Antenna Toolbox™ Parallelization on Amazon EC2 Cloud Cluster

BY:

VISHAL K. RATHI
Submitted: March 2017

Approved by:

PROFESSOR SERGEY MAKAROV

A Major Qualifying Project Report submitted to the faculty of WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the degree of Bachelor of Science in Electrical and Computer Engineering.
Abstract

The goal of this project was to run Antenna Toolbox™ solutions on Amazon EC2 cloud cluster and benchmark the performance on both local and cloud clusters. The first section will cover some background knowledge about the products used in this project. After that, the report talks about the methodology to create a cloud cluster and use it. Next, the report shows some performance results obtained for the cloud cluster running on Amazon EC2. Finally, the report ends with a conclusion section which talks about the things learned in this project.
Acknowledgements

I would like to thank the following people and institutions:

The RF and Antenna Toolbox™ team members, Dr. Vishwanath Iyer, Dr. Shashank Kulkarni, Dr. Da Huang, Dr. Don Orofino, and Dr. Mark Reichelt at The MathWorks, Inc. They guided me throughout this project and made this project a success.

I would like to thank my advisor for this project, Professor Sergey Makarov. He provided me with much guidance and advice, and my project would not have been what it is without him.

Finally, I would like to thank Worcester Polytechnic Institute and The MathWorks, Inc. for making this MQP project possible.
Table of Contents

Abstract ... I

Acknowledgements ... II

List of Figures .. V

1. Introduction .. 1
 1.1 Project Description .. 1

2. Background .. 2
 2.1 Cloud Computing .. 2
 2.2 Amazon Elastic Compute Cloud (EC2) ... 2
 2.3 Parallel Computing .. 3
 2.4 Antenna Toolbox™ .. 3
 2.5 Parallel Computing Toolbox™ .. 4
 2.6 Using parfor loops to parallelize Antenna Toolbox™ solutions .. 4

3. Methodology .. 6
 3.1 Step by step guide for setting up Amazon EC2 cloud cluster .. 6
 3.2 Local and Cloud clusters details .. 22
 3.2.1 Local cluster ... 22
 3.2.2 Amazon EC2 cloud cluster ... 23

4. Results ... 24
 4.1 LU Factorization Benchmarking .. 24
 4.2 Use Cases ... 28
 4.2.1 Case 1: Dipole Array .. 28
 4.2.2 Case 2: Spiral antenna ... 30
 4.2.3 Case 3: Spiral array .. 33
 4.2.4 Case 4: Patch antenna on a substrate .. 35
 4.3 Running batch jobs on Amazon EC2 cloud cluster ... 38
 4.4 AWS memory optimized instance .. 39
 4.4.1 RadarBookColumn Problem .. 40

5. Conclusion .. 42

References .. 43
List of Figures

Figure 1 Adding users to the MDCS license on the MathWorks license manager ... 6
Figure 2 Sign up screen for Amazon Web Services .. 7
Figure 3 Register screen for Amazon Web Services .. 8
Figure 4 MathWorks cloud center login window .. 9
Figure 5 Home screen of MathWorks cloud center ... 9
Figure 6 User preferences screen of the cloud center ... 10
Figure 7 Home screen of AWS console/dashboard ... 11
Figure 8 AWS services .. 11
Figure 9 Identity and Access Management dashboard .. 12
Figure 10 Creating a new role .. 12
Figure 11 Specifying the role name .. 13
Figure 12 Selecting role type .. 13
Figure 13 Adding MathWorks cloud center account ID and External ID to the new role .. 14
Figure 14 Attaching policy to the role .. 14
Figure 15 Review screen of the new role created .. 15
Figure 16 Machine types available on the MathWorks cloud center ... 17
Figure 17 Create new key on MathWorks cloud center ... 17
Figure 18 Creating an Amazon EC2 cloud cluster on MathWorks cloud center .. 19
Figure 19 Typical cluster on the cloud center ... 20
Figure 20 View the available clusters on cloud center ... 21
Figure 21 Cluster profile on the MATLAB® client .. 22
Figure 22 Amazon EC2 cloud cluster details .. 23
Figure 23 Amazon EC2 compute optimized (C3) instances details .. 23
Figure 24 LU Factorization speed up plot for cloud cluster (5000 matrix size) ... 24
Figure 25 LU Factorization speed up plot for local cluster (5000 matrix size) .. 25
Figure 26 LU Factorization speed up plot for cloud cluster (9552 matrix size) ... 26
Figure 27 LU Factorization speed up plot for local cluster (9552 matrix size) ... 27
Figure 28 Dipole Linear Array object details .. 28
Figure 29 Speed up plot for frequency sweep on a linear dipole array ... 29
Figure 30 Time taken in minutes for frequency sweep of linear dipole array ... 30
Figure 31 Spiral antenna object details ... 31
Figure 32 Speed up plot for spiral antenna .. 31
Figure 33 Time taken in minutes for frequency sweep on a spiral antenna .. 32
Figure 34 Spiral antenna 2x2 array object details .. 33
Figure 35 Speed up plot for spiral antenna 2x2 array .. 34
Figure 36 Time taken in minutes for frequency sweep on a spiral antenna 2x2 array ... 35
Figure 37 Patch antenna object details .. 36
Figure 38 Speed up plot for Patch antenna .. 36
Figure 39 Time taken in minutes for frequency sweep on a patch antenna .. 37
Figure 40 AWS memory optimized instance details on cloud center .. 39
Figure 41 EC2 memory optimized (R3) instance details ... 39
Figure 42 Patch antenna image .. 40
Figure 43 Radar antenna object details ... 40
Figure 44 Impedance plot for the radar antenna ..41
1. Introduction

Antenna Toolbox™ users run both time and memory intensive simulations in the process of antenna design. Some of the computations take days and weeks to complete. In the current world which is so fast, the importance of time is much greater than money. To solve this problem, we investigated parallelization of Antenna Toolbox™ solutions on both local multicore computers and cloud clusters. The cloud cluster was created on Amazon Web Services (AWS). In addition to Antenna Toolbox™, Parallel Computing Toolbox™ and MATLAB® Distributed Computing Server™ were also used in this project. The goal of this project was to benchmark and compare the performance of Antenna Toolbox™ parallelization on both the local machine and cloud cluster. The comparison is made between the performance on local machine and cloud cluster on Amazon EC2. The methodology and results are discussed in this paper.

