Project Goals
- Develop a plan for the screening of the general public for Alzheimer’s Disease

Background

Cause:
- As the body ages, β-amyloid plaques and neurofibrillary tangles may build up in the brain
- These block communication between cells

Diagnosis:
- Most widely used form of definitive diagnosis is an autopsy
- Patients can be diagnosed with “Alzheimer’s Type” pathology based on symptoms such as memory loss and other cognitive tests
- A newly developed, accurate test for AD is a PET scan, administered with radioactive tracers
- Effective diagnosis of the disease can be achieved through an efficient, widespread system of screening

PET Scans
- Positron emission tomography shows how well cells are working based on the amount of sugar or oxygen the cell consumes
- A radioactive tracer can be given to the patient so that the PET scan will show the targeted cell

PET Scan Screening For Alzheimer’s
- Used to measure the levels of β-amyloid plaques as well as neurofibrillary tangles
- A radioactive tracer, 18F-FDDNP, binds to the plaques and tangles
- An administered PET scan shows where the tracer is greater in concentration
- FDG PET scans use the tracer 18 FDG to show brain metabolic activity
- Administration of these two tests is enough to diagnose Alzheimer’s Disease

Diagnostic Screening System
- “At-risk” patients will be given a standard cognitive assessment called a Mental Status Examination (MSE) as a part of their yearly physical examination
- If the patient’s score declines significantly over the course of one or more years, the physician must refer them to a hospital for plaque screening and a FDG PET scan
- If the results show that the patient has signs of AD, treatment will be carried out

Mental Status Examination (MSE)
- Evaluates:
 - Affect and mood
 - Attitude
 - Appearance
 - Behavior
 - Cognition
 - Insight judgment
 - Speech and language
 - Thought content
 - Thought processes

Percentage Changes in Selected Causes of Death, 2000 and 2006

<table>
<thead>
<tr>
<th>Cause</th>
<th>2000</th>
<th>2006</th>
<th>Percentage Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart disease</td>
<td>710,760</td>
<td>629,191</td>
<td>-11.5</td>
</tr>
<tr>
<td>Breast cancer</td>
<td>41,200</td>
<td>40,970</td>
<td>-0.6</td>
</tr>
<tr>
<td>Prostate cancer</td>
<td>31,900</td>
<td>27,350</td>
<td>-14.3</td>
</tr>
<tr>
<td>Stroke</td>
<td>167,661</td>
<td>137,265</td>
<td>-18.1</td>
</tr>
<tr>
<td>Alzheimer’s disease</td>
<td>49,558</td>
<td>72,914</td>
<td>+47.1</td>
</tr>
</tbody>
</table>

“At Risk Patients”
- Patients already diagnosed with “Alzheimer’s type” pathology
- Those with a family history of Alzheimer’s over the age of 40

Funding and Cost
- The average cost of a basic PET scan is between $3,000 and $6,000
- Most insurance companies will cover the cost if it has been clinically indicated
- Changes in Medicare would result in the reimbursement of these costs to patients of a certain age

Ethics
- Does the treatment really improve their quality of life?
- Will the screening create more paranoia and harm?
- Will treatment create false hope?

Conclusion
- An organized, widespread screening system for Alzheimer’s Disease will result in the earlier treatment of patients and possibly a decrease in the mortality rate due to this degenerative condition.

Acknowledgements

