, it was decided on using an XBee unit. Since there were six ADC ports being used, the XBee is ideal since the device can convert the sensor outputs to a digital readout and transmit them wirelessly to a base station. Also in the future a microcontroller or additional XBee could be added to the system, making it modular. Also with not using a slip ring, any frictional losses caused by the slip ring are eliminated. Since the pressure sensors can be balanced by a 9V battery, the XBee, sensors, and circuitry can be powered off voltage regulators attached to the battery. The circuitry and XBee units weigh so little (only a few ounces) the weight can almost be ignored for balancing as well. Now that there is an apparatus to transmit data from the rotating body, the sensors on the device can be selected.
3.16.2 Sensors on Wireless Module

Data from a total of six sensors need to be transmitted via the wireless module: two strain gauges and four pressure transducers. The specific strain gauges and pressure sensors chosen for this application are further discussed in this section.

Strain Gauges

A strain gauge is typically a strip of wire arranged in a zigzag pattern [31] that changes resistance depending on how much the wire is deformed. Strain gauges can be arranged with a single strain gauge, two, or four in a system. Typically the strain gauge or gauges are arranged in a Wheatstone bridge, which acts as a voltage divider. When two or more strain gauges are used, the accuracy is increased since the strain is being measured from both sides of the material and increases the voltage differential. This voltage difference has to be amplified since it is typically less than 1V. The amplification can be performed with 3 op-amps or an instrumentation amplifier which tends to have a higher accuracy than multiple op-amps, partially due to the fact the internal resistance is uniform across the op-amps. An instrumentation amplifier also requires less circuitry. There are many varieties of strain gauges, the main difference being the resistance of the gauge itself. Most gauges’ resistances are above 350Ω. Also, the gauge factor or the sensitivity to strain is an important factor to consider and is expressed by:

\[GF = \frac{\Delta R}{\Delta L/L} = \frac{AR}{R} \frac{\Delta R}{\varepsilon} \]

(Eq. 8)

where \(\Delta R = \) change in strain of the gauge, \(R = \) resistance of undeformed gauge, and \(\varepsilon = \) strain, most gauges have a GF of around 2[32]. Thus, by knowing the voltage applied to the bridge, the output voltage of the bridge, and the gauge factor, we can find the strain [33]. Some aspects of the circuitry, such as the Wheatstone bridge and amplification, can be simulated in LabVIEW without the need for physical components. This simplifies the complexity by the ability to wire the strain gauge directly into the data acquisition equipment.

A device is needed that measures the strain in the walls of the acrylic tube, which does not affect the strain measurements itself. The expected maximum tangential and radial strains are \(5.607 \times 10^{-3}\) and \(5.146 \times 10^{-4}\). The most commonly used strain gauge is the bonded metallic gauge [34]. In this application, a strain gauge that measures bending strain is required. Therefore, the best type of strain gauge for this application is one that rejects axial strain and compensates for
temperature. It should be most sensitive to bending strain. The sensitivity of strain measurement of the gauges being considered is about 2.0 mV/V @ 1000 µE.

Pressure Sensors

It is highly desirable to verify the pressure profile of the fluid, to determine if the system is functioning properly and compare to computational results. This can be accomplished with pressure transducers. The most likely type of sensor to be used is a gauge pressure sensor where pressure is measured relative to atmospheric pressure at a given location. An absolute pressure sensor would be acceptable as well but not necessary since this type measures pressure from absolute zero pressure. The sensor should be able to measure pressure accurately and function up to the operational pressure of the device. Diaphragm transducers that are very small would be advantageous, and threaded ones are even better since they would be easy to install and remove.

Multiple factors are to be considered when choosing an appropriate pressure sensor to monitor the pressure on the inner walls of the acrylic cylinder. The specific guidelines to be considered when choosing the pressure sensor for this application can be seen in Table 7. The pressure sensor should be mounted in such a way that the centripetal acceleration does not alter the measurements of the sensor. Since the minimum and maximum pressure in the chamber is 0 psi and 500 psi, respectively, a gauge pressure sensor would be suitable, since the system is not running at less than atmospheric pressure. The most critical considerations were the sensors should be small, lightweight, and accurate.

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Expected Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of sensor:</td>
<td>Gauge or Absolute</td>
</tr>
<tr>
<td>Sensor Pressure Range</td>
<td>0-500 Psi (500 Psi max expected)</td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>0-10v</td>
</tr>
<tr>
<td>Mount Type</td>
<td>Threaded or Flush Mount</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>0-50C</td>
</tr>
<tr>
<td>Size</td>
<td>As small as possible</td>
</tr>
</tbody>
</table>

When finally choosing the pressure sensors, Omega makes small lightweight pressure sensors, but they are cost prohibitive since the system requires four on the accumulator. Unfortunately the cost for each of the lightweight pressure sensors is $400 each. The 85 series from Measurement Specialties are reasonably priced, accurate and repeatable, and compact. This
A series of pressure sensors is available in either a weld fit, which require the sensor to be pressed in with a back plate to hold it in, or with a pipe thread. ¼ NPT pipe thread sensors were purchased since the mounting holes could be easily drilled and tapped to this pipe thread size. The supplier also offers sensors with a 1/8 NPT pipe thread, however the lowest range is 0 to 1000 psi, which is twice the range the system demands. The specifications of the pressure sensors can be seen in Table 8.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Number</td>
<td>85-500A-4C</td>
<td>n/a</td>
</tr>
<tr>
<td>Cost (ea)</td>
<td>76.85</td>
<td>$</td>
</tr>
<tr>
<td>Range</td>
<td>0-500</td>
<td>Psia</td>
</tr>
<tr>
<td>Media Compatibility</td>
<td>Liquids and gases compatible with 316L stainless steel</td>
<td>n/a</td>
</tr>
<tr>
<td>Output</td>
<td>0-100</td>
<td>mV</td>
</tr>
<tr>
<td>Supply Current</td>
<td>1.5</td>
<td>mA</td>
</tr>
<tr>
<td>Weight</td>
<td>24</td>
<td>grams</td>
</tr>
<tr>
<td>Pressure non–linearity</td>
<td>±0.1</td>
<td>%Span</td>
</tr>
<tr>
<td>Pressure Hysteresis</td>
<td>±0.02</td>
<td>%Span</td>
</tr>
<tr>
<td>Temperature Error - Span</td>
<td>±0.75</td>
<td>%Span</td>
</tr>
<tr>
<td>Temperature Error - Offset</td>
<td>±0.5</td>
<td>%Span</td>
</tr>
<tr>
<td>Thermal Hysteresis – Span</td>
<td>±0.05</td>
<td>%Span</td>
</tr>
<tr>
<td>Thermal Hysteresis – Offset</td>
<td>±0.05</td>
<td>%Span</td>
</tr>
<tr>
<td>Long Term Stability – Span</td>
<td>±0.1</td>
<td>%Span</td>
</tr>
<tr>
<td>Long Term Stability – Offset</td>
<td>±0.1</td>
<td>%Span</td>
</tr>
<tr>
<td>Pressure Overload</td>
<td>1500</td>
<td>Psia</td>
</tr>
</tbody>
</table>

At a cost of $76.85 [35] these sensors were reasonably priced for their size and performance. These pressure sensors meet or exceed all of the requirements of the system. The sensor can be seen below in Figure 44. The gauge style pressure sensors were originally ordered but were on a two month backorder; thus, the absolute pressure version of the sensors were ordered since they were the same price and same performance. The only downfall being the max measurable pressure of the system is now 485.3 psig. These pressure sensors require a 1.5mA power supply, which can be supplied with an op-amp circuit powered by the battery. The circuit inside the pressure sensor is a full wave Wheatstone bridge, which outputs 0-100 mV ratiometric. The output is amplified to 3.3 V with a gain of 33, via an instrumentation amplifier. The voltage of 3.3V is chosen since this is the maximum voltage the XBee units can handle for ADC conversion. The sensors are also compatible with the oil used in the system. On the gas side of the end caps, there will be two pressure sensors to see if there is any pressure non-linearity, and
three pressure sensors will be used on the oil side, two on the end cap and one after the rotary union to verify the parabolic pressure distribution of the oil side.

![MSP Pressure Sensor](image-url)

Figure 44: MSP Pressure Sensor [36]

3.16.3. Other Measurable Data

In addition to the measurements being transmitted wirelessly, additional data is collected to find angular velocity and piston position.

Angular Velocity

In order to determine the total energy density of the system, the kinetic energy stored as rotational motion, must be calculated. Since this is similar to a flywheel the energy density of a flywheel is $E_{\text{flywheel}} = \frac{1}{2} I \omega^2$, where E_{flywheel} is the energy stored in the flywheel, I is the inertia, and ω is the angular velocity. Once the energy stored is known, the total energy density can be verified, as well as how much rotating the system improved the energy density. In order to find the angular velocity of the system, either a rotary encoder or tachometer must be used.

The DAQ card supplied to the group is a NI-USB 6008, which has an onboard falling edge counter. Since this card does not have a hardware based counter, an extremely accurate measurement of the pulse count train cannot be generated. The card can only record how many pulses happened, but not at which frequency they happen. In order to overcome this pitfall, either an analog voltage could be output to the USB DAQ card, or a software timed frequency counter could be built.

Normally a rotary encoder would be purchased; the different types were discussed above in the flow meter section. These pulses would be recorded by a hardware timed counter card, which would generate a pulse train. This gives the angular position in steps, in order to find
velocity and acceleration, these results must be differentiated with respect to time twice, once to find velocity, and twice to find acceleration. Since this system only requires an angular velocity, one option investigated was a frequency to voltage chip.

The LM2917 is a 14 pin DIP package, which converts a frequency to a voltage by using a charge pump to charge up a capacitor. By choosing an appropriate charging resistor and capacitor combination, the output ratio of volts per revolution can be controlled. In this circuit, a sensor such as an optical interrupter or Hall Effect sensor would output a pulse when an object passes by them. The increasing trend of these pulses would increase the output voltage of the chip. This analog output voltage would be connected to the analog in on the DAQ card. An optical interrupter is to be interfaced with this integrated circuit (IC), rather than a hall effect sensor since the optical interrupter outputs a clean 5V signal, and the optical interrupter was supplied free of charge to the group. A magnet on each of the tie rods was considered with a Hall Effect sensor counting the pulses; however, the magnets would need to be firmly attached, and a filtering circuit may be required. Unfortunately, the LM2917 chip has poor documentation with regards to interfacing with an optical interrupter, thus making it difficult to build a circuit. Also in this setup, a digital signal is converted to analog, then back to digital again, increasing the error. Thus, due to the difficulty of implementing this circuit, it was forsaken for the implementation of another device.

Since the optical interrupter can output a clean 0-5V signal, the counter on the DAQ card was used. Using the NI developer zone, a LabVIEW program was discovered, which reads in the number of pulses over a set period of time, then divides it by that time, results in a frequency. By multiplying this frequency by 60 and dividing by the number of pulses per revolution, the RPMs of the system can be determined. The longer the sampling time, the more accurate the measurement will be, the shorter the sample time the better the response time will be. A disk with four slots in it was laser cut to generate the pulses for the tachometer LabVIEW virtual instrument (VI). Four pulses per revolution is a maximum frequency of 200 Hz, which according to the Nyquist criterion the data must be sampled at twice the frequency or 400 Hz in this case. Since the maximum frequency of the counter is 5MHz, the system should be able to acquire data fast enough.

