Fundamental Blocks for a Cyclic Analog-to-Digital Converter

The design of vital blocks for a 0.18μm process converter that is self-calibrating, fully differential, and performs 1 million samples per second.

A Major Qualifying Project

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

in

Electrical Engineering

by

_________________________ _________________________ _______________________
Shant Orchanian Gentian Rudho Alvaro Soares Jr.

March 2009

Approved by:

Dr. John McNeill, Advisor

1 Introduction ... 5
 1.1 Goals and Specifications .. 5
 1.2 Project Motivation ... 6
 1.2.1 Non-Linearity ... 6
 1.2.2 Digital Calibration .. 6
 1.2.3 Simplicity and Innovation .. 6

2 Background .. 8
 2.1 Analog-to-Digital Converters ... 8
 2.2 ADC Performance Metrics ... 8
 2.3 Oversampling Converters ... 12
 2.4 Nyquist Converters .. 13
 2.4.1 Pipelined ADCs ... 13
 2.4.2 Successive Approximation ADCs .. 14
 2.4.3 The Cyclic ADC ... 17
 2.5 The Role of Capacitors .. 19
 2.5.1 Thermal Noise .. 19
 2.6 Options for Output Driving ... 20
 2.6.1 Understanding LVDS .. 20
 2.6.2 The Concepts behind LVDS .. 20
 2.6.3 Different Types of LVDS .. 21
 2.6.4 Contrasting LVDS Types and Configurations ... 22
 2.6.5 A Typical LVDS Circuit .. 23
 2.6.6 Applications ... 24
 2.6.7 Assessing LVDS in the ADC Design Process ... 24
 2.7 The Split-ADC Concept .. 25
6.4.1 Pros and Purpose of Using Replica Bias ... 58
6.4.2 Designing Replica Bias ... 58
6.4.3 Simulation of the Replica Bias Circuit ... 60
6.4.4 Differential Pair Symbol Representation ... 60
7 The Logic Block ... 61
 7.1 driving transistor gates through optimization .. 61
 7.1.1 Tapered Buffer ... 62
 7.2 sample and hold circuit simulations ... 64
 7.3 Driving Transistor Gates at Capacitor Array .. 71
 7.3.1 Implementing Residue Amplifier Decisions ... 71
 7.3.2 Example of a Decision Implementation ... 72
 7.3.3 Final Step in Designing the Gate Digital Driver ... 73
 7.4 Driving Transistor Gates of Input-Output Capacitors of Residue Amplifier 74
 7.4.1 Realizing the digital Block .. 75
 7.5 Designing “genericDemux” .. 76
 7.5.1 “genericDemux” Symbol Representation .. 76
8 The Output Block ... 78
 8.1 Creating LVDS Drivers ... 78
 8.2 Making the Choice between LVDS and LVCMS .. 81
 8.3 Output Process .. 81
1 INTRODUCTION

The electronics world is faced with various challenges when attempting to integrate analog signals and quantities with digital and discrete systems. Therefore, the existence of a tool that enables this integration is vital to many electrical engineers in today's world. The Analog-to-Digital Converter (ADC) is not a new concept by any means, but is still a topic of interest when it comes to technology, due to its inevitable necessity in many systems being used today. Analog design engineers are always faced with important questions, such as: How can signals be converted faster, more accurately? How do we optimize our systems so that we can achieve simpler, yet smarter converters? Other issues, such as power consumption, complexity, interaction with other systems, and many other specifications have spawned several different types and designs of analog-to-digital converters. Yet, the market is still open to different options. Our project focuses on presenting a new option among the many present, with distinct features that are aimed to satisfy various applications for analog-to-digital converters.

1.1 GOALS AND SPECIFICATIONS

The goal of the project is to build vital components for the design of a Cyclic ADC, resulting in functional blocks that enable the simulation of a full conversion, complying with the following specifications:

<table>
<thead>
<tr>
<th>Specifications</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit Type</td>
<td>Integrated Circuit</td>
</tr>
<tr>
<td>Maximum Size</td>
<td>1 mm2</td>
</tr>
<tr>
<td>Process Type</td>
<td>0.18 μm</td>
</tr>
<tr>
<td>Resolution</td>
<td>12-14 Bits</td>
</tr>
<tr>
<td>Throughput</td>
<td>1 MspS</td>
</tr>
<tr>
<td>Test Time</td>
<td>Less than 1 sec</td>
</tr>
<tr>
<td>Other Specifications</td>
<td>Fully Differential</td>
</tr>
</tbody>
</table>

The project is sponsored by the New England Center for Analog and Mixed Signal Design (NECAMSID) located at WPI. The manufacturing of the integrated circuit would be done by Jazz Semiconductor and the simulation components used are from Jazz Semiconductor’s library.
1.2 PROJECT MOTIVATION

Our group’s choice to develop a self-calibrating, fully differential, cyclic analog-to-digital converter as a Major Qualifying Project was suggested to us by Professor John McNeill, who had previously worked in a similar project. Upon being given the project, we analyzed the academic and practical contributions that would be consequential to our research. The project shows itself to be unique due to a combination of characteristics.

1.2.1 NON-LINEARITY

Possibly one of the most interesting aspects of our design is that a linear relationship between the input and output within the chip’s differential amplifier is not necessary. This concept is very appealing to integrated circuit designers because it removes a requirement that is often tough to comply without complicated circuitry [1].

1.2.2 DIGITAL CALIBRATION

Another attractive feature of the circuit is that its calibration is expected to be done entirely in the digital domain. In other words, the correction for non-linearity in the circuit is done by an algorithm. This is considered a favorable feature because it allows for the chip to be smaller or enhanced, due to area not being consumed by a calibration portion of the circuit. Also, it may save analog designers from adding components to calibrate and test the chip before using it. An example of when this feature is useful is a circuit where several ADCs are connected to one digital module.

The digital calibration must be done by a field-programmable gate array (FPGA) via an algorithm created specifically for this ADC. However, the scope of this document includes the analog integrated circuit design of this cyclic ADC. The digital algorithm was created simultaneously by Hattie Spetla, a graduate research student at New England Center for Analog and Mixed Signal Design (NECAMSID) at Worcester Polytechnic Institute. [Citation of Hattie’s paper] includes details of the algorithm’s functionality.

1.2.3 SIMPLICITY AND INNOVATION

Cyclic ADCs have a few advantages when compared to other types of converters – the first being that it generally involves less complex circuitry as a consequence of the digital calibration algorithm and the lack of a strictly linear differential amplifier. More importantly, in the realm of analog-to-digital converters, cyclic ADCs have not been used as often as others, leaving more room for innovation and significant contributions to the field.
As noted above, the potential of this project is enormous. Therefore, we decided to tackle the challenge. The purpose of this document is to provide detailed understanding of our design of the Cyclic ADC and its components.
2 BACKGROUND

The purpose of this section is to provide the reader enough background information to make design choices and configurations easier to understand. The materials and fields of study from which we obtain our design principles and theories shall all be introduced in this section.

2.1 ANALOG-TO-DIGITAL CONVERTERS

Analog-to-digital converters are devices used to transfer a continuous real-world signal into the discrete digital domain. The use of these converters is advantageous to society because they allow signals present in nature to be represented digitally. Since the ultimate goal of this project is to create an analog-to-digital converter (ADC), we must define the existent types present in today's market. A common way to categorize these ADCs relates to the sampling frequency of the converter. The two most commonly used ADC types are Oversampling converters and Nyquist converters.

2.2 ADC PERFORMANCE METRICS

Before we can discuss some other characteristics and features of integrated circuits and ADCs, we must first define key terminology and performance metrics used to develop specifications for such circuits. This section will define and briefly explain some important metrics and terms used in ADC design (definitions provided by [2], [3], [4], [5], and [6]).

Acquisition time (t_{acq})

Acquisition time is the time after the sample stage in a sample-and-hold circuit output to experience a full-scale transition and settle within a specified percentage of its final value.

Dynamic Range

Dynamic Range is the ratio of the maximum allowable input swing and the minimum input level that can be sampled with a specified level of accuracy.

Spurious-Free Dynamic Range (SFDR)

Sometimes referred to as a measurement of fidelity for circuits, the SFDR is the ratio of the rms value of the peak signal amplitude to the rms value of the amplitude of the peak spurious spectral component, over the specified bandwidth.
Effective Number of Bits (ENOB)

It is a measure of the true dynamic performance level of a data converter. ENOB is calculated from the measured SNR based on the equation [2]:

$$ENOB = \frac{(SNR + Distortion) - 1.76 + 20\log_{10} \left(\frac{Full\ Scale\ Amplitude}{Actual\ Input\ Amplitude} \right)}{6.02}$$ \hspace{1cm} \text{Eq. 1}

Signal-to-Noise Ratio (SNR)

The ratio of the signal power to the noise power at the output is known as SNR. Mathematically it can be described simply as

$$SNR = \frac{rms\ Signal}{rms\ Noise}$$ \hspace{1cm} \text{Eq. 2}

However, SNR has also a relationship with the effective number of bits, shown below:

$$SNR(dB) = 6.02(ENOB) + 1.76$$ \hspace{1cm} \text{Eq. 3}

Differential Non-Linearity (DNL)

The difference between the actual step and the ideal step length of the ADC’s output is known as differential non-linearity [4]. For an ADC, DNL is the measure of variation in the digital output code, normalized to full scale, associated with a 1 least significant bit (LSB) change in the input code [2].
A change resulting in an error greater than 1 LSB results in lost bits.

Integral Non-Linearity (INL)

Differently from DNL, the integral non-linearity relates to the maximum difference between the converter’s output from its ideal value. The ideal value can be described as a theoretical straight line drawn from minus full scale to positive full scale [2]. The figure below shows a graphical representation of this concept:

Figure 2 - Ideal (left) and Non-Ideal (right) Examples of ADC Transfer Function [4]

Figure 3 - Integral Non-Linearity Example [4]
Quantization Error

When a conversion is made, the number is quantized to a finite number of discrete values. The error associated with this process is known as quantization error.

![Quantization Process](image)

Figure 4 – (a) Quantization Process [8] and (b) Quantization Error Illustrations (right) [4]

As Figure 4 shows, an analog input is quantized to a digital value. However, as Figure 4 indicates, there is always a margin where the input value falls between two quantization levels, giving the ADC its quantization error. Improving this margin correlates to increasing the ADCs resolution.

Total Harmonic Distortion

The concept of total harmonic distortion (THD) applies mostly to nonlinear systems where the power is present in the fundamental frequency as well as its harmonics. This presence of power in other frequencies contributes to THD. In general, total harmonic distortion is defined as the ratio of all harmonics generated to the original signal frequency [5]. Mathematically it is mainly expressed in units of dB by the following relationship [9],

\[
THD = 10 \log \left(\frac{V_{n2}^2 + V_{n3}^2 + V_{n4}^2 + \cdots}{V_f^2} \right)
\]

Eq. 4

where \(V_{hn} \) is the voltage corresponding to the n-th harmonic of the signal and \(V_f \) is the fundamental's voltage.

THD can also be represented as a percentage,

\[
THD = \frac{\sqrt{V_{n2}^2 + V_{n3}^2 + V_{n4}^2 + \cdots}}{V_f} \times 100
\]

Eq. 5
Total harmonic distortion is especially important in ADCs when building the input and sampling blocks, as this report will further detail in its design section.