1.1 Project Description

The goal of this project will be to run Antenna Toolbox™ solutions on Amazon EC2 cloud cluster and benchmark the performance on both local and cloud clusters. The first step to achieving this goal will be to create a remote cluster of multiple workers on Amazon EC2. After the cluster is up and running, the next step will be to study the performance of LU factorization on both local and cloud clusters. LU matrix factorization is done to solve the antenna structure and is the most time and memory intensive step in the process. Therefore, the overall performance of parallelization of antenna solution will depend on the performance of LU factorization of the corresponding matrix size. Once that is done, multiple use cases will be run on the Amazon EC2 cloud cluster to measure both the speed up and time taken to solve different frequency sweeps on different antenna objects. This report will start off with the background knowledge first and then will go into details of creating the remote cluster and establishing the performance of different problems.
2. Background

The purpose of this section is to provide the reader with a general overview of cloud computing as well as an introduction to Amazon Elastic Compute Cloud and its services. This section also gives readers an introduction to parallel computing, Antenna Toolbox™ and Parallel Computing Toolbox™.

2.1 Cloud Computing

The idea of cloud computing, a virtual form of network-based processing, was first introduced in the 1960s. Now, it has become a public utility. The idea was to allow users to purchase and use virtual resources so that they don’t have to invest heavily in a physical computing infrastructure.

Cloud computing is essentially made up of a set of data centers located at different geographic locations that provide users with scalable remote computational resources. These data centers can be either private or public. Private data centers are commonly used by organizations or corporations for private use. Public data centers are available to the general public for personal use. The biggest advantage of cloud computing is the on-demand nature of these services. It allows customers to get immediate acquisition of any amount of computing power, without requiring any prior commitment to the resources.

2.2 Amazon Elastic Compute Cloud (EC2)

Amazon Elastic Compute Cloud (Amazon EC2) is a web service that provides secure, resizable compute capacity in the cloud. It is designed to make web-scale cloud computing easier for developers. [9]

Amazon EC2’s simple web service interface allows users to obtain and configure capacity with minimal friction. It provides users with complete control of your computing resources and lets users run on Amazon’s proven computing environment. Amazon EC2 reduces the time required to obtain and boot new server instances to minutes, allowing users to quickly scale capacity, both up and down, as their computing requirements change. Amazon EC2 changes the economics of computing by allowing users to pay only for capacity that users actually use. Amazon EC2 provides developers the tools to build failure resilient applications and isolate them from common failure scenarios.
Amazon EC2 provides a wide selection of instance types optimized to fit different use cases. Instance types comprise varying combinations of CPU, memory, storage, and networking capacity and give users the flexibility to choose the appropriate mix of resources for their applications. Each instance type includes one or more instance sizes, allowing users to scale their resources to the requirements of their target workload. [3]

2.3 Parallel Computing

Parallel computing is a type of computation in which many calculations or the execution of processes are carried out simultaneously. Large problems can often be divided into smaller ones, which can then be solved at the same time. Parallel computing is an opposite approach to serial computing where an algorithm is constructed implemented as a serial stream of instructions which are executed on one computer. On the other hand, in parallel computing, multiple processing elements are used to simultaneously solve a problem. The processing elements can be diverse and include resources such as a single computer with multiple processors, several networked computers, specialized hardware, or any combination of the above. [6]

Ideally, the speedup for parallelization should be linear meaning that doubling the number of processing elements should halve the runtime, and doubling it a second time should again halve the runtime. Since, we don’t live in an ideal world, achieving linear speedup isn’t possible. Most of the algorithms have close to linear speedup for smaller number of processors and then the speedup saturated as the number of processors become large.

2.4 Antenna Toolbox™

Antenna Toolbox™ provides functions for the design, analysis, and visualization of antenna elements and arrays. Users can design standalone antennas and build linear, rectangular, and conformal arrays of antennas using predefined elements with parameterized geometry or custom elements.

Antenna Toolbox™ uses the method of moments (MoM) to compute port properties such as impedance, surface properties such as current and charge distribution, and field properties such as the near-field and far-field radiation pattern. Users can visualize antenna geometry and analysis results in 2D and 3D. The
goal is to parallelize Antenna Toolbox™ functions since the antenna design process can both be time and memory intensive. The details and results of the parallelization is explained in this paper. [43]

2.5 Parallel Computing Toolbox™

Parallel Computing Toolbox™ lets users solve computationally and data-intensive problems using multicore processors, GPUs, and computer clusters. The toolbox lets users use the full processing power of multicore desktops by executing applications on workers (MATLAB® computational engines) that run locally. Without changing the code, users run the same applications on a computer cluster or a grid computing service. With the help of this toolbox and MATLAB® Distributed Computing Server™, the Antenna Toolbox™ functions are run in parallel on both local and cloud clusters in this project. [6]

2.6 Using parfor loops to parallelize Antenna Toolbox™ solutions

Parallel Computing Toolbox™ allows users to run their loops in parallel using a parfor loop. When a parfor loop is used, the MATLAB® client coordinates with the workers comprising a parallel pool to execute iterations in parallel on the pool. The required data is sent to the workers from the client and once the task is completed, the results are sent back to the client from the workers. Since the loop iterations are run simultaneously, parfor loop can provide significant improvement in the performance.