The disk was manufactured to fit over the shaft and keyway, as well as mount to the love joy coupling drilling and tapping holes into the coupling. The disc was sized to fit within the 3
inch wide bearing mount, thus giving the outer diameter. Next the by measuring the depth of the slot in the optical interrupter, the minimum width of the slot could be determined. Coupled with the outer diameter this yielded a maximum outer radius. The disc was manufactured with an outer wall on the slot to add some strength as well as prevent the disc from destroying the sensor in case the two collided. The slots were made an equal distance apart, creating a equidistant pulses at a constant angular velocity. Since the disk was thin, and had no bosses or extrusion, the fastest and easiest way to manufacture it was with a laser cutter. A piece of 3/32 inch thick acrylic was used for stock since it is inexpensive, easily cut with the laser cutter, and a readily available size that would pass freely through the sensor. The gap on the sensor was 0.122 inches, which 1/8 inch thick acrylic would not pass through without modification. The clear acrylic was lightly sanded then spray painted flat black to prevent any light from passing through. The assembly where the disc would be attached was modeled in CAD, the image of which can be seen on the left side of Figure 45. The finished laser cut disk with optical interrupter can be seen in Figure 45.

Figure 45: Rotary Encoder Manufactured and CAD Model

Piston Position

In this system, the group desired to measure the volume of fluid in the system, there were two main ideas considered in order to determine this. One method is to measure the flow rate in and out of the system. Second, the piston position can be measured in order to determine the volume. For the flow rate, a flow meter was considered, both off the shelf and a cheaper option created from a pump modified to act as a flow meter. For the piston location, a LVDT (linear
variable displacement transformer), magnetic linear potentiometer, and image acquisition system
were considered.

If the flow rate into and out of the system is known, then the volume of the oil can be
determined by adding up all the fluid entering the system and subtracting the fluid leaving the
system with respect to time. Since the cost of buying a positive displacement flow meter off the
shelf is at least $1000, it was decided that a hydraulic motor with a shaft encoder attached to it
will be used to calculate the flow rates, which will reduce the cost.

A 12V hydraulic motor with the encoder attached is installed in such a way that it
obstructs all the fluid passing it. When the motor is forced to rotate due to fluid flow, the encoder
will translate the rotational motion (from angular position) of the shaft into electrical signals in
the form of either analog or digital code. There are two main types of rotary encoders: absolute
and incremental. Thus by counting the revolutions of the motor shaft, flow rate can be calculated.
Using the flow rate and inner diameter of the chamber, the volume of fluid entering can be
calculated over a period of time. This can then be used to actively calculate the position of the
piston.

The problem with this method is that an accurate flow meter is expensive, but on the other
hand a cheaply constructed one could be very inaccurate. The concept of a flow meter is shown
in Figure 46.

![Figure 46: Rotary Shaft Encoder](image)

Since flow meters are expensive, and adapting a pump to function as a flow meter would
not result in accurate and repeatable measurements, the other avenue of determining volume was
pursued, by measuring piston position. The three methods to accurately measure this position
were using an LVDT, magnetic linear potentiometer, or image capture system.
An LVDT, or linear variable differential transformer, is an accurate way to measure position. An LVDT is three coils wrapped around a center bore in which a ferrous core passes through. An AC excitation voltage is applied to the center core, and the AC output from the two secondary coils to the left and right of the center primary core is measured. By subtracting the two outputs, a linear voltage is recorded which indicates position [37]. Since the sliding core does not make electrical contact with the three cores, it is virtually frictionless, and sealable. This results in a long and repeatable lifespan. Unfortunately, the downfalls of this system are a high cost (roughly $400 [38]) and packaging issues as it must fit into the shaft, but leave enough room for nitrogen gas to fill the chamber, and it requires a connection to the cylinder. As shown below in Figure 47, attempting to fit the LVDT into the shaft while trying to minimize the shaft diameter would present a challenge.

![Figure 47: LVDT [38]](image)

Since there would be major obstacles in packaging and cost of the LVDT, a magnetic linear potentiometer was investigated. The theory behind the magnetic linear potentiometer was to attach individual magnets or magnetic strips to the piston. These magnets would cause a change in resistance in the potentiometer, and by applying a voltage or current with knowing ohms law, $V=IR$, where V is voltage, I is current, and R is resistance, the output would be proportional to the change in the resistance. These devices are simply a potentiometer strip laid out in a straight line with a wiper embedded below the surface. Since the device is inexpensive ($22.95 [39])$, the magneto pot by Spectra Symbol was purchased to be experimented with, the device can be seen below in Figure 48. Using strong rare earth magnets it was determined the device had a high amount of friction as the magnet pulls the wiper across the resistive strip. The magnets could barely slide the wiper from one inch away through air, let alone 0.75 inches of acrylic. It was determined this device would not be reliable enough for the system, thus a vision system was investigated.
The method by which the piston position will be measured is a vision detection system utilizing a NI Vision Assistant through the use of a commonly available webcam. Using the Vision Assistant, the camera can be placed in any location and register data as long as a calibration step is performed before data is generated. The program allows for sequences of frames to be analyzed. The biggest difference between webcams and other cameras is the image quality and the effects that lighting have on the picture.

The first camera used in the project had an image resolution of only 320x240 pixels with a sampling rate of 10 frames per second (fps). The camera was not able to display colors very well and required careful lighting schemes in order to differentiate components like the end caps and piston in the image. The webcam that is currently used in the project is a Logitech S 7500 that has a maximum picture resolution of 640x480 pixels and a sampling rate of 15 fps. This camera handled the glare and effects of lighting better than the first camera and has a color boost option. Differentiating between components was fairly easier, but would require further processing.

The program utilizes a perspective grid calibration step that converts pixels into real measurements. A grid with dots at a known distance of 25.4 mm (1 in) needs to be placed near the object in question, and a parallel axis must be defined to complete the calibration. Given the known distances from the dots, the programs singles the dots out and calibrates the image. Once the calibration step is complete, the images are processed by first applying a color threshold, which converts the image into a bitmap. Different low pass and edge detection filters can be used to further enhance the differences in the image. Then an edge detector is applied to the bitmap to draw a rectangle. The length of this rectangle is then averaged from the end cap to the piston and displayed by the program. Using these methods, the camera is able to reference a known distance and track the displacement of the piston.
The accuracy of the optical measurement system is dependent on the quality of the picture, the filters, and the operations that Vision Assistant employs. Through testing, the system has an error ranging from 5% to 2% with respect to other measurements.

The image acquisition system was decided on since it was inexpensive, as LabVIEW was already installed on the computer, and off the shelf webcam is inexpensive (around $30-$50). The flow meter for an accurate off the shelf one was too costly, the fabricated version may not be accurate enough, an LVDT is costly and had packaging issues, and the magnetic linear potentiometer had frictional issues.
4. Testing Methodology

In order to compute the energy density of the accumulator, the mass and energy stored in the system must be known. The mass is measured beforehand, thus the energy stored as a gas and as a flywheel must be computed and added together. Energy stored in the gas will be measured as follows:

The pressure sensors will also provide part of the equation to solve for the energy stored as a gas. By treating the gas as isothermal, then only the change in volume and the initial pressure are required to compute the energy stored as a gas. Since the cylinder and piston geometry are known, by measuring the length of the hydraulic volume, the total volume of the fluid may be found. Armed with the pressure and volume, the energy stored in the gas can be computed.

For the second component of the energy stored in the flywheel, the angular velocity must be known. For this measurement an optical interrupter will be used. In addition, the angular velocity can be compared to the pressure sensor data to correlate angular velocity with pressure distribution. Thirdly, the angular velocity will be used to determine the frictional loses in the system which will be achieved by spinning the system up to a preset velocity, then observing the decrease in speed with respect to time. The friction can then be computed from the resulting data. Also by knowing the torque applied to the system, the losses can be computed by comparing it with the angular velocity. The torque in the system will be measured using a load cell attached to a torque arm.

With the ability to measure energy density, through various sensors, there are two additional strain gauges on board, mounted in the axial and radial direction in order to verify the FEA and hand calculations. The calibration and set up procedure for all these tests is as follows:

XBee Modules

The XBee 802.15.4 modules are used to transmit pressure sensor data, as well as strain measurements, from the rotating system to the computer off-board. One module is mounted to the fluid side end cap, and the other module is connected to a computer via a USB port.

The modules require 3.3V for their operation. A voltage reference also needs to be provided, which indicates to the device the maximum voltage value that it should be able to transmit. The reference voltage was set to 3.3V to allow a higher resolution for maximum
accuracy when reading pressure and strain data. Finally, the ground pin is hooked up on the transmitter.

Each module has two rows of 12 pins each. Since the spacing between the pins is too small to mount the module on a standard printed circuit board, breakout boards were purchased that are designed especially for the XBee modules. Wires are then soldered onto the board to provide access to the corresponding pin. An example of the XBee being used to read values from a sensor is shown in the schematic in Figure 49.

![XBee Sensor Schematic](image)

Figure 49: XBee Sensor Schematic

Since the modules had to gather analog voltage data from 4 pressure sensors and 2 strain gauges, all 6 of the analog to digital converters available on the device were used. ADC0 and ADC1 are connected to the pressure sensors on the fluid side, and ADC4 and ADC5 are connected to the pressure sensors on the gas side of the accumulator. ADC2 and ADC3 are wired to the two strain gauges that measure axial and radial strain. The modules are protected from any surges in voltage by a voltage regulator, which is connected between the 9V battery and the module. Data streaming begins as soon as the transmitting module receives power.

The software X-CTU needs to be downloaded in order to program the XBee’s to perform analog to digital conversions. This is available free of cost from the Digi website. In addition, the FTDI driver needs to be installed in order for the computer to recognize and communicate with
the receiving module. A screenshot of the X-CTU interface with hexadecimal data is shown in Figure 50.

![X-CTU Interface](image)

Figure 50: X-CTU Interface

The configuration commands used in the software to program the transmitter are shown in Table 9.

