Abstract

The Parallax, an 118,000 square foot, dual-purpose facility, consisting of two academic floors and three residence floors, was designed to meet the challenges of WPI's growing community, in accordance with the *International Building Code* 12 and 15. Reference design specifications ACI 318, AISC 360-10, and the NDS were also used as guides. An energy-usage analysis was conducted to size, roughly, the building's mechanical system. The project's focus is the building design process, with emphasis on the architectural-structural relationship and design.
Acknowledgments

In completing this Major Qualifying Project, a few faculty members were invaluable to the process. We would like to especially thank our advisors, Professors Leonard Albano and Mohamad Farzinmoghadam for their support and guidance through the architectural and structural design of the project. We would also like to extend thanks to Professor Leffi Cewe-Malloy for her guidance in the initial steps of the architectural design process. Additionally, Professor and Director of the Robotics Engineering Program Michael A. Gennert for his cooperation and interview that provided insight into the needs and desire of the robotics program.
Authorship

Every sentence of this major qualifying project report was either written or edited by one of the project team members; however, specifics on major contributions are as follows:

Dylan Roche:

Executive Summary
Chapter 1: Introduction
Chapter 2: Background
Chapter 3: Architectural Design
 3.1: The Program
 3.2: Background
 3.3: The Parallax Residence Hall
 3.4: The Parallax Academic Center
 3.5: Conclusion
Chapter 4: Structural Design
 4.1: Introduction
 4.2.4: Column and Load Bearing Walls [Concrete Design]
 4.2.5: Foundation and Foundation Walls [Concrete Design]
 4.2.6: Lateral Loads [Concrete Design]
 4.3.3: Shear Loads [Wood Design]
 4.4.1: Background [Pratt Truss]
 4.4.2: General Design [Pratt Truss]
Chapter 5: Energy Conservation
Chapter 6: Conclusions & Recommendations
Bruno Scherrer:

Executive Summary

Chapter 1: Introduction

Chapter 2: Background

Chapter 3: Architectural Design
 3.1: The Program
 3.2: Background
 3.5: Conclusion

Chapter 4: Structural Design
 4.2.1: Load Transfer/Types of Load [Concrete Design]
 4.2.2: Assumptions/Givens of the System [Concrete Design]
 4.2.3: Slab Design [Concrete Design]
 4.2.6: Lateral Loads [Concrete Design]
 4.3.1: Background [Wood Design]
 4.3.2: Wall Framing [Wood Design]
 4.3.3: Shear Loads [Wood Design]
 4.4.3: Sizing Members [Pratt Truss]

Chapter 6: Conclusions & Recommendations

Dylan Roche

Bruno Scherrer
Executive Summary

As Worcester Polytechnic Institute’s student population continues to grow, there are two challenges to face: limited residential space and an increase in the number of course sections required to accommodate a higher volume of students. Also, due to WPI’s project-based curriculum, there becomes a rising need for project team workspace. In addition, the spreading interest in WPI’s Robotics Engineering program yields motive to provide space to expand the program.

The purpose of this MQP is to investigate the design process, with emphasis on architecture and structure, and to solve the aforementioned challenges rooted in WPI’s growing community.

The Parallax is a building engineered to address these challenges. Its structure is a combination of two substructures: an academic facility with a residence hall above, three floors each. The residence hall provides student housing for the increasing population. The purpose of the academic facility is to address the remaining challenges through providing additional teaching spaces, project workspaces, and space for the RBE program. An egress design and an energy analysis were also conducted, as supplementary content for the architectural program. The energy analysis utilizes energy usage intensity (EUI) to estimate mechanical system size requirements for heating and cooling. All architectural design work was conducted in Revit.

The focus of the structural design was to explore the concepts of “podium construction”. Therefore, the design requires the use of two construction materials: reinforced concrete and wood. However, due to an overhang feature in the architectural design, there was also some steel design, allowing the project to cover all three major construction materials. Risa 2D was used to assist in the preparation of the steel calculations.
Table of Contents

Abstract .. i

Acknowledgments ... ii

Authorship ... iii

Executive Summary ... v

Table of Contents ... vi

List of Figures ... viii

List of Tables .. ix

Chapter 1: Introduction .. 1

Chapter 2: Background ... 2

Chapter 3: Architectural Design .. 9

 3.1: The Program ... 9

 3.2: Background .. 10

 3.3: The Parallax Academic Center ... 16

 3.4: The Parallax Residence Hall ... 25

 3.5: Conclusion .. 30

Chapter 4: Structural Design ... 31

 4.1: Introduction ... 31

 4.2: Concrete Design ... 31

 4.2.1 Load Transfer/Types of Load .. 32

 4.2.2 Assumptions/Givens of the System ... 33

 4.2.3 Slab Design ... 34

 4.2.4 Column and Load Bearing Walls ... 37

 4.2.5 Lateral Loads .. 38

 4.2.6 Foundation and Foundation walls ... 38

 4.3 Wood Design ... 39

 4.3.1 Background .. 39

 4.3.2 Wall Framing ... 39

 4.3.3 Shear loads ... 40

 4.4 Pratt Truss ... 48

 4.4.1 Background .. 48

 4.4.2 General Design ... 49

 4.4.3 Sizing Members .. 50
List of Figures

Figure 1: WPI Applications and Admissions Data, 1996-2016 ... 2
Figure 2: WPI Freshman Enrollment, 1996-2016 ... 3
Figure 3: Exterior Rendering of the Parallax with Podium Design .. 5
Figure 4: City of Worcester Zoning Map ... 10
Figure 5: The Parallax Site Plan ... 13
Figure 6: Basement Floor Plan .. 18
Figure 7: First Floor Plan .. 20
Figure 8: Interior Render Showcasing the Central Stair .. 21
Figure 9: Central Stair in Plan-View ... 22
Figure 10: Second Floor Plan .. 24
Figure 11: Fourth and Fifth Floor Plan ... 26
Figure 12: Hex Suite Floor Plan .. 27
Figure 13: Quad Suite Floor Plan ... 28
Figure 14: Third Floor Plan ... 29
Figure 15: Load Path ... 33
Figure 16: Positive Bending Moment Diagram .. 34
Figure 17: Worst-case Slab ... 37
Figure 18: West Shear Wall ... 43
Figure 19: South Shear Wall ... 44
Figure 20: West Shear Wall Elevation ... 45
Figure 21: North Shear Wall Elevation .. 47
Figure 22: Overhang Elevation .. 48
Figure 23: Simple Pratt Truss Sketch .. 50
Figure 24: Pratt Truss Axial Loading Diagram .. 52
Figure 25: Pratt Truss Shear Diagram .. 52
Figure 26: Pratt Truss Moment Diagram .. 53
Figure 27: AISCM Chapter H Specification Equations .. 54
Figure 28: Final Truss Design ... 55
Figure 29: EUI System Sizing Flow Chart .. 58
List of Tables

Table 1: RBE Labs and Offices ... 4
Table 2: Key Equations for Concrete Design Calculations .. 7
Table 3: Permitted Use Based on Zone District .. 11
Table 4: Permitted Dimensions Based on Zone District .. 11
Table 5: IBC Code Implications .. 12
Table 6: Minimum Square Foot Requirements by Space ... 14
Table 7: Occupant Load Data of the Parallax .. 14
Table 8: IBC Code Implications for Egress and Restroom Accommodations .. 17
Table 9: Parallax RBE Lab Data .. 18
Table 10: Innovation Chamber Details ... 19
Table 11: Dorm Schedule .. 25
Table 12: Concrete Slab Systems .. 35
Table 13: Foundation Slab Design Procedure ... 39
Table 14: Code Master Steps for Shear .. 40
Table 15: ASCE 7-10 Table 27.6-1 ... 42
Table 16: Tie-down Forces, North Wall ... 46
Table 17: Truss Design Procedure .. 49
Table 18: Truss Member Forces .. 51
Table 19: EUI Requirements ... 56
Table 20: LEED Case References ... 57
Table 21: Heating Load Data ... 58
Table 22: Cooling Load Data ... 58
Table 23: Heat Gain/Loss Calculation ... 59
Chapter 1: Introduction

Worcester Polytechnic Institute expects growth in its student population. As such, there is a constant need for more space; both academic and residential. WPI’s campus lacks a building dedicated to group project work, a pillar of WPI’s academic philosophy. Similarly, although half of the Robotics Engineering program is centralized in Gateway, the other half of the program is disseminated across the main campus and could use consolidation. The Parallax building is a proposal to fulfill the needs and desires of the WPI community.

WPI is currently constructing the Foisie Innovation Studio and Messenger Residence Hall to address some of these concerns. The building will be located in place of the old Alumni Gym, adjacent to Harrington Auditorium, with a footprint of roughly 150 feet by 150 feet. Within the innovation studio portion there are several larger areas dedicated to makerspaces and robotics but all the smaller workspaces, for individuals or project teams, are distributed throughout the hallways, corners, and between other spaces. This building is entirely of steel construction and is made up of two academic floors, topped with three residential floors.

The Parallax utilizes “podium” style construction; concrete for the academic floors with wood construction for the residential floors. The motivations for this design are the low cost and speed of wood construction, and the increased building size allowances for reinforced concrete construction. The Parallax considers multiple architectural engineering systems in the overall architectural and structural designs. The academic center is designed to accommodate for some of WPI’s growth, focusing on project collaboration space and the Robotics Engineering (RBE) program. The residence hall is designed for efficiency of space and to continue the modernization of on-campus housing. The project is modeled in Revit and recognizes applicable codes and standards. WPI’s sustainability criteria of being a “100 year building” has also been considered.
Chapter 2: Background

A key challenge posed by the needs of WPI is the growing community. Since 1996, WPI’s freshman class has increased, on average, by 25 students each year. When this growth adds up, it has an effect on both class sizes and housing availability. Figure 1 shows the increasing volume of applications and numbers of students admitted; these values represent potential for growth. Figure 2 plots the increasing volume of freshmen enrolled each year: actual growth. For this reason, the top three residential floors of The Parallax will allow WPI to meet the increasing number of students for years to come.

![WPI Applications and Admissions Data, 1996-2016](image)

Figure 1: WPI Applications and Admissions Data, 1996-2016
A further challenge stems from WPI’s project-based curriculum. Whether students are working on qualifying projects (i.e. humanities seminar, IQP, or MQP) or they are working on projects for a class, they need dedicated project workspace. One such course is the Global Problems Seminar (GPS), which impacts a large number of freshmen, roughly four hundred each year. Unfortunately, however, WPI currently has limited means to fulfill the need for project workspace. Options are mainly limited to tech suites in the Gordon Library and the general practice of reserving rooms in other academic buildings.

Another key challenge is space for the Robotics Engineering (RBE) program. Currently half of the RBE program (14,000 square feet) is based in Gateway Park at 85 Prescott St. The other half of the program is dispersed across campus: at least one lab and one faculty office in each of six other buildings.
Table 1: RBE Labs and Offices

<table>
<thead>
<tr>
<th>Academic Building</th>
<th>Space Allocated to RBE Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alden Memorial</td>
<td>Musical Robotics Lab, academic office</td>
</tr>
<tr>
<td>Atwater Kent Labs</td>
<td>Undergrad Teaching Labs (4), academic offices (4)</td>
</tr>
<tr>
<td>Fuller Labs</td>
<td>Interaction Lab, academic offices (3)</td>
</tr>
<tr>
<td>Higgins Labs</td>
<td>Soft Robotics Lab, academic offices (4)</td>
</tr>
<tr>
<td>Olin Hall</td>
<td>Robotics Lab, academic office</td>
</tr>
<tr>
<td>The Washburn Shops</td>
<td>Humanoid Robotics Lab, academic offices (2)</td>
</tr>
</tbody>
</table>