Each execution of the body of the parfor loop is an iteration. There is no particular order in which workers evaluate each iteration. Each execution of the parfor loop is independent of each other. This is a very important property of the parfor loop because it doesn’t require workers to communicate with each other for the data since each iteration is independent of each other. Parfor loops cannot be used when an iteration in the loop depends on the results of other iterations. [8]

The independence of each iteration makes it ideal to parallelize Antenna Toolbox™ solutions. Typically, while designing the antenna, users run a frequency sweep consisting of several data points or some other kind of similar sweep to analyze the performance. Each data point in the frequency sweep is independent of each other and therefore, each loop iteration doesn’t depend on the results from other iterations. This creates an ideal situation for users to parallelize their solutions to save on the computation times which can be quite significant. This project capitalizes off of this to explore the possibility of parallelizing Antenna
Toolbox™ solutions on both local and cloud clusters with the aim of reducing the computation times significantly.
3. Methodology

This chapter discusses the methodology used to create the Amazon EC2 cloud cluster. It also gives details of the clusters. [7] The next chapter discusses the results obtained.

3.1 Step by step guide for setting up Amazon EC2 cloud cluster

This guide lists all the steps to set up Amazon EC2 cloud cluster on MathWorks cloud center. The user needs both MathWorks cloud center login and AWS login in order to successfully set up the cluster. The set up process is one time. After the cluster is set up, Antenna Toolbox™ code can be run on that cluster in parallel from the client.

1. The first step is to have valid MATLAB® Distributed Computing Server™, Parallel Computing Toolbox™, and Antenna Toolbox™ licenses. MATLAB® Distributed Computing Server™ is needed to run computationally intensive MATLAB® programs on computer clouds such as Amazon EC2. Users develop their programs on multicore desktop computers using the Parallel Computing Toolbox™ and scale up to many computers by running it on cloud clusters using MATLAB® Distributed Computing Server™. The server includes a built in cluster job scheduler for Amazon EC2 which is why it is needed to parallelize Antenna Toolbox™ solutions on Amazon EC2.

2. The next step is to add a user to the MDCS license on the MathWorks license manager page. This step is important before the user can successfully use the license. Here is a screenshot:

![Figure 1 Adding users to the MDCS license on the MathWorks license manager](image)

3. After adding a user, the MDCS license has to be added to the MATLAB® Hosted License Manager in order to login to the MathWorks cloud center where the user can set up the cluster. Without this, the user won’t be able to log in to the MathWorks cloud center. To do this, every MDCS license holder has to contact the installation team / technical support at MathWorks and they should be able to do it quickly after verifying some license information. This step is important in order to be able to login to the MathWorks cloud center to begin the cluster formation process. Login to MathWorks cloud center to verify this change. You should be able to successfully login once your license has successfully been added to the MATLAB® Hosted License Manager by the technical support team at MathWorks.

4. Once you are able to login to the MathWorks cloud center, let’s set up an account on AWS so that you can connect them in order to be able to successfully run MATLAB® code on Amazon EC2. In order to create a cloud cluster on AWS, an account with AWS is needed. If you have an Amazon.com account already then you can use the same credentials for AWS. Therefore, visit https://aws.amazon.com/ to sign up. Here is the screenshot of the sign up screen:

![Sign up screen for Amazon Web Services](https://aws.amazon.com/)

Figure 2 Sign up screen for Amazon Web Services
If you don’t have an Amazon account already then choose the new user option. Put your email address and click on the sign in button. The next screen is shown below:

![Register screen for Amazon Web Services](image)

Figure 3 Register screen for Amazon Web Services

Once all the information is entered, you will have an account with AWS. You can then login to verify if your credentials work or not. Once you are logged in, you will be asked to enter your billing address and credit card information on your first login. You will only be charged once you start using the services. It might take up to 24 hours for amazon to fully activate the account. Therefore, it is recommended for you to wait for up to 24 hours until you get the confirmation email from amazon. The confirmation email would say that you can now successfully use the services and launch instances from your AWS account.

5. The next step is to access the MathWorks cloud center to create the Amazon EC2 cloud cluster and connect MathWorks cloud with your AWS account. To access your MathWorks® Cloud Center account, navigate in a Web browser to the website: https://cloudcenter.mathworks.com/login.
6. Login with your MathWorks account and password to login to the cloud center.

![MathWorks Cloud Center login window](image)

Figure 4 MathWorks cloud center login window

7. The next step is to set up your Amazon Web Services (AWS) credentials before you can create a cluster. Click User Preferences in the navigation pane. Then follow the instructions on the dialog box which shows up.
8. Enter data for the following fields from your AWS account.

 a. External ID – A unique ID that Cloud Center uses when requesting access to your AWS account.

 b. Role ARN – The Amazon Resource Name (ARN) that uniquely identifies the IAM Role which defines the set of permissions that you are granting Cloud Center for access to actions and resources in your AWS account.

 c. Description — you can enter any text here for a description of your account or credentials.

To get the above data, follow the steps shown below.
Sign in to the AWS Console with your credentials. The home screen is shown below:

![AWS Console Home Screen](image)

Click on the Services on top left of the home screen which will bring you to the following screen:

![AWS Services Screen](image)
The next step is to click on **IAM** option shown in the navigation bar on the left. This brings the following screen:

![Identity and Access Management dashboard](image)

Figure 9 Identity and Access Management dashboard

Click on the **Roles** option shown on the left in the navigation bar.

