Real-Time Deployment of Multihop Relays for Communication Range Extension

Nader Moayeri and Michael R. Souryal

Presented at the Precision Personnel Location for First Responders Technology Workshop
Worcester Polytechnic Institute, Worcester, MA
August 4-6, 2008
Motivation & Objectives

Motivation

- Public safety operations require reliable, rapidly-deployed communications
- Frequent wireless dead spots encountered inside large buildings, in underground tunnels, and other difficult radio environments

Objectives

- Maintain network connectivity for reliable communications
- Minimize impact on user’s mission
Approach

- Extend signal coverage through a multihop network that relays data/voice between first responders and Incident Command (IC)
- Relays (●) are automatically deployed at appropriate points along path, creating a multihop network
- Link layer and routing protocols provide reliable two-way communications, transfer of user vital signs, etc.
Technical Challenges

- Automating the deployment process…When/where to deploy relays?

- Reliable end-to-end transmission
 - Link-quality-sensitive route metric
 - Link and network layer retransmission

- Adapting to changes in link quality and topology
 - Timely route updates
 - Power control
Questions & Overview

Questions to Address

- How to measure the quality of a wireless link reliably and efficiently? (in order to determine when to deploy a new relay)
- What criteria should be used to trigger deployment?
- Is real-time on-the-fly deployment feasible? (Will it result in well-connected networks capable of reliable communications?)

Remainder of Today’s Presentation

- Approach to real-time deployment
- Overview of the prototype
- Next steps

Live Demo of the Prototype: Tomorrow Morning, Mid-Century
Link Reliability Measurements

• Collected over a fixed topology on single floor of an office building
• Clear threshold ⇒ RSS/SNR as indicator of link reliability
Mobile Link Measurements

RSS vs. Time on a 900 MHz Mobile Link

SNR vs. Time on a 2.4 GHz Mobile Link

- Measured by a mobile rx moving at fixed velocity down an office corridor
- Approaches needed to tolerate multipath fading
Overview of Deployment Algorithm

1. Mobile node probes channel every Δ sec.
2. Measures SNR of each Probe ACK (bidirectional)
3. If average SNR of each responding relay is less than a threshold, trigger deployment of new relay.

![Diagram showing mobile node, base node, deployed relays, and probe ACKs.](image)
2.4 GHz Prototype Breadcrumb

- **Lithium polymer battery & charger**

Gumstix motherboard
- 400 MHz Linux computer
- 16 MB Flash
- 64 MB SDRAM
- 8 cm × 2 cm

Wifistix expansion board
- IEEE 802.11b/g
- Open source driver
- 8 cm × 2 cm
Deployment Monitor

- Next relay to be deployed continuously probes and measures link quality to its neighbors.
- Deployment monitor on mobile display:

 ![In range](image1)
 ![Drop a node!](image2)
 ![Disconnected](image3)

- When that relay is deployed, next relay is set to probe.
2.4 GHz Prototype System Features

Applications
- Two-way voice between Base and Mobile Node
- Continuous monitoring of Mobile Node’s sensors
- Display approximate location of Mobile Node
 - using RFID-assisted inertial navigation
- Video

Technical Features
- Rapid link measurement
- Real-time deployment w/ local placement assistance
- IEEE 802.11 PHY/MAC
- OLSR routing w/ ETX metric
- IP support
Ongoing and Future Work

- Systematic study of link quality measurement techniques
- Routing protocol improvements
 - Smoother route transitions
 - Incorporate new link quality metrics
- Feasibility of image/video over deployed multihop network
- Network simulation of cognitive radio relay networks
Publications

Backup Slides on Relay Deployment
Deployment Algorithm Tradeoffs

Deployment Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ</td>
<td>Probe period</td>
</tr>
<tr>
<td>N</td>
<td>Averaging filter length</td>
</tr>
<tr>
<td>S_{th}</td>
<td>Threshold RSS</td>
</tr>
</tbody>
</table>

Graphs

$\Delta \times N = 4$ sec

- **Post-deployment RSS - S_{th} (dB)**
- **Probe period, filter length (Δ, N)**

$\Delta = 100$ ms

- **Post-deployment RSS - S_{th} (dB)**
- **Filter length (N)**
2.4 GHz Symmetric Link Measurements

- Fixed STA “A”, mobile STA “B”
- “B” carried down 110 m corridor and back at ~ 1.2 m/s
- Sampling period: 100 ms
- Filter: Uniform moving average of last 20 samples (2 s filter)
- Data rate: 2 Mbps
2.4 GHz Asymmetric Link Measurements

Bi-Directional Filtered SNR Measurements of an Asymmetric Mobile Link

- Fixed STA “A”, mobile STA “B”
- “B” carried down 110 m corridor and back at ~ 1.2 m/s
- Sampling period: 100 ms
- Filter: Uniform moving average of last 20 samples (2 s filter)
- Data rate: 2 Mbps
Backup Slides on 900 MHz Prototype
900 MHz Experimental Platform

- Crossbow MICA2 Mote (MPR400CB)
 - ChipCon CC1000 transceiver at 916 MHz
 - 8-bit ATMega128L 7.37 MHz processor
 - 128 kB program memory, 4 kB SRAM
 - Powered by 2 AA batteries
 - 5 dBm max. RF power

- Multi-Sensor Module (MTS310)
 - Light, Temperature
 - Acoustic, Sounder
 - 2-Axis Accelerometer
 - 2-Axis Magnetometer
900 MHz Prototype System

Applications
- Continuous monitoring of Mobile Node’s sensors
- Two-way text messaging between Base and Mobile
- Display approximate location of Mobile Node
 - using RFID location tags

Technical Features
- Rapid link measurement w/ adaptive probing
- Real-time deployment w/ local placement assistance
- Modified DSDV routing with link quality metric
- Power control
Backup Slides on
2.4 GHz Prototype Testing
Test in NIST AML

- March 24 & 26, 2008
- Buildings 217, 218, and 219
Deployment Example

- 8 relays deployed
- IEEE 802.11 2-Mbps data rate
- OLSR
 - HELLO period 0.5 s
- During deployment:
 - 28 kbps full-duplex VoIP call between IC and FR
 - Ping every second
- After deployment:
 - 10 MB file transfer
 - Audio recording
During Deployment

11% Packet Loss Rate

Time (s)

Number of hops
During Deployment: Packet Losses

11% Packet Loss Rate
During Deployment: Round-Trip Time

![Graph showing round-trip time vs. number of hops]
File Transfer

- 9-hop route
- 10 MB file
- Transmission time: 8 min 3 s
 - Average throughput: 166 kbps
 - Peak throughput: 232 kbps
- Simultaneous ping:
 - Average RTT: 173 ms
 - Packet loss rate: 36%
Audio

- Reading of Gettysburg Address
- Linphone VoIP connection with 16 kHz Speex codec at 28 kbps

Simultaneous Ping Results

<table>
<thead>
<tr>
<th>Number of hops</th>
<th>Min/Avg/Max RTTs (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>29/41/55</td>
</tr>
<tr>
<td>7</td>
<td>35/54/100</td>
</tr>
<tr>
<td>8</td>
<td>40/58/94</td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Time (s)