2.3 OVERSAMPLING CONVERTERS
As mentioned in Section 2.1, one of the major types of converters is the oversampling ADC, which exists in many variations. Oversampling ADCs are characterized as such due to having their sampling frequency being greater than twice the bandwidth of the signal, i.e. $f_n > 2 \cdot (\text{Bandwidth}_{\text{signal}})$. These types of circuits are implemented when attempting to obtain very high accuracy. This is possible because complex and precise analog circuitry is substituted by the oversampling ADC’s use of digital signal processing techniques. The sacrifice that is made in this case is the throughput that can be achieved [3].

\[\text{Figure 5 - Block Diagrams for Nyquist and Oversampled ADCs} \]

One of the advantages of oversampled ADCs is that aliasing is much less of a concern, in comparison with Nyquist ADCs [3]. That is because the signal’s frequency spectrum has frequencies much more widely spaced, since the sampling rate is much greater than the signal’s bandwidth. A disadvantage of oversampling converters is that a large amount of samples are required to perform a conversion to a desired accuracy, versus the Nyquist ADCs, in which every conversion yields an individual result.

Oversampled ADCs are a good option for converters where the signal is band limited, like music systems, etc. Since this project does not deal with an oversampling converter, we will not delve into more detail concerning oversampling converters.
2.4 Nyquist Converters
A Nyquist ADC is a type of ADC that samples the input signal at twice the bandwidth. This is the sampling rate adequate for recovering the original signal according to the Nyquist theorem, i.e. \(f_n = 2 \cdot (\text{Bandwidth } h_{ADC}) \), where \(f_n \) is the sampling frequency of the converter. There are several types of Nyquist ADCs in the analog design world. Johns and Martin [9] compares the present ADC types with their common uses in terms of speed and accuracy, shown below:

<table>
<thead>
<tr>
<th>Low-to-Medium Speed, High Accuracy</th>
<th>Medium Speed, Medium Accuracy</th>
<th>High Speed, Low-to-Medium Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrating</td>
<td>Successive Approximation</td>
<td>Flash</td>
</tr>
<tr>
<td>Oversampling</td>
<td>Cyclic</td>
<td>Two-Step</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interpolating</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Folding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pipelined</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Time-Interleaved</td>
</tr>
</tbody>
</table>

In the background portion of this paper, we will overview three types of converters that have been recently used in the NECAMSID Lab: Pipelined, Successive Approximation, and Cyclic.

2.4.1 Pipelined ADCs
A common ADC structure, the pipeline converter receives its name from its multistage nature.

As Figure 8 shows, the analog input voltage \(V_{IN} \) is sampled and enters the ADC. Each stage of the converter is responsible for the quantization of a range of bits. Once a stage is completed, its output residue voltage of becomes the next block’s input. A final block, containing an n-bit ADC resolves the less significant bits of the converter. Finally a digital block receives each block’s output and corrects for time and errors. The final decision is then composed.
2.4.2 Successive Approximation ADCs

Successive-approximation ADCs are one of the most popular techniques for analog-to-digital conversion since they are fairly quick in terms of conversion time, while having moderate circuit complexity. There are several configurations that would qualify as successive-approximation converters. For brevity of this report, we will elaborate on main successive-approximation concept and a few variations. For more complete descriptions of different types of successive-approximation ADCs refer to [9].

Some authors recommend that the reader compare the functionality of a basic successive-approximation converter as a “binary search” algorithm [9]. An interesting way to think about this algorithm is to imagine a book with 256 pages, in which you have to guess the page number containing a specific event in the novel. However, you are only allowed to ask “yes/no” questions. Therefore, using the binary search algorithm, one would try to approximate the number by first asking the owner of the book if the event occurs on a page number greater than 128. If the answer is no, then the next question would then address if the event occurs on a page number greater than 64. If so, then the remaining page range would then be divided by two and the same process would be repeated. A flow chart presented by [10] is shown below:

Figure 7 - Flow Chart of Successive-Approximation Approach
The successive-approximation approach is similar to the anecdote above. The ADC works by successively determining the bits of the output starting from the most significant bit (MSB) and then checking the next bits. However, this method is very primitive for the world class types of ADCs found today. Therefore, many improvements to that concept have been added, such as a digital-to-analog converter (DAC) based approximation, using a block known as the Successive-Approximation Register (SAR). A simple diagram of this functionality is shown below:

![Figure 8 - DAC-based Successive-Approximation Converter](image)

In this case, a sample-and-hold block is usually needed so that the value being converted remains constant through the conversion. The SAR is entirely digital and the DAC’s specifications will mostly determine the speed and accuracy of the converter.

2.4.2.1 Charge Redistribution ADC

Shown in figure Figure 9 is an example of a charge-redistribution ADC [9]. In this case, an array of capacitors is used. Its advantage is that the sample and hold, DAC, and comparator blocks are all combined into one block. The following chart explains the operation of Figure 9:

<table>
<thead>
<tr>
<th>Operation Mode</th>
<th>Description</th>
</tr>
</thead>
</table>
| Sample | - All but the largest capacitor are charged to input voltage V_{in} while comparator is being reset.
 | - The largest capacitor is set to $V_{ref}/2$ |
| Hold | - Comparator is taken off reset mode.
 | - Capacitors are switched to ground, with the exception of largest capacitor, causing voltage on negative terminal of comparator V_x to become $-V_{in}/2$. |
| Bit Cycling | - If V_{in} is negative, the largest capacitor is switched to ground.
 | - If V_{in} is positive, the largest capacitor is remains at $V_{ref}/2$. |
Johns and Martin [9] catalogue other more complex types of SAR ADCs, which include calibration and error correction blocks.

Figure 9 - 5-bit Charge-Redistribution ADC [9]
2.4.3 The Cyclic ADC

A Cyclic converter, also known as an Algorithmic converter, is similar in operation to the successive approximation converter. However, in the case of the Cyclic ADC, the reference voltage is not altered. Instead, the error (or residue) of the amplifier is doubled [9].

As the block diagram above outlines, the operation of the cyclic converter functions in the following manner: First, the input voltage is sampled by the sample-and-hold block. That value is then compared to a threshold voltage, upon which a digital decision is made, determining a bit value in the final sequence of the number sampled. A reference voltage is generated by a 1-bit digital-to-analog converter which is dictated by the digital decision previously made. At the same time, the input value is amplified by a factor two (ideally). The amplified value is then summed to a reference voltage +/- V\text{REF}, leaving a residue voltage. The residue voltage then becomes the input of the residue amplifier. This cycle is repeated enough times required to achieve the desired resolution, earning the device its name. The sequence of decisions corresponds to the output value of the ADC.

2.4.3.1 Understanding the Residue Amplifier

A major part of the cyclic ADC is the residue amplifier. Therefore, in order to better comprehend the operation of the ADC, we can take a mathematical approach to explain this concept [11]. The equation below shows the relationship between the residue amplifier’s input and output:

\[v_{\text{res}_{\text{out}}} = G \cdot v_{\text{res}_{\text{in}}} - d \cdot V_{\text{ref}} \]

\text{Eq. 6}

where \(G \) is the gain of the amplifier and \(d \) is the digital decision.
Assuming ideal conditions, after performing N cycles, the amplifier exhibits the following negative feedback loop relationship:

\[v_{\text{res, out}}(N) = \left[G^N \cdot v_{\text{res, in}} \right] - \left[G^{N-1} d_1 + G^{N-2} d_2 + \cdots + G^0 d_N \right] \cdot V_{\text{ref}} \]

Eq. 7

We can also predict the output code of the ADC by rearranging Eq. 7 into the following form [11]:

\[\frac{v_{\text{res, in}}}{V_{\text{ref}}} = \left[\frac{1}{G} d_1 + \frac{1}{G^{N-1}} d_2 + \cdots + \frac{1}{G^N} d_N \right] - \left[\frac{1}{G^N} \frac{v_{\text{res, out}}(N)}{V_{\text{ref}}} \right] \]

Eq. 8

We can define the \[\frac{1}{G^N} \frac{v_{\text{res, out}}(N)}{V_{\text{ref}}} \] term of the equation as the quantization error, and the first term as the output code x:

\[x = \left(\frac{1}{G} \right) d_1 + \left(\frac{1}{G} \right)^2 d_2 + \cdots + \left(\frac{1}{G} \right)^N d_N \]

Eq. 9

A plot relating the residue amplifier’s input and output can be created, as shown below:

![Residue Plot at G=2](Figure 11)

![Residue Plot with G < 2](Figure 12)

However, maintaining a constant gain of 2 may be challenging. Therefore, when \(G < 2 \), the residue plot would look like Figure 12. This event makes it possible for two possible decisions for the same input value, adding redundancy to the ADC. However, at the same time, it adds a level of complexity to the calibration of the converter, which will be discussed in a further section of the document.
2.5 **THE ROLE OF CAPACITORS**

As the previous section has outlined, the used of capacitors for ADCs is very common. In our, as the design sections of this paper will indicate, relies heavily on the use of multiple capacitors that will be switched constantly to perform the cyclic function of our ADC. Therefore, we must understand how they will affect our circuit and what constraints we are faced with when choosing the correct capacitors for our circuit.

2.5.1 **THERMAL NOISE**

Thermal noise is inherent to all electronic circuits and it is caused by a random motion of electrons in a conductor. It is a function of temperature and is constant over all frequencies. When designing an analog to digital converter, this noise must be accounted for in the design of the sampling capacitors. That way, the sample-and-hold amplifier (SHA) will achieve desirable signal-to-noise ratios. Since the SNR is the integral of all the noise in a system, the lower the noise bandwidth, the less noise is sampled by the ADC. Figure 13 below shows a model of a sample and hold switch with a dc input and a thermal noise.

![Diagram of Hold capacitor with Thermal Noise](image)

When the sample switch is opened the voltage on the capacitor is the DC signal and the thermal noise at the instant the switch is opened. Since the characteristic of the sample and hold circuit is a low pass filter the noise above the cutoff frequency of the circuit is attenuated. In order to reduce the bandwidth of the noise the hold capacitor must be sized according to the SNR needed.

The equation below shows the relationship of capacitance and temperature to the RMS noise of a system, which is the ratio of capacitor size to the total thermal noise power of the RC circuit.

\[
RMS\ noise = \sqrt{\frac{KT}{C}} \quad \text{Eq. 10}
\]
2.6 OPTIONS FOR OUTPUT DRIVING
Every analog-to-digital converter has to interact with an off-chip digital domain, usually an FPGA. Although sometimes designers may choose additional output drivers in their circuit at the expense of simplicity, there are methods used to improve output performance. In this case, various methods were researched. One particular method, known as Low Voltage Differential Signaling (LVDS), showed itself to be a promising option for our circuit. Section 2.6 outlines the existing configurations and applications of LVDS.

2.6.1 UNDERSTANDING LVDS
Usually used for output blocks of ADCs, Low-Voltage Differential Signaling is a technology that was officially introduced in 1994 by National Semiconductor. It was born out of the necessity to create high performance solutions that consume little power and are susceptible to less noise than the common techniques of the time, while being cost-effective, such as RS-442 and RS-485 standards. A competing technology was Emitter Coupled Logic (ECL). However, it is incompatible with standard logic levels, uses negative power rails, and leads to high chip-power dissipation [12].

