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Untying Knots by NMR: first experimental implementation
of a quantum algorithm for approximating the Jones polynomial
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w A knot is defined as a closed, non-self-intersecting curve
roadmap of the example #1 example #2 example #3 that is embedded in three dimensions.
quantum algorithm Trefoil Figure-Eight Borromean rings example: “construction” of the Trefoil knot:
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make a fuse the make it
“knot” free ends “look nice”
e

start with a rope end up with a Trefoil

J. W. Alexander proved, that any knot can be represented
as a closed braid (polynomial time algorithm)

generators of the 3 strand braid group:
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3 i 2 » 3 It is well known in knot theory, how to obtain the unitary matrix representation

UT,,_,fai, = (U 1) U, Figurem (U 2 U, 1) U, Borrom.R. = (U2 U, 1) of all generators of a given braid goup (see “Temperley-Lieb algebra” and “path

. model representation”). The unitary matrices U, and U,, corresponding to the

_io 0 _e® sin(66) re g0 /sin(60)sin(26) generators 6, and o, of the 3 strand braid group are shown on the left, where the

¢ sin(40) sin(40) variable “0” is related to the variable “A” of the Jones polynomial by: A = ¢ .

U, = U,= The unitary matrix representations of o;' and o;' are given by U;' and U;".

1 o0 $in(40) . o ’ sin(60)sin(20) sin(20) | _, i P ' » are given by U, :
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sin(20) sin(40) sin(40) The knot or link that was expressed as a product of braid group generators can

therefore also be expressed as a product of the corresponding unitary matrices.

Step #1: Step #2: Step #3: Instead of applying the unitary matrix U, we apply it’s controlled variant cU.
from the 2x2 matrix U applicat.ion of cU on the measurément This matrix is especially suited for NMR quantum computers [4] and other
to the 4x4 matrix cU- NMR product operator /1 : of I. and I, thermal state expectation value quantum computers: you only have to apply
trolled ' t b b cU to the NMR product operator /,, and measure /,, and /,, in order to obtain
controlle . : N e o TP ”
. the trace of the original matrix U.
iy R (X T A AR 1y Rt :
matrix cU= ( 0 U) Independent of the dimension of matrix U you only need ONE extra qubit for the
_1(0 U 1({0 U" 1~ implementation of cU as compared to the implementation of U itself.
“2lwo iy 3 \g o (=2 3@

The measurement of /, and /,,can be accomplished in one single-scan experiment.

B B All knots and links can be expressed as a product of braid group generators (see
| I | I | | I above). Hence the corresponding NMR pulse sequence can also be expressed as
z a sequence of NMR pulse sequence blocks, where each block corresponds to the

L
NMR . . :
cU, cU, cU, cU; controlled unitary matrix cU of one braid group generator.
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Quantum knots and mosaics
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Each of these knot mosaics is a string made up of the following 11 symbols
T BN

called mosaic tiles.

Each mosaic is a tensor product of
elementary tiles.




This observable is a quantum knot invariant
for 4x4 tile space. Knots have characteristic
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invariants in nxn tile space.

Superpositions of combinatorial knot

configurations are seen as quantum

states.




The Grand Generalization

Universe as a Quantum Knot;
Self-Excited Circuit Producing its Own Context




The Wheeler Eye
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Quantum Mechanics in a Nutshell

0. A state of a physical system corresponds to a unit
vector |S> in a complex vector space.

|. (measurement free) Physical processes
are modeled by unitary transformations
applied to the state vector: |S> ----- > U|S>

2.If|S>=zI|I>+z

2|2> +..+z n|n>

in a measurement basis {|1>,|2>,...,|n>}, then

measurement of |S> yields |i> with probability
7|72
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Mach-Zender Interferometer




Hadamard Test

0>— H O— H - Measure
T frequency
of
|phi> U 0>

[
H = [ o ]f‘Sqrt(2)

|0> occurs with probability
|/2 + Re[<phi|U|phi>]/2.