![Creating a new role](image)

Figure 10 Creating a new role
The next step is to create a new role. Therefore, click on **Create New Role** button on the top. This will bring you to the following screen:

![Figure 11 Specifying the role name](image)

Give a name to your role and click on the next step.

![Figure 12 Selecting role type](image)
Expand **Role for Cross-Account Access** option as shown above and select **Allow IAM users from a 3rd party AWS account to access the account and enforces use of External ID**. Once this is done, the next step screen shows up.

![Figure 13 Adding MathWorks cloud center account ID and External ID to the new role](image)

Use information from figure 13 to provide your **Account ID** and **External ID** from the MathWorks cloud center to the new role that you are creating. The **Require MFA** checkbox remains unselected. After the data is entered, click on the next step button.

![Figure 14 Attaching policy to the role](image)
On the Attach Policy screen, always select **AdministratorAccess** managed policy and go to the next step.

![Review screen of the new role created](image)

Figure 15 Review screen of the new role created

You will now see the review screen for the role that you just created. Copy and enter the **Role ARN** on MathWorks cloud center screen from figure 5. Click on the **Create Role** button to create the role. This will successfully add the new role to your AWS account. Add the optional description.

Click Save to save your settings. After you have entered your AWS credentials, when you click User Preferences you get the options to edit your credentials and time zone.

9. The next step is to create the cloud cluster after you have linked your MathWorks account with your AWS account. Click on Create a cluster in the navigation pane on MathWorks cloud center. Specify your cluster characteristics, including:

 a. **Cluster name**
 - Specify the name for your cluster

 b. **MATLAB® version**
 - The MATLAB® version that you are running

 c. **Cluster termination**
i. Automatically terminate cluster: an optional timeout for the cluster so that it shuts down automatically.

ii. When cluster is idle: When the cluster no longer has any jobs to process, it will eventually shut itself down after a few minutes if no more work is submitted.

iii. After a set time period: The cluster shuts down after the specified amount of time, whether busy or idle.

iv. Never: The cluster continues to run until you manually shut it down.

- For this, it is recommended to select **When cluster is idle** to save money when the cluster is not doing anything. A timeout of 15 mins is set by default. This timeout can be changed to fit the needs of the user.

d. Cluster Log Level: Select a cluster log level. The cluster log contains MATLAB® job scheduler and worker log output. The default log level is Low. If you need to diagnose cluster issues with support engineers, you can increase the log level for more detail. Log levels above Medium can negatively impact performance.

- For this, it is recommended to stick to the default log level which is low.

e. Region where your cluster will run. In selecting a region, consider your location and connectivity.

- For users in the United States, please select **US East (N. Virginia)**.

f. Network: Cloud Center enables customers to leverage EC2-Classic or Amazon Virtual Private Cloud (VPC) for networking. Select a network that meets the requirements for Connecting a Desktop Computer (Client Machine) to MATLAB® Distributed Computing Server™ running on the Amazon EC2 Cloud. For information on configuring a VPC for use with Cloud Center, see Network Configurations.

- Please stick to the default option.

g. Machine type: types vary by hardware specification including number of cores, memory, and GPU support.

- The machine type depends on the application of the user. The options are discussed in detail later in this report. The
three categories available are memory optimized, compute optimized and GPUs as shown below:

Machine Configuration

<table>
<thead>
<tr>
<th>Machine Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard (c3.8xlarge, 16 core)</td>
</tr>
<tr>
<td>Standard (cc2.8xlarge, 16 core)</td>
</tr>
<tr>
<td>Double Precision GPU (cg1.4xlarge, 8 core, 2 GPUs)</td>
</tr>
<tr>
<td>Single Precision GPU (g2.2xlarge, 4 core, 1 GPU)</td>
</tr>
<tr>
<td>Single Precision GPU (g2.8xlarge, 16 core, 4 GPUs)</td>
</tr>
<tr>
<td>Double Precision GPU (p2.xlarge, 8 core, 1 GPU)</td>
</tr>
<tr>
<td>Double Precision GPU (p2.16xlarge, 32 core, 8 GPU)</td>
</tr>
<tr>
<td>Memory Optimized (r3.8xlarge, 16 core)</td>
</tr>
</tbody>
</table>

Cluster Shared Storage

- Persisted Storage
- Amazon S3 Data

Figure 16 Machine types available on the MathWorks cloud center

h. Total number of workers
 - The number of workers needed for this cluster. The maximum limit is 256.

i. Number of workers per node
 - Specify the number of workers per node. The maximum limit is 16.

j. SSH key name: The SSH key is required to start and login as root to your cloud cluster nodes. Cluster nodes have no password, so you use a key to login using SSH. When you create a cluster, you can select from the existing keys for the specified region of your AWS account, or you can request that Cloud Center create a new key. If you click create a new key, the following dialog appears for you to provide a name.

 Figure 17 Create new key on MathWorks cloud center
k. Enter a name, and click Download Key. Your browser might require you to identify a location for the download. This is a root access key file having the extension .pem. Do not lose this file, because you cannot download it again. (However, you can always create a new key, and download its key file)

l. You can specify the same SSH key for multiple clusters. Cloud Center also provides a non-root user access key file, unique to each cluster. For information about downloading the user access key file, see Download SSH Key Identity File.

m. Persisted storage space. For more information on persisted storage, see Cluster Shared File System.

n. Data files to add to the worker machines. If you want to transfer files from your Amazon S3 account to the cluster nodes when the cluster starts up, click Add Files. You can specify S3 files only when creating your cluster and starting it for the first time. See Transfer Data from Amazon S3 Account.
After all the information is entered on figure 7, click on the Create Cluster button shown. At the end of this step, we have successfully created our cluster.

