SUPER FLUX LED LAMP

PRELIMINARY SPEC

Part Number: WP7679C1SEC/J

Technical Data

Features:
* High Luminance output.
* Design for High Current Operation.
* Uniform Color.
* Low Power Consumption.
* Low Thermal Resistance.
* Low Profile.
* Packaged in tubes for use with automatic insertion equipment.
* Soldering methods: Wave soldering
* RoHS Compliant.

Benefits:
* Outstanding Material Efficiency.
* Electricity savings.
* Maintenance savings.
* Reliable and Rugged.

Typical Applications:
* Automotive Exterior Lighting.
* Electronic Signs and Signals.
* Specialty Lighting.
Outline Drawings

Notes:
1. All dimensions are in millimeters (inches).
2. Tolerance is ±0.25(0.01") unless otherwise noted.
3. Lead spacing is measured where the leads emerge from the package.
4. Specifications are subject to change without notice.

Absolute Maximum Ratings at TA=25°C

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SE/J2</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Forward Current</td>
<td>70</td>
<td>mA</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>245</td>
<td>mW</td>
</tr>
<tr>
<td>Reverse Voltage</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40 To +85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-55 To +85</td>
<td>°C</td>
</tr>
<tr>
<td>Lead Solder Temperature[1]</td>
<td>260°C For 5 Seconds</td>
<td></td>
</tr>
</tbody>
</table>

1.1.5mm[0.06inch] below seating plane.
No Reflow soldering
Notes:
1. Luminous intensity is measured with an integrating sphere after the device has stabilized; Luminous Intensity / luminous flux: +/-15%.
2. $\theta_{1/2}$ is the angle from optical centerline where the luminous intensity is 1/2 the optical centerline value.

Optical Characteristics at TA=25°C
$I_F=70mA$ $R_{θj-a}=200°C/W$

<table>
<thead>
<tr>
<th>DEVICE TYPE</th>
<th>PEAK WAVELENGTH</th>
<th>DOMINANT[1] WAVELENGTH</th>
<th>SPECTRAL LINE WAVELENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE/J2</td>
<td>640</td>
<td>630</td>
<td>25</td>
</tr>
</tbody>
</table>

Note:
1. The dominant wavelength is derived from the CIE Chromaticity Diagram and represents the perceived color of the device; Wavelength: +/-1nm.

Electrical Characteristics at TA=25°C

<table>
<thead>
<tr>
<th>DEVICE TYPE</th>
<th>FORWARD VOLTAGE [1] V_F (VOLTS)</th>
<th>REVERSE CURRENT I_R (uA)</th>
<th>CAPACITANCE C (pF)</th>
<th>THERMAL RESISTANCE $R_{θj-pin}$ °C/W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>@ $I_F=70mA$ @ $V_R=5V$ @ $V_F=0V$ F=1MHZ</td>
<td>@ $V_R=5V$ @ $V_F=0V$ @ $F=1MHZ$</td>
<td>@ $V_R=5V$ @ $V_F=0V$ F=1MHZ</td>
<td>@ $V_R=5V$ @ $V_F=0V$ F=1MHZ</td>
</tr>
<tr>
<td>MIN.</td>
<td>TYP.</td>
<td>MAX.</td>
<td>MAX.</td>
<td>TYP.</td>
</tr>
<tr>
<td>SE/J2</td>
<td>2.6</td>
<td>2.8</td>
<td>3.5</td>
<td>10</td>
</tr>
</tbody>
</table>

Note:
1. Forward Voltage: +/-0.1V.
Figures

Orange

Relative Radiant Intensity vs. Wavelength (nm)

- Wavelength \(\lambda \) (nm)
- Relative Radiant Intensity

FORWARD CURRENT (mA)

- 75
- 60
- 45
- 30
- 15
- 0

FORWARD VOLTAGE (V)

- 3.1
- 2.5
- 2.3
- 2.1
- 1.7
- 0

FORWARD CURRENT vs. FORWARD VOLTAGE

RELATIVE INTENSITY vs. OFF AXIS ANGLE (DEGREES)

- OFF AXIS ANGLE (DEGREES)
- MAX DC FORWARD CURRENT (mA)
- AMBIENT TEMPERATURE (°C)

MAX DC FORWARD CURRENT vs AMBIENT TEMPERATURE

- MAX DC FORWARD CURRENT (mA)
- 70
- 60
- 50
- 40
- 30
- 20
- 10
- 0

AMBIENT TEMPERATURE (°C)

- 100
- 90
- 80
- 70
- 60
- 50
- 40
- 30
- 20
- 10
- 0

RELATIVE INTENSITY vs. OFF AXIS ANGLE
PACKING & LABEL SPECIFICATIONS

75PCS / IC TUBE (520x8.3x15mm)

750pcs / 10pcs IC TUBE

7.5K / 6# BOX

10pcs IC TUBE / BAG

Kingbright

P/N: WP7679C1xxx

QTY: 750 pcs

S/N: XXXX
CODE: XXX

LOT NO:

RoHS Compliant