<table>
<thead>
<tr>
<th>Parameter</th>
<th>RS-422</th>
<th>RS-485</th>
<th>ECL</th>
<th>LVDS</th>
<th>M-LVDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus</td>
<td>Point-to-Point Multidrop</td>
<td>Point-to-Point Multidrop</td>
<td>Point-to-Point Multidrop</td>
<td>Point-to-Point Multidrop</td>
<td>Point-to-Point Multidrop</td>
</tr>
<tr>
<td>Termination</td>
<td>100 Ω</td>
<td>50-60 Ω</td>
<td>depends</td>
<td>100 Ω</td>
<td>50 Ω</td>
</tr>
<tr>
<td>Signal Swing</td>
<td>2 V min</td>
<td>1.5 V min</td>
<td>0.6 – 1 V</td>
<td>250-450 mV</td>
<td>480-680 mV</td>
</tr>
<tr>
<td>Threshold</td>
<td>+/-200 mV</td>
<td>+/-200 mV</td>
<td>+/-100 mV</td>
<td>+/-100 mV</td>
<td>+/-100 mV</td>
</tr>
<tr>
<td>Common Mode Range</td>
<td>+/-7 V</td>
<td>+/-7 to +/-10 V</td>
<td>depends</td>
<td>+/-1 V</td>
<td>+/-2 V</td>
</tr>
<tr>
<td>Standard</td>
<td>TIA/EIA-422-B</td>
<td>TIA/EIA-485-A</td>
<td>none</td>
<td>TIA/EIA-644-A</td>
<td>TIA/EIA-993</td>
</tr>
<tr>
<td>Power</td>
<td>moderate</td>
<td>moderate</td>
<td>high</td>
<td>very low</td>
<td>low</td>
</tr>
<tr>
<td>Speed</td>
<td>< 10 Mbps</td>
<td>< 10 Mbps</td>
<td>< 2 Gbps</td>
<td>< 2 Gbps</td>
<td>< 500 Mbps</td>
</tr>
</tbody>
</table>

2.6.2 THE CONCEPTS BEHIND LVDS
LVDS, as the name suggests, is differential – meaning that it makes use of two signals to function. At the cost of using an extra trace and space, noise is considerably reduced through common-mode rejection. As a consequence, many improvements can be made to the design, such as:

- Signal swing can be dropped to only a few hundred millivolts due to signal-to-noise rejection improvement
- Rise time is shorter, resulting in faster data rates
- Very low power consumption across a wide range of frequencies due to low swing and current-mode driver outputs
2.6.3 **Different Types of LVDS**

The table below shows the different variations of LVDS found in the market today:

<table>
<thead>
<tr>
<th>LVDS</th>
<th>Industry Standard</th>
<th>Maximum Data Rate</th>
<th>Output Swing (V_{OD})</th>
<th>Power Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVDS</td>
<td>TIA/EIA-644</td>
<td>3.125 Gbps</td>
<td>± 350 mV</td>
<td>Low</td>
</tr>
<tr>
<td>LVPECL</td>
<td>N/A</td>
<td>10+ Gbps</td>
<td>± 800 mV</td>
<td>Medium to High</td>
</tr>
<tr>
<td>CML</td>
<td>N/A</td>
<td>10+ Gbps</td>
<td>± 800 mV</td>
<td>Medium</td>
</tr>
<tr>
<td>M-LVDS</td>
<td>TIA/EIA-899</td>
<td>250 Mbps</td>
<td>± 550 mV</td>
<td>Low</td>
</tr>
<tr>
<td>B-LVDS</td>
<td>N/A</td>
<td>800 Mbps</td>
<td>± 550 mV</td>
<td>Low</td>
</tr>
</tbody>
</table>

While the concept of LVDS is the foundation of the standards found in the table above, there are various applications for each one. Power consumption, performance, and target application are among the differences listed above. For brevity, we will analyze the typical LVDS standard and how it applies to this project. If applicable, the other technologies may be explored.

Different Configurations of LVDS

There are three common Bus types of LVDS configurations. They are:

- Point-to-Point
- Multidrop
- Multipoint

2.6.3.1 Point-to-Point

Being the simplest configuration, Point-to-Point offers a direct path from the transmitter to the receiver. This is favorable for use in the highest data rates, due to the simple path. A variation of this configuration can be seen in Figure 15. All figures in this section are extracted from [12].

![Figure 14 - Point-to-Point Configuration](image1)

![Figure 15 - Data Distribution Using Point-to-Point Configuration](image2)
2.6.3.2 Multidrop
Multidrop is most efficient when various parts of a circuit need to receive the same information. There is one driver and two or more receivers along the bus, as the figure below illustrates:

![Multidrop Configuration](image16)

Figure 16 - Multidrop Configuration

2.6.3.3 Multipoint
A multipoint configuration uses various drivers and receivers. The advantage to this circuit is that it can send information from multiple areas of the circuit, if necessary. However, this configuration can get quite complex and speeds are generally lower than the other simpler configurations.

![Multipoint Configuration](image17)

Figure 17 - Example of a Three-Node Multipoint Configuration

2.6.4 **Contrasting LVDS Types and Configurations**
The article released by National Semiconductor entitled “The Many Flavors of LVDS” [12] summarizes the available technologies with the configurations used by them. This matrix is shown below:

<table>
<thead>
<tr>
<th>Bus Configuration</th>
<th>LVDS</th>
<th>BLVDS</th>
<th>M-LVDS</th>
<th>GLVDS</th>
<th>LVDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point-to-Point</td>
<td>✴</td>
<td>✴</td>
<td>✴</td>
<td>✴</td>
<td>✴</td>
</tr>
<tr>
<td>Multidrop</td>
<td>✴</td>
<td>✴</td>
<td>✴</td>
<td>✴</td>
<td>✴</td>
</tr>
<tr>
<td>Multipoint</td>
<td>✴</td>
<td>✴</td>
<td></td>
<td>✴</td>
<td>✴</td>
</tr>
<tr>
<td>Multipoint (Backplane)</td>
<td></td>
<td>✴</td>
<td></td>
<td>✴</td>
<td></td>
</tr>
</tbody>
</table>

✴ = full support
◼ = restrictions may apply

Table 6 - Bus Configurations vs. Standards
2.6.5 *A Typical LVDS Circuit*

The following picture illustrates a high-level configuration for a LVDS circuit. Notice the detail showing the reduction in interference due to the interaction in electric fields between the wires, which are usually placed as a twisted pair.

![Diagram of LVDS Driver and Receiver]

Figure 18 - LVDS Driver and Receiver [13]

In the driver-receiver configuration shown in Figure 18, a 3.5mA current source is found in the driver. Due to the high impedance "op-amp characteristic" of the receiver, all of the current flows through the 350mV resistor in place. When the driver makes a switch, the current changes direction of flow across the resistor and results in a logic state “one” or “zero.” Figure 19 illustrates this concept.

![Diagram of Digital Signaling Model]

Figure 19 - Digital Signaling Model
2.6.6 Applications
There are various applications for LVDS. As previously mentioned, the advantages presented by LVDS make it a popular technology. Listed below are three common applications of LVDS within integrated circuits.

- **Line drivers/receivers** – Commonly used to convert single-ended signals into formats for transmission over a cable or backplane.
- **SerDes** – Serializer/deserializer pairs are used to multiplex a number of low-speed CMOS lines and to transmit them as a single channel running at a higher data rate.
- **Switches** – Used instead of bus architectures for high data rates. Commonly used for clock distribution. LVDS is one of the most suitable signaling standards for clocks of any frequency because of reliable signal integrity.

2.6.7 Assessing LVDS in the ADC Design Process
There are various factors to consider when choosing a signaling standard, such as:

- Required bandwidth
- Ability to drive cables, backplanes, or long traces
- Power budget
- Network topology (point-to-point, multidrop, multipoint)
- Serialized or parallel data transport
- Clock or data distribution
- Compliance to industry standards
- Need or availability of signal conditioning
2.7 THE SPLIT-ADC CONCEPT
One of the key characteristics of our project is that it is meant to use a Split-ADC architecture. The figure below illustrates the basic principle of the split-ADC. Instead of using one converter, the chip will have two ADCs performing the same steps over the same input. The output then becomes the average of both results. The difference of each ADC’s output is then sent to the error estimation block, which is located off chip, in the digital realm [14].

Figure 20 - Illustration of Split-ADC Concept [11]

Ideally, the concept behind the split-ADC architecture is simple to comprehend: when the difference between outputs x_A and x_B is zero, the calibration has occurred. This concept is important because it will reduce the circuit’s calibration time significantly, as explained in [11]. The following graph contrasts the single ADC approach versus a split architecture.

Figure 21 - Split ADC Characteristics in Contrast with Single ADC Approach
As Figure 21 shows, the trade off in complexity is small compared to the advantages in calibration. At the same time, the general speed, power and noise of circuit remains the same. This is because the same parts are used but in proportions of one half the original size.

2.8 THE CURRENT MIRROR

Biasing is very important to our project, making the necessity to build current sources imminent. One of the most common forms of creating a current source is by using a MOSFET current mirror. The current mirror relies on the assumption that transistors are closely matched, meaning that they are fabricated under the same conditions, matching closely the values of the transistors’ threshold voltages, mobility, and oxide capacitance. Therefore, since this level of matching and precision can only be achieved in integrated circuits, the current is not commonly realized with discrete components. Figure 22 shows a basic configuration for a current mirror.

![Current Mirror Example](image)

According to the MOSFET Square Law, we can define the current in the transistors as [3]:

\[I_D = \frac{\mu_n C_{ox} W}{2 L} (V_{GS} - V_{th})^2 \]

Eq. 11

where \(I_D \) is the MOSFET drain current, \(C_{ox} \) is the capacitance of the oxide, \(W \) is the width of the transistor, \(L \) is the length, \(V_{GS} \) is the gate to source voltage and \(V_{th} \) is the threshold voltage of the transistor. Therefore for the current \(I_{D1} \) in transistor \(M_1 \), we can solve for \(V_{GS1} \):

\[V_{GS1} = \frac{2 \cdot I_{D1} \cdot L_1}{\mu_n C_{ox} W_1} + V_{th1} \]

Eq. 12
As shown in Figure 22, by tying the MOSFET gates together, we force the following relationship:

\[V_{GS1} = V_{GS2} \]

We can now input our value for \(V_{GS1} \) into the current of the second transistor:

\[I_{D2} = \frac{\mu_n C_{ox2} W_2}{2} \left(\frac{2 I_{D1} L_1}{\mu_n C_{ox1} W_1} + V_{th1} - V_{th2} \right)^2 \]

Assuming the matching conditions mentioned above, we can assume that

\[\mu_n 1 = \mu_n 2 \]
\[C_{ox1} = C_{ox2} \]
\[V_{th1} = V_{th2} \]

Simplifying our results to

\[I_{D2} = I_{D1} \left(\frac{W_2}{W_1} \right) \]

Eq. 13

When comparing the current mirror to an ideal current source, the model falls short in a few aspects. For example, an ideal source has infinite AC impedance, while a MOS mirror has finite impedance. Also, the current mirror will have frequency limitations due to capacitive parasitics.

2.9 THE DIFFERENTIAL PAIR

The differential pair, sometimes referred to as the differential amplifier, is a vital part of our circuit. According to Sedra and Smith, “the differential pair is the most widely used building block in analog integrated-circuit design.” This is because differential amplifiers are less susceptible to noise than their single-ended counterparts and they also allow for biasing of an amplifier without the use of bypass and/or coupling capacitors, saving space on the chip being manufactured [15]. As with the current mirror, in integrated circuits, the differential pair relies largely on the ability to match components.