The figure shows typical settings for a standard 32-worker cluster with a 2-hour time limit. Click Create Cluster to create and start your cluster nodes. The cluster starts a number of nodes (instances) determined by your choices of number of workers and workers per node. During the time it takes for your cluster to start, the Cloud Center indicates the cluster status as Starting, and indicates the interim status of all the cluster nodes:
Figure 19 Typical cluster on the cloud center

It can take up to several minutes for a cluster to completely start up, with the status indicating the particular stages of the process. You can click More Details to see further information about your cluster, including any status messages. To get further status information on any individual cluster node, click the appropriate Head node or Worker expanders. When the cluster is started and ready for use, the Cloud Center indicates the cluster status as Online. If the cluster fails to start completely, its status will indicate
that. For information on the failure, click the appropriate head node or Worker expander to read the respective log. Often you can shut down your failed cluster and attempt to start it again.

View Clusters

You can have more than one cluster, some running (online) and some shut down (offline). Click My Clusters to see a list of your clusters. The following listing shows a pair of clusters, one currently online and ready, and the other offline:

![Cluster Listing](image)

Figure 20 View the available clusters on cloud center

For detailed information about a particular cluster, click its name in the list.

Once the cluster is created, this cluster can be accessed by the MATLAB® client. In the Home tab on MATLAB® desktop, click on Parallel and then click on Manage Cluster Profiles. In the screen that shows up, click on the Add button on the top left corner.
After clicking Add, click on Discover Clusters to add clusters on the cloud center. It will ask for MathWorks account details to access the cluster. Once added, the cluster can be seen in the Default Cluster list.

The cloud cluster works in the same way as the local machine. A parpool can be created with the cloud cluster and a parfor loop will use that parpool to run code in parallel.

3.2 Local and Cloud clusters details

The parallelization of Antenna Toolbox™ solutions was done on both the local machine and the Amazon EC2 cloud cluster. The configuration of the local machine and cloud cluster was kept constant.

3.2.1 Local cluster

256 GB RAM AMD Opteron Processor 6348 (2.80 GHz) with 48 Physical Cores
3.2.2 Amazon EC2 cloud cluster

The cloud cluster has a total of 4 nodes with 16 physical cores each. The machine type is c3.8xlarge with configuration as shown below:

This machine is a compute optimized machine with use cases such as high performance front-end fleets, web-servers, batch processing, distributed analytics, high performance science and engineering applications, ad serving, MMO gaming, and video-encoding.
4. Results

The major part of solving an antenna is the LU factorization of the complex symmetric matrix. “LU factorization factors a matrix as the product of a lower triangular matrix and an upper triangular matrix”. [1] Therefore, to benchmark the performance of Antenna Toolbox™ solutions, benchmarking of LU decomposition was done on both the local machine and the cloud cluster. Different size matrices were used to establish the performance of LU decomposition on both the local and cloud cluster. The code used is included in the appendix of this report.

4.1 LU Factorization Benchmarking

Size of the matrix
5000 (complex symmetric)

LU speed up plot for cloud cluster (64 physical cores)
The plot above shows the ideal speed-up 1:1 that one should be getting in the ideal conditions. But, of course, we don’t live in an ideal world. As discussed, the most time and memory intensive step in solving an antenna is the LU factorization of a complex symmetric matrix. Therefore, the performance of parallelization of Antenna Toolbox™ solutions would depend on the performance of LU factorization. Therefore, the benchmarking for LU decomposition was done to establish a speed-up reference that is more practical to achieve for the Antenna Toolbox™ solutions. As shown in figure 13, the speed up obtained is very close to 1:1.5 instead of the ideal 1:1. The maximum speed up that is obtained with 64 physical workers is ~48.

LU speed up plot for local machine (32 physical cores)

Here is the corresponding LU speed up plot obtained on the local machine:

Figure 25 LU Factorization speed up plot for local cluster (5000 matrix size)
Size of the matrix:
9552 (complex symmetric)

LU speed up plot for cloud cluster (64 physical cores)

To further establish the performance of LU factorization, the size of the complex symmetric matrix was changed to 9552 which is ~ double the size used before. As shown in figure 15, the speed up plot obtained is quite similar to one in figure 13. The speed up obtained is very close to 1:1.5 instead of the ideal 1:1. The maximum speed up that is obtained with 64 physical workers is ~48. Therefore, for a similar size problem, the speed up obtained will be based off the LU speed up plot. This gives us a reference to what should be expected instead of comparing it to an ideal speed up.
LU speed up plot for local machine (32 physical cores)

Here is the corresponding LU factorization speed up plot on the local machine:

Looking at the results above, the performance comparison between the local machine and the Amazon EC2 cloud cluster can be established. The performance obtained on the cloud cluster is much better than the local machine. With the local machine, the speed up obtained saturates beyond a certain point. As seen in figure 16, the speed up saturates at ~8 and beyond that any additional number of workers don’t add to the performance. The difference in performance between the local machine and the Amazon EC2 cloud cluster is a result of several factors. The hardware configuration of the local machine is the biggest limitation in the performance. Memory bandwidth is the rate at which data can be read from or stored.
into a semiconductor memory by a processor. This can thought of as the biggest limitation in the local machine as the cache sizes are pretty small. With the cloud cluster, the cache sizes are bigger and the instances have Solid State Drives (SSD) which makes data retrieval faster. Therefore, the performance obtained is far better than the performance on the local machine.