<table>
<thead>
<tr>
<th>Command</th>
<th>Transmitter</th>
<th>Receiver</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATDL</td>
<td>5678</td>
<td>1234</td>
<td>Address of each unit</td>
</tr>
<tr>
<td>ATMY</td>
<td>1234</td>
<td>5678</td>
<td>Address of unit to send to</td>
</tr>
<tr>
<td>ATID</td>
<td>3333</td>
<td>3333</td>
<td>PAN ID (should be same)</td>
</tr>
<tr>
<td>ATIU</td>
<td>1</td>
<td>N/A</td>
<td>Set to receive of UART</td>
</tr>
<tr>
<td>ATIA</td>
<td>5678</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>ATD0</td>
<td>N/A</td>
<td>2</td>
<td>Set pin 0 to analog input</td>
</tr>
<tr>
<td>ATD1</td>
<td>N/A</td>
<td>2</td>
<td>Set pin 1 to analog input</td>
</tr>
<tr>
<td>ATD2</td>
<td>N/A</td>
<td>2</td>
<td>Set pin 2 to analog input</td>
</tr>
<tr>
<td>ATD3</td>
<td>N/A</td>
<td>2</td>
<td>Set pin 3 to analog input</td>
</tr>
<tr>
<td>ATD4</td>
<td>N/A</td>
<td>2</td>
<td>Set pin 4 to analog input</td>
</tr>
<tr>
<td>ATD5</td>
<td>N/A</td>
<td>2</td>
<td>Set pin 5 to analog input</td>
</tr>
<tr>
<td>ATIT</td>
<td>N/A</td>
<td>2</td>
<td>Samples before transmission</td>
</tr>
<tr>
<td>ATIR</td>
<td>N/A</td>
<td>14</td>
<td>Sample rate (in hex)</td>
</tr>
<tr>
<td>ATWR</td>
<td>No value</td>
<td>No value</td>
<td>Write to non-volatile memory</td>
</tr>
</tbody>
</table>

60
Several points must be noted when using these settings to configure the modules. First, the sample rate maximum is 1 kHz for one pin, or for all 6 pins, $1000/6 = 167$ Hz for each pin. The samples before transmission is limited by the buffer limit of 93 bytes for the XBee. Since these are 10 bit samples, each sample is two bytes resulting in a maximum of 46 samples able to be sent on one transmission. For all six channels this means a maximum of seven samples can be sent for each transmission. On the receiver the command that causes the device to send data is ATIU, where the transmitter will automatically send the API packets as a hexadecimal string. Once the commands are entered, ATWR must be sent to write the settings to non-volatile memory. Without this command, all changes will be lost.

The hexadecimal string is received at the USB port as serial data. A LabVIEW program is used to parse the string and convert it to a decimal value. Screenshots of the program are shown in Figure 51 and Figure 52.

The baud rate is selected on the front panel, as well as the COM port at which data is received by the receiving module. Depending on the baud rate, which should be selected to match the baud rate of the modules, the number of bits per second received is determined.

![Figure 51: LabVIEW Front Panel for XBee](image-url)
The string of hexadecimal data received is checked for the delimiter ‘7E’. After every instance of this hexadecimal byte, the 6 different desired measurements are extracted from the string and separated into columns. This is done by saving each string received into an array and using a counter to arrive at the desired 6 bytes.

Each byte is written to a different column in an excel spreadsheet. An example of a serial string received by the computer is:

```
7E 00 00 B8 01 0C 01 0A 00 FB 00 B9 00 C3 A3
```

The data is then adjusted based on the 10 bit capability of the ADC. Since the maximum value of the hexadecimal byte that is received is 1024, the data is divided by this value and adjusted on a 3.3V scale to obtain the analog voltage initially received by the transmitter. Therefore final values are obtained for pressure and strain.

Pressure Sensors

For calibrating the pressure sensors, the system is first pre-charged to a set value, then the hydraulic fluid is pumped in. The valve is closed, and the pressure at the mechanical pressure transducer in the hydraulic line is recorded. In a static environment, with no fluid being added or removed, and the accumulator not rotating, the pressure across all five pressure sensors should be the same. The voltages at this corresponding pressure are recorded. This step is repeated five times at varying pressures in order to obtain the slope of the pressure sensor in relationship to the
pressure. This will also reveal the dc offset of each sensor. Adjusting for this offset and slope, pressure readings may commence.

The onboard pressure sensors require a VI, which reads in the values from the XBee and stores them to an excel file. The strings in this file must be parsed, as they are in a standard format, so the pressure readings may be separated. The strings are transmitted as hexadecimal; therefore, a conversion to binary is required. After this binary conversion, the voltage can be related to pressure via a conversion factor. After calibration, the slope and dc offset may be used to read the proper pressure readings of the sensors.

The voltage ratio of the pressure sensor output compared to the supply voltage was applied for the pressure sensor that was in the hydraulic line. The VI for this pressure sensor can be seen in Figure 53 and the block diagram in Figure 54.

![Figure 53: Pressure Sensor VI](image)

63
Strain Gauges

The strain gauges are used to verify the strain values predicted by the finite element analysis model. The maximum value for predicted strain on the outer wall of the acrylic chamber is 3 μ-strain in the radial direction. Two strain gauges are used; one mounted in the radial direction at the point of maximum external strain, and the other in the axial direction at a similar location.

The strain gauges used have a gauge factor of 2.1, and an internal resistance of 120Ω. They are configured using a quarter wave Wheatstone bridge. The change in temperature during operation is negligible; thus, a full wave bridge that compensates for changes in temperature is not required. The schematic for the strain gauge set up is shown in Figure 55.
The gain of the output of the strain gauges is set up such that the maximum possible output corresponds to a radial strain of 6 μ-strain. The voltage readings from the output of the strain gauge can be used to find strain from the formula:

\[
strain (\varepsilon) = \frac{-4V_r}{GF(1 + 2V_r)} \times \left(1 + \frac{R_L}{R_g}\right)
\]

(Eq. 9)

Where:

\[
V_r = \left(\frac{V_{CH(strained)} - V_{CH(unstrained)}}{V_{EX}} \right)
\]

(Eq. 10)

- \(V_r \) is the voltage ratio that is used in the voltage to strain conversion equations
- \(GF \) is the gauge factor
- \(R_L \) is the lead resistance
- \(R_g \) is the nominal gauge resistance
- \(V_{CH} \) is the measured signal voltage
- \(V_{EX} \) is the excitation voltage

Therefore, the voltage obtained from the strain gauge via the wireless modules is directly substituted in the formulas above to get the corresponding strain value.

Tachometer

To determine the angular velocity of the system, and optical interrupter has a disc with slots cut, rotate in between the sensor, each slot generates a pulse which is counted by the counter on the DAQ. Since there is no hardware timer on the card, the number of pulses is read in over a given period of time, counted by the software, and this number of pulses is divided by the time to find the frequency. To physically connect the device, the sensor must be placed so the disc slides between it easily. A 5-volt power source must be connected to it. To test if the sensor is working, when the sensor is blocked it should output 5V, and 0V when open. The LabVIEW
VI will record the RPM with respect to time. The number of pulses is set at 4, corresponding to the number of slots in the disc. By decreasing the time a faster response to velocity changes will be observed, but the accuracy will decrease. Thus, a time of 2-seconds is chosen to trade off between accuracy and response time. After choosing a file save directory, the file will be saved to the directory in two columns whenever write to file is enabled. The User VI and block diagram can be seen in Figure 56 and Figure 57.

Figure 56: Tachometer VI

Figure 57: Tachometer Block Diagram
Instrumentation Amplifier

The instrumentation amplifiers are an integral part of the DAQ; they increase the resolution of the measurements by increasing the range. A gain of 33 is applied to the 0 to 100mV output of each pressure transducer to bring the range to 0 to 3.3V. There are three dual channel amplifiers, which were used to minimize the size of the circuits (3 were needed onboard rather than 6). Gain set resistors of 1% tolerance were used to reduce uncertainty. The output of the strain gauge at the maximum strain was computed and scaled, with a resistor of 390Ω, and 20Ω for the axial and radial strain. The instrumentation amplifier gain can be easily changed by changing the gain set resistor. If the voltage output is around 7-8V, then the pressure sensor or current source is not connected. The output of the instrumentation amplifier should not exceed 3.3V, as this could damage the microcontroller. The 200 kHz INA126 dual channel instrumentation amplifier is fast enough to respond to changes as the XBee can sample at 1 kHz maximum.

Load Cell

The load cell specified previously is a full-bridge thin-beam type, which essentially is a beam that is able to be in compression or tension. The strain gauge based load cell has a Wheatstone bridge configuration attached to one surface at the center. If a positive and negative power source is applied to the load cell, the output also can be read in positive or negative, and thus a direction can be established. The group decided to give a 5 V source based on the load cell specifications. This gives a read out of 2 mV/V, resulting in a 10 mV output; therefore, an instrumentation amplifier was utilized. To get the proper feedback, the following circuit was implemented (see Figure 58).

![Load Cell Circuit Diagram](image)
An output wire and a reference ground wire are attached to the positive input of the AII channel and ground of the USB DAQ card, respectively. Since the power source cannot reliably provide a constant 5 volts, the positive and negative leads were also connected and read in LabVIEW. The positive source was attached to the AII0 channel of the DAQ card, and the negative source was grounded. Now the DAQ card can interface with LabVIEW and perform the necessary calculations to find the torque. The front panel of the VI is shown in Figure 59.

![Figure 59: Load Cell VI Front Panel](image)

The front panel is quite simple; the user only has to enter in a calibration factor and an Excel file to output data to. The delay time can also be changed, but the default setting of 0.01 seconds was found to be sufficient in identifying the peak torque. All other values, as seen on to the right of the graph, are outputs for easy reference. The graph allows the user to get real time feedback, so they are able to see the calculated torque during operation.

The block diagram looks more complex than it is (see Figure 60). The VI starts on the left side where the two analog inputs are read into LabVIEW. The output voltage is calibrated first, and then a ratio of the output voltage to the source voltage is taken. This ratio is multiplied by the maximum 5 lbf of the load cell. At this point, the force exerted on the torque arm is known, which is then multiplied by the distance of 3.25 inches to obtain the torque. Each calculation step is recorded to an Excel file for easy manipulation. The most important graph comparison is the torque versus time. The peak value in the graph is the maximum torque of the motor.
Vision System

The idea of using NI’s vision assistant and LabVIEW to monitor the piston position was synthesized due to the possibility of having an external sensor to measure the movement of the piston during a test on an already cramped system. The concept behind using the vision system was to identify features of the flywheel-accumulator that could be used to measure the movement of the piston and record the change as close to real-time as possible.

The configuration used in the project involves the use of a Logitech S 7500 webcam with a maximum resolution of 640x480 image capture at 15 frames per second (fps). The camera is interfaced with a computer via USB and is configured to NI Vision Assistant that can acquire and process images. The Vision Assistant can acquire a single image or a sequence of frames to be used in the process image option via a script. It has the capability to write scripts to analyze images with respect to properties such as color or geometry. These scripts could then be utilized to build a LabVIEW VI.
The first step in calibrating the piston position measurement is to acquire a snapshot and then calibrate the figure using a perspective grid calibration shown in Figure 61. This step identifies the grid dots and isolates them from the original image using a color threshold operation.

Figure 61: Grid Calibration

Next, the program converts the pixels into real-world distances via the known distances between the dots (24.5 mm) in a box that is defined by the user. An axis of origin that is parallel to the components in the image must also be defined in order to finish the calibration process.

Once the calibration step is completed, Vision Assistant can apply operations that will isolate features, such as the end caps and the piston in order to determine the piston position. The color threshold function isolates a certain color range in RGB format. It isolates the colors and generates an 8-bit image that can be further processed. Figure 62 depicts how the operation takes the original image isolates the color ranges and creates a new image. The figure depicts how the color threshold is able to isolate the black o-ring in the gas side end cap and the U-seal of the piston.