A podium design was chosen for The Parallax in order to reduce construction costs by making the residential floors wood frame and the academic floors reinforced concrete; offering a lower cost than making the whole building reinforced concrete. In short, podium buildings include multiple stories of wood over a concrete or steel "podium". A basic example would be multiple floors of a hotel or condo (wood construction) atop one or two floors of a casino, mercantile occupancy, or parking (concrete). Some benefits of wood construction include: speed of construction, design flexibility, and reduced environmental impact. The benefit of using concrete construction on the lower floors allows for larger bay areas, yielding spaces less restricted by vertical structural members. There is also a level of fire protection associated with non-combustible construction that allows concrete buildings to be less restricted by building code. As a whole, the concrete design is favorable for the academic portion of the building because it will perform better in reducing any noise or vibrations from work in the RBE labs. Furthermore, the concrete will also perform better with noise reduction for the classes and offices throughout the building. However, the wood design will be conducive for the repetitive, compartmentalized residence floors. For The Parallax, wood construction will be used for the residence floors and reinforced concrete for the academic facility, below. Figure 3 illustrates an exterior rendering of The Parallax.
The function of any structure is to transfer the loads, or forces, acting upon it. The fundamental loads considered include dead loads, live loads, snow loads, wind loads, and seismic loads. Dead loads are considered constant; including the structure's self-weight and weight of permanent non-structural components, and other finishes. Dead loads are simple to calculate as they are derived from sizes and quantities of materials. Live loads consist of all movable objects, i.e. people and furniture, which may fluctuate throughout the day in each space, resulting in variable intensity. Allowable live loads are dictated by the building code and are different depending on the building’s use and room type. Snow load depends on a building's geographic location and is derived from ASCE 7-10, provided by the Applied Technology Council's ATC website. Wind and seismic loads are lateral forces, for which a structure must be braced to resist. The structure must also be anchored to the ground in order to resist being overturned, if the structure’s self-weight is not sufficient to hold it down.
The structural concept of a podium contains several aspects of design to consider. Although wood construction is generally prescriptive, the lateral load needed more consideration due to its position on top of the podium. One point of analysis is how the wood structure transfers the loading through itself and into the concrete structure; the other, the overturning moment of the wood structure results in tie-down forces required to keep the wood structure attached to the concrete structure, specifically the roof slab of The Parallax. The concrete structure is inherently responsible for supporting and transferring loads, including those from the wood structure, to the ground through the foundation. The slabs are designed carry all of the moment caused by dead loads, live loads, and in some cases snow loads acting on the slab. Consequently, the columns and load bearing walls are responsible for vertically supporting loads carried by the slab and the weight of the slab itself. Thicknesses of slabs and sizing of columns and walls, and their reinforcement, will be dictated by both the loads each member carries and code requirements. Table 2 describes some of the key equations used in the design calculations.
Table 2: Key Equations for Concrete Design Calculations

<table>
<thead>
<tr>
<th>Equation</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_c = \frac{P}{0.85(1 - \rho)f'_c + \rho f_y})</td>
<td>This equation determines the area of concrete ((A_c)) of a column given: the load ((P)), the reinforcement ratio ((\rho)), the compressive strength of concrete ((f'_c)), and the yield strength of steel ((f_y)).</td>
</tr>
<tr>
<td>(a = \frac{A_s f_y}{0.85f'_c b})</td>
<td>This equation determines the depth ((a)) of the compression block for the cross section of the slab. There are different design approaches depending on whether or not the compression block goes into the web. The equation is based on the area of reinforcing steel ((A_s)), the yield strength of steel ((f_y)), the compressive strength of concrete ((f'_c)), and the width of the beam-equivalent of the slab ((b)).</td>
</tr>
<tr>
<td>(W_u = 1.2DL + 1.6LL + 0.5SL)</td>
<td>This is the equation for flexure load, based on the dead load ((DL)), live load ((LL)), and the snow load ((SL)).</td>
</tr>
<tr>
<td>(M_u = \frac{1}{8} W_u L^2)</td>
<td>This is the equation for the moment developed in a simply supported beam, given the load ((W_u)) and the span ((L)).</td>
</tr>
<tr>
<td>(M_u = f_y \phi \rho bd^2 (1 - 0.59 \rho \frac{f_y}{f'_c}))</td>
<td>This moment equation is used to solve for the steel reinforcement ratio ((\rho)), given the moment ((M_u)), the safety factor ((\phi)), the yield strength of steel ((f_y)), the slab's beam-equivalent width ((b)), the distance from the slab surface to the reinforcement ((d)), and the compressive strength of concrete ((f'_c)).</td>
</tr>
<tr>
<td>(A_s = \rho bd)</td>
<td>This equation uses the steel reinforcement ratio ((\rho)), and the cross-sectional area of the beam-equivalent of the slab ((bd)) to find the area of steel reinforcement ((A_s)).</td>
</tr>
</tbody>
</table>

The field of building construction has an interest in reducing projects' carbon footprints in an attempt to preserve the earth. Because of this, "green" buildings have become more desirable. Accreditations, such as LEED, set a certain standard to essentially rank a building's environmental impact and efficiency. Due to the different occupancy types of The Parallax, there are different energy requirements throughout the building. Energy use intensity (EUI) is a value expressed as energy per square foot per year, found from dividing the total energy consumption of a building in one year by its gross floor area. Statistical data on occupancy types and their associated EUIs, as well as energy
requirements to achieve LEED certification, sets up a guideline for target EUI measurements for The Parallax. The target EUI value is used to determine a preliminary size for the mechanical system for the building. Also, due to the variety of construction materials in podium construction, there will be different heat gains and heat losses associated with each space based on the wall construction, glazing, and orientation. Heat gain and loss calculations are used to validate decisions made about the building’s envelope and construction details.

The goal of The Parallax is to provide a harmonious solution to the challenges of providing both residential and academic spaces while promoting sustainability. Architectural, structural, and energy challenges are analyzed and addressed through the use of relevant engineering calculations and design, as well as addressing code requirements.
Chapter 3: Architectural Design

3.1: The Program

The intent of The Parallax is to directly address the challenges previously discussed: WPI’s growing community, a lack of project workspace, and accommodating the RBE program. The residential floors afford a variety of housing, including views of both the quadrangle and center of campus. The goal for these residence floors is maximizing the number of occupants while providing the most for each individual room. The academic facility comprises a solution to all three challenges. In general, there is a floor assigned to meet each challenge; though, there is some intermingling between each of the floors and the challenges they address. The RBE labs are organized in the basement, their size requirements were determined from conversation with the program director: Professor Gennert. The first floor provides rooms and an open area for project workspace. The second floor has teaching rooms to accommodate additional classes resulting from increased student population. As a whole, The Parallax is meant to have a distinguishable atmosphere, yet simultaneously blend with the existing culture and architecture of WPI’s campus.
3.2: Background

In order to begin an architectural design, zoning ordinances must be observed. Figure 4 illustrates the district location of The Parallax, indicated by the red circle.

Figure 4: City of Worcester Zoning Map

The zoning map indicates that The Parallax lies in an "IN-S", or institutional-educational, district. After the district is determined, permitted uses for said district are indicated in Table 3; abridged from Table 4.1 of the City of Worcester Zoning Ordinance, as amended through February 3, 2015.
Table 3: Permitted Use Based on Zone District

<table>
<thead>
<tr>
<th>Use</th>
<th>Permitted or Not</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dormitory</td>
<td>Permitted</td>
</tr>
<tr>
<td>University</td>
<td>Permitted</td>
</tr>
<tr>
<td>Food Service – excludes alcohol consumption/sale</td>
<td>With Special Permit</td>
</tr>
<tr>
<td>Research Lab - w/o manufacturing abilities</td>
<td>Permitted</td>
</tr>
<tr>
<td>Retail Food Sales</td>
<td>With Special Permit</td>
</tr>
<tr>
<td>Research Lab – w/ manufacturing abilities</td>
<td>Permitted</td>
</tr>
</tbody>
</table>

In addition, Table 4 details permitted dimensions for the IN-S district; abridged from Table 4.2 of the City of Worcester Zoning Ordinance, as amended through February 3, 2015. The pertinent information obtained from this table is the depth of each setback as these values impact the site plan. Because the building is located on the quadrangle, these setbacks will be used as the minimum distances required between The Parallax and adjacent buildings.

Table 4: Permitted Dimensions Based on Zone District

<table>
<thead>
<tr>
<th>District</th>
<th>Use</th>
<th>Lot Area (Min SF)</th>
<th>Lot Frontage (Min ft)</th>
<th>Front Setback</th>
<th>Side Setback</th>
<th>Rear Setback</th>
<th>Max. Height (Stories)</th>
<th>Max. Height (ft)</th>
<th>Max. Floor to Area Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN-S</td>
<td>All</td>
<td>N/A</td>
<td>N/A</td>
<td>15 ft.</td>
<td>10 ft.</td>
<td>10 ft.</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

After review of the zoning ordinances, it is evident that The Parallax is permitted for construction as far as building use is concerned; with few limitations on dimensions.
Following zoning ordinances are the building code requirements. The requirements and limitations set in the building code create the mold for shaping the building. Table 5, below, lists the relevant building codes and their implications for The Parallax.

Table 5: IBC Code Implications

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBC 2015: 602.2</td>
<td>Construction Type</td>
<td>Floors B, 1, 2 = Type II (B)</td>
</tr>
<tr>
<td>IBC 2015: 602.3</td>
<td>Construction Type</td>
<td>Floors 3, 4, 5 = Type III (B)</td>
</tr>
<tr>
<td>IBC 2015: 306.2</td>
<td>Occupancy Classification</td>
<td>Basement = Group F-1</td>
</tr>
<tr>
<td>IBC 2015: 310.4</td>
<td>Occupancy Classification</td>
<td>Floors 3, 4, 5 = Group R-2</td>
</tr>
<tr>
<td>IBC 2015: 304.1</td>
<td>Occupancy Classification</td>
<td>Floors 1, 2 = Group B</td>
</tr>
<tr>
<td>IBC 2015: Table 504.3</td>
<td>Max Building Height (ft)</td>
<td>*Groups B, F/Type II (B) = 75'</td>
</tr>
<tr>
<td>IBC 2015: Table 504.3</td>
<td>Max Building Height (ft)</td>
<td>*Group R/Type III (B) = 75'</td>
</tr>
<tr>
<td>IBC 2015: Table 504.4</td>
<td>Max Building Height (stories)</td>
<td>*Group B/Type II (B) = 4</td>
</tr>
<tr>
<td>IBC 2015: Table 504.4</td>
<td>Max Building Height (stories)</td>
<td>*Group R-2/Type III (B) = 5</td>
</tr>
<tr>
<td>IBC 2015: Table 506.2</td>
<td>Max Building Area (SF)</td>
<td>*Group B/Type II (B) = 69,000 SF</td>
</tr>
<tr>
<td>IBC 2015: Table 506.2</td>
<td>Max Building Area (SF)</td>
<td>*Group F-1/Type II (B) = 46,500 SF</td>
</tr>
<tr>
<td>IBC 2015: Table 506.2</td>
<td>Max Building Area (SF)</td>
<td>*Group R-2/Type III (B) = 48,000 SF</td>
</tr>
</tbody>
</table>

*Buildings equipped throughout with an automatic sprinkler system installed in accordance with IBC 2015, Section 903.3.1.1.

Based on the results from the IBC, because The Parallax will comply with the sprinkler note (*) from Table 5, the building is approved for an academic facility with a basement and two floors above
grade. In order to maximize the residential occupancy, the maximum number of Group R-2 floors will be used; however, because there are already two above-grade floors, the R-2 occupancy is limited to at most three floors and the total building height must not exceed 75 feet. Due to existing structures, the building footprint will remain at 150' x 150', 22,500 square feet; well under code allowances.

Figure 5: The Parallax Site Plan

In regard to egress capacity requirements, Table 6 is a condensed version of Table 1004.1.2 of the IBC, specific to The Parallax. It shows the minimum square foot per person requirement, occupant load factor (OLF), based on the function of a space. The size of each space in The Parallax was designed based on a target occupancy and these minimum square foot requirements. The target occupancies of each space were based on the occupancy loads of similar, existing spaces on WPI's campus. Table 7 contains design occupant load (DOL) data of each floor and space of The Parallax, based on Table 6. The
The term "gross" means that this requirement includes the entire area, all occupiable and non-occupiable spaces. The term "net" means that this requirement includes contribution from occupiable spaces only.