4.2 Use Cases

After benchmarking the performance of LU factorization, different use cases were tried on cloud clusters to verify whether the speed up results are consistent with the LU factorization of similar size problems. The code was run on the cloud cluster after starting an interactive parallel pool on the MATLAB® client session.

4.2.1 Case 1: Dipole Array

Frequency sweep of a linear array of dipoles with 40 elements

The first case that was run on the cloud cluster was a linear array of dipoles with 40 elements. Dipole is the simplest antenna structure. Here are the antenna object details:

```matlab
dp_mesh =
    struct with fields:
       NumTriangles: 2240
       NumTetrahedra: 0
       NumBasis: 2200
       MaxEdgeLength: 0.0749
       MeshNode: 'auto'
```

Figure 28 Dipole Linear Array object details

The number of unknown basis functions for this object are 2200. Frequency sweep was run on this object with varying number of frequency points. The script for creating the object and running it on the cloud cluster is given in the appendix section of the report. Here are the results obtained on the cloud cluster:
The above plot shows the speed up obtained for the linear dipole array of 40 elements on the Amazon EC2 cloud cluster. Number of workers were set to 16 and multiple frequency sweeps, each with different number of frequency points were run. The blue line in the above plot shows the LU factorization results for a problem of this size i.e. with 2200 basis functions. As shown in the plot, the speed up obtained is very comparable to the LU factorization speed up. This proves that LU factorization takes up the most time in solving the antenna.
The above plot shows the time taken in minutes to solve the linear dipole array of 40 elements over different frequency sweeps. For the case of 16 frequency points, the time taken to solve the problem is reduced from ~22 seconds to ~3.5 seconds. For the case of 1024 frequency points, the time taken to solve the entire problem on 16 workers is reduced from ~19 minutes on 1 worker to ~2 minutes on 16 workers.

4.2.2 Case 2: Spiral antenna

Frequency sweep of a spiral antenna

The second case that was run on the cloud cluster was a spiral antenna. Here are the antenna object details:
The number of unknown basis functions for this object are 2388. Frequency sweep was run on the object with varying number of frequency points. The script for creating the object and running it on the cloud cluster is given in the appendix section of the report. Here are the results obtained on the cluster:

Figure 31 Spiral antenna object details

The number of unknown basis functions for this object are 2388. Frequency sweep was run on the object with varying number of frequency points. The script for creating the object and running it on the cloud cluster is given in the appendix section of the report. Here are the results obtained on the cluster:

Figure 32 Speed up plot for spiral antenna
The above plot shows the speed up obtained for the spiral antenna on the Amazon EC2 cloud cluster. Number of workers were set to 16 and multiple frequency sweeps, each with different number of frequency points were run. The blue line in the above plot shows the LU factorization results for a problem of this size i.e. with 2388 basis functions. As shown in the plot, the speed up obtained is very comparable to the LU factorization speed up. This further proves that LU factorization takes up the most time in solving the antenna.

![Figure 33 Time taken in minutes for frequency sweep on a spiral antenna](image)

The above plot shows the time taken in minutes to solve the spiral antenna over different frequency sweeps. For the case of 16 frequency points, the time taken to solve the problem is reduced from ~24 seconds to ~3.6 seconds. For the case of 1024 frequency points, the time taken to solve the entire problem on 16 workers is reduced from ~20 minutes on 1 worker to ~2 minutes on 16 workers.
4.2.3 Case 3: Spiral array

Frequency sweep of a spiral antenna 2x2 array

Another case that was run on the cloud cluster was a 2x2 spiral antenna array. Here are the antenna object details:

```matlab
mesh_r =

struct with fields:
    NumTriangles: 7808
    NumTetrahedra: 0
    NumBasis: 9552
    MaxEdgeLength: 0.0258
    MeshMode: 'auto'
```

Figure 34 Spiral antenna 2x2 array object details

The number of unknown basis functions for this object are 9552. Frequency sweep was run on the object with varying number of frequency points. The script for creating the object and running it on the cloud cluster is given in the appendix section of the report. Here are the results obtained on Amazon EC2 cloud cluster:
The above plot shows the speed up obtained for the spiral antenna 2x2 array on the Amazon EC2 cloud cluster. Number of workers were set to 32 and multiple frequency sweeps, each with different number of frequency points were run. The blue line in the above plot shows the LU factorization results for a problem of this size i.e. with 9552 basis functions. As shown in the plot, the speed up obtained is very comparable to the LU factorization speed up. This further proves that LU factorization takes up the most time in solving the antenna.
The above plot shows the time taken in minutes to solve the spiral antenna over different frequency sweeps. For the case of 32 frequency points, the time taken to solve the problem is reduced from ~21 minutes to ~1.6 minutes. For the case of 128 frequency points, the time taken to solve the entire problem on 32 workers is reduced from ~87.24 minutes on 1 worker to ~5.6165 minutes on 32 workers.

4.2.4 Case 4: Patch antenna on a substrate

Frequency sweep of a patch antenna on a Taconic TLC substrate

Another case that was run on the cloud cluster was a patch antenna on a Taconic TLC substrate. Here are the antenna object details:
The number of unknown basis functions for this object are 14363. Frequency sweep was run on the object with varying number of frequency points. The script for creating the object and running it on the cloud cluster is given in the appendix section of the report. Here are the results obtained on the Amazon EC2 cloud cluster.

![Frequency sweep of a Patch antenna](image)

Figure 38 Speed up plot for Patch antenna
The above plot shows the speed up obtained for the patch antenna on the Amazon EC2 cloud cluster. Number of workers were set to 16 and number of frequency points was also set to 16. The blue line in the above plot shows the LU factorization results for a problem of this size i.e. with 14363 basis functions. As shown in the plot, the speed up obtained is comparable to the LU factorization speed up.