Figure 62: Color Threshold Operation
The new image can then go through two different filters to clean up any noise caused by lighting and unwanted shadows. A low pass filter is used to eliminate any outlying shadow or unwanted features leaving the edges of the seals that can be used as reference points. The second filter is an edge detection filter that separate edges and eliminates solid regions. Figure 63 displays how the filters manipulate the 8-bit image.

![Figure 63: Filter Operations](image)

The final step to setting up the Vision Assistant is to apply a clamp operation of the edges that can be utilized to measure the distance the piston travels. The clamp operation defines a box of interest and the function measures the average distance from the outer lines that exist in the region. Drawing the box so one of the end cap seals is an edge and the other edge is at the furthest position where furthest u seal can travel will allow the program to always measure the same distance. Figure 64 provided below shows this setup.
Figure 64: Clamping Function

The clamping function also allows the user to define properties of the types of edges it is searching for based on edge strength, smoothing, gap, and steepness.

With the Vision Assistant script complete, a LabVIEW VI can be created based on the script. Creating the VI requires the user to define the controls and indicators desired in the VI. Once all the parameters are filled, LabVIEW creates the VI that can analyze images and record data, which can be viewed in Appendix O: Vision System LabVIEW VI.
5. Results

Unfortunately, the group was unable to record any pressure sensor readings. Additionally, the circuitry for the strain gages was not complete, and the tachometer was not reading the necessary voltage. The only reportable results the team obtained were for the torque of the motor.

Torque Results

The torque was calculated per the torque arm and load cell combination. The three following runs were consecutive outputs from LabVIEW to Excel.

![Torque vs. Time - Run 1](Figure 65: Torque Measurement – Run 1)
The first run registered a maximum torque of 7.951 in*lb. The second and third had a maximum of 8.242 and 7.55 in*lb, respectively.
6. Discussion

Due to a combination of issues with our data acquisition system, the team was unable to collect results from the pressure sensors, strain gages, tachometer, and video capture. Three out of the five pressure sensors were damaged unexpectedly from being secured to the accumulator during demonstration. The strain gages were mounted, but not connected to the wireless XBees because the team felt time was better spent on the pressure sensors. Additionally, the strain gages were mounted on the outer circumference of the cylinder, which according to the FEA model where the chamber experiences about 1 to 2 µ-strain. The team felt that this small strain would be difficult to register given the small values of strain. The tachometer was not reading the necessary voltage due to problems interfacing with the DAQ card. When disconnected from the card the expected output voltages would be correct, but when the tachometer was connected to the card it would register unexpected output voltages. Lastly, the video capture worked to an extent, but could not be applied without the other components in unison. The images would need to be acquired and then inputted individually into the LabVIEW VI for analysis. The only preliminarily data that was collected was for the torque measurement.

Torque Measurement

The torque results do not match the analytical value of 13.701 in*lb at maximum operating conditions. There is error in either the data collection method or natural elements are affecting it. Natural elements may include the friction in the motor mounts and/or the motor may have exhibited power loss. Although the motor support structure was designed to have a free running fit, there is still noticeable friction when rotated by hand. The motor also could not be running at its full potential. Further testing would need to be done to find the true reasoning for the difference in values.

Each test seemed to imply good repeatability, but further improvements could be made to reduce noise. It would be beneficial to have a better calibration technique. The load cell could be calibrated by applying a known force and comparing actual to the output in the VI. Also, shielded wire would block the 60 Hz atmosphere better, which would in turn reduce the noise in the data.
7. Conclusion

No formal conclusion could be made about the energy density and the pressure distribution of the gas and oil sides. The only notable data was the torque measurements for the motor. If we were able to work the problems out, the group is confident that our original goal could be achieved.

This MQP project required knowledge of design, manufacturing, testing, and many aspects of engineering that the team was not introduced to in coursework. Therefore, the flywheel-accumulator taught us a lot about hydraulics and the interaction between different energy systems. Unfortunately, the full goal of this project was not reached because each stage of the prototype process took longer than expected, which left little time at the end for testing. On the other hand, the system performed adequately given the operational ranges that it was designed to handle. Hopefully, Professor Van de Ven or other students will take our work and continue the concept in hopes of proving the increased energy density and parabolic distribution.

The first possible place for future work would be to create a baffle design. The baffles would ideally prevent fluid swirl, which is a cause for frictional loses. The team had initial baffle designs, but was unable to bring any to a full working scale. The challenge with this is that the baffles must retract and expand as the piston moves side to side.

Since our project was only a proof of concept, others could apply the idea of the flywheel-accumulator to a regenerative braking system to better test the feasibility of its use in hybrid vehicle applications. The flywheel-accumulator could even be applied to other hydraulic systems to increase the energy storage density of accumulators in general.
References

 Quebec, Canada, Jan 2009.
 http://www.roymech.co.uk/Related/Electrics/Electrics_Direct_Current.html
 accumulators-boost/122463
[8] J Van de Ven, M Olson, and P Li, "Development of a Hydro-Mechanical Hydraulic Hybrid Drive
 Train with Independent Wheel Torque Control for an Urban Passenger Vehicle," in International
[9] Perry Y Li, James D Van de Ven, and Caleb Sancken, "Open Accumulator Concept for Compact
 Fluid Power Energy Storage," in ASME 2007 International Mechanical Engineering Congress and
http://simplybearings.co.uk/shop/product_info.php?products_id=1496
http://www.superswivels.com/InlineSwivels.html
http://www.rotarysystems.com/series-008
http://www.omega.com/Pressure/pdf/LCL.pdf
http://robotsinsearch.com/baby-orangutan-robot-controller-p-244.html
http://www.digi.com/products/wireless/point-multipoint/xbee-pro-series1-module.jsp
http://www.rdpe.com/ex/hiw-lvdt.htm
http://zone.ni.com/devzone/cda/tut/p/id.3642
http://answers.com/topic/strain-gauge#gauge_factor
http://search.digikey.com/scripts/DkSearch/dksus.dll?vendor=0&keywords=msp6920
http://www.meas-spec.com/pressure-sensors.aspx
http://www.lvdt.co.uk/howtheywork.html
0] [4] Simply Bearings. 62042Z Shielded Ball Bearing. [Online].
4] Simply Beairngs. 62042Z Shielded Ball Bearing. [Online].
5] hyd.com/accumulators/Accumulators.htm
7]
Nomenclature

<table>
<thead>
<tr>
<th>Word</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC</td>
<td>Analog to digital</td>
</tr>
<tr>
<td>ANSYS</td>
<td>FEA program</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer Aided Design</td>
</tr>
<tr>
<td>FEA</td>
<td>Finite Element Analysis</td>
</tr>
<tr>
<td>NI</td>
<td>National Instruments</td>
</tr>
<tr>
<td>XBee</td>
<td>Wireless microcontroller</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_n</td>
<td>Normal acceleration</td>
</tr>
<tr>
<td>A_t</td>
<td>Tensile area</td>
</tr>
<tr>
<td>d</td>
<td>Bolt diameter</td>
</tr>
<tr>
<td>$E_{flywheel}$</td>
<td>Energy stored in a flywheel</td>
</tr>
<tr>
<td>E_{gas}</td>
<td>Energy stored in a gas</td>
</tr>
<tr>
<td>E_{stored}</td>
<td>Energy stored</td>
</tr>
<tr>
<td>F</td>
<td>Force</td>
</tr>
<tr>
<td>F_b</td>
<td>Balance force</td>
</tr>
<tr>
<td>F_i</td>
<td>Preload force</td>
</tr>
<tr>
<td>g</td>
<td>Gravity</td>
</tr>
<tr>
<td>I_{fluid}</td>
<td>Inertia of the fluid</td>
</tr>
<tr>
<td>$I_{flywheel}$</td>
<td>Inertia of the accumulator with no fluid</td>
</tr>
<tr>
<td>I_{total}</td>
<td>Total inertia</td>
</tr>
<tr>
<td>K_i</td>
<td>Coefficient of friction</td>
</tr>
<tr>
<td>Ksi</td>
<td>1000 psi</td>
</tr>
<tr>
<td>L</td>
<td>Length</td>
</tr>
<tr>
<td>l_g</td>
<td>Length of gas volume</td>
</tr>
<tr>
<td>l_h</td>
<td>Length of hydraulic volume</td>
</tr>
<tr>
<td>M_b</td>
<td>Mass of the 9v battery</td>
</tr>
<tr>
<td>M_p</td>
<td>Mass of the pressure sensor</td>
</tr>
<tr>
<td>N_a</td>
<td>Actual safety factor</td>
</tr>
<tr>
<td>N_d</td>
<td>Desired safety factor</td>
</tr>
<tr>
<td>P</td>
<td>Power</td>
</tr>
<tr>
<td>$P(r)$</td>
<td>Pressure as a function of radius</td>
</tr>
<tr>
<td>P_1</td>
<td>Initial Pressure</td>
</tr>
<tr>
<td>P_{max}</td>
<td>Maximum pressure</td>
</tr>
<tr>
<td>P_s</td>
<td>System pressure</td>
</tr>
<tr>
<td>R</td>
<td>Compression factor</td>
</tr>
<tr>
<td>r_0</td>
<td>Outer radius</td>
</tr>
<tr>
<td>r_1</td>
<td>Distance from center to first pressure sensor</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>r_2</td>
<td>Distance from center to second pressure sensor</td>
</tr>
<tr>
<td>r_b</td>
<td>Distance from center to battery</td>
</tr>
<tr>
<td>r_i</td>
<td>Inner radius</td>
</tr>
<tr>
<td>S_p</td>
<td>Proof strength</td>
</tr>
<tr>
<td>t</td>
<td>Thickness of acrylic</td>
</tr>
<tr>
<td>T_i</td>
<td>Preload torque</td>
</tr>
<tr>
<td>V</td>
<td>Volume</td>
</tr>
<tr>
<td>V_f</td>
<td>Final volume</td>
</tr>
<tr>
<td>V_i</td>
<td>Initial volume</td>
</tr>
<tr>
<td>V_{sp}</td>
<td>Modified proof strength</td>
</tr>
<tr>
<td>V_{st}</td>
<td>Modified tensile strength</td>
</tr>
<tr>
<td>ΔL</td>
<td>Change in length</td>
</tr>
<tr>
<td>ΔP</td>
<td>Pressure differential from center to edge</td>
</tr>
<tr>
<td>ε</td>
<td>Strain</td>
</tr>
<tr>
<td>ε_r</td>
<td>Radial strain</td>
</tr>
<tr>
<td>ε_t</td>
<td>Tangential strain</td>
</tr>
<tr>
<td>ρ</td>
<td>Density</td>
</tr>
<tr>
<td>σ'</td>
<td>Von Mises stresses</td>
</tr>
<tr>
<td>σ'_{max}</td>
<td>Maximum Von Mises stresses</td>
</tr>
<tr>
<td>$\sigma_{1,2,3}$</td>
<td>Principle stresses</td>
</tr>
<tr>
<td>σ_{ap}</td>
<td>Axial stress from pressure</td>
</tr>
<tr>
<td>σ_{rf}</td>
<td>Radial stress from flywheel</td>
</tr>
<tr>
<td>σ_{rp}</td>
<td>Radial stress from pressure</td>
</tr>
<tr>
<td>σ_{tf}</td>
<td>Tangential stress from flywheel</td>
</tr>
<tr>
<td>σ_{tp}</td>
<td>Tangential stress from pressure</td>
</tr>
<tr>
<td>ω</td>
<td>Angular velocity</td>
</tr>
<tr>
<td>ω_{max}</td>
<td>Maximum angular velocity</td>
</tr>
</tbody>
</table>
Appendix A: Analytical Chamber Stress & Strain