Table 6: Minimum Square Foot Requirements by Space

<table>
<thead>
<tr>
<th>Function of Space</th>
<th>Minimum SF/Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Equipment Room</td>
<td>300 gross</td>
</tr>
<tr>
<td>Assembly – Concentrated</td>
<td>7 net</td>
</tr>
<tr>
<td>Assembly – Standing Space</td>
<td>5 net</td>
</tr>
<tr>
<td>Assembly – Unconcentrated</td>
<td>15 net</td>
</tr>
<tr>
<td>Assembly – Fixed Seats</td>
<td>Occupant Load = # of seats</td>
</tr>
<tr>
<td>Business Areas</td>
<td>100 gross</td>
</tr>
<tr>
<td>Dormitories</td>
<td>50 gross</td>
</tr>
<tr>
<td>Classrooms</td>
<td>20 net</td>
</tr>
<tr>
<td>Shops/Vocational Room/Lab</td>
<td>50 net</td>
</tr>
</tbody>
</table>

Table 7: Occupant Load Data of the Parallax

<table>
<thead>
<tr>
<th>Level</th>
<th>Room</th>
<th>Area (SQF)</th>
<th>OLF</th>
<th>Occupant Load</th>
<th>Design OL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basement</td>
<td>Labs</td>
<td>12073</td>
<td>50 net</td>
<td>241</td>
<td>234</td>
</tr>
<tr>
<td></td>
<td>Innovation Chambers</td>
<td>715</td>
<td>15 net</td>
<td>48</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Makerspace</td>
<td>871</td>
<td>50 net</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Mechanical Room</td>
<td>1833</td>
<td>300 gross</td>
<td>23</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Unoccupied Space</td>
<td>5145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td>329</td>
<td>301</td>
</tr>
<tr>
<td>First Floor</td>
<td>Offices</td>
<td>1170</td>
<td>100 gross</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Innovation Chambers</td>
<td>390</td>
<td>15 net</td>
<td>26</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Conference Rooms</td>
<td>1482</td>
<td>15 net</td>
<td>99</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Open Collaboration Space</td>
<td>13730</td>
<td>15 net</td>
<td>915</td>
<td>526</td>
</tr>
<tr>
<td></td>
<td>Stair Seating</td>
<td>468</td>
<td>Fixed Seats</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>Unoccupied Space</td>
<td>1231</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td>1192</td>
<td>780</td>
</tr>
<tr>
<td>Second Floor</td>
<td>North Classroom</td>
<td>1218</td>
<td>20 net</td>
<td>61</td>
<td>60</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>------</td>
<td>--------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>South Classroom</td>
<td>971</td>
<td>20 net</td>
<td>49</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>North Lecture Hall</td>
<td>1952</td>
<td>15 net</td>
<td>130</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>South Lecture Hall</td>
<td>2450</td>
<td>15 net</td>
<td>163</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Offices</td>
<td>780</td>
<td>100 gross</td>
<td>18</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Innovation Chambers</td>
<td>390</td>
<td>15 net</td>
<td>26</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Conference Room</td>
<td>405</td>
<td>15 net</td>
<td>27</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Open Collaboration Space</td>
<td>10719</td>
<td>15 net</td>
<td>715</td>
<td>417</td>
<td></td>
</tr>
<tr>
<td>Unoccupied Space</td>
<td>987</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1188</td>
<td>780</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Floor</th>
<th>Dorms</th>
<th>N/A</th>
<th>Fixed Beds</th>
<th>59</th>
<th>59</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Room</td>
<td>820</td>
<td>15</td>
<td>55</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Terrace Rooftop</td>
<td>7093</td>
<td>15</td>
<td>473</td>
<td>444</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>587</td>
<td>558</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Floor</th>
<th>Dorms</th>
<th>N/A</th>
<th>Fixed Beds</th>
<th>59</th>
<th>59</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Room</td>
<td>820</td>
<td>15</td>
<td>55</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>116</td>
<td>116</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fifth Floor</th>
<th>Dorms</th>
<th>N/A</th>
<th>Fixed Beds</th>
<th>59</th>
<th>59</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Room</td>
<td>820</td>
<td>15</td>
<td>55</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>116</td>
<td>116</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In short, the discussed codes set base parameters. These parameters, coupled with the solutions discussed in the architectural program, begin to fill in the contours of the architectural design.
3.3: The Parallax Academic Center

The academic center can be accessed at ground level through either of two entrances; one facing the quadrangle in the southwest direction, the other facing the campus center in the northeast direction. There is a central stair that goes only from the ground floor to the second floor; however, two other stairs run all the way from the basement to the top-most residential floor. Only residents of the residence hall will have access to the residential floors, but all students will be able to access all three floors of the academic center. The floor-to-floor height of each academic floor is thirteen feet, to allow space for mechanical systems beneath the slabs, allowing eleven foot floor-to-ceiling heights. There are also bathrooms on each floor as per IBC Table 2902.1 Minimum Number of Required Plumbing Fixtures.

The academic facility of The Parallax is a three tier space, each tier targeting a key objective; nevertheless, there is overlap between floors. The basement focus is placed on WPI’s award winning robotics program, and accommodating some of its space requirements. The first floor is based on providing flexible project collaboration space, to stimulate innovation and creativity. A massive, central stair connects the first and second floors, and is fully integrated with the project collaboration functions of both floors. The second floor is geared toward growth; providing ancillary academic spaces, not necessarily designated to any single department. The academic center is equipped throughout with appropriate restroom accommodations and egress requirements as per the IBC. See Table 8, below. The Parallax’s academic facility is a solution that comprehensively meets the challenges based on the needs of the WPI community.
Table 8: IBC Code Implications for Egress and Restroom Accommodations

<table>
<thead>
<tr>
<th>IBC Code</th>
<th>Description</th>
<th>Calculation</th>
<th>Implication</th>
</tr>
</thead>
<tbody>
<tr>
<td>1005.3.1</td>
<td>Minimum stairway width</td>
<td>Calculated by multiplying the occupant load of the floor by an egress capacity factor of 0.2 in/occupant, in buildings equipped with an automatic sprinkler system. Not less than 44 in.</td>
<td>Controlling occupancy is the 1st or 2nd floor with 780 persons. 780 persons x 0.2"/person = 156" of total stair width (clear width) Two 6.5' clear width stairs will work.</td>
</tr>
<tr>
<td>1005.3.2</td>
<td>Minimum width of non-stair egress components</td>
<td>Calculated by multiplying the occupant load of the floor by an egress capacity factor of 0.2 in/occupant.</td>
<td>Controlling occupancy is the 1st or 2nd floor with 780 persons. 780 persons x 0.2"/person = 156" of total door width (clear width)</td>
</tr>
<tr>
<td>1010.1.1</td>
<td>Minimum clear width of doors</td>
<td>Minimum clear width: 32 in</td>
<td>Must have enough doors to meet 156" of total clear width but each door must have a minimum 32" clear width.</td>
</tr>
</tbody>
</table>
| Table 2902.1 | Minimum number of required plumbing fixtures | This table lists the minimum number of plumbing fixtures required by occupancy. | Basement – 3 water closets and 3 lavatories
First Floor – 16 water closets and 11 lavatories
Second Floor – 16 water closets and 11 lavatories |

WPI’s Robotics Program is ranked second in the country and is the first to offer a Bachelor degree, Master degree, as well as a PhD. The Robotics Program hosts competitions throughout the year, with awards of over a million dollars and scouts like NASA and SpaceX. With increasing interest in the robotics field and its growth at WPI, a consolidated space is ideal for further development of the program. The basement is optimal for this purpose due to the nature of lab work. Considering the noise of testing, building, and manufacturing robots, the RBE program needs a space without noise restrictions.

The basement level of The Parallax centralizes the existing RBE labs from Table 2, which are currently scattered across campus. Table 9, below, lists the labs housed within The Parallax, the building they transferred from, and their size in the new facility. Figure 6 is the basement floor plan of The Parallax, illustrating the spacing of the labs.
Table 9: Parallax RBE Lab Data

<table>
<thead>
<tr>
<th>New Lab</th>
<th>Current Building</th>
<th>Size (Square Footage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humanoid Robotics Lab 01</td>
<td>The Washburn Shops</td>
<td>Large (1500 SF)</td>
</tr>
<tr>
<td>Undergraduate Teaching Lab 02</td>
<td>Atwater Kent Labs</td>
<td>Large (1575 SF)</td>
</tr>
<tr>
<td>Undergraduate Teaching Lab 03</td>
<td>Atwater Kent Labs</td>
<td>Large (1550 SF)</td>
</tr>
<tr>
<td>Soft Robotics Lab 04</td>
<td>Higgins Labs</td>
<td>Small (775 SF)</td>
</tr>
<tr>
<td>Foisie Lab 05</td>
<td>N/A</td>
<td>Medium (1000 SF)</td>
</tr>
<tr>
<td>Undergraduate Teaching Lab 06</td>
<td>Atwater Kent Labs</td>
<td>Small (820 SF)</td>
</tr>
<tr>
<td>Lab 07</td>
<td>Olin Hall</td>
<td>Medium (1100)</td>
</tr>
<tr>
<td>Interaction Lab 08</td>
<td>Fuller Labs</td>
<td>Large (1600 SF)</td>
</tr>
<tr>
<td>Musical Robotics Lab 09</td>
<td>Alden Memorial</td>
<td>Medium (1240 SF)</td>
</tr>
<tr>
<td>Undergraduate Teaching Lab 10</td>
<td>Atwater Kent Labs</td>
<td>Medium (950 SF)</td>
</tr>
</tbody>
</table>

Figure 6: Basement Floor Plan
In addition to the RBE labs, the basement also houses five innovation chambers, a makerspace and the building’s mechanical equipment. A crucial component, key to the cultivation of creativity and project collaboration, for this program, is the innovation chamber. Innovation chambers are 130 to 150 square feet, capable of accommodating teams as large as six. These rooms are equipped with an array of options for a multitude of brainstorming styles, as detailed in Table 10.

Table 10: Innovation Chamber Details

<table>
<thead>
<tr>
<th>Variables</th>
<th>Options May Include</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seating Style</td>
<td>Rocking chairs, yoga balls, rolling chairs, standard chair, standing mat, ground seating, bean bags, hammocks, rotating stools</td>
</tr>
<tr>
<td>Desk Height</td>
<td>Adjust height all the way from sitting on the ground to standing</td>
</tr>
<tr>
<td>Media Options</td>
<td>Floor-to-ceiling whiteboards, magnets, computer display, projector, laptop hook-up, lots of outlets, whiteboard surface tables</td>
</tr>
<tr>
<td>Ambiance Settings</td>
<td>Light dimming, ambient music, retractable partitions b/w some units, coat rack, cubbies</td>
</tr>
<tr>
<td>Fidget Tools</td>
<td>Mini basketball and hoop, stress balls</td>
</tr>
</tbody>
</table>

The makerspace has approximately 1,000 square feet, as to occupy up to twenty students at one time. The makerspace has work surfaces at varying heights, to account for seated or standing working conditions. There is an equipment room from where students may check out tools and/or materials from the equipment manager/makerspace supervisor. There is also a 3D printer available, with supervised use.

And because one of WPI’s goals for the building is to have a certain capacity for modification, in the event of future expansion, the mechanical equipment room is oversized for the potential addition of larger system.
Project work is the core of WPI’s curriculum. Starting freshman year, students have the opportunity to enroll in the Great Problems Seminars (GPS); multidisciplinary teams of students and faculty collaborate to solve problems of global importance. Although participation in a GPS is optional, students MUST complete both an Interdisciplinary Qualifying Project (IQP) and a Major Qualifying Project (MQP) in order to graduate. Furthermore, most departments incorporate group work into their courses. Because there is so much project-based learning taking place on campus, with no concentrated project workspace, the first floor of The Parallax is dedicated to project development.

The first floor of The Parallax, see Figure 7 above, provides three innovation chambers, where student groups have access to various media resources and modes of brainstorming. The goal of the innovation chamber design is to provide a space that is conducive to both focusing on the problem at
hand as well as fostering creativity and collaboration between group members. There are three conference rooms where groups can have a more formal meeting and/or host presentations. Nine offices on this level will account for a portion of relocated RBE faculty and staff, sixteen offices total. There is also a cafe, where purchase food and beverage will be available to the WPI community, as well as an adjacent patio. Because students often work on projects for hours at a time, the café will allow project teams to continue collaboration, or take a break, while they eat, without having to relocate.

The architectural highlight of The Parallax is the massive, central stair, connecting the first and second floors, see Figure 8. There are two paths of stairs from the first floor to the landing and four paths from the landing to the second floor. The stair is integrated into the project workspace theme of the first floor through two key features: tiered seating, facing media walls, and study alcoves, tucked in between the tiered seating and the usable stairs, see Figure 9. The two sets of tiered seating run between the first floor stairs and each set faces a 400 square foot media wall.
The media walls are a part of the structural solution; they double as load-bearing walls, which follow all the way through the building. There will be additional seating along both sides of the media wall. On the side of the walls opposite the tiered seating will be dry-erase boards and other modes of graphic display so that students also have the option of doing work in an open environment. The study alcoves, between the stairs and tiered seating, will serve as small, private work areas which, unlike innovation chambers and conference rooms, won’t require a reservation. The reception desk, located directly between the quad-facing entrance and the central stair, is where students can ask questions about any of the project programs, and reserve innovation chambers or conference rooms.

The primary focus of the second floor, see Figure 10 below, is to provide spaces for academic overflow, with no particular field-of-study designation. In other words, as the WPI student body
continues to grow and there is a continued increase in need for basic courses, required by all majors, this floor will help facilitate additional courses. WPI is over 150 years old and many of the departments have overgrown the means of their respective buildings, which were designed for class sizes from decades ago. There are two classrooms, two lecture halls, and an additional, quad-facing conference room. The classrooms and lecture halls will double function as spaces where academic departments and programs can host seminars, guest lectures, and information sessions for their various programs. There are also six additional RBE faculty offices and three more innovation chambers. Aside from these functions, and as an addition to the solution for increased project workspace, roughly 10,000 square feet of the second floor is an open collaboration space. It very nearly represents a large scale innovation chamber. There will be a range of seating available and many group configurations to form. Nearly all the elements of the work space will be mobile; therefore, it will be an ever-changing environment.
3.4: The Parallax Residence Hall

The Parallax Residence Hall is designed to provide the most efficient use of space; to maximize the number of residents without sacrificing comfort. The unique "U" shape of the residence hall is critical because the long, bent corridor increases the exterior wall perimeter, from that of a simple rectangle. This allows for more windows, maximizing natural lighting, and effectively results in more rooms. Table 11 displays the dorm/suite schedule, as well as a brief description of each type of room.

