Cardiac Scaffold for Human Mesenchymal Stem Cell Facilitated Autonomous Pacing

April 23rd, 2009

Helena Alfonzo
Syed Ali
Brian Almeida
Katie Flynn

Professor Glenn Gaudette
Clinical Significance

- Cardiac disease accounts for over 700,000 deaths/year - leading cause of deaths in United States\(^1\)
- Arrhythmia – abnormal or disrupted propagation of the electrical impulses
- Roughly 400,000 pacemakers implanted each year\(^2\)

3. Image available online from <http://www.ohiohealth.com/>
Current Solution

Electrical Pacemakers

• **Proven effective**

• **Limitations**
 – Battery Life
 – Sensitivity to magnetic fields
 – Lead failure
 – Complications with implantation
 – Does not respond to physiological changes

1. Image available online from <http://services.epnet.com/GetImage.aspx>
Approach

Fence in Stem Cells!

- **Stem Cell Migration is a large concern!**
 - HCN Gene on Human Mesenchymal Stem Cell (hMSC)
 - Modified hMSC + Cardiac Myocyte = Pacemaker
 - Communicate via Gap Junctions

Objective

• Mesenchymal Stem Cell Migration Inhibiting Scaffold
 • Prevent Migration of Stem Cells
 • Permanent and Durable
 • Allow Gap Junction Formation

• Minimally Invasive Delivery
Our Design

- hMSCs
- Electrospun Scaffold
- Solid Scaffold
- Right atrium
- Bundle branch block
- Left ventricle
- Right ventricle
hMSC Migration Assay

• Methodology
 – Pore sizes of 0.4, 3.0, 8.0 μm diameter
 – Which pore size inhibits migration?
 – Fibroblast Growth Factor
 – Incubate for 3 Days

• Evaluation
 – Staining to quantify migration
 – DAPI stain for the nuclei
 – Phalloidin stain for cellular cytoplasm
Pore Size – Representative Images

8.0 Micron Pores

Actin Nuclei

0.4 Micron Pores

Actin Nuclei

3.0 Micron Pores

Actin Nuclei

Control

Actin Nuclei
Deflection of a hMSC

Pore Size = 2.0-2.5μm
Deflection = 15.0-30.0 μm
Fiber Diameter = 30.0-60.0 μm

Objectives

- Mesenchymal Stem Cell Migration Inhibiting Scaffold
 - Prevent Migration of Stem Cells

- Permanent and Durable Scaffold

- Allow Gap Junction Formation

- Minimally Invasive Delivery
Materials

• Currently used in cardiovascular applications
 – Polyurethane
 – Dacron
 – ePTFE
 – Nitinol
• Good mechanical properties
• Biocompatibility and hemocompatibility
• Corrosion and wear resistance

Manufacturing Process

- **Electrospinning**
 - Creating a membrane by applying high voltages to liquid PU

Advantages
- Allows manufacturing of thin porous membrane
- Cost effective

Disadvantage
- Pore size not precisely controlled

Objectives

• Mesenchymal Stem Cell Migration Inhibiting Scaffold
 • Prevent Migration of Stem Cells ✓
 • Permanent and Durable Scaffold ✓

• Allow Gap Junction Formation

• Minimally Invasive Delivery
Cell Viability

Live Control

Dead Control

Sample Results
Gap Junction Formation through Pores

• Custom Gaudette-Pins Dual Wells
• hMSC On Both Layers of Scaffold
• Connexin 43 Immunohistochemistry for Gap Junction Formation
Results

Gap Junctions
Nuclei
hMSC Migration – Polyurethane Scaffold

- hMSCs seeded on top layer of scaffold

- Staining of Scaffold Revealed no Cell Migration

- Gap Junctions Formed Through Scaffold Membrane

![Image of scaffold with labeled layers: Top Layer and Reverse Side with Actin and Nuclei staining.](image)
Objectives

• Mesenchymal Stem Cell Migration Inhibiting Scaffold
 • Prevent Migration of Stem Cells ✓
 • Permanent and Durable Scaffold ✓
 • Allow Gap Junction Formation ✓

• Minimally Invasive Delivery
Final Design

- **2 Part Scaffold**
 - Solid cylinder (In Blue)
 - Provides structural support
 - Diameter: Catheter sizes available
 - Length: surface area for 700K cells

- **Porous membrane (In Red)**
 - Surrounds solid cylinder
 - Thickness: allows gap junction formation
 - Pore size: prevent migration

Contains cells in between the solid cylinder and the porous membrane

All units are in mm
Catheter Delivery
A Special Thanks To…

<table>
<thead>
<tr>
<th>Glenn Gaudette</th>
<th>Jack Ferraro</th>
<th>George Pins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jacques Guyette</td>
<td>Vicky Huntress</td>
<td>Michael Rosen</td>
</tr>
<tr>
<td>Ira Cohen</td>
<td>Stephanie Kaszuba</td>
<td>Jill Rulfs</td>
</tr>
<tr>
<td>Joe Dell’Orfano</td>
<td>Meghan Pasquali</td>
<td>Sharon Shaw</td>
</tr>
<tr>
<td>Yang Yun</td>
<td></td>
<td>Lisa Wall</td>
</tr>
<tr>
<td>Matt Phaneuf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saif Pathan</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Questions?
Future Recommendations

• In vitro studies proving cell viability in the final design configuration
• In vivo functional testing with canine or murine models
• Mechanical testing to ensure long term viability of scaffold in vivo
• Catheter delivery mechanism
Deflection of a hMSC

\[\Delta_{\text{max}} = \frac{5wL^4}{384EI} \]

- \(w \) = load per unit length
- load = intramyocardial pressure = 5mmHg
- \(L \) = length between fibers
- \(E \) = Young’s Modulus = 126±81Pa
- \(I \) = Moment of Inertia

Supplemental Slides

Moment of Inertia

\[I = \frac{\pi ab^3}{16} \]

\[\times 4 \]

\[I = \frac{\pi ab^3}{4} \]
Supplemental Slides

Area of a Cell

\[A_{\text{cell}} = \pi r^2 \]

where \(r = 0.5 \mu \text{m} \)

Surface Area needed for Scaffold

\[A_{\text{cell}} = \pi r^2 \times 700,000 \]

Need 700,000 cells to allow for a safety factor of 2

\[A_{\text{cell}} = 55.0 \text{mm}^2 \]
hMSC Migration Assay - Scraping

0.4 μm Pre-Scraping

3.0 μm Pre-Scraping

0.4 μm Post-Scraping

3.0 μm Post-Scraping