The differential pair can be used in various configurations. In this section we will explore two modes of operations: common-mode and differential gain modes. An example of a differential pair is shown below:
The differential pair consists of a symmetrical system of two MOSFETS sharing the same bias current. The parameters in each transistor can be extracted using the square law equation, seen in Eq. 11:

\[I_D = \frac{\mu n C_{ox} W}{2} \left(V_{GS} - V_{th} \right)^2 \]

where the currents at each transistor are equal to \(\frac{I_D}{2} \).

2.9.1 Bartlett's Bisection Theorem

The functionality of the system can be explored using Bartlett's Bisection Theorem, which is based on the symmetry of circuits and explores the fact that any two inputs can be represented in a common mode and a differential mode.
The common-mode voltage can be defined as:

\[V_c = \frac{V_1 + V_2}{2} \]

Eq. 14

And the differential voltage as:

\[V_d = V_2 - V_1 \]

Eq. 15

Using this concept, we can also verify that:

\[V_1 = V_c - \frac{V_d}{2} \]

Eq. 16

and

\[V_2 = V_c + \frac{V_d}{2} \]

Eq. 17

We can represent the half circuit of each circuit model for the example in Figure 23 using the bisection theorem, as shown below:
A graph of the large signal characteristics of the differential pair is shown below:

Figure 29 - Signal Input-Output Characteristics of the Differential Input to Each Output

Figure 30 - Large Signal Input-Output Characteristic for the Differential Input to the Differential Output

To simplify calculations and circuitry it is common practice to attempt to operate with the linear areas of the curves shown above. As we said in the introduction, one of our project’s major steps is that non-linearity is not as much of a pertinent issue to our circuit, as we will see in later sections.
3 HIGH-LEVEL DESIGN

The objective of this section is to give a brief high level overview of the integrated circuit being designed for this project.

3.1 BLOCK DIAGRAM

The figure below displays a proposed block diagram for the device. Several sub blocks are displayed in the diagram. This approach gives us a modular idea of the design.

They main blocks found in our design are:

- Switch Capacitor Array
- Open Loop Differential Amplifier
- Bias Circuitry

- Comparator Network
- Logic Sub Block
- Output Drivers

Figure 31 - Block Diagram
3.2 The I/O Pin List

REDO THIS SECTION AFTER TALKING ABOUT PINS AGAIN!

![I/O Pin Diagram](image)

The block diagram is a starting point toward the more complex steps of the design. As mentioned above, the block diagram can be used as an analytical tool for simplifying the design steps. Besides the block diagram the I/O pin diagram is featured in this report. The I/O pin diagram is designed with several assumptions in mind and due to such conditions it is a subject to changes as needed in future.

Figure 32 - I/O Pin Diagram

Busy: tells FPGA ADC is processing
CS: chip select
RB: read bar, allows FPGA to read when RB goes low
RM: residue mode.
4 The Input Block

The input of our ADC is composed of a sample-and-hold circuit that will enable us to obtain the analog input into the input capacitors. Our input block can appear quite complex at first, since we are using multiple capacitors. Therefore, for simplicity and visualization of concept, we will first start with a basic concept for the input block, shown below:

As the figure above shows, in this simplified version of the input block, the input voltage V_{in} is sampled onto capacitor C_1. It is done so through a CMOS transmission gate, a configuration involving a pair of opposite type MOSFETs. The use of transmission gates eliminates the undesirable threshold voltage effects which give rise to loss of logic levels [3]. The capacitor is sampled at every positive edge of the clock cycle, indicated in this case as V_{clkp}, and at every negative edge of its inverted version, V_{clkm}, to bias the p-channel transistor.\(^1\)

\(^1\) Note: Biasing for transistor M_3 is simplified. In actual implementation, the gate voltage on M_3 in Figure 33 is delayed slightly to reduce charge injection.
4.1 **TRANSISTOR SIZE OPTIMIZATION**

Transistors in this block need to be properly sized to accommodate our circuit. This task is more important than it seems. The transistor sizes will help determine and/or improve several factors of the ADC, such as spurious-free dynamic range and total harmonic distortion. Therefore, an optimization exercise was necessary to determine the correct widths of the transistors which would meet our goals for distortion and acquisition time.

4.1.1 **DEALING WITH THE PRESENCE OF DISTORTION**

One might wonder why distortion is such an important issue to such a simple circuit, like our input block. The key is that distortion is present due to variations on the gate voltage. We’ll start by looking at the equation for the “on” resistance of the MOSFET:

\[
R_{D\text{on}} = \frac{V_{DS}}{I_D} = \frac{1}{\mu n C_{ox} W (V_{GS} - V_{TH})}
\]
Eq. 18

All of the values in Eq. 18 are mostly constant, with the exception of the voltage from gate to source, which will constantly with the sampling nature of the input. This change in \(V_{GS} \) causes the internal resistance of the transistors to change as well. Since the transistor sizes will be different, the values in \(R_{D\text{on}} \) will not change uniformly. All of these factors contribute to distortion of the signal.

4.1.2 **PERFORMING A PARAMETRIC ANALYSIS**

Our goal for this analysis was to determine the input block’s transistor widths. From previous design experience, professor McNeill recommended the following assumptions:

- The p-channel (M2) transistor will have a width that is 4 times larger than its n-channel MOSFET equivalent
- The n-channel MOSFET (M3) on the top plate of the capacitors should have a width proportional (by a factor of \(x \)), but not necessarily equal, to the n-channel MOSFETs (M1) on the bottom plate

We can look at this issue as a matter of how much total transistor width we can afford in the chip, in terms of chip area. Therefore, we can determine the total width, \(W_{\text{total}} \), as a function of M1’s width, as shown below:

\[
W_{\text{total}} = W_{Q1} + W_{Q2} + W_{Q3} = W + 4W + xW
\]
Eq. 19

Rearranging,

\[
W_{\text{total}} = (5 + x) \cdot W
\]

\[
W = \frac{W_{\text{total}}}{(5 + x)}
\]
Eq. 20
As a result, we created a series of graphs, where the values for \(x \), \(W \), and \(W_{\text{Total}} \) were swept, to find the smallest transistors that would fit our needs. The two main characteristics that relate to these values are acquisition time and total harmonic distortion. To deliver values for those attributes, we had to run several parametric equations on Cadence. The following table indicates the values that were simulated:

<table>
<thead>
<tr>
<th>(x)</th>
<th>0.1</th>
<th>0.2</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W_{\text{Total}})</td>
<td>10(\mu \text{m})</td>
<td>20(\mu \text{m})</td>
<td>50(\mu \text{m})</td>
<td>100(\mu \text{m})</td>
<td>200(\mu \text{m})</td>
<td>500(\mu \text{m})</td>
<td>1(\text{mm})</td>
</tr>
</tbody>
</table>

The title of each graph indicates the values used for \(W_{\text{Total}} \). On the y-axis, the red lines indicate THD and the blue lines indicate acquisition time. The x-axis indicates the value of \(x \).

Note: The values of \(x \) are scaled by a factor of 20, in order to accommodate simulation criteria in Cadence.
The results are summarized in the table below:

Table 8 - Summarized Optimization Results of t_{ACQ} and THD

<table>
<thead>
<tr>
<th>W_{Total} [µm]</th>
<th>x</th>
<th>t_{ACQ} [ns]</th>
<th>THD [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.25</td>
<td>85</td>
<td>1.8</td>
</tr>
<tr>
<td>20</td>
<td>0.5</td>
<td>50</td>
<td>1.0</td>
</tr>
<tr>
<td>50</td>
<td>0.5</td>
<td>30</td>
<td>0.6</td>
</tr>
<tr>
<td>100</td>
<td>0.5</td>
<td>12</td>
<td>0.3</td>
</tr>
<tr>
<td>200</td>
<td>0.5</td>
<td>6</td>
<td>0.15</td>
</tr>
<tr>
<td>500</td>
<td>0.5</td>
<td>3</td>
<td>0.06</td>
</tr>
<tr>
<td>1000</td>
<td>0.5</td>
<td>1.9</td>
<td>0.035</td>
</tr>
<tr>
<td>2000</td>
<td>0.5</td>
<td>1.5</td>
<td>0.025</td>
</tr>
<tr>
<td>5000</td>
<td>0.5</td>
<td>1.1</td>
<td>0.016</td>
</tr>
<tr>
<td>10000</td>
<td>0.5</td>
<td>1.09</td>
<td>0.012</td>
</tr>
</tbody>
</table>

The values chosen were dictated by minimum of THD, which happened at the lower side of acquisition time curve. We can observe that there is a relationship between the total width of the transistors and the parameters simulated. This relationship is shown below in Figure 34 and Figure 35.

As the figures above indicate, the larger widths will give us better parameters. However, the sizes used for testing are rather large and must be taken into account, meaning that a compromise will be made. As a result, our next step was to set goals for distortion and acquisition time that will establish the basis for this compromise.
4.1.2.1 Goals for Parameters

To ensure that our design is competitive, Professor McNeill has indicated that from experience, the level of total harmonic distortion should be less than 0.01%. Once again, the Professor’s experience in analog integrated circuit design served as a guide for an acquisition time goal. As defined in the introduction of the paper, the ADC will perform one million samples per second, translating into 1 conversion per microsecond. Therefore, we have decided to allow twenty percent of this time for sampling the input. The reason for this will be discussed later. Therefore, the goals for our ADC input parameters are as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Harmonic Distortion</td>
<td>< 0.01%</td>
</tr>
<tr>
<td>Acquisition Time</td>
<td>< 200 ns</td>
</tr>
</tbody>
</table>

As the graphs show, the acquisition time is not an issue for us, since all measurements met the required goal. The reason for such a loose acquisition time goal will be explained in a further subsection.

4.1.3 Choosing Total Width

When looking at our simulation results, we can see that the total harmonic distortion levels found were not below the expected mark of 0.01%. The reason for this is inferred to be the limitations of the simulator. The simulations were done under various conditions and yielded different results. However, when looking at Cadence’s description of the THD formula, some parameters were not easily editable. As a result, we assumed that the total harmonic distortion levels are low enough at high values for total width that we were at a very safe margin at a \(W_{\text{Total}} \) value of 5mm.

As stated in Eq. 20, the equation derived that gives us our parameters for width is:

\[
W = \frac{W_{\text{Total}}}{(5+x)}
\]

Since we have established through the analysis that the total width is 5mm, we can plug in the respective values from Table 9.

\[
W = \frac{5\text{mm}}{(5+0.5)}
\]

\[
W = 909\mu\text{m}
\]
Summarizing our new transistor widths:

<table>
<thead>
<tr>
<th>Table 10 - Values for Transistor Widths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expression</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Value</td>
</tr>
</tbody>
</table>

4.2 **Reducing the Noise Floor**

Until this point in the design of the input block, acquisition time has been a specification easily met. However, the reason for which we allotted 200ns for the ADC to sample is related to spectral noise reduction and SNR. In order words, the internal “on” resistance of the MOSFETs, combined with the input capacitor, create a frequency roll-off at a high frequency. The picture below shows an example of this case.