Stresses in an Acrylic Thick Walled Cylinder with 6in. OD/t = 1"

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield Strength</td>
<td>$S_y := 6.03\text{ksi}$</td>
</tr>
<tr>
<td>Weight Density</td>
<td>$\gamma := 73.737846\text{lbf/ft}^3$</td>
</tr>
<tr>
<td>Gravity</td>
<td>$g := 32.174\text{ft/s}^2$</td>
</tr>
<tr>
<td>Poisson's Ratio</td>
<td>$\nu := 0.3'$</td>
</tr>
<tr>
<td>Elastic Modulus</td>
<td>$E := 425\text{ksi}$</td>
</tr>
<tr>
<td>Dimensions of the cylinder</td>
<td></td>
</tr>
<tr>
<td>t := .75in</td>
<td></td>
</tr>
<tr>
<td>$r_0 := 3\text{in}$</td>
<td></td>
</tr>
<tr>
<td>Working Pressure</td>
<td>$p_i := 500\text{psi}$</td>
</tr>
<tr>
<td>Desired Safety Factor</td>
<td>$N_s := 2.5$</td>
</tr>
<tr>
<td>Angular Velocity</td>
<td>$\omega := 3000\text{rpm}$</td>
</tr>
<tr>
<td>Inner Radius</td>
<td></td>
</tr>
<tr>
<td>$r_i := r_0 - t = 2.25\text{in}$</td>
<td></td>
</tr>
</tbody>
</table>

Generic Equations

Pressure Induced Stresses

Axial Stress

$$\sigma_{ap}(p_i) = \frac{p_i \cdot r_i^2}{r_0^2 - r_i^2}$$

Tangential Stress

$$\sigma_{tp}(p_i) = \frac{r_i^2 \cdot p_i}{r_0^2 - r_i^2} \left(1 + \frac{r_0^2}{r^2} \right)$$

Radial Stress

$$\sigma_{rp}(p_i) = \frac{r_i^2 \cdot p_i}{r_0^2 - r_i^2} \left(1 - \frac{r_0^2}{r^2} \right)$$

Flywheel Stresses

Tangential Stress

$$\sigma_{tf} = \frac{\gamma \cdot \omega}{g} \cdot \left(\frac{3 + \nu}{8} \right) \cdot \left(\frac{r_i^2}{r_i^2 + r_0^2} + \frac{r_i^2 \cdot r_0^2}{r_0^2} \cdot \frac{2}{3 + \nu} \cdot \frac{r^2}{r^2} \cdot \left(1 + 3 \cdot \nu \right) \cdot \frac{r^2}{r^2} \right)$$
Radial Stress

\[\sigma_{rf} = \frac{\gamma \omega^2}{g} \left(\frac{3 + \nu}{8} \right) \left(\frac{r_i^2 + r_0^2}{r^2} - \frac{r_i^2 \cdot r_0^2}{r^2} - \frac{1 + 3 \nu \cdot r^2}{3 + \nu} \right) \]

Analysis of the Stresses at the Outer Diameter

\[r := r_0 = 3 \text{ in} \]

Pressure Induced Stresses

Axial Stress

\[\sigma_{ap}(p_i) := \frac{p_i \cdot r_i^2}{r_0^2 - r_i^2} \]

Tangential Stress

\[\sigma_{tp}(p_i) := \frac{r_i^2 \cdot p_i}{r_0^2 - r_i^2} \left(1 + \frac{r_0^2}{r^2} \right) \]

Radial Stress

\[\sigma_{rp}(p_i) := \frac{r_i^2 \cdot p_i}{r_0^2 - r_i^2} \left(1 - \frac{r_0^2}{r^2} \right) \]

Flywheel Stresses

Tangential Stress

\[\sigma_{tf} := \frac{\gamma \omega^2}{g} \left(\frac{3 + \nu}{8} \right) \left(\frac{r_i^2 + r_0^2}{r^2} + \frac{r_i^2 \cdot r_0^2}{r^2} - \frac{1 + 3 \nu \cdot r^2}{3 + \nu} \right) = 62.203 \text{ psi} \]

Radial Stress

\[\sigma_{rf} := \frac{\gamma \omega^2}{g} \left(\frac{3 + \nu}{8} \right) \left(\frac{r_i^2 + r_0^2}{r^2} - \frac{r_i^2 \cdot r_0^2}{r^2} - \frac{1 + 3 \nu \cdot r^2}{3 + \nu} \right) = 15.953 \text{ psi} \]

Stresses on the Cylinder due to Working Pressure

\[\sigma_{ap}(p_i) = 0.643 \text{ ksi} \quad \sigma_{tp}(p_i) = 1.286 \text{ ksi} \quad \sigma_{rp}(p_i) = 0 \text{ psi} \]

Principal Stresses

\[\sigma_1 := \sigma_{tp}(p_i) + \sigma_{tf} = 1.348 \text{ ksi} \quad \sigma_2 := \sigma_{ap}(p_i) = 89.643 \text{ ksi} \quad \sigma_3 := \sigma_{tp}(p_i) + \sigma_{rf} = 15.953 \text{ psi} \]
Von Mises Stress
\[
\sigma' := \sqrt{\frac{\sigma_1^2 + \sigma_2^2 + \sigma_3^2}{2} - \sigma_1 \sigma_2 - \sigma_2 \sigma_3 - \sigma_1 \sigma_3} = 1.154 \text{ksi}
\]

Maximum Allowable Stress
\[
\sigma'_{\text{max}} := \frac{S_y}{N_s} = 2.415 \text{ksi}
\]

Actual Safety Factor
\[
N_a := \frac{S_y}{\sigma'} = 5.231
\]

Solution :=
\[
\text{return "Safe" if } \sigma'_{\text{max}} > \sigma' \text{ otherwise "Fail"}
\]

Solution = "Safe"

Strain Analysis

Tangential Strain
\[
\sigma = E \cdot \varepsilon
\]
\[
\varepsilon_t := \frac{\sigma_1}{E} = 3.172 \times 10^{-3}
\]

Radial Strain
\[
\sigma = E \cdot \varepsilon
\]
\[
\varepsilon_r := \frac{\sigma_3}{E} = 3.754 \times 10^{-5}
\]

\[
\varepsilon = \frac{\Delta L}{L}
\]

Circumference of Interest
\[
L_t := 2 \cdot \pi \cdot r = 18.85 \text{in}
\]

Radius of the Interest
\[
L_r := r = 3 \text{in}
\]

\[
\Delta L_t := \varepsilon_t \cdot L_t = 0.06 \text{in}
\]
\[
\Delta L_r := \varepsilon_r \cdot L_r = 1.126 \times 10^{-4} \text{in}
\]
\[
r' := \frac{\Delta L_t}{2 \cdot \pi} = 9.515 \times 10^{-3} \text{in}
\]
Analysis of the Stresses at the Inner Diameter

\(r_i := r_i = 2.25\text{in} \)

Pressure Induced Stresses

Axial Stress

\[
\sigma_{ap}(p_i) := \frac{p_i \cdot r_i^2}{r_0^2 - r_i^2}
\]

Tangential Stress

\[
\sigma_{tp}(p_i) := \frac{r_i^2 \cdot p_i}{r_0^2 - r_i^2} \left(1 + \frac{r_0^2}{r^2} \right)
\]

Radial Stress

\[
\sigma_{rp}(p_i) := \frac{r_i^2 \cdot p_i}{r_0^2 - r_i^2} \left(1 - \frac{r_0^2}{r^2} \right)
\]

Flywheel Stresses

Tangential Stress

\[
\sigma_{tf} := \frac{\gamma}{g} \cdot \omega \left(\frac{3 + \nu}{8} \right) \left[r_i^2 + r_0^2 + \frac{r_i^2 \cdot r_0^2}{r^2} - \frac{1 + 3 \cdot \nu}{3 + \nu} \cdot r^2 \right] = 91.196\text{psi}
\]

Radial Stress

\[
\sigma_{rf} := \frac{\gamma}{g} \cdot \omega \left(\frac{3 + \nu}{8} \right) \left[r_i^2 + r_0^2 - \frac{r_i^2 \cdot r_0^2}{r^2} - \frac{1 + 3 \cdot \nu}{3 + \nu} \cdot r^2 \right] = 8.974\text{psi}
\]

Stresses on the Cylinder due to Working Pressure

\[
\sigma_{ap}(p_i) = 0.643\text{ksi} \quad \sigma_{tp}(p_i) = 1.786\text{ksi} \quad \sigma_{tp}(p_i) = -500\text{psi}
\]

Principal Stresses

\[
\sigma_1 := \sigma_{tp}(p_i) + \sigma_{tf} = 1.877\text{ksi} \quad \sigma_2 := \sigma_{ap}(p_i) = 0.643\text{ksi} \quad \sigma_3 := \sigma_{tp}(p_i) + \sigma_{tf} = -491.026\text{psi}
\]
Von Mises Stress

\[\sigma' := \sqrt{\sigma_1^2 + \sigma_2^2 + \sigma_3^2 - \sigma_1 \sigma_2 - \sigma_2 \sigma_3 - \sigma_1 \sigma_3} = 2.051 \text{ksi} \]

\[\sigma' = 14.143 \text{MPa} \]

Maximum Allowable Stress

\[\sigma_{\text{max}} := \frac{S_y}{N_s} = 2.415 \text{ksi} \]

Actual Safety Factor

\[N_s := \frac{S_y}{\sigma'} = 2.943 \]

Solution :=

`return "Safe" if \sigma_{\text{max}} > \sigma’
"Fail" otherwise`

Solution = "Safe"

Strain Analysis

Tangential Strain

\[\sigma = E \cdot \varepsilon \]

\[\varepsilon_t := \frac{\sigma_1}{E} = 4.416 \times 10^{-3} \]

Radial Strain

\[\sigma = E \cdot \varepsilon \]

\[\varepsilon_r := \frac{\sigma_3}{E} = -1.155 \times 10^{-3} \]

\[\varepsilon = \frac{\Delta L}{L} \]

Half of the Circumference of Interest

\[L_t := \pi \cdot r = 7.069 \text{in} \]