The above plot shows the time taken in minutes to solve the patch antenna over a frequency sweep. The time taken to solve the problem is reduced from ~34.5 minutes on 1 worker to ~4.5 minutes on 16 workers.
4.3 Running batch jobs on Amazon EC2 cloud cluster

Batch jobs can be run on the cloud cluster to offload execution of functions to run in the background. When working interactively in a MATLAB® session, work can be offloaded to a MATLAB® worker session to run as a batch job. The command to perform this job is asynchronous. This doesn’t block the client MATLAB® session which is very helpful. The client session can be simultaneously used for further development as the batch job runs on either the same machine as the client or on cloud cluster if using the MATLAB® Distributed Computing Server™.

A batch job can be run with a parallel pool. The first step is to create a script with a parfor-loop. An example of such script is included in the appendix of this document. After the script is saved, it can be run in MATLAB® with the batch command. It is important to indicate that the script should use a parallel loop for the loop. Here is the batch command:

```matlab
job = batch('testWithParRadar','Profile', 'AntennaToolBoxRadarBookCluster', 'Pool', 31 , 'AttachedFiles', {'TxRadiator.mat'});
```

The command above specifies that 31 workers in addition to the one running the batch script are to evaluate the loop iterations. Therefore, a total of 32 workers are used. Files from the client workspace can also be sent with the batch command using the AttachedFiles attribute. To view the results:

```matlab
wait(job)
load(job)
```

After the job is completed, the data can be permanently deleted and the reference to the job can be removed from the workspace.
4.4 AWS memory optimized instance

As part of the MathWorks cloud center, memory optimized instances can also be created to solve memory intensive problems. R3.8xlarge EC2 instance can be created for memory intensive antenna solutions. The cluster details are given below:

![Figure 40 AWS memory optimized instance details on cloud center](image)

This cluster has a total of 2 nodes with 16 physical cores each. The machine type is r3.8xlarge with configuration as shown below:

![Figure 41 EC2 memory optimized (R3) instance details](image)
4.4.1 RadarBookColumn Problem

Another problem that was investigated as part of this project was the radar book column problem. The antenna is created from the following image:

![Figure 42 Patch antenna image](image)

Reflector and a dielectric are also added to the antenna object. The antenna object details are:

```plaintext
mml =

struct with fields:
    NumTriangles: 5564
    NumTetrahedra: 11190
    NumBasis: []
    MaxEdgeLength: 8.0000e-04
    MeshMode: 'manual'
```

![Figure 43 Radar antenna object details](image)
With 0.8e-3 edge length, the object has a 23K number of basis functions. For a frequency sweep consisting of 24 frequency points, the total amount of memory needed to hold the matrices is ~96 GB. Therefore, the compute optimized machine cloud cluster which has a total memory of 60 GiB can’t be used for this problem since it will throw an out of memory error. Therefore, the memory optimized cluster was created to solve this problem. With a memory of 256 GiB, this cluster can easily handle a frequency sweep of 24 points.

This problem was also run as a batch job to completely isolate the MATLAB® client. The time taken to solve the entire problem is ~26 minutes. The impedance plot shows the results obtained.

![Impedance plot for the radar antenna](image_url)
5. Conclusion

This project was designed to explore the parallelization of Antenna Toolbox™ solutions on both the local and cloud clusters. The local machine which was used for this project was a WPI server called sunfire14. The cloud cluster was created on Amazon EC2. Performance of LU factorization was established on both the local and cloud cluster. After the performance of LU factorization was benchmarked, it became very clear that parallelization was much better on the cloud cluster. The performance was significantly better on the Amazon EC2 cloud cluster as shown in the results section in this report.

After benchmarking the performance of LU factorization, several use cases were run on the Amazon EC2 cloud cluster. By looking at the results, it can be concluded that LU matrix decomposition is the most time and memory intensive step in the antenna solution since the performance i.e. the speed up obtained follows the corresponding LU factorization speedup of the similar sized matrix very closely. The computation times to solve the antenna are significantly reduced after parallelizing them on Amazon EC2 cloud cluster.

The biggest advantage of using a cloud cluster on Amazon EC2 is the tremendous amount of flexibility that it offers. Users don’t have to worry about setting up their own hardware at all. The desired hardware configuration is at their fingertips with Amazon EC2. There are variety of instances that can be created with Amazon EC2 to match the problem needs. If users need more memory then they can launch an instance with a lot of RAM like r3.4x large to solve their memory intensive problem. If the problem is computation intensive then compute optimized instance like c3.4x large can be launched to solve the problem. In addition to this, multiple instances can be created at the same time to divide the problem size into parts to further decrease the computation time. Moreover, running jobs on cloud cluster also doesn’t block the user’s MATLAB® client which allows the user to continue with his/her development work. Users don’t have to worry about the local hardware. This makes Amazon EC2 very desirable for the users to parallelize their Antenna Toolbox™ solutions.