![Figure 36 - Motivation for Noise Floor Reduction](image)

If \(r_{\text{DSon}} \) takes on a value of 50 Ω, the frequency roll off, \(f_h \), will be found at 8 MHz, or in theory,

\[
 f_h = \frac{1}{2\pi \cdot R \cdot C} \quad \text{Eq. 21}
\]

The blue shading indicates the location of the frequency roll-off. However, since our ADC’s bandwidth is simply 500 kHz, we can decrease the length of the noise floor by adding a resistance to the circuit, as shown in Figure 37.
To find this resistance, we must find how many time constants are necessary to obtain the precision desired for the ADC. In this converter, since we are attempting to have a 16-bit converter, the accuracy level is going to be within \(\frac{1}{2} \) Least Significant Bits of the ADC, as shown below:

\[
 t_{allow} = \ln(2^{17}) \cdot \tau \tag{Eq. 22}
\]

where \(\tau \) is the RC circuit's time constant and \(t_{allow} \) is the value pre-determined as the input sampling duration. Restructuring the equation, we'll have:

\[
 \tau = \frac{t_{allow}}{\ln(2^{17})} \approx \frac{200 \text{ ns}}{12} = 16 \text{ ns}
\]

Knowing that our \(\tau = RC \) time constant is 16ns, we can solve for the resistor size. Since we have a capacitor value of 4pF on C1,

\[
 R = \frac{16 \text{ nsec}}{4\text{pF}}
\]

\[
 R = 4k\Omega
\]

As expected, the input block will now have its acquisition time increased drastically. However, we had already allotted 200ns for the sampling of the circuit. To ensure the acquisition time is under 200ns, the figure below shows the acquisition time according to the different resistance values from 0 to 10kΩ:
4.2.1 **Resistor Tolerance**

According to the JAZZ library help files, the resistor tolerances will vary approximately by 25%. That assumption is made based on the following documentation:

<table>
<thead>
<tr>
<th>Salicided poly sheet resistance-Rs*</th>
<th>4.46</th>
<th>5.95</th>
<th>7.44</th>
<th>Ω/□</th>
</tr>
</thead>
</table>

Therefore, we can see that our circuit may have a higher acquisition time than expected at 5kΩ. However, that time is still below the 200ns mark.

<table>
<thead>
<tr>
<th>Value</th>
<th>t_{ACQ}</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 kΩ</td>
<td>111 nsec</td>
</tr>
<tr>
<td>4 kΩ</td>
<td>148 nsec</td>
</tr>
<tr>
<td>5 kΩ</td>
<td>185 nsec</td>
</tr>
</tbody>
</table>

To see the variation, the THD was also simulated. We can see that the swing in distortion does not vary much, as shown in Figure 39.
Using Eq. 21, our roll-off frequency will now be

\[f_h = \frac{1}{2\pi \cdot RC} = \frac{1}{2\pi \cdot 16ns} = 9.95 \text{ MHz} \]

\[f_h \approx 10 \text{ MHz} \]

As stated in Section 2.5.1, the SNR of ADC is the integral of all the noise in a system. Therefore, by reducing the noise floor, we have reduced the signal-to-noise ratio of the ADC as well.

4.2.2 Implementation of Input Block

In the actual input block, we will use 4 capacitors in of size 1pF. Therefore we have to size all transistors accordingly. The next page shows a diagram of this concept. Also, a Split-ADC architecture will be used, meaning that the capacitor values will be half of the current values. Instead of four capacitors, eight will be used and the resistor will be sized appropriately.
5 The Switched Capacitor Network

One of the key characteristics of the Cyclic ADC is that it is able to use sampled values after a decision has been made and apply those values to the residue amplifier. The ability to do analog math with these values and sample the input with ease comes from the switch capacitor array.

![Switch Capacitor Array Block and its Interaction with other Blocks](image)

The switch capacitor network interacts with every block of our design, since the values on the capacitor dictate the input and output values of the ADC.

It is not surprising that an extensive amount of time was spent in this network. This section will serve to explain the various switch capacitor designs create and the reasons why those designs were discontinued. We will also overview the final design and its benefits.
5.1 **DEFINING THE CORRECT NUMBER OF CAPACITORS FOR THE NETWORK**

An important aspect of our design, which adds to its level of complexity, is the number of capacitors used in the network. More capacitors equate to more transistors being used for switching and transmission. Therefore, our approach is to be conservative in the number of capacitors used.

5.1.1 USING ONE CAPACITOR

Before we describe our approach it is important to define what is meant by using one capacitor. As the simplified diagram below shows, there is one capacitor on the input and one capacitor on the output of the differential amplifier. The differential counterpart is not considered in this example for simplicity. One capacitor means that the amplifier’s input will have one capacitor and the amplifier’s output will have one capacitor as well. This number is doubled for the differential functionality.

![Diagram of using one capacitor](image)

Figure 41 - Example of Using One Capacitor

Although the approach of using one capacitor makes the circuit’s functionality very simple, this approach proved to be ineffective immediately. This is due to a simple factor. Symbolized in the graph as V_{DAC} is the block responsible for choosing a decision based on a previous block. The decision created by this block results in the switching to its respective voltage reference. However, since our differential amplifier does not have a perfect gain of 2, two additional decisions need to be made. With this design, two additional voltage references would need to be created. Since industry standards and common practice usually limit the amount of off-chip reference voltages, we felt it was necessary to introduce an extra capacitor to incorporate decisions -2, -1, 0, +1, and +2.
5.1.2 Using Two Capacitors
To incorporate the desired decisions, the use of 2 capacitors was then implemented. Since we have a positive, negative, and common mode reference voltage available for each capacitor, the resulting decision would be represented as the diagram below indicates:

![Diagram of Decisions with 2 Capacitors](image)

As Figure 42 indicates, the sum of the value on the top plates of the capacitors will be the input of the differential amplifier. This approach makes it possible to introduce the desired +/- 1 decisions. In comparison with Figure 41, the value of each capacitor in this new design is half the size of the single capacitor configuration, making the total capacitance the same.

5.1.3 Testing the Two Capacitor System
As our testing indicated, implementing the +/- 1 decisions was now possible, but not as effective as expected. The circuit used for testing this decision is shown below:

![Test Circuit for +/- 1 Decision](image)
In other decisions, no charge is redistributed into the capacitors before switching. However, in this case, the issue lies with the fact that the +/- 1 decision mode does give the two capacitors a difference in potential, meaning that the capacitors will redistribute their charge when attached to the same node. Also, for our differential amplifier to obtain the predetermined desired settling time of 1 nanosecond or less, the MOSFET widths had to be made very large. As result, the parasitics on the gates of the transistors cause a tremendous amount of charge injection into the capacitors. The figure below shows this occurrence:

![Figure 44: Example of Charge Injection: Capacitor being Switched between a 500µm PMOS and a 250µm NMOS](image)

As the transient response above shows, over 100mV of impact is done by charge injection, indicated by point M1. Therefore a new alternative had to be created.

5.2 THE FINAL SWITCH CAPACITOR DESIGN: FOUR CAPACITORS

Our approach in resolving this issue was to try to minimize the charge injection coming from the gate of the transistors. This effect is due to a high internal resistance of the transistor, caused by low overdrive voltages. The low overdrive voltage was mainly found in the transistors that switch to V_{icm}. Consequently, an alternative was to not use V_{icm} as a reference voltage. Instead, some analog math would be done with four capacitors to give the same voltage levels desired in the previous iterations of the design. Therefore, by increasing the number of capacitors, we can decrease the overdrive voltage on the MOSFETs and have less charge injection. We used a total of 4 capacitors, each with a value of $\frac{1}{4}$ of the original.
The following figure shows the new manner in which the decisions are made:

![Figure 45 - Method for Using 4 Capacitors](image1)

Figure 46 shows the simulated circuit for the 4 capacitor approach:

![Figure 46 - Circuit Implemented with 4 Capacitors](image2)
Using the 4 capacitor implementation, the overdrive voltages for the MOSFETs are much greater, reducing the $R_{ds_{on}}$ of the MOSFETs allowing much smaller widths to be used. Using this implementation charge injection is reduced by a factor of about 4. The figure below shows a comparison of the 2 capacitor model and the 4 capacitor model for the implementation of the +1 decision.

Figure 47 - Comparison of 2 and 4 Capacitor Implementation of +1 Decision

As seen in the figure above, using the four capacitor circuit for the implementation of the +1 decision reduces the input settling time to around 340ps while reducing the charge injection to 38mV. As seen in the figure below, this improvement is seen across various capacitor voltages.

Figure 48 - Comparison of 2 and 4 Capacitor Implementation of +1 Decision
5.3 Determining Voltage Reference Values for Switched Capacitors

The voltage references being used by the ADC were originally found when using a two capacitor approach. However, the reference voltages were kept for the four capacitor approach. The solution is based on the principle that the positive and negative reference voltages can be found when the difference between them is the common output voltage after shorting the inputs and outputs of the differential amplifier.

![Figure 49 - Derivation for Reference Voltages](image)

Therefore, we can derive the following two equations:

\[
V_{refm} - (V_{outmin} - V_{ocm}) = V_{icm} \quad \text{Eq. 23}
\]

\[
V_{refp} - (V_{outmax} - V_{ocm}) = V_{icm} \quad \text{Eq. 24}
\]

which, after some basic manipulation, will turn into:

\[
V_{refm} = V_{icm} + V_{outmin} - V_{ocm} \quad \text{Eq. 25}
\]

\[
V_{refp} = V_{icm} + V_{outmax} - V_{ocm} \quad \text{Eq. 26}
\]

Plugging in our values (specified in section 6.2), we get:

\[
V_{refm} = 1.09V + 0.96V - 1.3V = 0.75V
\]

\[
V_{refp} = 1.09V + 1.64V - 1.3V = 1.43V
\]
6 DIFFERENTIAL AMPLIFIER

The following section concerns the differential amplifier block. Shown below is the schematic representation of the differential amplifier and supportive components attached to it. The behavior of the differential amplifier and equations that governed its qualitative analysis were introduced previously in section 2.9. The role of each supportive component will be described in separate sections that follow. The goal regarding the design of the differential amplifier was using an open-loop differential amplifier in order to reduce the power consumption. The nonlinearity introduced by the open-loop configuration was planned to be processed by digital means.

Shown below is the differential amplifier circuit in transistor level. Components that form the whole circuits will be described below. In order to get a better understanding regarding the role of each transistor in this circuit; it would be helpful to group together the ones that interact with each other.

Figure 50-Schematic Representation of Differential Amplifier
6.1 **Fundamental Components of the Differential Amplifier**

Indentifying transistors that form parts of the differential amplifier are listed below. By doing so, one can simplify the analysis of a complicated circuit such as the circuit in discussion.

- The main part of this circuit is the differential amplifier that is composed by M1, M2, M9, and both R_D resistors.
- Replica bias sub circuit is composed by M3rep, M4rep, M5, and M11.
- The transistor, M10, sets the gate voltage for M9 and M11.
- Transistors M6 and M7 allow for resetting the output of the differential amplifier to a known value of the output common mode.
- Transistors M8 and M12 also allow for resetting the input of the differential amplifier to input common mode value.

6.2 **Differential Amplifier Voltage Levels**

Another aspect of the differential pair design was choosing the input, output, and common mode voltage levels for the device. In order to start the design for this part known variables were listed and several assumptions were initially considered.

- Power supply rails range from ground (VSS = 0V) to VDD = 1.8V.
- Threshold voltage for the transistors used in designing the differential amplifier was selected, $V_{th} = 0.45V$. The threshold voltage was found in the available Jazz libraries.