The variety of room options stems from WPI's room and board payment structure. Unlike other schools which charge every student a standard room and board fee independent of their housing, the room and board cost at WPI is variable to where you live. The benefit of variety allows students willing to pay more for a more desirable room to do so.

<table>
<thead>
<tr>
<th>Room Type</th>
<th>Area (Square Feet)</th>
<th>QTY</th>
<th># of Residents/Room</th>
<th># of Residents/Room Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double</td>
<td>170</td>
<td>14</td>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td>Triple</td>
<td>395</td>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Triple Suite</td>
<td>535</td>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Quad Suite</td>
<td>725 - 775</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Hex Suite</td>
<td>1050 - 1100</td>
<td>2</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>RA Single</td>
<td>125</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total Residents/Floor</td>
<td></td>
<td></td>
<td></td>
<td>61</td>
</tr>
</tbody>
</table>

This schedule is consistent with the fourth and fifth floors; however, the third floor triples are 295 square feet due to the terrace access. See Appendix D.
The residence hall consists of three floors, each with the same floor plan; the only difference being the terrace access on the third floor and, subsequently, a 100 square foot decrease for the triples. In addition to the dorms and suites from Table 11, each floor has a large, 825 square foot, common room for residents to hang out, watch movies, hold meetings, and carry out any other group functions.

![Room Legend]

Each room has its own bathroom; equipped with both a shower and a water closet. The sinks and linen closets have all been mounted outside the bathroom; allowing roommates to access the sink or linen closet while the bathroom is occupied. All quad and hex suites are divided so that they contain two doubles or two triples, respectfully, which open into a common living space, kitchen, and bathroom as detailed in Figure 12 and Figure 13. Triple suites have a living space, separated from the bedroom, but no kitchen.
Figure 12: Hex Suite Floor Plan
Figure 13: Quad Suite Floor Plan
Figure 12 and Figure 13 also showcase the furnishings for each resident: a lofted, twin-size bed with a desk underneath, and a dresser.

The third floor terrace is an intended product of geometry from the "U" shaped residence hall. In order to make efficient use of space, this terrace is accessible to Parallax residents and their guests via the third floor residence hall. However, key card access will be required for admittance, which will only be granted to Parallax residents. In providing terrace access to Parallax residents, which cannot be found at any other residence hall on WPI's campus, The Parallax may gain favor when it comes time for housing selection. Along with a prime view of the quadrangle, the terrace features an array of seating and workspaces.
3.5: Conclusion

The WPI community faces several challenges: academic and residential growth, increasing project workspace, and housing the diffused portions of the RBE program. The Parallax utilizes the "divide and conquer" philosophy by addressing each challenge on one of the academic levels and providing a residence hall to specifically address student admissions increases. When all the pieces come together and The Parallax becomes whole, the sum of the challenges is solved.
Chapter 4: Structural Design

4.1: Introduction

A building's structural system is designed to transfer loads, both laterally and vertically, through structural members from the top of the building down to its foundation where the loads are essentially transferred to the ground. This is accomplished through the use of load-bearing walls, floor systems (slabs, beams, joists, and etc.), and columns. For the three known structural materials - concrete, steel, and wood, beams transfer their load onto girders which support those transferred loads and then laterally transfer them to the columns to which they are connected to. The floor system is designed to be responsible for carrying the moment forces caused by any live, dead, snow loads acting on it. Furthermore, floor systems act as diaphragms to transfer wind and seismic loads. This decision on the floor system simplifies the design process of the vertical members because now these are considered to only carry gravity loads, or loads acting vertically. This includes those members' self-weight along with the weight of any members attached to it i.e. girders.

In order to minimize costs and production time, members are often standardized for the worst case scenario presented in the building. If a steel structure were to have every member designed for its unique case, the design process would have to be lengthened an absurd amount and the manufacturing process would take much longer as well in order to produce every single member separately; However, if members are standardized, the design process takes a fraction of the time and members can be produced in bulk. The same process goes for wood and concrete design.

4.2: Concrete Design

The Parallax's academic facility consists of the basement and first two floors that are designed with reinforced concrete. This base will serve as a podium for the three residential floors above. This type of construction is simply termed, "podium construction." The structural design of the academic
facility utilizes load-bearing walls and two-way slabs, in order to limit the number of columns and provide a larger, more open floor plan. The load bearing walls are all located near the perimeter of The Parallax which allowed the center of the building to be open with minimal restrictions. Furthermore, they are carried up through the residential part of the building and essentially guided the architectural layout of each floor.

4.2.1 Load Transfer/Types of Load

The loads acting on the building are initially carried by the floor system and are then transferred laterally to its supporting columns. These columns carry the load down to the foundation and eventually into the ground, see Figure 15 below. For The Parallax, the residential columns transfer the loads down to the concrete podium. The podium then carries the load down into the foundation and eventually into the ground.
When designing the concrete structural system, the first piece that was designed was the slab system because the loads acting on it could be calculated. The columns and load bearing walls were then calculated using their tributary areas. The Parallax's academic facility is supporting three floors of student dormitories and any snow accumulation on its roof; therefore, the largest and most important slab is the top most concrete slab. Consequently, this slab carries the residential dead load and live load along with the snow loads and transfers those loads to its supporting columns and load bearing walls. However, before commencing the design process, a few assumptions were made:

4.2.2 Assumptions/Givens of the System

1. The rebar strength will be 60,000 psi.
2. The concrete strength will be 4,000 psi.
3. The transfer of unbalanced moments from the slabs to the supporting columns and bearing walls was neglected for the preliminary sizing.

4. The residential building creates a total, superimposed dead load of 90 psf, 40 psf for bedrooms and 80 psf for hallways.

4.2.3 Slab Design

The moments that act on a slab are what dictate its design. The moment diagram on a slab is parabolic with the top of the parabola being considered a positive moment and the negative moments occurring at the edge of the slab; the tips of the parabola, see Figure 16.

![Figure 16: Positive Bending Moment Diagram](image)

A positive moment means that the top of the slab is in compression and the bottom is in tension. For this reason the reinforcing steel is designed for the tension portion of the slab. A negative moment means the opposite and therefore, the rebar will be placed within the upper portion of the slab. The moment forces are calculated through the ultimate weight which is given by the factored
associated loads acting on the building. These loads were 100 psf for the live load, 35 psf for the snow load, and the dead load was a combination of the slab's self-weight in addition to the 90 psf for the residential building sitting on top of the podium.

Table 12: Concrete Slab Systems

<table>
<thead>
<tr>
<th>Concrete Slab System</th>
<th>Key Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-Way Slab</td>
<td>Flat rectangular slab with reinforcement</td>
</tr>
<tr>
<td>One-Way Joist Slab</td>
<td>Minimizes concrete footprint of the one-way by inserting joists where rebar is needed</td>
</tr>
<tr>
<td>Waffle Slab</td>
<td>Utilizes same technique the one-way joist does but now the joists span all directions of the slab, creating the waffle look.</td>
</tr>
</tbody>
</table>

The first slab system designed was a one-way slab system. A one-way slab system is designed to only have reinforcement in one direction. These types of slabs must be used in bays that have a length ratio larger than three, as in the length of the bay must exceed three times the width of the bay. The reinforcement will span across the short length (width) of the slab. After calculating the one way slab, a thickness of 20 inches was obtained. This is non-ideal: both the cost and weight would be immense for a 20-inch concrete slab, spanning a 22,500 square feet. Also, the depth of this slab will subtract usable vertical space, lowering the plenum, which would force the building to increase its ultimate height in order to ensure the specified ceiling heights by the architect. Increasing the building’s height could cause implications with the construction type of the building. Standard concrete slab thicknesses for commercial projects is between six and ten inches.

The next step was to then design a one-way joist slab system. The purpose of the joist is to minimize the amount of concrete being used. This will lower the cost of construction and the thickness of the slab, ultimately lowering the slab’s self-weight. With a joist system, the rebar is placed in the joists that extend down from the thinner slab and there are voids between the joists where no concrete is present. However, even with the one-way joist system, the total depth of the joist was too long.
Therefore, a two-way slab system must be considered because it will be less costly, less massive, and allow larger bay sizes, giving the building a more open floor plan.

Two-way slabs allow for larger bay sizes because there is reinforcement running in both directions of the slab. The positive and negative moments still dictate how much reinforcing steel is required and the bay sizes are limited to a length/width ratio of three. When designing any two way slab system, there are nine different cases, or combinations, of slabs, in which the edges of the slab are either continuous or discontinuous. A continuous edge is one that will continue to span into the next bay. A discontinuous one is an edge that stops at its support (i.e. an edge that is fixed to an exterior wall).

The coefficient method uses the nine cases previously mentioned. The coefficients that are used to calculate the moments in the slab are controlled by the case and whether the moment is positive or negative. When considering the worst case scenario of the roof slab, the calculations yielded a thickness of 14 inches. This thickness is still too thick and expensive; therefore, a waffle slab, the joist system for a two-way slab, was designed.

To begin waffle slab calculations, a few assumptions about the initial waffle dimensions were made: the flange width is 42 inches, the web is 12 inches wide, and the slab is 3 inches thick. However, ACI 9.5.3.3 calls for a minimum slab thickness of 5 inches. With the assumptions made, the design process was repeated for the multiple cases presented in the building. For the slab determined to be the worst case scenario, see Figure 17 below. Six separate moments were identified due to the geometry of the slab.
Therefore, the design process was completed for each moment in order to determine the necessary rebar. In order to minimize costs, rebar was restricted to be no larger than a #8. The final size of the rebar was found to be a number #8 which has a diameter of one inch.

Initially, the designed waffle slab system shortened the depth of the total slab to ten inches, three inches of slab with a seven-inch web, web width of twelve inches with thirty-inch spacing between webs, five No. 8 reinforcing bars in the short direction, and six of the same in the long direction.

4.2.4 Column and Load Bearing Walls

The exterior load bearing walls are responsible for gravity and lateral forces. However, as explained in section 4.2.5, the walls are sufficiently thick that the lateral loads are negligible. Gravity
loads include loads carried by the slab, the weight of the slab, and the column/bearing wall’s self-weight. Therefore, the sizing of these members was not as complex. The axial loading was determined in order to design the required area of the concrete and steel reinforcement to sustain the load. Based on these methods, the large columns were found to be ten inches in diameter with four No. 4 bars, the small columns were calculated to be eight inches in diameter with five No. 3 bars, and the bearing walls were determined to be ten inches thick with two No. 8 bars every twelve inches.

4.2.5 Lateral Loads

Interpolation of Table 27.6-1 from the ASCE 7-10 yields a wind pressure value of fifteen pounds per square foot, acting at twenty-six feet; the top of the concrete construction. With a compressive strength of 4,000 pounds per square inch, the walls of the concrete structure are inherently strong enough to render these standard wind loads negligible.

4.2.6 Foundation and Foundation walls

In general, foundation walls carry vertical load from the superstructure and lateral load from both soil pressure and seismic activity. The foundation slab acts as a diaphragm in terms of lateral support. The Parallax foundation walls are ten inches thick, poured on site, with two No. 8 reinforcing bars every twelve inches, as to be consistent with the load-bearing walls above. The foundation slab design was conducted using the one-way slab design method. The 150’ x 150’ footprint was divided into thirty-six 25’ x 25’ slabs: yielding a slab length, L, of 25 feet. Because the whole slab is continuously supported by the earth, the ground will act as the subdividing joists. An initial slab thickness (h) of 10 inches was also assumed. Table 13 walks through the design process.
Table 13: Foundation Slab Design Procedure

<table>
<thead>
<tr>
<th>Step 1: Calculate Flexure Load</th>
<th>(W_u = 1.2DL + 1.6LL + 0.5SL)</th>
<th>(W_u = 1305.9 \text{ psf})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2: Calculate Moments</td>
<td>Interior/Exterior: (M_u = (1/11)WL^2)</td>
<td>(M_u = -74.2 \text{ k-ft})</td>
</tr>
<tr>
<td></td>
<td>Midspan: (M_u = (1/16)WL^2)</td>
<td>(M_u = 51 \text{ k-ft})</td>
</tr>
<tr>
<td>Step 3: Calculate the depth of</td>
<td>(M_u = \phi f'{c} b d \left[1 - 0.59 \left(f_y / f'{c} \right) \right])</td>
<td>(d \geq 9.52 \text{ in})</td>
</tr>
<tr>
<td>the reinforcement, (d)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4: Check minimum cover</td>
<td>(d = h - 0.75 \text{ in} - 0.25 \text{ in})</td>
<td>(d = 9 \text{ in}, \ not \geq 9.62)</td>
</tr>
<tr>
<td>for actual (d) and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>recalculate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New (h = 12 \text{ in})</td>
<td>(W_u = 1335.9 \text{ psf})</td>
<td>(M_u = -75.9 \text{ k-ft (Int/Ext)})</td>
</tr>
<tr>
<td>(M_u = 52.2 \text{ k-ft (Midspan)})</td>
<td>(d \geq 9.62 \text{ in (calculated (d)}})</td>
<td></td>
</tr>
<tr>
<td>(d = 11 \text{ in}, \geq 9.62 \text{ (actual (d)}})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 5: Calculate reinforcement requirement with interpolation</td>
<td>(A_s = \frac{M_u}{\phi f_y (d - 0.5a)})</td>
<td>(A_s = 1.193 \text{ in}^2 \text{ (Midspan)})</td>
</tr>
<tr>
<td>(a = \frac{(A_s f_y)}{(0.85 f'_{cb})})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solution Checks</td>
<td>2 #7 bars, (A_s = 1.20 \text{ in}^2)</td>
<td>(0.48 \text{ in}^2 \leq 1.57 \text{ in}^2 \leq 2.97 \text{ in}^2)</td>
</tr>
<tr>
<td>2 #8 bars, (A_s = 1.57 \text{ in}^2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A_{s,\min} = 0.003bh = 0.48 \text{ in}^2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A_{s,\max} = 0.021bh = 2.97 \text{ in}^2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The table shows that the initial thickness assumption was incorrect and the actual slab thickness will be 12 inches. Although two No. 7 bars will suffice, two No. 8 bars will be used for standardization of materials, as the load-bearing walls and other slabs are also using No. 8 reinforcing bars. These two No. 8 bars will be placed at every twelve inches.

