TDOA Positioning Algorithms: Evaluation and Implementation

Benjamin Woodacre September 23, 2003

First Responder Location System

Target Scenario

- First Responders arrive on scene
- Desire to know position information
- Need deployable infrastructure

System Architecture

- Reference nodes (RN) deployed around site
- Individual to be tracked wears transmitter (TX)
- Reference nodes collaborate to estimate position

System Architecture

- RNs automatically determine distances between each other by exchange of TX-like signals.
- RNs calculate relative time of arrival (TOA) of TX signal.
- RNs collaborate (out of band), determine TDOAs
- Given TDOA data and RN positions, TX position can be estimated

TDOAs

Why TDOAs versus TOAs?

- Synchronization with transmitter not needed.
- Only inter-RN synchronization needed.
- Advantages for TX
 - Simple
 - Independent
 - Low Power

TDOA Position Estimation

Involves highly nonlinear, coupled equations

The TDOA problem involves solving a highly nonlinear system of coupled equations given imperfect information (due to random statistic error induced by noise in a RF system).

Estimation is difficult, and exact solution is generally intractable

Nonlinear estimation problems are notoriously difficult, and exact solution is generally intractable.

Approximate methods show good performance with low noise.

Various approximate solution methods have been proposed that yield good solutions for sufficiently noiseless data.

TDOA Position Estimation

We needed to develop a simulation test platform to evaluate the performance of each algorithm and to create design formulae which could be used to design a complete system.

Bucher Algorithm

- + Exact solution
- Limited to four receivers
- Generates two roots; Correct root choice not well defined

Bard

- + Arbitrary number of receivers
- + Computationally efficient
- Subject to symmetry problems
- Hyperbolic, "Spherical Intersection"
- Smith
 - + Arbitrary number of receivers
 - + "Spherical Interpolation" Linear with respect to range estimate

Evaluation Environments

Basic algorithm implementation
RN Positions, TDOAs >> Position Estimate
Wrapper for simulation
Accepts RN configurations, test TX locations
Degradation with noise

- WGN added to TDOA data
- Manipulation for visualization

Simulation Interfaces

One-shot GUI simulator

- Easy, visual interface to algorithm
- Ability to adjust simulation parameters
- Quick feedback

positioning_gui2

Simulation Interfaces

Monte Carlo simulation parameters

- AWGN noise standard deviation
- [X, Y, Z] ranges
- Number of tests to average over
- Sets of different receiver configurations
 - Static
 - Dynamic

Single Point

Pictures to show

- 1. GUI in action, one at a time w/ noise.
- 2. Statistical performance graphs
 - Different RX Geometries
 - Noise sweeps over point, line, volume.
- 3. Geometric dilution of performance
 - Sensor Configurations
 - Performance Analyses + Surface Plots

Future Work

- Derivation of the CRB for location error
 - Mathematically optimize location algorithm further if CRB allows
 - Develop a strategy for RN placement
- Dynamic introduction of additional RNs
 - In environments with signal obstructions additional RNs could be dropped in place and automatically incorporate into RN network.

Kalman Filtering

Improved track identification through physical constraints on target dynamics

Questions???