![Figure 51: Differential In-Out Characteristic](image)
The derivation of the voltage levels started based on four equations, which will be discussed in this section. The first set of equations involves determining the triode crashes within the differential amplifier. The derivation of the following equations were based on the limitations that differential amplifier faces. Below is shown the input output characteristic graph for the differential amplifier which served as a guide to derive the equations that govern the input and output ranges of the differential pair.

The low triode crash happens when inputs are equal to each other. In other words:

\[Low \ triode \ crash \rightarrow V_{IP} = V_{IM} = V_{ICM} \quad \text{Eq. 27} \]

An assumption made regarding the transistor, M9, that serves as the biasing of the differential amplifier was that the minimum drain to source voltage must be equal to, \(V_{DS} = 0.3V \) for this device to be in saturation region.

Below are shown known voltages and the equation for the gate to source voltage for M1.

\[V_{th} = 0.45V \]
\[V_{DS} = 0.3V \]
\[V_{GS1} = V_{th} + V_{ov1} \quad \text{Eq. 28} \]

The four base equations used were the following:

Eq. 29 describes the low triode crash of the device:

\[V_{ICM} - (V_{th} + V_{ov1}) = 0.3V \quad \text{Eq. 29} \]

Equation Eq. 30 describes the high triode crash of the device:

\[V_{th} - 0.15 = \left(V_{ICM} + \frac{V_{IR}}{2} \right) - \left(V_{DCM} + \frac{V_{DR}}{2} \right) \quad \text{Eq. 30} \]

Equation Eq. 31 describes the output voltage range for the differential pair that is given by:

\[V_{DR} = G \times V_{IR} \quad \text{Eq. 31} \]
Equation Eq. 32 relates the input range of the differential amplifier assumed to be at a value approximately equal to M1 overdrive voltage:

\[V_{IR} \approx V_{ov1} = 0.15V \]

Eq. 32

By using all the assumptions made above and values available, the \(V_{ICM} \) value can be found as shown. Plugging in \(V_{th} \) and solving for \(V_{ICM} \), we obtain:

\[V_{ICM} = V_{IR} + 0.75V \]

Eq. 33

The next step is to solve Eq. 30. Using Eq. 31 we can substitute \(V_{OR} \) for \(2V_{IR} \), and have the following:

\[V_{th} - 0.15 = \left(V_{ICM} + \frac{V_{IR}}{2} \right) - \left(V_{OCM} - \frac{2V_{IR}}{2} \right) \]

\[0.45 - 0.15 = \left(V_{ICM} + \frac{V_{IR}}{2} \right) - \left(V_{OCM} - V_{IR} \right) \]

\[0.3 = V_{ICM} + \frac{3V_{IR}}{2} - V_{OCM} \]

Eq. 34

The next step is to substitute \(V_{ICM} \) from Eq. 33:

\[0.3 = (0.75 + V_{IR}) + \frac{3V_{IR}}{2} - V_{OCM} \]

Reordering the equation to solve for \(V_{OCM} \) as a function \(V_{IR} \) we get:

\[V_{OCM} = \frac{5V_{IR} + 0.9}{2} \]

Eq. 35

Respectively, we could have solved this equation for \(V_{IR} \):

\[V_{IR} = \frac{2V_{OCM} - 0.9}{5} \]

Eq. 36

Finally, we must find \(V_{ICM} \). To do so, we’ll plug Eq. 36 into Eq. 33, obtaining:

\[V_{ICM} = \frac{2V_{OCM} - 0.9}{5} + 0.75 \]

Eq. 37
With these results, we can plot the equations on the same axes, since all equations are represented as a function of V_{IR}, as shown below:

![Voltage Ranges Plot](image)

Figure 52 - Voltage Ranges Plot

We can use the voltages shown on Figure 52 to observe the impact of changing the voltage ranges of the circuit. As the figure above shows, we can use the point of intersection between V_{ICM} and V_{IR} as our choice for voltage ranges:

\[
V_{IR} = 0.34V \\
V_{ICM} = 1.09V \\
V_{ot} = 0.64V \\
V_{OCM} = 1.3V
\]

Once the above voltage levels were found, they were used in the derivations of the resistive load values and the differential pair bias current.
6.3 **Derivations of Other Differential Amplifier Parameters**

The topology used for the load of the differential amplifier is the resistive load. The reason for using a resistive load is that the maximum gain needed for this application is a gain of two, which is a small gain that easily can be achieved by the resistive load configuration. Therefore, the use of a resistive load topology meets the constraint being faced (low gain) and minimizes the complexity of the circuit.

For analysis a simpler differential pair schematic is shown below with a load capacitor that will be used to derive the resistive load values and the biasing current of the differential amplifier.

![Simplified Differential Amplifier Circuit](image)

Figure 53-Simplified Differential Amplifier Circuit

6.3.1 Derivations of Resistive Load Values and Bias Current

Proper biasing of the differential amplifier is an essential part in this design. In the differential pair circuit the bias current determines factors such as the slew rate of the amplifier, speed and acquisition time of the amplifier while keeping all of the internal MOSFETs in their active region. For the differential pair bias current there is a tradeoff of power consumption and speed. The faster the settling time needed to achieve a small error margin, the more current is needed to bias the differential pair. In this circuit the voltage on the load capacitor needs to be resolved in 14 bits accuracy in less than 20ns.
In order to acquire a signal and resolve to 14 bits resolution on the load capacitor we must have at least 9.7τ (RC time constants) as shown in the equation below:

$$\ln(2^{-\#\text{of bits to resolve}}) = \#\text{of } \tau \text{ needed to achieve resolution}$$ \hspace{1cm} \text{Eq. 38}

$$\ln(2^{-14}) = 9.7\tau$$ \hspace{1cm} \text{Eq. 39}

To find the resistance needed to achieve at least 9.7τ in the 20ns allotted we must find what τ is in the circuit, which is seen in the equations below:

$$\tau = \frac{20\text{ns}}{10} = 2\text{ns}$$ \hspace{1cm} \text{Eq. 40}

With the RC time constant known and the capacitance value assumed to a certain value as shown below, the resistance necessary for the resistor load for the differential pair can be calculated by making a use of the equation below:

$$R = \frac{\tau}{C}$$ \hspace{1cm} \text{Eq. 41}

The capacitor value used in the above equation was chosen to be, $C = 4\text{pF}$. The C value was decided while keeping in mind the SNR requirement in this project. For SNR description refer to section 2.2. After putting all values in the resistor equation the resistor value needed for differential amplifier load was found to be:

$$R = \frac{2.061\text{ns}}{4\text{pF}} = 515.3\Omega \approx 500\Omega$$ \hspace{1cm} \text{Eq. 42}

Knowing the values of the resistors in the resistive load portion of the ADC and the V_{ocm} one can calculate the bias current needed to operate the differential pair. The equation below is used to determine the current through each branch of the differential amplifier:

$$\frac{I_{Bias}}{2} = \frac{V_{dd} - V_{ocm}}{R_{\text{resistor load}}}$$ \hspace{1cm} \text{Eq. 43}

Plugging the values from above the current through one branch of the differential pair results to be:

$$\frac{I_{Bias}}{2} = \frac{1.8V - 1.3V}{500\Omega} = 1\text{mA}$$ \hspace{1cm} \text{Eq. 44}
Therefore, the differential pair bias current would be the sum of the currents from both branches that results to be:

\[I_{\text{Bias}} = \frac{I_{\text{Bias}}}{2} + \frac{I_{\text{Bias}}}{2} = 2mA \]

Eq. 45

6.4 **Replica Bias Analysis**

A replica bias circuit schematic is shown below. One of the advantages of such circuitry is that it applies a reference voltage to a targeted transistor gate, in this case to the “leg” of the differential pair, M9, shown in the figure below. As mentioned before, the replica bias circuit used in this design is composed by M3rep, M4rep, M5, and M11. In the schematic below M9 is the “leg” of the differential amplifier shown here for supporting the analysis of the replica bias circuit. Transistor M10 is shown for the same purpose described for M9.

6.4.1 **Pros and Purpose of Using Replica Bias**

The use of replica bias minimizes the channel length modulation on the current bias source. Replica bias creates the same \(V_{DS} \) as the original circuit being replicated, thus minimizing channel length modulation. Designing a replica bias circuit requires a special care in terms of transistor matching. As the name of this circuit suggests, it replicates the behavior and functions of the circuit that it supports, in this case the differential amplifier. Therefore, the transistors M3rep and M4rep used for designing this sub circuit are a factor of 10 smaller compared to M1 and M2 used in implementing the differential pair itself. The reason for downsizing the transistor sizes is that it minimizes the current usage, die area, and power consumption by the factor that the size decreases, in this a factor of 10.

6.4.2 **Designing Replica Bias**

The first step in designing the replica bias circuit is creating the replicated differential pair through M3rep and M4rep with transistor sizes that varied as described above. As mentioned before the replica bias circuit is composed by M3rep, M4rep, M5, and M11. The role of M5 in the circuit is that it sets the M9 gate voltage by subtracting a constant voltage, 309.5mV, from the common drain node of M3rep and M4rep (the constant voltage drop was measured in the actual node of the replica bias). In addition, M11 is part of the design of replica bias.

Beginning with M3rep and M4rep the function of this circuit can be explained as follows. First, when \(V_{IP} \) and \(V_{IM} \) are the equal the common source voltage is in its lowest level, which lowers the current through M11 due to the channel length modulation effect. Since the current through M11
decreases there is an excessive current supplied by I_{in} which in turn charges the gate of M5. Charging the gate of M5 leads to a decrease in V_{DS} of M5 which in turn increases the gate voltage of M11. Increasing the gate of M11 leads to an increase of the current through M11, therefore reestablishing the current in the whole circuit. Since the gate of M11 is the connected to M9, the bias of the differential amplifier, the differential amplifier biasing current in maintained to a constant value.

Figure 54-Schematic Representation of Replica Bias
6.4.3 *Simulation of the Replica Bias Circuit*

Shown below is the result of a simulation performed to verify the proper functionality of the replica bias circuit. Notice, for VIM = VIP the gate voltage of M9 is at its highest level. Indeed, notice the behavior of the differential pair bias current; it behaves as expected. In other words, the bias current increase/decreases accordingly to the change of M9 gate voltage.

![Figure 55-Replica Bias Simulation](image)

All the above derivations contribute to the design of the differential amplifier.

6.4.4 *Differential Pair Symbol Representation*

The figure that follows is a symbol representation of the differential amplifier schematic shown above. Once the differential amplifier was designed a symbol representation was created. Notice all the input and output pins attached to the differential amplifier.

![Figure 56-Symbol Representation of Differential Amplifier](image)
7 THE LOGIC BLOCK
Our circuitry is highly dependent on logic to operate. Many functions like, the control and timing of switching, the digital decision making, and others are performed by this block. In this section we will outline the various components created to perform the necessary logic functions for the cyclic ADC.

![Logic Block Diagram]

Figure 57 - Logic Block and its Interaction with other Blocks

7.1 DRIVING TRANSISTOR GATES THROUGH OPTIMIZATION
Certain transistor gates play the role of switches in given sub circuits throughout the design. The gates of such transistors vary in terms of their dimensions, thus requiring a higher level of gate voltage for turning them on and off. The ability of a given gate to turn on and off within a short required time is critical in certain parts of the circuit. For instance, in the sample-and-hold circuit, the transistor gates that form the switch, which allow the initiation and termination of both functions (sampling and holding), should respond to a signal request for switching between functions in a relative short time. In order to achieve the necessary gate behavior discrete buffer components available in Jazz library were used. Indeed, since the gate dimensions vary buffers of different sizes were designed. For this application a “tapered” buffer topology was used.
7.1.1 **Tapered Buffer**
The specific topology of a tapered buffer refers to a series of stages of buffers connected together where a stage that follows increases by a factor of (X) compared to the previous stage. The advantage of using the following configuration is that a relative small signal coming from, say, a digital block can drive a large gate of a CMOS switch. The function of tapered buffer can explained as follows. The small signal coming from the digital block drives (turns on) the gate of the first buffer stage, which in turn optimizes the signal in order to drive the gate of the next buffer stage, therefore as the stages cascade the signal is optimized to drive a given switch transistor gate.