4.3 Wood Design

4.3.1 Background

Wood design follows the basic principles of load transferring introduced in the beginning of the chapter. The floor joists are considered beams that can connect to a girder that transfers the load to a load bearing wall or column; these floor joists can also be directly attached to load bearing walls. The load-bearing walls of the residential building transfer loads down into the roof slab of the podium.

4.3.2 Wall Framing

Wood framing is generally prescriptive. However, in order for the residential structure to qualify as Type III (B) construction, the exterior walls are to be framed using fire-retardant-treated lumber. The
exterior wall frame is composed of 2X6 nominal wood studs, spaced at 16" on center. The interior partitions are also comprised of 2x6 studs at 16" O.C. However, the interior walls have no requirement for fire rating due to the construction type. Despite the lack of a requirement, the interior walls are finished with 5/8" drywall, yielding a 1 hour fire rating.

4.3.3 Shear loads

The design of the shear wall was crucial due to the building’s elevation. Because the three-story building is located on top of a podium, it experiences higher wind velocities than if it were level with the ground. The design process for a wood frame shear wall is outlined by the Code Master that references ASCE 7-10 and the 2012 IBC. The Code Master breaks the process down in seven steps; some of which, have multiple considerations. The steps are listed below in Table 14:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Determine Risk Category</td>
<td>Category III</td>
</tr>
<tr>
<td>2</td>
<td>Determine Basic Wind Speed</td>
<td>124 MPH</td>
</tr>
<tr>
<td>3</td>
<td>Determine Mean Roof Height</td>
<td>56 ft.</td>
</tr>
<tr>
<td>4</td>
<td>Determine Exposure Category</td>
<td>Category B</td>
</tr>
<tr>
<td>5</td>
<td>Determine Enclosure Classification of Building</td>
<td>Enclosed</td>
</tr>
<tr>
<td>6</td>
<td>Determine Directionality Factor K_d, Topographic Factor K_{ts}, and Gust Effect Factor G or G_t</td>
<td>$K_d = .85$ $K_{ts} = 1$ $G_f = .85$</td>
</tr>
<tr>
<td>7</td>
<td>Determine Wind Design Method for MWFRS</td>
<td>Method 5: Wind Tunnel Procedure</td>
</tr>
</tbody>
</table>

Due to the residential building’s "U" shaped geometry, there is no simplified method to determine the design wind pressures for the design of the shear wall and diaphragm. The only way to
design this building would be to produce a scaled model of the building and test it in a wind tunnel. Putting the model in a wind tunnel would allow the design process to be extremely accurate due to the fact that all the results would be computerized based on how the model reacts in the tunnel. The results would be produced for each individual wall. The wind tunnel would essentially note how much load is acting on the wall and then based on this value, the amount of shear that the wall is experiencing would be determined. This shear value guides the design of the sheathing, structural tie downs and diaphragm sheathing as well.

However, for the sake of time and to provide a learning experience with the wind load provisions of ASCE 7, the building was treated as a simple case, and the shear walls and diaphragms were standardized from the design for the worst-case scenario. Therefore, for Step 7 in the table above, Method 2 was chosen. Method 2 requires a building to be an enclosed simple diaphragm with a height of less than 160 feet. It's also described as a simplified version of method 1 assuming the requirements are met.

Method 2 is presented in chapter 27 part 2 of the ASCE 7-10. Taking into account the parapet roof and the height locations of the building, the wind pressures at key heights on the wall were obtained from Table 15. The building’s height, the geographic wind speed given by the ATC's website and the L/B value, found by dividing the shear wall's length by the length of the perpendicular wall that directly faces the wind, were the guiding parameters when using the table. The required wind pressure was then found by interpolating the table values corresponding to the parameters, see Appendix C for calculations.
The design process compared the two largest walls because they were perpendicular to the two smallest walls that would be receiving the shear load. Therefore, the two worst case scenario walls are pointed out below in Figure 18 and Figure 19.
Figure 18: West Shear Wall
Through analysis, the west wall was deemed to be the governing for the worst case scenario. This is because the west wall is responsible to carry the same amount of load as the south wall but the west wall's distance is shorter; therefore, putting a higher strain on it. The loads for this wall were then distributed to each floor according to the tributary width of each diaphragm. Using Table 4.2C in the Wind and Seismic Special Design Provisions for Wind and Seismic (SDPWS) code, the initial sheathing grade was determined to be a 5/16" Sheathing and Single-Floor with 6d nail size. However, Table 5503.1 in the 780 CMR Massachusetts building code calls for a minimum of 11/16" thick sheathing when floor joists are spaced 16" on center.

Using LRFD combined with the Segmented Wood shear Wall Design method, Section 4.3.5.1 of the SDPWS, the West wall was separated into segments with heights of 10' and varying widths, See
Figure 20 below. The large white panels represent the sheathing and the shade areas represent the brick veneer of the building.

These panels represent the sheathing for the shear walls that were sized in accordance with Table 4.3.4 "Maximum Shear Wall Aspect Ratios." Because the sheathing was pre-determined to be structural with blocking, the acceptable ratio of height to base, H/b_s, was 3.5:1. In order to size the sheathing, the lateral load acting on the second floor needed to be divided by the length of the West
wall and then multiplied by the factor $\phi = .8$. Using Table 4.3 in the SDPWS, the selected sheathing was chosen as 7/16" Structural Panel I with 8d nails 6" o.c. Table 4.3 lists different types of sheathing materials, their thickness, fastener penetration, and fastener type and size. Each combination of these parameters have a corresponding seismic and wind resistance.

To finish the design of the shear wall, the required tie-down forces for the wall needed to be determined. To begin, this wall was designed to be treated as a whole unit rather than having each panel of sheathing act as its own system. Section C4.3.7 of the SDPWS specifies that this can be accomplished by screwing 2-2x6 members together where sheathing panels meet. This connection allows for the transfer of load through the panels, simplifying the tie-down calculations. The tie-down calculations are relatively straightforward: a function of the wall's height and length, and the force of the wind acting on the wall in pounds per linear foot. Table 16 walks through the tie-down calculations for the North-facing wall, illustrated in Figure 21.

Table 16: Tie-down Forces, North Wall

<table>
<thead>
<tr>
<th>Panel</th>
<th>Width (ft)</th>
<th>Ratio of Panel Width to Total Width</th>
<th>Shear Load (lb)</th>
<th>Tie-Down Force @ 3rd Floor (lb)</th>
<th>Tie-Down Force @ 4th Floor (lb)</th>
<th>Tie-Down Force @ 5th Floor (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>14.83</td>
<td>0.1827</td>
<td>5,295</td>
<td>10,711</td>
<td>7,141</td>
<td>3,570</td>
</tr>
<tr>
<td>B</td>
<td>6.5</td>
<td>0.0801</td>
<td>2,321</td>
<td>10,711</td>
<td>7,141</td>
<td>3,570</td>
</tr>
<tr>
<td>C</td>
<td>8.33</td>
<td>0.1026</td>
<td>2,974</td>
<td>10,711</td>
<td>7,141</td>
<td>3,570</td>
</tr>
<tr>
<td>D</td>
<td>5.33</td>
<td>0.0657</td>
<td>1,903</td>
<td>10,711</td>
<td>7,141</td>
<td>3,570</td>
</tr>
<tr>
<td>E</td>
<td>5.67</td>
<td>0.0699</td>
<td>2,024</td>
<td>10,711</td>
<td>7,141</td>
<td>3,570</td>
</tr>
<tr>
<td>F</td>
<td>5.67</td>
<td>0.0699</td>
<td>2,024</td>
<td>10,711</td>
<td>7,141</td>
<td>3,570</td>
</tr>
<tr>
<td>G</td>
<td>5.67</td>
<td>0.0699</td>
<td>2,024</td>
<td>10,711</td>
<td>7,141</td>
<td>3,570</td>
</tr>
<tr>
<td>H</td>
<td>29.17</td>
<td>0.3594</td>
<td>10,415</td>
<td>10,711</td>
<td>7,141</td>
<td>3,570</td>
</tr>
<tr>
<td>Total</td>
<td>81.17</td>
<td>1</td>
<td>28,980</td>
<td>10,711</td>
<td>7,141</td>
<td>3,570</td>
</tr>
</tbody>
</table>

As can be seen in Table 16, the tie-down forces of the panels are equivalent at each floor. This is because the load acting on each panel is a function of the ratio of the panel's width to the total width. In other words, the load acting on a panel is proportional to its width. A more involved analysis could show
how some of the shear load is actually carried by the lateral struts, the sections of wall above and below the windows and between panels.

Figure 21: North Shear Wall Elevation
4.4 Pratt Truss

4.4.1 Background

The second floor of the academic facility features two classrooms, on the west side of The Parallax, that overhang the first floor exterior wall by ten feet, see Figure 22 below.

The three stories of residential construction, above, also overhang. A Pratt truss is the ideal structural solution; essentially tying back all the loads, acting on the overhang, to the load-bearing walls in the main structure. Initially, a Vierendeel was considered but because of load-path knowledge it was
predetermined that for the truss to be acceptable, the members would've been substantially larger. The Pratt truss offers bracing members which consequently decreased the size of the members. To architecturally enhance the overhang, the steel members will be exposed and put on display with a glazed curtain wall: the envelope for the two classrooms.

4.4.2 General Design

To more efficiently explain the design process, Table 17 details the procedure, step by step.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – Spacing</td>
<td>Determine how many trusses are to be used, and their orientation, based on the architecture and design goals.</td>
</tr>
<tr>
<td>2 – Tributary Area</td>
<td>Based on the spacing, calculate the tributary areas each truss is responsible for supporting.</td>
</tr>
<tr>
<td>3 – External Load Calculations</td>
<td>Based on the tributary areas, calculate the magnitude and location of the external loads (dead load, live load, and snow load) acting on the truss.</td>
</tr>
<tr>
<td>4 – Member Orientation</td>
<td>Based on the external loading, geometry of the truss, and anticipated load path, make an educated assumption of the truss members' orientations.</td>
</tr>
<tr>
<td>5 – Reactionary Forces</td>
<td>Based on the external loading and support locations, calculate the reactionary forces acting on the truss.</td>
</tr>
<tr>
<td>6 – Member Forces/Influence Lines</td>
<td>Using both external loads and reactionary forces, calculate the forces in each member of the truss using influence lines.</td>
</tr>
<tr>
<td>7 – Member Sizing</td>
<td>With the forces of all the truss members calculated, member sizing can begin.</td>
</tr>
</tbody>
</table>

In the case of the second floor overhang, three trusses are used: one at each end and a third, illustrated as the wall dividing the two classrooms. The middle truss was selected for design because it has the largest tributary area; therefore, its final solution can be used for the
other trusses, for standardization purposes. After calculating the external loads, the member spacing and orientation was assumed from the cantilever geometry of the truss. See Figure 23.