Radius of Interest

\[r := 2.25 \text{in} \]

\[\Delta L_t := \varepsilon_t \cdot L_t = 0.031 \text{in} \]

\[\Delta L_r := \varepsilon_r \cdot L_t = -2.6 \times 10^{-3} \cdot \text{in} \]

\[r' := \frac{\Delta L_t}{2 \pi} = 4.968 \times 10^{-3} \cdot \text{in} \]
Appendix B: Acrylic Material Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>1.19</td>
<td></td>
</tr>
<tr>
<td>Yield (psi)</td>
<td>11,250</td>
<td></td>
</tr>
<tr>
<td>Elongation, 2 in (50 mm) (%)</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>Modulus of Elasticity, 0.1% Offset (psi)</td>
<td>460,000</td>
<td></td>
</tr>
<tr>
<td>Modulus of Elasticity (Yield) (psi)</td>
<td>53,500</td>
<td></td>
</tr>
<tr>
<td>Compressive Strength (psi)</td>
<td>125,000</td>
<td></td>
</tr>
<tr>
<td>Modulus of Elasticity (100% Modulus) (psi)</td>
<td>473,000</td>
<td></td>
</tr>
<tr>
<td>Modulus of Elasticity (200% Modulus) (psi)</td>
<td>18,100</td>
<td></td>
</tr>
<tr>
<td>Modulus of Elasticity (300% Modulus) (psi)</td>
<td>446,000</td>
<td></td>
</tr>
<tr>
<td>Compressive Deformation (Under Load) (psi)</td>
<td>1.27</td>
<td></td>
</tr>
<tr>
<td>Water Absorption (100% Relative Humidity) (%)</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Optical Properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refractive Index</td>
<td>1.49</td>
<td></td>
</tr>
<tr>
<td>Tint, Tint Color</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>Transmittance (%)</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>Environmental Properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Absorption, 24 hour immersion (%)</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Humidity (Pouring Rain) (ULSD III)</td>
<td>34%</td>
<td></td>
</tr>
<tr>
<td>Electrical Properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume Resistivity</td>
<td>6.0 x 10^14</td>
<td>[Note: Additional data codes and approvals are available upon request. Additional (%) values will change with thickness. Difference in length and weight as measured at room temperature, before and after heating above 300 deg. F. Values vary with thickness.]</td>
</tr>
</tbody>
</table>
Appendix C: System Pressure Model

Fluidic Flywheel System Pressure Model

Input Variables

Maximum Pressure
Assume: Pump can continuously output
\[P_{\text{max}} = 250 \text{ psi} \]

Cylinder Dimensions
Inner Chamber radius of accumulator
Assume: 6 in diam pipe with 3/4 in walls
\[r_0 = 2.25 \text{ in} \]
Assume: Length of accumulator is 12 in and piston thickness is 1/2 in
Estimate: Piston position

Axial length of gas volume
\[l_g = 5.5 \text{ in} \]
Find hydraulic fluid volume length from gas length and accum length

Axial length of hydraulic fluid volume
\[l_h = 8.5 \text{ in} - l_g = 3 \text{ in} \]

Density
Density of fluid
\[\rho = 876 \frac{\text{kg}}{\text{m}^3} \]

Angular Velocity
\[\omega = 3000 \text{ rpm} \]

Precharge Pressure
Assume: precharge is 1/2 max pressure
\[P_{\text{charge}} = 0.5 P_{\text{max}} = 125 \text{ psi} \]
Pressure Equations

Gas Pressure

\[P_{\text{gas}} = P_{\text{charge}} \left(\frac{l_g + l_h}{l_g} \right) \]

System Pressure

\[P_s = P_{\text{gas}} - \frac{\rho \cdot \omega^2 \cdot r_0^2}{4} \]

Pressure as a function of radius

\[P(r) = \frac{\rho \cdot \omega^2 \cdot r^2}{2} + P_s \]

Max Pressure at walls

\[P(r_0) \]

Difference in Pressure

\[\Delta P = P(r_0) - P_s \]

Calculation

Gas Pressure

\[P_{\text{gas}} := P_{\text{charge}} \left(\frac{l_g + l_h}{l_g} \right) \quad P_{\text{gas}} = 193.182 \text{psi} \]

System Pressure

\[P_s := P_{\text{gas}} - \frac{\rho \cdot \omega^2 \cdot r_0^2}{4} = 182.943 \text{psi} \]

Pressure as a function of radius

\[P(r) := \left(\frac{\rho \cdot \omega^2 \cdot r^2}{2} + P_s \right) \]

Max Pressure at walls

\[P(r_0) = 203.421 \text{psi} \]

Difference in Pressure

\[\Delta P := P(r_0) - P_s = 20.478 \text{psi} \]
Pressure Profile Graph

\[r := 0 \text{in}, 0.001r_0 \ldots r_0 \]

Pressure Profile from Center to Outer Edges

\(P(r) \) psi

radius (in)
Appendix D: Chamber Selection Tables

Analysis of Pressure Chamber (7" OD x 1")

<table>
<thead>
<tr>
<th>Angular Velocity</th>
<th>600</th>
<th>500</th>
<th>400</th>
<th>300</th>
<th>600</th>
<th>500</th>
<th>400</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety Factor</td>
<td>ΔP (psi)</td>
<td>Safety Factor</td>
<td>ΔP (psi)</td>
<td>Safety Factor</td>
<td>ΔP (psi)</td>
<td>Safety Factor</td>
<td>ΔP (psi)</td>
<td>Safety Factor</td>
</tr>
<tr>
<td>1000</td>
<td>2.831</td>
<td>2.80</td>
<td>0.011</td>
<td>3.394</td>
<td>2.80</td>
<td>9</td>
<td>9.149×10^6</td>
<td>4.236</td>
</tr>
<tr>
<td>1500</td>
<td>2.814</td>
<td>6.32</td>
<td>0.011</td>
<td>3.369</td>
<td>6.32</td>
<td>-3</td>
<td>9.249×10^6</td>
<td>4.196</td>
</tr>
<tr>
<td>2000</td>
<td>2.789</td>
<td>11.2</td>
<td>0.011</td>
<td>3.333</td>
<td>11.2</td>
<td>36</td>
<td>9.39×10^-6</td>
<td>3</td>
</tr>
<tr>
<td>2500</td>
<td>2.758</td>
<td>17.5</td>
<td>0.011</td>
<td>3.289</td>
<td>17.5</td>
<td>57</td>
<td>9.571×10^-6</td>
<td>4.073</td>
</tr>
<tr>
<td>3000</td>
<td>2.72</td>
<td>25.2</td>
<td>0.012</td>
<td>3.236</td>
<td>25.2</td>
<td>81</td>
<td>9.792×10^-6</td>
<td>3.991</td>
</tr>
<tr>
<td>3500</td>
<td>2.677</td>
<td>34.4</td>
<td>0.012</td>
<td>3.174</td>
<td>34.4</td>
<td>11</td>
<td>3.898</td>
<td>11</td>
</tr>
<tr>
<td>4000</td>
<td>2.628</td>
<td>44.9</td>
<td>0.012</td>
<td>3.106</td>
<td>44.9</td>
<td>45</td>
<td>3.794</td>
<td>45</td>
</tr>
</tbody>
</table>

Analysis of Pressure Chamber (7" OD x 3/4")

<table>
<thead>
<tr>
<th>Angular Velocity</th>
<th>600</th>
<th>500</th>
<th>400</th>
<th>300</th>
<th>600</th>
<th>500</th>
<th>400</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety Factor</td>
<td>ΔP (psi)</td>
<td>Safety Factor</td>
<td>ΔP (psi)</td>
<td>Safety Factor</td>
<td>ΔP (psi)</td>
<td>Safety Factor</td>
<td>ΔP (psi)</td>
<td>Safety Factor</td>
</tr>
<tr>
<td>1500</td>
<td>2.204</td>
<td>7.64</td>
<td>0.017</td>
<td>2.64</td>
<td>7.64</td>
<td>8</td>
<td>3.291</td>
<td>7.64</td>
</tr>
<tr>
<td>2000</td>
<td>2.188</td>
<td>13.5</td>
<td>0.017</td>
<td>2.618</td>
<td>13.5</td>
<td>96</td>
<td>3.257</td>
<td>13.5</td>
</tr>
<tr>
<td>2500</td>
<td>2.169</td>
<td>21.2</td>
<td>0.017</td>
<td>2.59</td>
<td>21.2</td>
<td>43</td>
<td>3.214</td>
<td>21.2</td>
</tr>
<tr>
<td>3000</td>
<td>2.146</td>
<td>30.5</td>
<td>0.017</td>
<td>2.577</td>
<td>30.5</td>
<td>91</td>
<td>3.163</td>
<td>30.5</td>
</tr>
<tr>
<td>3500</td>
<td>2.119</td>
<td>41.6</td>
<td>0.018</td>
<td>2.519</td>
<td>41.6</td>
<td>37</td>
<td>3.105</td>
<td>41.6</td>
</tr>
<tr>
<td>4000</td>
<td>2.089</td>
<td>54.3</td>
<td>0.018</td>
<td>2.476</td>
<td>54.3</td>
<td>83</td>
<td>3.039</td>
<td>54.3</td>
</tr>
</tbody>
</table>
Analysis of Pressure Chamber (6" OD x 1")

<table>
<thead>
<tr>
<th>Angular Velocity (rpm)</th>
<th>600</th>
<th>500</th>
<th>400</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>3.214</td>
<td>7.388*10^8</td>
<td>6.164*10^8</td>
<td>4.941*10^8</td>
</tr>
<tr>
<td>1500</td>
<td>3.197</td>
<td>7.446*10^8</td>
<td>6.223*10^8</td>
<td>4.999*10^8</td>
</tr>
<tr>
<td>2000</td>
<td>3.174</td>
<td>7.528*10^8</td>
<td>6.304*10^8</td>
<td>5.081*10^8</td>
</tr>
<tr>
<td>2500</td>
<td>3.144</td>
<td>7.633*10^8</td>
<td>6.410*10^8</td>
<td>5.186*10^8</td>
</tr>
<tr>
<td>3000</td>
<td>3.108</td>
<td>7.761*10^8</td>
<td>6.538*10^8</td>
<td>5.314*10^8</td>
</tr>
<tr>
<td>3500</td>
<td>3.067</td>
<td>7.913*10^8</td>
<td>6.691*10^8</td>
<td>5.466*10^8</td>
</tr>
<tr>
<td>4000</td>
<td>3.02</td>
<td>8.088*10^8</td>
<td>6.865*10^8</td>
<td>5.641*10^8</td>
</tr>
</tbody>
</table>

Analysis of Pressure Chamber (6" OD x 3/4")

<table>
<thead>
<tr>
<th>Angular Velocity (rpm)</th>
<th>600</th>
<th>500</th>
<th>400</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>2.533</td>
<td>3.038</td>
<td>3.794</td>
<td>4.387</td>
</tr>
<tr>
<td>1500</td>
<td>2.523</td>
<td>3.023</td>
<td>3.77</td>
<td>4.199</td>
</tr>
<tr>
<td>2000</td>
<td>2.508</td>
<td>3.002</td>
<td>3.738</td>
<td>4.897</td>
</tr>
<tr>
<td>2500</td>
<td>2.49</td>
<td>2.976</td>
<td>3.697</td>
<td>4.879</td>
</tr>
<tr>
<td>3000</td>
<td>2.467</td>
<td>2.943</td>
<td>3.647</td>
<td>4.792</td>
</tr>
<tr>
<td>3500</td>
<td>2.441</td>
<td>2.906</td>
<td>3.59</td>
<td>4.694</td>
</tr>
<tr>
<td>4000</td>
<td>2.412</td>
<td>2.864</td>
<td>3.526</td>
<td>4.584</td>
</tr>
</tbody>
</table>