7.1.1.1 **Pro’s and Con’s of Using Tapered Buffers**
The use of buffers allows avoiding loading the output stage of the driving block, in this case the digital driving block. The disadvantage of not using buffers would be that the time required to reach the voltage level needed to drive certain gates may increase leading to less time available for the rest of the circuit to perform all of it functions. Indeed, if a gate is not turned on or off within a given window of time there may be leakage at the output side of the block or charge injection occurrences due to discharges at open gates. The worst case may be that the driving block will face a load (capacitance of the gate to be driven) which it cannot drive due to its low output specifications.
7.1.1.2 Buffer Schematics and Symbol

Below are displayed the minimum buffer size used in designing all necessary buffers for driving the sample and hold circuit gates and a tapered buffer schematic in transistor level.

![Figure 58 - Discrete Buffer Component](image)

Notice that the minimum buffer size used has a length of factor 16 of the processes being used for designing these buffers available in Jazz library.

The following figure represents the tapered buffer schematic in transistor level. Notice the width of the second stage increases by an "n" factor compared to the first stage.

![Figure 59 - Schematic of a Buffer in Transistor Level](image)

The figure below shows a two stage tapered buffer of size 32. As it can be seen the second stage is a factor of two bigger compared to the first stage.

![Figure 60 - Tapered Buffer of Size 32](image)
The representation of the buffer above is in schematic form. After the schematics were designed, symbol representations were created and stored.

Figure below is a representation of a tapered buffer (size 32) symbol that can be imported into a given schematic in order to optimize a specific signal.

![Figure 61 - Tapered Buffer Symbol (size 32)](image)

A number of buffers that ranged from 16 to 1024 were designed and stored in working libraries for later use. Indeed, for greater flexibility the designed buffers increased by a factor two. In other words, the designed buffers ranged from 16, 32, 64... 512, 1024. A graphical representation of the buffer series is shown below.

![Figure 62 - Representation of the Tapered Buffer Topology](image)

An example where the buffers were used to optimize the output signal of a digital block in order to drive the transistor gates was the sample-and-hold circuit.

7.2 SAMPLE AND HOLD CIRCUIT SIMULATIONS

Initially all the tapered buffers describe above were designed to drive the gates involved in the sample and hold circuit at the front end of the design. In the figure below V_{in} represents the analog input signal to be sampled; M_1 and M_2 represent the signals coming from a digital block in order to drive the gates of the CMOS switch constructed by n_{fet_4} and p_{fet_4} in Cadence. At the output side M_3 is another signal that drives the output gate which in turn loads the value stored in capacitor C_1 into the residue amplifier (not shown here).
After designing a number of tapered buffers a series of simulations were conducted in order to analyze the signal response based on the applied buffer size and determine the appropriate buffer size needed to be used to drive a given gate.

7.2.1.1 Rise Time and Fall Time Measurements

The table below shows the combinations of components used for a series of simulations where the rise time, fall time, and the delay time with respect to the original signals were studied. For measuring the rise time a voltage level of 0V to 1.0V was used, whereas for measuring the fall time the range from 1.8V to 1.0V was substituted instead. Also, notice that in order to get more data points the buffer size was incremented by a factor of two.

<table>
<thead>
<tr>
<th>NMOS Switch (910µm)S2</th>
<th>Rise Time (psec)</th>
<th>Fall Time (psec)</th>
<th>PMOS Switch (3705µm)S3</th>
<th>Rise Time (psec)</th>
<th>Fall Time (psec)</th>
<th>NMOS (460µm)S1</th>
<th>Rise Time (psec)</th>
<th>Fall Time (psec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffer Sizes</td>
<td></td>
<td></td>
<td>Buffer Sizes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>270</td>
<td>145</td>
<td>16</td>
<td>1750</td>
<td>1021</td>
<td>16</td>
<td>162</td>
<td>90</td>
</tr>
<tr>
<td>32</td>
<td>140</td>
<td>86</td>
<td>32</td>
<td>940</td>
<td>528</td>
<td>32</td>
<td>90</td>
<td>59</td>
</tr>
<tr>
<td>64</td>
<td>84</td>
<td>53</td>
<td>64</td>
<td>450</td>
<td>460</td>
<td>64</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>128</td>
<td>53</td>
<td>41</td>
<td>128</td>
<td>230</td>
<td>120</td>
<td>128</td>
<td>40</td>
<td>32</td>
</tr>
<tr>
<td>256</td>
<td>46</td>
<td>41</td>
<td>256</td>
<td>100</td>
<td>69</td>
<td>256</td>
<td>31</td>
<td>30</td>
</tr>
<tr>
<td>512</td>
<td>33</td>
<td>27</td>
<td>512</td>
<td>81</td>
<td>47</td>
<td>512</td>
<td>28</td>
<td>24</td>
</tr>
<tr>
<td>1024</td>
<td>30</td>
<td>25</td>
<td>1024</td>
<td>53</td>
<td>35</td>
<td>1024</td>
<td>28</td>
<td>22</td>
</tr>
</tbody>
</table>
7.2.1.2 Rise Time and Rise-Time Delay Response Analysis Though Simulations

The following figure shows all signals grouped together for the NMOS gate at the output stage of the sample-and-hold circuit; the original signal is represented by S1. The following simulations are used for measuring rise time, and time delay for each output signal. Signal S1 refers to the original signal coming from the digital block and the rest of the signals are the outputs for each applied buffer. Starting from left to right it can be seen that buff16 does not optimize the original signal due to the fact that the rise time is similar to S1 and time delay is longer compare to buff64 output signal. Buff64 has a shorter rise time compare to buff16 and buff32 and relatively the same rise time compare to buff128, buff256, buff512, and buff1024. Also, buff 64 has a shorter time delay compare to the rest of the signals leading to the conclusion that for driving this gate this buffer size is the one that gives the best gate behavior.

![Figure 64-Rising Edge of Signal for Different Buffer Sizes](image)

7.2.1.3 Fall Time and Fall-Time Delay Response Analysis Though Simulations

Another simulation was performed for analyzing the falling time and falling-time delay response. In this case the NMOS transistor gate at the CMOS switch was observed. Signal S2 refers to the original signal coming from the digital block and the rest of the signals are the outputs of the applied buffers. For analyzing the following simulation the same procedure used for analyzing the rise time case was applied leading to the conclusion that for driving this transistor gate in the given dimensions buff64 is the best fit.
7.2.1.4 Rise-Time Delay and Fall-Time Delay Measurements

Shown below is a table with the recorded data for time delay analysis for all gates. In order to have a better understanding of the results the time delay was plotted versus the buffer sizes used.

<table>
<thead>
<tr>
<th>Buffer Sizes</th>
<th>S1 Rise_Delay</th>
<th>S1 Fall_Delay</th>
<th>S2 Rise_Delay</th>
<th>S2 Fall_Delay</th>
<th>S3 Rise_Delay</th>
<th>S3 Fall_Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>210</td>
<td>264</td>
<td>316</td>
<td>225</td>
<td>1817</td>
<td>1370</td>
</tr>
<tr>
<td>32</td>
<td>200</td>
<td>210</td>
<td>262</td>
<td>230</td>
<td>1040</td>
<td>750</td>
</tr>
<tr>
<td>64</td>
<td>180</td>
<td>193</td>
<td>212</td>
<td>211</td>
<td>590</td>
<td>450</td>
</tr>
<tr>
<td>128</td>
<td>223</td>
<td>253</td>
<td>242</td>
<td>263</td>
<td>430</td>
<td>342</td>
</tr>
<tr>
<td>256</td>
<td>227</td>
<td>256</td>
<td>238</td>
<td>262</td>
<td>329</td>
<td>300</td>
</tr>
<tr>
<td>512</td>
<td>283</td>
<td>322</td>
<td>290</td>
<td>326</td>
<td>336</td>
<td>345</td>
</tr>
<tr>
<td>1024</td>
<td>293</td>
<td>330</td>
<td>298</td>
<td>332</td>
<td>320</td>
<td>342</td>
</tr>
</tbody>
</table>

7.2.1.5 Choosing Buffer Sizes through Graphical Approach

Figures that follow show the graphs of time delays versus buffer sizes. As it can be seen time delay decreases as the buffer size increases up to a certain buffer size thereafter the time delay increases rapidly. Thus, we can see the tradeoff between increasing the buffer size and decreasing the time delay for a given gate and decide which buffer to use.
In the graph above it can be seen that rise-time delay for NMOS gate at the output decreases to its minimum for buff64 ($\log_{10} = 181$) and rise-time delay ($\log_{10} = -9.74$), which is the same result observed in the simulations approach.

The fall-time delay for the same gate decreases to a lower value for buff 64 and fall-time delay ($\log_{10} = -9.71$), again it is the same result observed in the simulation presented above.
The figure above displays the plot of rise-time delay vs. buffer size for NMOS gate at the CMOS switch. In this case time delay reaches its minimum value for buff64 and rise-time delay ($\log_{10} = -9.68$).

The fall-time delay for the NMOS gate at the CMOS switch decreases to a lower value for buff64 and fall-time delay ($\log_{10} = -9.68$), leading to a conclusion similar to the one presented above for the particular gate.
Figure 70 - Plot of Rise Time Delays vs. Buffer Sizes for the PMOS Gate at the Sampling Switch

The graph above displays the plot of rise-time delay vs. buffer size for PMOS gate at the CMOS switch. This case results to a minimum time delay for buff256 ($\log_{10} = 2.41$) and rise-time delay ($\log_{10} = -9.48$). It is an expected result since the gate size for a PMOS transistor is larger compared to an NMOS transistor gate.

Figure 71 - Plot of Fall Time Delays vs. Buffer Sizes for the PMOS Gate at the Sampling Switch

The last graph above displays the plot of fall-time delay vs. buffer size for the same gate at the CMOS switch. For this case the time delay for buff256 ($\log_{10} = 2.41$) and rise-time delay ($\log_{10} = -9.52$) is the shortest time delay. Yet, considering that the decrease in time delay from buff128 to buff256 is...
only 0.42E-10 (from the table), it seems that buff128 is a better tradeoff since its physical size of buff128 is twice smaller.

7.3 **Driving Transistor Gates at Capacitor Array**

Another section of the digital design involved designing a digital circuit for driving transistor gates at the capacitor array based on the comparators’ outcome, a capacitor select signal, and a residue mode signal. Signals that represent the comparators’ outcome and the capacitor select are on-chip signals, whereas residue mode signal is an off-chip signal coming from an external source such as an FPGA device. As shown below at Figure 72 each comparator’s outcome is assigned a grey code value that represents one of the four outcomes to be considered, whereas the rest of the combinations are ignored. Also, four possible logic combinations for the capacitor select signal and residue mode signal are shown in the truth table, Table 13 that follows below. In other words, based on the combination of the input signals, comparators’ outcome and capacitor-select/residue-mode, output signals are generated that drive eight assigned transistor gates at the capacitor array for forming one of the five output decisions of the residue amplifier.