4.4.3 Sizing Members

Similar to the concrete and wood members, the steel members were also designed based on the worst-case scenario for tension and combined axial and flexure. To confirm the completed hand calculations, the truss was put into the structural software RISA 2D. The software produced the member forces acting on each member of the truss. Refer to Appendix D for the results on all members. The results for the critical members are presented in Table 18 below.
<table>
<thead>
<tr>
<th>Member label</th>
<th>Section</th>
<th>Axial (K)</th>
<th>Shear (K)</th>
<th>Moment (K-ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Member EF</td>
<td>1</td>
<td>-3.26</td>
<td>204.966</td>
<td>377.68</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-3.26</td>
<td>26.266</td>
<td>-144.129</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-3.26</td>
<td>-11.234</td>
<td>-172.313</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-3.26</td>
<td>-48.734</td>
<td>-59.872</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-3.26</td>
<td>-86.234</td>
<td>193.194</td>
</tr>
<tr>
<td>Member EB</td>
<td>1</td>
<td>299.761</td>
<td>-10.39</td>
<td>-93.194</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>299.761</td>
<td>-10.39</td>
<td>-59.426</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>299.761</td>
<td>-10.39</td>
<td>-25.658</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>299.761</td>
<td>-10.39</td>
<td>8.109</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>299.761</td>
<td>-10.39</td>
<td>41.877</td>
</tr>
<tr>
<td>Member CF</td>
<td>1</td>
<td>64.501</td>
<td>12.603</td>
<td>112.967</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>64.501</td>
<td>12.603</td>
<td>72.008</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>64.501</td>
<td>12.603</td>
<td>31.049</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>64.501</td>
<td>12.603</td>
<td>-9.91</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>64.501</td>
<td>12.603</td>
<td>-50.868</td>
</tr>
<tr>
<td>Member AE</td>
<td>1</td>
<td>-25.736</td>
<td>-4.689</td>
<td>-10.776</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-25.736</td>
<td>-4.689</td>
<td>8.448</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-25.736</td>
<td>-4.689</td>
<td>27.673</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-25.736</td>
<td>-4.689</td>
<td>46.898</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-25.736</td>
<td>-4.689</td>
<td>66.123</td>
</tr>
</tbody>
</table>
Figure 24: Pratt Truss Axial Loading Diagram

Figure 25: Pratt Truss Shear Diagram
The *American Institute of Steel Construction Manual* (AISC) was essential in designing members for the truss. Table 1-1 provides all necessary dimensions of any given member, Table 3-2 organizes W shapes by their Z_x value but also provides the design moment capacity and the moment of inertia about the X-axis. These values are essential in determining the bending capacity and deflection of a selected member. Furthermore, Table 4-1 presents information on the available strength of W sections in axial compression. The AISC also presents the procedure for the design of tension members in Chapter D in the specification.

Sizing of the steel members was broken down into three separate calculations: one for members with combined axial compression and flexure, another for members experiencing combined axial tension and flexure, and finally shear calculations. Due to these combined forces, equations in H1-1a
and H1-1b, presented below, from Chapter H in the Specification of the AISCM are the dictating equations for sizing the members.

![Figure 27: AISCM Chapter H Specification Equations](image)

The moment portion of the calculations are identical with the goal of determining the flange local buckling force of the members: all members were found to have plastic bending. Plastic bending dictated the allowable moment value, which was equal to the nominal moment of the selected member, that the system called for. This value, along with the actual moment are both plugged into the appropriate equation.

Along with the moment values used in the equations, compression and tension values make up the other half of the equation. Compression members were all found have the Y-axis to govern the calculation. This required to use Table 4-1 in the AISCM to find the available axial strength of the selected member, P_c which is equal to ΦP_n. Tension members are a little more involved in the sense that there is more than one parameter to consider when choosing the appropriate value for P_c. Tension yield in the gross area and tension fracture in the net area produce the required minimum area that a member should have to resist the tensile load acting on it. ΦP_n is found for each case then the lower value the governing one for choosing P_c, refer to Appendix D for calculations. Below, Figure 28 Figure 28: Final Truss Design is a drawing of the final Pratt truss with the labeled members.
Figure 28: Final Truss Design
Chapter 5: Energy Conservation

An energy analysis was considered in the design of The Parallax. Energy Use Intensity (EUI) measurements were utilized in order to size mechanical systems. To find the reasonable ranges for EUI, a couple of sources were considered: the Energy Star Portfolio Manager tabulates EUI, the ASHRAE Standard 90.1-2007, and the Energy Performance of LEED for New Construction Buildings. The Parallax academic facility is considered an office-type building and the residential floors are dorm-type. Table 19 details EUI measurements from these sources.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Office</th>
<th>Dorm</th>
<th>Site EUI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Star PM</td>
<td>67.3</td>
<td>73.9</td>
<td>kBtu/SQF</td>
</tr>
<tr>
<td>ASHRAE</td>
<td>39-45</td>
<td>40.8</td>
<td>kBtu/SQF</td>
</tr>
</tbody>
</table>

After researching some LEED report cards of business and dorm-type buildings, it was determined that maintaining a Site EUI of 60 kBtu/ft² in the office-type floors and 50 kBtu/ft² in the dorm-type floors, will result in a LEED Gold certification, considering that the building fulfill all other necessary LEED credits. Table 20 contains relevant data from the case studies.
Table 20: LEED Case References

<table>
<thead>
<tr>
<th>Project</th>
<th>LEED</th>
<th>EAc1</th>
<th>% Improvement</th>
<th>kBtu/ft^2</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>College N. Res. Hall</td>
<td>LEED BD+C: New Construction v3 - LEED 2009</td>
<td>3/19</td>
<td>16</td>
<td>67</td>
<td>Silver</td>
</tr>
<tr>
<td>TraPac Admin Bldg</td>
<td>LEED BD+C: New Construction v2 - LEED 2.2</td>
<td>4/10</td>
<td>21</td>
<td>68</td>
<td>Gold</td>
</tr>
<tr>
<td>Smart Bldg Cntr WPIP</td>
<td>LEED BD+C: New Construction v3 - LEED 2009</td>
<td>19/19</td>
<td>48</td>
<td>45</td>
<td>Platinum</td>
</tr>
<tr>
<td>Tercero S. Student Hsg</td>
<td>LEED BD+C: New Construction v2 - LEED 2.2</td>
<td>6/10</td>
<td>28</td>
<td>58</td>
<td>Gold</td>
</tr>
<tr>
<td>UALR Student Srvc Cntr</td>
<td>LEED BD+C: New Construction v3 - LEED 2009</td>
<td>10/19</td>
<td>30</td>
<td>60</td>
<td>Gold</td>
</tr>
<tr>
<td>UALR West Hall</td>
<td>LEED BD+C: New Construction v3 - LEED 2009</td>
<td>10/19</td>
<td>30</td>
<td>56</td>
<td>Gold</td>
</tr>
</tbody>
</table>

It is estimated that only 50% of site EUI values are attributed to heating, and 20% to cooling; therefore, if the site EUI is adjusted, the heating or cooling system can then be sized. Figure 29 details the calculations for using EUI to determine rough system sizing.
Table 21 and Table 22, below, compile the relevant data necessary to complete these calculations: target EUI, floor area, heating degree days, and degree day worst day.

Table 21: Heating Load Data

<table>
<thead>
<tr>
<th>Occupancy</th>
<th>Target EUI (kBtu/SQF)</th>
<th>Square Feet</th>
<th>50% EUI = Heating (kBtu/SQF)</th>
<th>Total kBtu</th>
<th>HDD</th>
<th>DD Worst Day (Feb. 20)</th>
<th>Heating Days</th>
<th>Heating Load (kBtu/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office</td>
<td>60</td>
<td>45,000</td>
<td>30</td>
<td>1,350,000</td>
<td>6031</td>
<td>58</td>
<td>12,983</td>
<td>541</td>
</tr>
<tr>
<td>Dorm</td>
<td>50</td>
<td>67,500</td>
<td>25</td>
<td>1,687,500</td>
<td>6031</td>
<td>58</td>
<td>16,229</td>
<td>676</td>
</tr>
</tbody>
</table>

Table 22: Cooling Load Data

<table>
<thead>
<tr>
<th>Occupancy</th>
<th>Target EUI (kBtu/SQF)</th>
<th>Square Feet</th>
<th>20% EUI = Heating (kBtu/SQF)</th>
<th>Total kBtu</th>
<th>CDD</th>
<th>DD Worst Day (Feb. 20)</th>
<th>Cooling Days</th>
<th>Cooling Load (kBtu/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office</td>
<td>60</td>
<td>45,000</td>
<td>12</td>
<td>540,000</td>
<td>857</td>
<td>17</td>
<td>10,712</td>
<td>446</td>
</tr>
<tr>
<td>Dorm</td>
<td>50</td>
<td>67,500</td>
<td>10</td>
<td>675,000</td>
<td>857</td>
<td>17</td>
<td>13,390</td>
<td>558</td>
</tr>
</tbody>
</table>

After doing the calculations, there is an estimated 1217 kBtu/hour for total heating and 1004 kBtu/hour for total cooling. The implications of these loads call for a unit capable of 84 tons of refrigeration for cooling and 357 kW of heating. These results are reasonable as there are standard mechanical units capable of meeting these requirements.

Heating and cooling load calculations, using the CLTD/CLF method, were also conducted for four different rooms throughout The Parallax: the smaller of the two classrooms from the second floor, both
hex suites on the fifth floor, and the smaller of the two lecture halls from the second floor. These rooms
were selected for their differing exposures relative to the sun and their envelope. The heat gain and
heat loss values are shown in Table 23.

Table 23: Heat Gain/Loss Calculation

<table>
<thead>
<tr>
<th>Room</th>
<th>Orientation</th>
<th>Gross Wall Area SQF</th>
<th>Glazing Area SQF</th>
<th>Room Area SQF</th>
<th>Wall U-Value</th>
<th>Roof U-Value</th>
<th>Heat Gain (Btu/hr)</th>
<th>Heat Loss (Btu/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Classroom</td>
<td>SW</td>
<td>643.5</td>
<td>643.5</td>
<td>973</td>
<td>0.19</td>
<td>N/A</td>
<td>1808</td>
<td>2050</td>
</tr>
<tr>
<td>SE Facing Hex Suite</td>
<td>SE</td>
<td>750</td>
<td>172</td>
<td>1160</td>
<td>0.0332</td>
<td>0.0122</td>
<td>1087</td>
<td>2063</td>
</tr>
<tr>
<td>NE Facing Hex Suite</td>
<td>NE</td>
<td>700</td>
<td>129</td>
<td>1133</td>
<td>0.0332</td>
<td>0.0122</td>
<td>968</td>
<td>742</td>
</tr>
<tr>
<td>Small Lecture Hall</td>
<td>NE</td>
<td>1,335</td>
<td>180</td>
<td>1966</td>
<td>0.0316</td>
<td>N/A</td>
<td>896</td>
<td>1494</td>
</tr>
</tbody>
</table>

It is clear from the comparison of Table 23 to Table 21 and Table 22 that the energy required to
accommodate the actual heat gain and heat loss of the building, Table 23, will be well under the
estimated energy required, Table 21 and Table 22.
Chapter 6: Conclusions & Recommendations

The objectives of The Parallax were to provide sufficient space for community growth, in both an academic and residential sense, provide an adaptable project collaboration environment, and to provide space for the consolidation of the Robotics Engineering labs and offices. The Parallax meets these objectives derived from the needs and desires of the WPI community as a multi-occupancy building. The academic center consists of three floors, each addressing one of the three challenges. The residence hall, above, addresses the growth from a residential perspective.

The academic and residential facilities act as a "one-two punch", providing housing for over 180 students, over 22,000 square feet of project collaboration space, and a whole floor almost entirely dedicated to relocating the RBE labs to a single building. A detailed structural analysis was conducted, as well as research into energy usage, to support the architectural design. In sum, The Parallax has an opportunity to be highly celebrated by WPI for its consideration of the Institute's unique culture, the solutions it poses to community challenges, as well as the opportunities it provides for innovation, collaboration, and idea development.

As a continuation to this project, the following concepts are recommended for areas of future work: more in-depth heating and cooling analysis of the entire building, the use of heavy timber construction versus traditional framing, or a fire code analysis i.e. sprinkler design, detection, notification and alarm systems, and smoke control.
References:

Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary. Farmington Hills, MI: American Concrete Institute, 2009. Print.

RISA 2D. Software.

Appendices:

Appendix A: Drawing Package

A.1 Floor Plans and Site Plan
Box around the building represents the necessary setbacks: 15' in the front and 10' for the rear and the sides.