Failure Modes

- Safety
- Low ΔP
Appendix E: Bolt Preload Calculation

Flywheel Accumulator
Preload Torque for End Cap Tie Rods

1/4-20 Zinc Plated Bolts Grade 2 UNC

Known Values:

<table>
<thead>
<tr>
<th>Tensile Area</th>
<th>Coefficient of Friction</th>
<th>Bolt Diameter</th>
<th>Proof Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_t := 0.032\text{in}^2$</td>
<td>$K_i := 0.2'$</td>
<td>$d := 0.25\text{in}$</td>
<td>$S_p := 55\text{ksi}$</td>
</tr>
</tbody>
</table>

Preload Force:

$$F_i := 0.9S_p \cdot A_t = 1.584 \times 10^3 \text{ lbf}$$

Preload Torque:

$$T_i := K_i F_i d = 87.12\text{in-lbf}$$
Appendix F: Bolt Loading

Tie Rod Loading

Known Values

<table>
<thead>
<tr>
<th>Tensile Area</th>
<th>Coefficient of Friction</th>
<th>Bolt Diameter</th>
<th>Proof Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_t := 0.032 \text{in}^2$</td>
<td>$K_i := 0.2$</td>
<td>$d := 0.25 \text{in}$</td>
<td>$S_p := 55 \text{ksi}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of Bolts</th>
<th>Young's Modulus (Al)</th>
<th>Aluminum Constants</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n := 8$</td>
<td>$E := 71 \text{GPa} = 1.03 \times 10^4 \text{ksi}$</td>
<td>$b := 0.6381$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$A := 0.7967 \text{in}$</td>
</tr>
</tbody>
</table>

Preload Force

$$F_i := 0.9S_p A_t = 1.584 \times 10^3 \text{lbf}$$

Bolt Loading

<table>
<thead>
<tr>
<th>Length of Clamp Zone</th>
<th>Stiffness of the Bolt</th>
<th>Stiffness of the End Caps</th>
</tr>
</thead>
<tbody>
<tr>
<td>$l_t := 13.19 \text{in}$</td>
<td>$k_b := \frac{1}{l_t} = 2.498 \times 10^4 \text{lb/f in}$</td>
<td>$k_m := b \left(\frac{d}{l_t} \right) = 2.076 \times 10^6 \text{lb/f in}$</td>
</tr>
</tbody>
</table>

Stiffness Constant

$$C := \frac{k_b}{k_m + k_b} = 0.012$$

Portion of Loads in Bolt and Material

$$P_b := C F_i = 18.836 \text{lb}$$

$$P_m := (1 - C) F_i = 1.565 \times 10^3 \text{lb}$$

$$P_b = 83.785 \text{N}$$
Appendix G: Shaft Calculations

Units:
\(1 \text{ ksi} := 10^3 \text{ psi} \)

Safety Factor
\(N := 1.7 \)
Material: Steel 1018 carbon

\(S_Y := 44 \text{ ksi} \)
\(S_{ut} := 60 \text{ ksi} \)
\(S' := 0.5S_{ut} \)

\(\omega := 314.159 \frac{\text{rad}}{s} \)

Offset:
\(r_s := 0.125r \)
Fillet:
\(r_f := 0.0625\text{in} \)

\(d_{\text{in}} := 0.2\text{in} \)
\(d_{\text{hex}} := 0.96\text{in} \)
\(r_{\text{in}} := \frac{d_{\text{in}}}{2} \)

Max fluid volume:
\(V_c := 0.002345\text{m}^3 \)

Lengths:
\(L_{\text{hex}} := 1\text{in} \)
\(L_2 := 1.5\text{in} \)
\(L := L_{\text{hex}} + L_2 = 2.5\text{in} \)

\(x := 0, 0 \leq x \leq L \)
\(S(x,z) := \text{if}(x \geq z, 1, 0) \)

Masses:
\(m_a := 3.5\text{lb} + 3.3\text{lb} + 6\text{lb} + 2\text{lb} + 2\text{lb} = 7.71 \text{kg} \)

\(m_f := 879 \frac{\text{kg}}{3} V_c = 2.062\text{kg} \)
\(m := m_a + m_f = 9.773\text{kg} \)

Acceleration:
\(a_c := \omega^2 r_s = 313.359 \frac{\text{m}}{s^2} \)

Reaction Forces:
\(F_s := ma_c = 3.062 \times 10^3 \text{ N} \)
\(R := \frac{F_s}{2} = 1.531 \times 10^3 \text{ N} \)

Moment and Torque:
\(M_a := RL_{\text{hex}} = 38.893\text{ft} \)
\(T_{\text{max}} := 0 \)
Load \(C_{\text{load}} := 1 \) \(\text{(Bending)} \)

Size \(C_{\text{size}}(d) := 0.869 \left(\frac{d}{\text{in}} \right)^{-0.097} \) \(\text{(Diameter between 0.3 and 10 in)} \)

Surface \(A_S := 2.7 \) \(b'_s := -0.26 \) \(\text{(Machined)} \)

\[
C_{\text{surf}} := A_S \left(\frac{S_{ut}}{\text{ksi}} \right)^{b'_s}
\]

Temperature \(C_{\text{temp}} := 1 \)

Reliability \(C_{\text{reliab}} := 0.81 \) \(\text{(R = 99\%)} \)

\[
S_e(d) := C_{\text{load}} C_{\text{size}}(d) C_{\text{surf}} C_{\text{temp}} C_{\text{reliab}} S_e
\]

\[
\text{Frac}(d) := \frac{d_{\text{hex}}}{d}
\]

\[
A(d) := \frac{\text{Frac}(d) - 1.2}{1.5 - 1.2} = (0.93836 - 0.97098 + 0.97098)
\]

\[
b(d) := \frac{\text{Frac}(d) - 1.2}{1.5 - 1.2} = (-0.25759 + 0.21796 - 0.21796)
\]

\[
K_f(d) := A(d) \left(\frac{r_f}{d} \right)^{b(d)}
\]
Guess

\[d := \text{lin} \]

\[S_e(d) = \frac{M_a \left(\frac{d}{2} \right)}{\pi d^4 / 4 - r_{in}^4} N K_t(d) \]

Given

Find \(d \)

\[d = 0.8 \text{in} \]

\[\text{Frac}(d) = 1.2 \]

\[A(d) = 0.971 \quad b(d) = -0.218 \]

\[K_t(d) = 1.693 \]

Check:

Guess

\[d := \text{lin} \]

\[d = 0.799 \text{in} \]
Appendix H: Tolerance Charts

From: SKF Bearing Catalog

Table 12 (Continued)
Shaft Bearing-Seat Diameters (Values in Inches)

<table>
<thead>
<tr>
<th>Shaft Dia</th>
<th>Seat Dia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>0.688</td>
</tr>
<tr>
<td>1.01</td>
<td>0.693</td>
</tr>
<tr>
<td>1.02</td>
<td>0.698</td>
</tr>
</tbody>
</table>
From SKF Bearing Catalog

| Table 11 (Continued)
| Housing Bearing-Bush Diameters (Values in Inches) |

<table>
<thead>
<tr>
<th>Size</th>
<th>Diameter 1</th>
<th>Diameter 2</th>
<th>Diameter 3</th>
<th>Diameter 4</th>
<th>Diameter 5</th>
<th>Diameter 6</th>
<th>Diameter 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0300</td>
<td>0.0300</td>
<td>0.0300</td>
<td>0.0300</td>
<td>0.0300</td>
<td>0.0300</td>
<td>0.0300</td>
</tr>
<tr>
<td>2</td>
<td>0.0320</td>
<td>0.0320</td>
<td>0.0320</td>
<td>0.0320</td>
<td>0.0320</td>
<td>0.0320</td>
<td>0.0320</td>
</tr>
<tr>
<td>3</td>
<td>0.0340</td>
<td>0.0340</td>
<td>0.0340</td>
<td>0.0340</td>
<td>0.0340</td>
<td>0.0340</td>
<td>0.0340</td>
</tr>
<tr>
<td>4</td>
<td>0.0360</td>
<td>0.0360</td>
<td>0.0360</td>
<td>0.0360</td>
<td>0.0360</td>
<td>0.0360</td>
<td>0.0360</td>
</tr>
<tr>
<td>5</td>
<td>0.0380</td>
<td>0.0380</td>
<td>0.0380</td>
<td>0.0380</td>
<td>0.0380</td>
<td>0.0380</td>
<td>0.0380</td>
</tr>
<tr>
<td>6</td>
<td>0.0400</td>
<td>0.0400</td>
<td>0.0400</td>
<td>0.0400</td>
<td>0.0400</td>
<td>0.0400</td>
<td>0.0400</td>
</tr>
<tr>
<td>7</td>
<td>0.0420</td>
<td>0.0420</td>
<td>0.0420</td>
<td>0.0420</td>
<td>0.0420</td>
<td>0.0420</td>
<td>0.0420</td>
</tr>
<tr>
<td>8</td>
<td>0.0440</td>
<td>0.0440</td>
<td>0.0440</td>
<td>0.0440</td>
<td>0.0440</td>
<td>0.0440</td>
<td>0.0440</td>
</tr>
<tr>
<td>9</td>
<td>0.0460</td>
<td>0.0460</td>
<td>0.0460</td>
<td>0.0460</td>
<td>0.0460</td>
<td>0.0460</td>
<td>0.0460</td>
</tr>
<tr>
<td>10</td>
<td>0.0480</td>
<td>0.0480</td>
<td>0.0480</td>
<td>0.0480</td>
<td>0.0480</td>
<td>0.0480</td>
<td>0.0480</td>
</tr>
<tr>
<td>11</td>
<td>0.0500</td>
<td>0.0500</td>
<td>0.0500</td>
<td>0.0500</td>
<td>0.0500</td>
<td>0.0500</td>
<td>0.0500</td>
</tr>
<tr>
<td>12</td>
<td>0.0520</td>
<td>0.0520</td>
<td>0.0520</td>
<td>0.0520</td>
<td>0.0520</td>
<td>0.0520</td>
<td>0.0520</td>
</tr>
<tr>
<td>13</td>
<td>0.0540</td>
<td>0.0540</td>
<td>0.0540</td>
<td>0.0540</td>
<td>0.0540</td>
<td>0.0540</td>
<td>0.0540</td>
</tr>
<tr>
<td>14</td>
<td>0.0560</td>
<td>0.0560</td>
<td>0.0560</td>
<td>0.0560</td>
<td>0.0560</td>
<td>0.0560</td>
<td>0.0560</td>
</tr>
<tr>
<td>15</td>
<td>0.0580</td>
<td>0.0580</td>
<td>0.0580</td>
<td>0.0580</td>
<td>0.0580</td>
<td>0.0580</td>
<td>0.0580</td>
</tr>
<tr>
<td>16</td>
<td>0.0600</td>
<td>0.0600</td>
<td>0.0600</td>
<td>0.0600</td>
<td>0.0600</td>
<td>0.0600</td>
<td>0.0600</td>
</tr>
<tr>
<td>17</td>
<td>0.0620</td>
<td>0.0620</td>
<td>0.0620</td>
<td>0.0620</td>
<td>0.0620</td>
<td>0.0620</td>
<td>0.0620</td>
</tr>
<tr>
<td>18</td>
<td>0.0640</td>
<td>0.0640</td>
<td>0.0640</td>
<td>0.0640</td>
<td>0.0640</td>
<td>0.0640</td>
<td>0.0640</td>
</tr>
<tr>
<td>19</td>
<td>0.0660</td>
<td>0.0660</td>
<td>0.0660</td>
<td>0.0660</td>
<td>0.0660</td>
<td>0.0660</td>
<td>0.0660</td>
</tr>
<tr>
<td>20</td>
<td>0.0680</td>
<td>0.0680</td>
<td>0.0680</td>
<td>0.0680</td>
<td>0.0680</td>
<td>0.0680</td>
<td>0.0680</td>
</tr>
</tbody>
</table>
Appendix I: PWM Circuit

\[t = \frac{2.3(R_6)(C_3)}{f - \frac{1}{t}} \]