7.3.1 **Implementing Residue Amplifier Decisions**

Below is shown the matching of the comparators’ outcome to the residue amplifier decisions based on the input signals described above. Notice that the solid arrow represents the residue-mode signal that selects decisions -2, 0, and +2, whereas the dashed arrow represents the residue-mode signal that selects decisions -1 and +1.

![Figure 72 - Matching of Comparators’ Outcome to Residue Amplifier Decisions](image)

Shown below is shown the whole truth table used to implement the functionalities described above. The truth table was derived by considering all possible combinations of the variables described above.
Table 13-Truth Table for Gate Driver Digital Block

<table>
<thead>
<tr>
<th>Comparators’ Outcome</th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>10101010</td>
<td>10101010</td>
<td>11111111</td>
<td>11111100</td>
</tr>
<tr>
<td>001</td>
<td>10101010</td>
<td>10101010</td>
<td>11110000</td>
<td>11111100</td>
</tr>
<tr>
<td>011</td>
<td>10101010</td>
<td>10101010</td>
<td>11110000</td>
<td>11000000</td>
</tr>
<tr>
<td>111</td>
<td>10101010</td>
<td>10101010</td>
<td>00000000</td>
<td>11000000</td>
</tr>
<tr>
<td>ELSE</td>
<td>10101010</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Outputs, Transistor Gates

7.3.2 Example of a Decision Implementation
In order to further understand the complex operation of the gate digital driver it may be helpful to consider an example of a decision implementation. For instance, let’s derive the implementation of a “+2” decision. Shown below is the capacitor array whose gates are to be driven by the digital driver.

![Capacitor Array Block](image_url)
In order to realize a “+2” decision the comparators output should be “111” and the capacitor-select/residue-mode combination must be “10”, which means that capacitor-select signal allows the capacitor array to perform its functions and residue-mode selects the “+2” decision. From the truth table it can be seen that for the given comparators’ output, “111” and capacitor-select/residue-mode combination “10” the signals to be sent to eight transistor gates are “00000000” with the far left being the signal sent to the first gate, gate<0>. Going back to the capacitor array circuit and assigning to each gate from gate<0> to gate<7> the corresponding bit, it can be seen that all PMOS transistors will be “on” and all NMOS transistors will be “off”. This configuration connects all the capacitors to the positive reference values, vrefp, thus giving rise to the “+2” decision. In addition, by applying all combinations in the truth table to the capacitor array block one can realize all five residue amplifier decisions.

7.3.3 Final Step in Designing the Gate Digital Driver

Once the truth table was created a hard ware description language (HDL) script was written in VHDL using a digital designing graphical user interface (GUI), Xilinx 10.1i. Moreover, once the code was written a test bench wave form (tbwf) was performed to verify the functions above. In this project, as mentioned above, Cadence is used as an IC designing tool. Yet, Cadence’s digital environment does not support VHDL code; it supports Verilog instead. In order to use the written VHDL code an intermediate path is followed. Cadence has the capability of converting a VHDL code to Verilog code, which in turn is then synthesized using the available digital compiler. For all the steps from writing a VHDL code in Xilinx to completing the digital design in Cadence a tutorial was written. After the designing process was completed the necessary power supply pins (VDD, VSS) were attached to the digital component and a symbol was created for a simpler representation. The newly digital driver was stored in a library for later use in circuit; its symbol representation is shown below.

![Digital Transistor Gate Driver](image-url)
7.4 Driving Transistor Gates of Input-Output Capacitors of Residue Amplifier

This section concerns a digital block that drives the gates of switches that allow connecting capacitors to the residue amplifier. The graphical behavior of the block is represented below through the timing diagram. In this block the only external input controlling signal is the capSelect signal, whereas the vresoutBuf signal is an output delayed signal that is feed back as an input to the digital block. Delays between signals vresout and vresoutBuf, and vresin and vresinBuf are realized through buffers as shown in circuit schematic representation below the timing diagram. The functionalities of the digital block in discussion are as follows. When capSelect signal goes high vresout switches to low in order to turn on the gate of the PMOS transistor leading to the connection of C\textsubscript{out} to the residue amplifier. Then, vresin goes high which in turn turns on the NMOS transistor leading to the connection of C\textsubscript{in} to the amplifier. On the other side, when capSelect goes low the reverse operations take place. First, the capacitor C\textsubscript{out} is disconnected followed by the disconnection of C\textsubscript{in}.

Figure 75-Behavior of "vresin-vresout switch" Digital Block

Below is shown an artistic circuit schematic representation together with the pins that connect to the digital block described above.
7.4.1 **REALIZING THE DIGITAL BLOCK**

For designing “vresin-vresout switch” digital block the same procedure was followed. First, a VHDL code was written in Xilinx and its functionality was verified through a tbwf before imported to Cadence. Once imported to Cadence the code was synthesized using cadence digital designing tools, completed by attaching power supply pins and the newly designed digital block was ready for use. Below is displayed a symbol representation of “vresin-vresout switch” digital block.

![Diagram of vresin-vresout switch digital block](image.png)

Figure 77- “vresin-vresout switch” Digital Block
7.5 **DESIGNING “genericDemux”**

A demultiplexer (in this design called genericDemux) was another digital sub circuit designed with the purpose of driving specific transistor gates based on certain input signal combinations. The inputs of this digital block driver are the input to be send to a selected output pin, and the output pin select signal. For each case two variables are considered, which give rise to four possible input combinations. Yet, for this application only two combinations are needed for each case; the rest are used to set the output values to zero "low" values. In the tables below the left columns represent the input signal combinations and the right columns show the output results. On the left column the bit on the far left corresponds to the input signal, whereas the bit on the right represents the select output pin signal.

Table below shows the relationship between the input-select signal and output1 pin.

<table>
<thead>
<tr>
<th>input-select</th>
<th>output1</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>ELSE</td>
<td>0</td>
</tr>
</tbody>
</table>

The following table represents the relationship between the input-select signal and output2 pin.

<table>
<thead>
<tr>
<th>input-select</th>
<th>Output2</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>ELSE</td>
<td>0</td>
</tr>
</tbody>
</table>

7.5.1 "genericDemux" Symbol Representation

After the logic behavior of the demux was established a VHDL script was written in Xilinx and synthesized in Cadence’s digital designing tools. A symbol representation of the demultiplexer circuit was created and the newly designed digital driver was tested to verify its proper functionalities. Below is shown the symbol representation of this digital block.
In order to verify the demultiplexer’s proper functionality a simulation test was performed. For instance, let’s consider an input combination from the truth table that represents the relationship between input/output2, and observe the output. Shown in the graph is a dotted arrow that shows the input combination of input-select as “11”. For this input combination the expected outputs (from the truth table) are output1 “0” and output2 “1”. Moreover, by following the same procedure one can verify that the designed demux implements all logic combinations described in the truth tables above.
8 THE OUTPUT BLOCK

One of the issues we had originally discussed extensively in the project’s preliminary design was the concept of driving the outputs, instead of simply outputting low voltage CMOS signal levels. To do this, as we represented in the background section, we researched a common method known as Low Voltage Differential Signaling (LVDS). This block would follow our Logic block, as the diagram below indicates.

![Block Diagram](image)

Figure 80- Block Interaction between Logic and Output Drivers

8.1 CREATING LVDS DRIVERS

After performing research, we have seen that there is a common industry standard for LVDS design. The specifications of the standard are shown below:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Standard</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Across Resistor</td>
<td>350mV</td>
<td>247mV</td>
<td>454mV</td>
</tr>
<tr>
<td>Common Mode Voltage</td>
<td>1.2V</td>
<td>1.125V</td>
<td>1.375V</td>
</tr>
<tr>
<td>Current</td>
<td>3.5mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Resistor</td>
<td>100Ω</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shown below is a copy of Figure 18. In our case, the receiver would be an FPGA that is capable of taking LVDS outputs, which usually requires some signal translation.
We had to make our design comply with the requirements dictated by the standards mentioned above. To bias the LVDS, we used an N-MOS current mirror, with values designed to match our desired 3.5mA. Also, the values on the transistors are set to allow for the 1.2V common mode. Our schematic is shown below:

As we can see above, there is a transmission gate (M8, M23) at the input, which is fed by an input voltage. This value is then obtained by the 4 transistors (M0, M1, M3, M4) forming the LVDS driver. The biasing for the transistors is done by a simple current mirror (M17, M18). R3 is the output resistor, with a parasitic capacitor next to it. To confirm that our circuit was running we performed a transient analysis in Cadence. The results of that analysis are shown below:
Figure 83 – Simulated LVDS Outputs

From the top: (1) As we can see the current stays constant at 3.5mA. (2) The input voltage is shown as a piecewise linear function. (3) Differential counterpart to input. (4) Differential voltage seen by the receiver.

By looking at Figure 83, we can observe that standards outlined in Table 16 have all been met. Therefore the LVDS is ready for use.
8.2 Making the Choice between LVDS and LVCMOS

Although we created a working version of an LVDS driver, it was necessary to analyze if creating these drivers would be a worthwhile effort for this project. Therefore, the chart below was created:

<table>
<thead>
<tr>
<th>Specification</th>
<th>LVDS</th>
<th>LVCMOS</th>
<th>Preference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Wires</td>
<td>12</td>
<td>6</td>
<td>LVCMOS</td>
</tr>
<tr>
<td>Complexity</td>
<td>The design of a driver that can adhere to LVDS standards is necessary, which adds high complexity, comparatively.</td>
<td>Simple MOSFET drivers with common voltage references within the circuit</td>
<td>LVCMOS</td>
</tr>
<tr>
<td>Noise</td>
<td>Reduces noise in long wire distances by being differential, especially in higher frequencies.</td>
<td>More prone to noise in longer distances, due to jitter and interference in system</td>
<td>LVDS</td>
</tr>
<tr>
<td>Power Transmission</td>
<td>Lower Power, in general</td>
<td>Low Power</td>
<td>LVDS</td>
</tr>
<tr>
<td>Speed</td>
<td>Serial or Parallel</td>
<td>Parallel</td>
<td>LVCMOS</td>
</tr>
<tr>
<td>Signal Processing</td>
<td>Accommodates very high frequencies.</td>
<td>Less used for high frequencies</td>
<td>LVDS</td>
</tr>
<tr>
<td></td>
<td>Serialization</td>
<td>Translation</td>
<td>LVCMOS</td>
</tr>
</tbody>
</table>

The table above shows a contrast between our two most feasible options: LVDS, being a great technology in high-speed applications that require low noise levels, and LVCMOS, being the simpler, more trivial option.

Due to the complexity of this project, we feel it may be more convenient and efficient to use the LVCMOS standard, because it will encompass all of our needs without intense extra circuitry on the analog and digital sides. For example, to make LVDS a more convincing choice, we would have to add circuitry to serialize the data and transmit our 3 simultaneous bits. Also, since it is differential, LVDS will require twice the amount of pins as LVCMOS would demand for output. Therefore, our final choice was to discontinue the LVDS approach and maintain a simple LVCMOS output.

8.3 Output Process

Since we have decided on simply using the output of our logic block to be sent to the FPGA, some the following characteristics apply to this block:

- Output will be a thermometer code
- Output code will be given per cycle, not per conversion.
REFERENCES