Site Plan
1" = 60' 0'
A.2 Wall Section Details

Wall Detail

The Parallax

<table>
<thead>
<tr>
<th>Project number</th>
<th>MQP</th>
<th>Date</th>
<th>Checked by</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3-2-17</td>
<td>Bruno Scherer</td>
<td>1/2” = 1'-0"</td>
</tr>
</tbody>
</table>
Appendix B: Concrete

One-way Slab Design Calculations

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>M</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>Estimate h</td>
<td>L =</td>
<td>37</td>
<td>h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>h ≥ L/24</td>
<td>f_c =</td>
<td>4</td>
<td>ksi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>L =</td>
<td>444</td>
<td>in.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>h ≥</td>
<td>18.5</td>
<td>in.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Compute Flexure Load</td>
<td>p_{max} = 0.85\left(f_c / f_y\right)\left(1 + 0.004\right)</td>
<td>p_{min} =</td>
<td>0.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Unit Weight</td>
<td>150</td>
<td>lb/ft^3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>W_{self} = (Unit Weight)(h/12in/ft)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>W_{self} =</td>
<td>231.25</td>
<td>psf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>LL =</td>
<td>100</td>
<td>psf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>SL =</td>
<td>35</td>
<td>psf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Wu = 1.2(UL) + 1.6(LL) + 0.5(SL)</td>
<td>Wu =</td>
<td>455</td>
<td>psf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>p_{0.005} = 0.85\left(f_c / f_y\right)\left(1 + 0.005\right)</td>
<td>p_{0.005} =</td>
<td>0.018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>p_{0.005} < p_{max} \rightarrow \phi =</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>d @ Mu_{max}</td>
<td>d =</td>
<td>8.31</td>
<td>in.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Mu_{max} = 56.5 k-ft</td>
<td>Mu_{mid} =</td>
<td>38.9 k-ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Mu = 5</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>a) Interior Support</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>-Mu = (-1/11)WL^2</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>-Mu =</td>
<td>-56626.8</td>
<td>lb-ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Check d</td>
<td>d =</td>
<td>h - 0.75in - 0.25in</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>d =</td>
<td>17.5</td>
<td>></td>
<td>8.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>b) Midspan</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Mu = (1/16)WL^2</td>
<td>Mu =</td>
<td>38931</td>
<td>lb-ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>As/Unit Width (Iteration)</td>
<td>As = Mu/(\phi y(d-0.5a))</td>
<td>a = 1.091</td>
<td>1</td>
<td>0.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>As =</td>
<td>0.742</td>
<td>in. sq.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>As =</td>
<td>1.091</td>
<td>in. sq.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>c) Exterior Support</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>-Mu = (-1/11)WL^2</td>
<td>a = (As+yf)/0.85f_c</td>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>-Mu =</td>
<td>-56626.8</td>
<td>lb-ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>As @ Midspan (same a)</td>
<td>As =</td>
<td>0.510</td>
<td>in. sq.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>As =</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>As, min = p_{min}\times b\times h</td>
<td>As, min =</td>
<td>0.74</td>
<td>in. sq.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>As =</td>
<td>0.742</td>
<td>in. sq.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

69
One-way T Joist Slab Design Calculations
Waffle Slab Design Calculations

ACI 9.5.3.3, thickness no less than 5''

- Does not affect calculations
Continued Waffle Slab Design Calculations
Foundation Slab Design Calculations

A	B	C	D	E	F	G	H	
1	Given P, Solve for D							
2	Axial Loading							
3	Ac = P/(0.85*(1-p)*f'c)+p*fy							
4	Ac = 75.16 sq. in							
5	D = sqrt((4*Ac)/pi)							
6	D = 9.78 in							
7	Actual D = 10 in							
8	Actual Ac = 78.54 sq. in							
9	Actual Ast = 0.79 sq. in							
10	Bar # = 4 x 4 # of Bars = 0.79 sq. in							
11	Actual ρ = 0.0101 < 0.04							

Large (10") Column Design Calculations
Small (8””) Column Design Calculations

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Given P, Solve for D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Axial Loading</td>
<td>φ = 0.85</td>
<td>Compression</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Ac = P/(0.85*(1-p)f'c)+pfy</td>
<td>f'c = 4000</td>
<td>psi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Ac = 44.61 sq. in</td>
<td>f_y = 60000</td>
<td>psi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>D = sqrt((4*Ac)/pi)</td>
<td>ρ = 0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>D = 7.54 in</td>
<td>P = 176943</td>
<td>lb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Actual D = 8 in</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Actual Ac = 50.27 sq. in</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Actual Ast = 0.50 sq. in</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Bar # 3 x 5</td>
<td># of Bars = 0.55 sq. in</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Actual ρ = 0.0109</td>
<td>< 0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Load-Bearing Wall Design Calculations

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Given P, Solve for D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Axial Loading</td>
<td>φ = 0.7</td>
<td>Compression</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Ac = P/(0.85*(1-p)f'c)+pfy</td>
<td>f'c = 4000</td>
<td>psi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Ac = 86.23 sq. in</td>
<td>f_y = 60000</td>
<td>psi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>h = sqrt(Ac)</td>
<td>ρ = 0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>h = 9.29 in</td>
<td>P = 341986</td>
<td>lb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Actual h = 10 in</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Actual Ac = 120.00 sq. in</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Actual Ast = 1.20 sq. in</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Bar # 8 x 2</td>
<td># of Bars = 1.57 sq. in</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Actual ρ = 0.0131</td>
<td>< 0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix C: Wood

Shear Design Pre-calculations

ATC Wind speed: 124 mph
Mean height: 56'

West Shear Wall: \(\frac{1}{B} = \frac{80' - 9.7''}{151' - 7/8''} \rightarrow \frac{1}{B} = .57 \)

South Shear Wall: \(\frac{1}{B} = \frac{30.5'}{151' - 7/8''} \rightarrow \frac{1}{B} = .2011 \)

From AISC 7-10 Chapter 27.5.2
• Class 1 Building
Interpolation of ASCE 7-10 Table 27.6-1

West Shear Wall

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Shear (kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>12.0</td>
</tr>
<tr>
<td>15</td>
<td>10.0</td>
</tr>
<tr>
<td>20</td>
<td>8.5</td>
</tr>
<tr>
<td>25</td>
<td>7.0</td>
</tr>
</tbody>
</table>

- **Interpolation**
 - \(P_{w} @ 25' = 7.0 \) kips
 - \(P_{w} @ 12.5' = 10.0 \) kips
 - \(P_{w} @ 5' = 12.0 \) kips

 For notes at Table 27.6-1,
 - \(P_{w} = 10 \times (5\%) = P_{w} = 16.6 \) kips

- \(P_{w} @ 25\% = 7.0 \) kips
 - \(P_{w} @ 12.5\% = 10.0 \) kips
 - \(P_{w} = 25.0 \times (5\%) = P_{w} = 1.25 \) kips

- \(P_{w} = 16.6 \times (2.5\%) = 37.62 \) kips

South Shear Wall

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Shear (kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>12.0</td>
</tr>
<tr>
<td>15</td>
<td>10.0</td>
</tr>
<tr>
<td>20</td>
<td>8.5</td>
</tr>
</tbody>
</table>

- **Interpolation**
 - \(P_{w} @ 25' = 7.0 \) kips
 - \(P_{w} @ 12.5' = 10.0 \) kips
 - \(P_{w} @ 5' = 12.0 \) kips

 For notes at Table 27.6-1,
 - \(P_{w} = 10 \times (5\%) = P_{w} = 16.6 \) kips

- \(P_{w} @ 25\% = 7.0 \) kips
 - \(P_{w} @ 12.5\% = 10.0 \) kips
 - \(P_{w} = 25.0 \times (5\%) = P_{w} = 1.25 \) kips

- \(P_{w} = 16.6 \times (2.5\%) = 37.62 \) kips
Values are the same for both shear walls, however, the west
Shear wall’s length is the shortest of the two.

Therefore, West Shear Wall dictates.

\[P_w = 37.62 \]

\[R_w = 16.62 \]

\[P_0 = 1561 \]

\[\frac{1}{2} (50)(151.5)(2.96) = 6732.15 \text{ lbs} \]

Total: 6791.75

\[\text{Each floor carries 22,971.9 lbs} \]

or 151.5 1/4".

Diaphragm Shear Wall
Table 4.25 SDPRA and 780 CMR Table 5603.1

"W" Shear wall and single floor: 6d nail size with floor joists @ 16" O.C.

Diaphragm Design Calculations
Shear Wall: LRFD, Segmented Wood Shear Wall (4.3.5.1)

- Max aspect ratio: 3.5:1 \(\Rightarrow \frac{h}{l_{bs}} \)
- Douglas Fir-Larch: SG Factor = 1
- Wood Structural Panels with blocking
- Assuming min shear width is 2'-11" and max width is 10' (Table 4.3.4)

Sheathing panels for each floor have to carry:

\[22,911.19 \text{ lbs of force} \]

\[V_s = \frac{22,911.19 \text{ lbs}}{8 + 8 + 9 + 6.25} = 759.4 \text{ lb/ft} \]

\[\phi V_s = 0.8 (759.4) \Rightarrow \phi V_s = 607.52 \text{ lb/ft} \]

Table 4.3A

Structural Panel \(7/16" \) with 8d nails 6" o.c can carry up to 715 psi.
- Standardize all sheathing to this.
Tie-down Forces for East Wall, Hand Calculations
Tie-down Forces for South Wall, Hand Calculations
Tie-down Forces for West Wall, Hand Calculations
Tie-down Forces for East Wall, Excel Calculations

<table>
<thead>
<tr>
<th>Panel</th>
<th>Width (ft)</th>
<th>Width Ratio</th>
<th>Load (lb)</th>
<th>30' T=C= (lb)</th>
<th>20' T=C= (lb)</th>
<th>10' T=C= (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3.67</td>
<td>0.0517</td>
<td>1499</td>
<td>12257</td>
<td>8171</td>
<td>4086</td>
</tr>
<tr>
<td>B</td>
<td>9.5</td>
<td>0.1339</td>
<td>3881</td>
<td>12257</td>
<td>8171</td>
<td>4086</td>
</tr>
<tr>
<td>C</td>
<td>15</td>
<td>0.2115</td>
<td>6129</td>
<td>12257</td>
<td>8171</td>
<td>4086</td>
</tr>
<tr>
<td>D</td>
<td>4.5</td>
<td>0.0634</td>
<td>1839</td>
<td>12257</td>
<td>8171</td>
<td>4086</td>
</tr>
<tr>
<td>E</td>
<td>5.17</td>
<td>0.0729</td>
<td>2112</td>
<td>12257</td>
<td>8171</td>
<td>4086</td>
</tr>
<tr>
<td>F</td>
<td>13.5</td>
<td>0.1903</td>
<td>5516</td>
<td>12257</td>
<td>8171</td>
<td>4086</td>
</tr>
<tr>
<td>G</td>
<td>5.67</td>
<td>0.0799</td>
<td>2317</td>
<td>12257</td>
<td>8171</td>
<td>4086</td>
</tr>
<tr>
<td>H</td>
<td>8.17</td>
<td>0.1152</td>
<td>3338</td>
<td>12257</td>
<td>8171</td>
<td>4086</td>
</tr>
<tr>
<td>I</td>
<td>5.75</td>
<td>0.0811</td>
<td>2349</td>
<td>12257</td>
<td>8171</td>
<td>4086</td>
</tr>
</tbody>
</table>

Total: 70.93 1 28980

Tie-down Forces for South Wall, Excel Calculations

<table>
<thead>
<tr>
<th>Panel</th>
<th>Width (ft)</th>
<th>Width Ratio</th>
<th>Load (lb)</th>
<th>30' T=C= (lb)</th>
<th>20' T=C= (lb)</th>
<th>10' T=C= (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>27</td>
<td>0.4821</td>
<td>13973</td>
<td>15525</td>
<td>10350</td>
<td>5175</td>
</tr>
<tr>
<td>B</td>
<td>18</td>
<td>0.3214</td>
<td>9315</td>
<td>15525</td>
<td>10350</td>
<td>5175</td>
</tr>
<tr>
<td>C</td>
<td>8</td>
<td>0.1429</td>
<td>4140</td>
<td>15525</td>
<td>10350</td>
<td>5175</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>0.0536</td>
<td>1553</td>
<td>15525</td>
<td>10350</td>
<td>5175</td>
</tr>
</tbody>
</table>

Total: 56 1 28980

Tie-down Forces for West Wall, Excel Calculations

<table>
<thead>
<tr>
<th>Panel</th>
<th>Width (ft)</th>
<th>Width Ratio</th>
<th>Load (lb)</th>
<th>30' T=C= (lb)</th>
<th>20' T=C= (lb)</th>
<th>10' T=C= (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>30.25</td>
<td>1.0000</td>
<td>76689</td>
<td>76055</td>
<td>50703</td>
<td>25352</td>
</tr>
</tbody>
</table>
Appendix D: Pratt Truss