The results obtained in this project are really encouraging and make Amazon EC2 really feasible for our application. Given the nature of problems that users of Antenna Toolbox™ solve, parallelization is really important to reduce the time taken to get the results. Without parallelization, sometimes the users wait for days and weeks to get the results. With Amazon EC2, the problem can definitely be solved. Overall, I was able to demonstrate the feasibility of Amazon EC2 for Antenna Toolbox™ solutions parallelization.
References

[2]. https://aws.amazon.com/
[4]. https://en.wikipedia.org/wiki/Parallel_computing
[5]. https://www.mathworks.com/products/antenna.html
[7]. https://www.mathworks.com/programs/cloud-center/cloud.pdf
[9]. https://aws.amazon.com/ec2/
Appendix

LU Scaling code

% This function measures the LU factorization speed up on a cluster of workers for a particular size of complex symmetric matrix.

function [s, n] = testLUScale

N = 14363; % Size of the matrix

spmd(32)
 n = 1:32;
 s = [];
 f = createTimedFunctionCall(N);
 for ii = n
 labBarrier
 t = myTimeIt(f, ii);
 labBarrier
 th = gop(@max, t);
 fprintfCn1('Time for %d 1-threaded single LU: %f
', ii, th);
 s(end+1) = th; % # ok<AGROW>
 end

 if labindex == 1
 s(1) = timeOneFun(f);
 end
end

s = s(1);
N = n(1);
end

function t = timeOneFun(fun)
 t = timeIt(@() fun());
end

function t = myTimeIt(fun, labs)
 if labindex <= labs
 aT = tic;
 N = 1;
 for ii = 1:N
 feval(fun);
 end
 labBarrier
 th = gop(@max, aT);
 fprintfCn1('Time for %d 1-threaded single LU: %f
', ii, th);
 s(end+1) = th; % # ok<AGROW>
 end
end
end

t = toc(aT)/N;
else
 t = -Inf;
end
end

function fun = createTimedFunctionCall(N)
 r = rand(N) + rand(N)*1i;
 fun = @(r) lu(r);
end

function fprintfOn1(varargin)
 if labindex == 1
 fprintf(varargin{:});
 end
end

Linear dipole array

% This function creates a dipole antenna array and meshes it at the highest frequency manually
function dp = createDipoleAntenna(fmax, num)
 % Create the dipole antenna
 dp = linearArray('NumElements', num);
 % Solve the antenna to mesh it manually at the highest frequency
 temp = axialRatio(dp, fmax, 0, 90);
 % Get the meshdata
 meshdata = mesh(dp);
 % Mesh the antenna with the same edge length at the highest frequency
 [~,] = mesh(dp, 'MaxEdgeLength', meshdata.MaxEdgeLength); end
Spiral antenna

```matlab
function sp = createSpiralAntenna(fmax)
    % Create the spiral antenna
    sp = spiralArchimedean('Turns',4,'InnerRadius',5.5e-3,'OuterRadius',50e-3);
    % Solve the antenna to mesh it manually at the highest frequency
    temp = axialRatio(sp,fmax,0,90);
    % Get the meshdata
    meshdata = mesh(sp);
    % Mesh the antenna with the same edge length at the highest frequency
    [~,] = mesh(sp,'MaxEdgeLength',meshdata.MaxEdgeLength); end
```

Spiral array

```matlab
function r = createSpiralArray(fmax)
    % Create the spiral antenna
    sp = spiralArchimedean('Turns',4,'InnerRadius',5.5e-3,'OuterRadius',50e-3);
    % Create the array
    r = rectangularArray('Element', sp, 'RowSpacing', 200e-3, 'ColumnSpacing', 200e-3, 'Size', [2, 2]);
    % Solve the antenna to mesh it manually at the highest frequency
    temp = axialRatio(r,fmax,0,90);
    % Get the meshdata
    meshdata = mesh(r);
    % Mesh the antenna with the same edge length at the highest frequency
    [~,] = mesh(r,'MaxEdgeLength',meshdata.MaxEdgeLength); end
```
Patch antenna

% This function creates a patch antenna and meshes it at the highest frequency manually

function pl = createPatchAntenna(fmax)
 % A basic Microstrip-patch antenna
 SubstrateThickness = 0.003;
 Er = 2.3;
 Substrate = dielectric('Name', 'Taconic_TLC', 'EpsilonR', Er, 'LossTangent', 0.0, 'Thickness', SubstrateThickness);
 pl = patchMicrostrip('Height', SubstrateThickness, 'Substrate', Substrate);
 % Solve the antenna to mesh it manually at the highest frequency
 temp = impedance(pl,fmax);
 % Get the meshdata
 meshdata = mesh(pl);
 % Mesh the antenna with the same edge length at the highest frequency
 [-] = mesh(pl,'MaxEdgeLength',meshdata.MaxEdgeLength);
end
Script with the parfor loop

```matlab
% Function to run script on a parallel pool
function [twithpar, ARparfor, bytes] = testWithPar(sp, freq, workers)
    ARparfor = zeros(1,numel(freq));
tic;
ticBytes(gcp);
parfor (m = 1:numel(freq), workers)
    maxNumCompThreads(1);
    ARparfor(m) = axialRatio(sp,freq(m),0,90);
end
twithpar = toc;
bytes = ticBytes(gcp);
end
```

RadarBookColumn

```matlab
% Script to create the radar antenna object and run it on the cluster as a batch job.
TxAnt = load('TxAntenna.mat');
t = TxAnt.t;

% Put it on a GP
t.GP.Tilt = 0;
t.GP.TiltAxis = [0 0 1];

t = design(reflector,24e9);
t.GP.Exciter = t;
t.GP.GroundPlaneLength = 58e-3;
t.GP.GroundPlaneWidth = 6e-3;
t.GP.Spacing = 0.25e-3;
t.GP.EnableProbeFeed = 1;

t.GP.Substrate = dielectric('Name','RO4350',
    ... ,
        'EpsilonR',3.48,
    ... ,
        'LossTangent',0.004)

mm1 = mesh(t,'MaxEdgeLength',0.8e-3);
freq = linspace(23e9, 25e9, 24);
ZparforRad_24 = zeros(1,numel(freq));
tic;

% Par for loop
parfor (m = 1:numel(freq))
    maxNumCompThreads(1);
    ZparforRad_24(m) = impedance(t,freq(m));
end
twithparRad_24 = toc;
```