Motor speed control potentiometer
Appendix J: Load Cell Force Calculations

Given Motor Specifications

Power: \(P = 559.274904 \text{ W} \)

Angular Velocity: \(\omega := 3450 \text{ rpm} = 361.283 \text{ rad/s} \)

Torque of Motor

Torque: \(\tau := \frac{P}{\omega} \)

\[\tau = 1.548 \text{ lbf} \]

\[\tau = 13.70 \text{ in-lbf} \]

Force at Known Length

Radius: \(r := 3.25 \text{ in} \)

Force: \(F := \frac{\tau}{r} \)

\[F = 4.216 \text{ lbf} \]
Appendix K: Part Drawings

Accumulator

Oil End Cap

Gas End Cap
Oil Shaft

Gas Shaft

Bearing Mount
Motor Screw Block

Custom Ring Shaft Side

Custom Ring Torque Arm Side
Torque Arm

Load Cell Ground

Clutch Front Mount
Clutch Back Mount

Clutch Support Block

Coupler Shaft
Appendix L: Shaking Force Balancing

Balancing sensors

Knowns

\(kpsi := 1000 \) psi

Mass sensor

\(m_s := 24 \times 10^{-3} \) kg

Mass 9V battery

\(m_{9v} := 45.6 \times 10^{-3} \) kg

Distance from first sensor to center

\(r_1 := 0.8 \) in

Distance from second sensor to center

\(r_2 := 2 \times r_1 \)

Density 6061 aluminum

\(\rho := 2700 \frac{kg}{m^3} \)

Mass of material removed for battery and sensors

Volume sensor material removal

\[
V_s := \frac{\pi \cdot d_1^2 \cdot h_1}{4} + \frac{\pi \cdot d_2^2 \cdot h_2}{4}
\]

\(V_s = 0.172 \text{ in}^3 \)

\[
m_{\text{removed}} := \rho \cdot V_s
\]

\(m_{\text{removed}} = 7.616 \times 10^{-3} \) kg

\[
m_t := m_s - m_{\text{removed}}
\]

\(m_t = 0.016 \) kg

Volume 9v pocket dimensions

\(l := 2.03125 \) in \quad \(w := 1.1 \) in \quad \(d := 0.2 \) in

Volume

\(V_b := l \cdot w \cdot d \)

\(V_b = 0.447 \text{ in}^3 \)

mass removed

\[
m_t := \rho \cdot V_b
\]

\(m_t = 0.02 \) kg

Equivalent mass of 9v

\[
m_{9v} := m_{9v} - m_t
\]

\(m_{9v} = 0.026 \) kg

Shaking force to balance

\[
F_b := m_t \left(r_1 + r_2 \right)
\]

\(F_b = 9.988 \times 10^{-4} \) m kg

Since mass of battery and material removed is constant, adjust distance of center battery to balance
Sizing bolts to hold 9V battery in
angular velocity $\omega := 3000 \text{rpm}$

assume worst case scenario, one bolt is withstanding all the force of the battery

Assume acceleration is zero, so tangential component is zero, leaving only the normal acceleration.

\[
a_n := r_b \cdot \omega^2 \quad a_n = 3.817 \times 10^3 \text{m/s}^2
\]

now to find the force

\[
V := m_b \cdot a_n \quad V = 174.04 \text{N}
\]

and finding the stress assuming area is the minor thread diameter

for 6-32 screws

\[
d_{r1} := 0.0974 \text{in} \\
A_1 := \pi \cdot \frac{d_{r1}^2}{4} \quad A_1 = 7.451 \times 10^{-3} \text{in}^2
\]

\[
\sigma_1 := \frac{V}{A_1} \quad \sigma_1 = 5.25 \text{kpsi}
\]

for 8-32 screws

\[
d_{r2} := 0.1234 \text{in} \\
A_2 := \pi \cdot \frac{d_{r2}^2}{4} \quad A_2 = 0.012 \text{in}^2
\]

\[
\sigma_2 := \frac{V}{A_2} \quad \sigma_2 = 3.27 \text{kpsi}
\]

for 10-24 screws

\[
d_{r3} := 0.1359 \text{in} \\
A_3 := \pi \cdot \frac{d_{r3}^2}{4} \quad A_3 = 0.015 \text{in}^2
\]

\[
\sigma_3 := \frac{V}{A_3} \quad \sigma_3 = 2.697 \text{kpsi}
\]

for 1/4-20 screws

\[
d_{r4} := 0.185 \text{in} \\
A_4 := \pi \cdot \frac{d_{r4}^2}{4} \quad A_4 = 0.027 \text{in}^2
\]

\[
\sigma_4 := \frac{V}{A_4} \quad \sigma_4 = 1.456 \text{kpsi}
\]
According to Industrial fastener institute (inch fastener standards, 7th ed. 2003. B-8 the strengths of carbon steel fasteners is approximately 60% of the tensile strength.

According to machinery's handbook for grade 2 tensile strength is 74kpsi and the proof strength 55

\[
\begin{align*}
\text{tensile} & \quad V_{st} := 0.674 \text{kpsi} & \quad V_{st} = 44.4 \text{kpsi} \\
\text{proof} & \quad V_{sp} := 0.655 \text{kpsi} & \quad V_{sp} = 33 \text{kpsi}
\end{align*}
\]

Thus the safety factor for each screw assuming one is bearing all the load is:

\[
\begin{align*}
6-32 & \quad N_1 := \frac{V_{sp}}{\sigma_1} & \quad N_1 = 6.284 \\
8-32 & \quad N_2 := \frac{V_{sp}}{\sigma_2} & \quad N_2 = 10.087 \\
10-24 & \quad N_3 := \frac{V_{sp}}{\sigma_3} & \quad N_3 = 12.234 \\
1/4-20 & \quad N_4 := \frac{V_{sp}}{\sigma_4} & \quad N_4 = 22.672
\end{align*}
\]
Appendix M: Energy Density Calculations

Energy Density

Knowns
- Length of cylinder
- Outer radius
- Inner radius
- Weight density for acrylic

\[l = 12 \text{ in}, \quad r_0 = 3 \text{ in}, \quad r_i = 2.5 \text{ in}, \quad \gamma = 0.04285 \frac{\text{lb}}{\text{in}^3} \]

Angular velocity
- Length of hydraulic volume
- Density of DT E 15

\[\omega = 3000 \text{ rpm}, \quad l_h = 5.75 \text{ in}, \quad \rho = 876 \frac{\text{kg}}{\text{m}^3}, \quad kJ = 1000 \text{ J} \]

Inertia of acrylic cylinder

\[I_{\text{flywheel}} := \frac{\pi}{2} \gamma \left(r_0^4 - r_i^4 \right) l \]

\[I_{\text{flywheel}} = 9.913 \times 10^{-3} \text{ m}^2\text{kg} \]

Inertia of fluid with piston at center

\[I_{\text{fluid}} := \frac{\pi \rho l_h r_i^4}{2} \]

\[I_{\text{fluid}} = 3.268 \times 10^{-3} \text{ m}^2\text{kg} \]

Total inertia

\[I_{\text{total}} := I_{\text{flywheel}} + I_{\text{fluid}} \]

\[I_{\text{total}} = 0.013 \text{ m}^2\text{kg} \]

Energy of flywheel

\[E_{\text{flywheel}} := \frac{1}{2} I_{\text{total}} \omega^2 \]

\[E_{\text{flywheel}} = 650.41 \text{ J} \]

Energy of Gas

Assumptions

Max pressure
- Precharge pressure

\[P_{\text{max}} := 500 \text{ psi}, \quad P_i := \frac{P_{\text{max}}}{2} = 250 \text{ psi} \]

Initial volume of gas

\[V_i := \pi r_i^2 \left(l - 0.5 \text{ in} \right) \]

\[V_i = 3.7 \text{ L} \]

Final volume of gas

\[V_f := \pi r_i^2 \left(\frac{1}{2} - \frac{0.5}{2} \text{ in} \right) \]

\[V_f = 1.85 \text{ L} \]

Compression factor

\[R := \frac{V_i}{V_f} \]

\[R = 2 \]
Assuming ideal isothermal gas integration of $E_{\text{gas}} := \int P \, dV$ reduces to:

$$E_{\text{gas}} := P_i \cdot V_i \cdot \ln(R)$$

$$E_{\text{gas}} = 4.42 \text{ kJ}$$

Percentage of storage of flywheel vs potential energy

$$\frac{E_{\text{flywheel}}}{E_{\text{gas}}} = 0.147$$

Total mass

$$M := 7.71 \text{ kg}$$

Total energy stored

$$E_{\text{stored}} := E_{\text{flywheel}} + E_{\text{gas}}$$

$$E_{\text{stored}} = 5.07 \text{ kJ}$$

Energy density

for both kinetic and potential

$$E_{d1} := \frac{E_{\text{stored}}}{M}$$

$$E_{d1} = 0.658 \frac{\text{kJ}}{\text{kg}}$$

for gas alone

$$E_{d2} := \frac{E_{\text{gas}}}{M}$$

$$E_{d2} = 0.573 \frac{\text{kJ}}{\text{kg}}$$

Increase in energy density

$$\frac{E_{\text{gas}} + E_{\text{flywheel}}}{E_{\text{gas}}} = 1.147$$
Flywheel Energy Contribution with Increasing Angular Velocity

Energy Contribution of the Flywheel

Maximum Energy Density

Angular Velocity, RPM

Energy Stored vs Angular Velocity

Energy Density up to 20,000 RPM for high speed implementation

Max energy stored at 20,000 RPM

Energy Density up to 20,000 RPM for high speed implementation

113
Energy Density up to 3,000 RPM for low energy prototype

Maximum Energy Density at system spec of 3000 RPM

$$E_{\text{density}}(3000 \text{rpm}) = 0.658 \text{ kJ/kg}$$
Appendix N: Xbee Schematic
Appendix O: Vision System LabVIEW VI