Reactionary Forces Calculations
Influence Line Diagrams
Pratt Truss Member Force Hand Calculations

\[\frac{x^2}{3} - 6.67x + 23.53 + FC = 0 \]
\[FC = \frac{x^2}{3} + 6.67x - 23.53 \]

\[EF_x = -BC = 0 \quad \text{For all } x \]
\[+EF_y = C_y + FC = 0 \]

\[FB = \left(\frac{x^2}{3} - 6.67x + 23.53 \right) \]

\[FE = \left(\frac{x^2}{3} - 6.67x + 23.53 \right) \]

\[FB = \left(\frac{x^2}{3} - 6.67x + 23.53 \right) \]

\[FE = \left(\frac{x^2}{3} - 6.67x + 23.53 \right) \]

\[EB = 117.67 \text{ k} \]

\[\text{For } x = 20' \]
Pratt Truss Member Force Hand Calculations Continued
Pratt Truss Member Force Hand Calculations Continued

For $x = 20'$

$$\sum F_y = 0: 31.967 - 1/3 \times 16.647 + 17.647 + 2/3 \times 6.367 \times 23 \times 2 = 0$$

$$\sum M = 0: 16.367$$

For $0 \leq x \leq 20'$

$$EF_x = 0; \quad DE = 0\uparrow$$

$$\Rightarrow EF_y = 0; \quad DA = 10x(\frac{x}{2}) = 0$$

$$DA = -5x^2$$

$$DA = 5x^2 \quad \text{for } 0 \leq x \leq 20'; \quad DA = 0 \text{ for } x > 20'$$

For $0 \leq x \leq 20'$

$$AE = 5x^2$$

$$AB = 15/13 \left(x^2/3 - 6.63x + 23.53 \right)$$

$$+ \frac{13}{16.4} AE = 0; \quad AE = -5x^2 \left(\frac{16.4}{13} \right)$$

$$AE = (0.31)x^2 \quad \text{for } 0 \leq x \leq 20'; (AE = 0 \text{ for } x > 20')$$
Member Sizing: Member CF

| GIVEN: | | | | | | | |
|-------|-------|-------|-------|-------|-------|-------|
| Size | W8X67 | | | | | | |

<table>
<thead>
<tr>
<th>E (ksi)</th>
<th>20000</th>
<th>Pc</th>
<th>507</th>
<th>bf (in)</th>
<th>8.28</th>
<th>d (in)</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>I (in^4)</td>
<td>272</td>
<td>ry (in)</td>
<td>2.12</td>
<td>tf (in)</td>
<td>0.935</td>
<td>Fy (ksi)</td>
<td>50</td>
</tr>
<tr>
<td>L (in)</td>
<td>156</td>
<td>rx (in)</td>
<td>3.72</td>
<td>tw (in)</td>
<td>0.57</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMBINED FLEXURE AND COMPRESSION

Kx/Lry = 73.58491, governs Table 4-1 for P_c = \P_n

<table>
<thead>
<tr>
<th>Member</th>
<th>CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_m (k)</td>
<td>64.5</td>
</tr>
<tr>
<td>Mnt (ft-k)</td>
<td>113</td>
</tr>
</tbody>
</table>

\[P_r/P_c = 0.10804 \text{ USE H1-1b} \]

| FLB | Bf/2tf | 4.427807 | Plastic Bending Mp | \(\phi \)Mn = \(\phi \)Mp | 263 |

SHEAR

| Shear force | 12.6 | Kips |

| Aw (in^2) | 5.13 |
| h/tw | 11.1 | CV and \(\phi = 1 \) |

\[\phi \text{Vn} = 153.9 \text{ acceptable} \]
Member Sizing: Member EB

<table>
<thead>
<tr>
<th>Given:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E (Ksi)</th>
<th>Pc</th>
<th>bf (in)</th>
<th>d (in)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>29000</td>
<td>597</td>
<td>8.28</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I (in^4)</th>
<th>ry (in)</th>
<th>tf (in)</th>
<th>Fy (ksi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>272</td>
<td>2.12</td>
<td>0.935</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L(in)</th>
<th>rx (in)</th>
<th>tw (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>156</td>
<td>3.72</td>
<td>0.57</td>
</tr>
</tbody>
</table>

Combined Flexure and Compression

- $K_{ly/ry}$: 73.58491 governs Table 4-1 for $P_c = \phi P_n$
- Member: EB
- P_{nt} (K): 300
- M_{nt} (ft-K): 93.2

<table>
<thead>
<tr>
<th>P_r/P_c</th>
<th>USE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.502513</td>
<td>H1-1a</td>
</tr>
</tbody>
</table>

FLB

- $B/f/2tf$: 4.427807
- Plastic Bending M_p: $\phi M_n = \phi M_p$, 263

Shear

- Shear force: 10.39 Kips

<table>
<thead>
<tr>
<th>A_w (in²)</th>
<th>t/w</th>
<th>C_v and ϕ = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.13</td>
<td>11.1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ϕV_n</th>
<th>acceptable</th>
</tr>
</thead>
<tbody>
<tr>
<td>153.9</td>
<td></td>
</tr>
</tbody>
</table>
Member Sizing: Member EF

<table>
<thead>
<tr>
<th>Given</th>
<th>Size</th>
<th>14x82</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E (ksi)</th>
<th>29000</th>
<th>Pc = φPn</th>
<th>1024.87</th>
</tr>
</thead>
<tbody>
<tr>
<td>I (in^4)</td>
<td>881</td>
<td>ry (in)</td>
<td>2.48</td>
</tr>
<tr>
<td>l (in)</td>
<td>180</td>
<td>rx (in)</td>
<td>6.05</td>
</tr>
<tr>
<td>bf (in)</td>
<td>10.1</td>
<td>d (in)</td>
<td>14.3</td>
</tr>
<tr>
<td>tf (in)</td>
<td>0.855</td>
<td>Fu (ksi)</td>
<td>65</td>
</tr>
<tr>
<td>tw (in)</td>
<td>0.51</td>
<td>Fy (ksi)</td>
<td>50</td>
</tr>
<tr>
<td>A (in^2)</td>
<td>24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMBINED FLEXURE AND TENSION

<table>
<thead>
<tr>
<th>Member</th>
<th>EF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pnt (k)</td>
<td>3.26</td>
</tr>
</tbody>
</table>

Yielding

<table>
<thead>
<tr>
<th>Yielding</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Min Ag</td>
<td>0.072444</td>
<td>acceptable</td>
</tr>
<tr>
<td>φPn (k)</td>
<td>1080</td>
<td></td>
</tr>
</tbody>
</table>

Rupture

<table>
<thead>
<tr>
<th>Rupture</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>0.715552</td>
<td>acceptable</td>
</tr>
<tr>
<td>An</td>
<td>23.35875</td>
<td></td>
</tr>
<tr>
<td>Ae</td>
<td>21.02288</td>
<td></td>
</tr>
<tr>
<td>φPn (k)</td>
<td>1024.865</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>USE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr/Pc</td>
<td>0.003181</td>
<td>H1-1b</td>
</tr>
</tbody>
</table>

FLB

| FLB | 5.906433 | Plastic Bending Mp | φMn = φMp | 521 |

SHEAR

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Shear force</td>
<td>204.97</td>
<td>Kips</td>
</tr>
<tr>
<td>Aw (in^2)</td>
<td>7.293</td>
<td></td>
</tr>
<tr>
<td>h/tw</td>
<td>22.4</td>
<td>Cv and φ = 1</td>
</tr>
<tr>
<td>φVn</td>
<td>218.79</td>
<td>acceptable</td>
</tr>
</tbody>
</table>
Member Sizing: Member AE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E \text{ (Ksi)})</td>
<td>29000</td>
</tr>
<tr>
<td>(t \text{ (in}^2\text{)})</td>
<td>394</td>
</tr>
<tr>
<td>(L \text{ (in)})</td>
<td>196.8</td>
</tr>
<tr>
<td>(P_c)</td>
<td>847.77</td>
</tr>
<tr>
<td>(d \text{ (in)})</td>
<td>10.4</td>
</tr>
<tr>
<td>(b_f \text{ (in)})</td>
<td>10.1</td>
</tr>
<tr>
<td>(t_f \text{ (in)})</td>
<td>0.77</td>
</tr>
<tr>
<td>(A \text{ (in}^2\text{)})</td>
<td>19.9</td>
</tr>
<tr>
<td>(F_y \text{ (ksi)})</td>
<td>50</td>
</tr>
<tr>
<td>(F_u \text{ (ksi)})</td>
<td>65</td>
</tr>
</tbody>
</table>

Combined Flexure and Tension

<table>
<thead>
<tr>
<th>Member</th>
<th>(P_{mt} \text{ (k)})</th>
<th>(M_{nt} \text{ (ft-k)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>25.74</td>
<td>66.12</td>
</tr>
</tbody>
</table>

Yielding

- \(\text{Min } A_g \) = 0.572 - acceptable
- \(\phi P_n \text{ (k)} \) = 895.5

Rupture

- \(A_g \) = 1.164167 - acceptable
- \(A_n \) = 19.3225
- \(A_c \) = 17.39025
- \(\phi P_n \text{ (k)} \) = 847.7747

- \(P_r/P_c \) = 0.030362 - USE

FLB

- \(B_l/2t_l \) = 6.558442 - Plastic Bending
- \(\phi M_n = \phi M_p \) = 320

Shear

- Shear force = 4.689 Kips

Aw (in\(^2\))

- \(Aw \) = 4.888
- \(h/tw \) = 16.7 - \(C_v \) and \(\phi = 1 \)

- \(\phi V_n \) = 146.64 - acceptable

Risa Diagram

- DE
- EF
- AC
- AB
- CB
- BF
<table>
<thead>
<tr>
<th>L</th>
<th>Member Label</th>
<th>S₀</th>
<th>Axial[kN]</th>
<th>Shear[kN]</th>
<th>Moment[kN.m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AD</td>
<td>1</td>
<td>28.463</td>
<td>1.675</td>
<td>24.771</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>28.463</td>
<td>1.675</td>
<td>19.325</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>28.463</td>
<td>1.675</td>
<td>13.88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>28.463</td>
<td>1.675</td>
<td>8.435</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>28.463</td>
<td>1.675</td>
<td>2.989</td>
</tr>
<tr>
<td>1</td>
<td>DE</td>
<td>1</td>
<td>-1.675</td>
<td>28.463</td>
<td>2.989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>-1.675</td>
<td>3.463</td>
<td>-36.917</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>-1.675</td>
<td>-21.537</td>
<td>-14.323</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>-1.675</td>
<td>-46.537</td>
<td>70.77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>-1.675</td>
<td>-71.537</td>
<td>216.364</td>
</tr>
<tr>
<td>1</td>
<td>EF</td>
<td>1</td>
<td>-3.26</td>
<td>204.966</td>
<td>377.68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>-3.26</td>
<td>26.265</td>
<td>-144.129</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>-3.26</td>
<td>-11.234</td>
<td>-172.313</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>-3.26</td>
<td>-48.734</td>
<td>-59.072</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>-3.26</td>
<td>-85.234</td>
<td>103.194</td>
</tr>
<tr>
<td>1</td>
<td>CF</td>
<td>1</td>
<td>64.501</td>
<td>12.603</td>
<td>112.967</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>64.501</td>
<td>12.603</td>
<td>72.008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>64.501</td>
<td>12.603</td>
<td>31.043</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>64.501</td>
<td>12.603</td>
<td>-9.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>64.501</td>
<td>12.603</td>
<td>-50.858</td>
</tr>
<tr>
<td>1</td>
<td>CB</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>AB</td>
<td>1</td>
<td>13.65</td>
<td>-5.205</td>
<td>-38.058</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>13.65</td>
<td>-5.205</td>
<td>-25.045</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>13.65</td>
<td>-5.205</td>
<td>-12.032</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>13.65</td>
<td>-5.205</td>
<td>981</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>13.65</td>
<td>-5.205</td>
<td>13.994</td>
</tr>
<tr>
<td>1</td>
<td>AE</td>
<td>1</td>
<td>-25.736</td>
<td>-4.689</td>
<td>-10.776</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>-25.736</td>
<td>-4.689</td>
<td>8.448</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>-25.736</td>
<td>-4.689</td>
<td>27.673</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>-25.736</td>
<td>-4.689</td>
<td>40.899</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>-25.736</td>
<td>-4.689</td>
<td>66.123</td>
</tr>
<tr>
<td>1</td>
<td>BE</td>
<td>1</td>
<td>299.761</td>
<td>-10.39</td>
<td>33.194</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>299.761</td>
<td>-10.39</td>
<td>-59.426</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>299.761</td>
<td>-10.39</td>
<td>-25.558</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>299.761</td>
<td>-10.39</td>
<td>8.409</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>299.761</td>
<td>-10.39</td>
<td>41.077</td>
</tr>
<tr>
<td>1</td>
<td>BF</td>
<td>1</td>
<td>28.222</td>
<td>6.035</td>
<td>39.557</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>28.222</td>
<td>6.035</td>
<td>9.811</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>28.222</td>
<td>6.035</td>
<td>-20.335</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>28.222</td>
<td>6.035</td>
<td>-50.281</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>28.222</td>
<td>6.035</td>
<td>-80.227</td>
</tr>
</tbody>
</table>

Member Forces Calculated in Risa