Apply Hadamard Gate

1

H|0) = E(IOH\D)
1

H|1) = ﬁ(!0>—ll>)

to first qubit of

Cy o (H®1)|0)[y) = —=(|0) @ [¢) + |1) @ U[t)
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The resulting state is

(H10) ® ) + HIL) © UJ)) = 2((10) + 1)) ® ) + (0) — 1)) ® U
= (1) ® (1) + Uls)) +11) & (1) — UI).

The expectation for |0> is

(] + (U ([0) + U1)) = 5 + 5 Re(w|U])

1

2

The imaginary part is obtained by applying the
same procedure to

1 .
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Figure 2 - The Reidemeister Moves.

Reidemeister Moves
reformulate knot theory in
terms of graph
combinatorics.




Bracket Polynomial Model
for the Jones Polynomial

(X)=AC)+ A7) ()

(KO) = (-A% = A7°)(K)
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Reformulating the Bracket

Let ¢(K) = number of crossings on link K.
Form A-C(K)<K> and replace A-2 by -q

Then the skein relation for <K> will
be replaced by:

OX) = (X) =)
(O)=(g+¢ 1)




Use enhanced states by labeling each loop with
+| or -I.

+| -1

[
+




Enhanced States

g le= —1<—= X

¢ = +1<=1

For reasons that will soon become apparent, we
let -1 be denoted by X and +| be denoted by |I.

(The moduleV will be generated by | and X))




An enhanced state
that contributes

[(@)(q)(1/9)] [(-q) (-9) (-q)]
'l -1 B B B

to the revised
bracket state sum.




Enhanced State Sum Formula for the Bracket

(K) = ¢ (-1)'¥




A Quantum Statistical Model for the Bracket
Polynonmial.

Let C(K) denote a Hilbert space
with basis |s> where s runs over the
enhanced states of a knot or link diagram K.

We define a unitary transformation.
U:C(K)— C(K)
Uls) = (—=1)¢’]s)

q is chosen on the unit circle in the
complex plane.




V) =2 _1s)

Lemma. The evaluation of the bracket polynomial is given by the following formula

(K) = WIU).

This gives a new quantum algorithm for the
Jones polynomial (via Hadamard Test).




Generalization to Virtual Knot Theory
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Figure 1: Moves
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Figure 4: Surfaces and Virtuals




A Quantum Algorithm for the Virtual
Jones Polynomial

The bracket polynomial for virtual knots extends naturally
by assigning the same values to
extended states for loops that cross themselves
virtually.

Thus the set of enhanced states of a virtual knot
or link gives a basis for a Hilbert space, and
therefore we have a quantum algorithm for the
Jones polynomial extended to virtuals.

AT THE PRESENT TIME THIS IS THE ONLY
FORMULATION OF A QUANTUM ALGORITHM
FOR THIS INVARIANT.




Khovanov Homology - Jones Polynomial as an
Euler Characteristic

Two key motivating ideas are involved in finding the Khovanov invariant. First
of all, one would like to categorify a link polynomial such as (K'). There are many
meanings to the term categorify, but here the quest is to find a way to express the link
polynomial as a graded Euler characteristic (K) = x,(H(K)) for some homology
theory associated with (K).

We will formulate Khovanov
Homology
in the context of our quantum
statistical model for the bracket
polynomial.




CATEGORIFICATION

View the next slide of states of the bracket
expansion as a CATEGORY.

The cubical shape of this category suggests
making a homology theory.

In order to make a non-trivial homology theory
we need a functor from this category of states
to a module category. Each state loop will
map to a module V. Unions of loops will map to
tenor products of this module.

We will describe how this comes about after
looking at the bracket polynomial in more detail.
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o(s) =3 0:(s)

The boundary is a sum of partial differentials
corresponding to resmoothings on the states.
> < \ ( N Each state loop
« N is 2 module.
A collection of state
>’5< : >>-K4 loops corresponds to
a tensor product of
CHL CC% these modules.
00—




The Functor from the cubical category to the module
category demands multiplication and comultiplication in

the module.
O > ModuleV O
Qo —(
OO ®







DO

0, O

D028

For d*2 =0, want partial boundaries to commute.




The commutation of the partial boundaries leads to a
structure of Frobenius algebra for the algebra
associated to a state circle.

=
=0




It turns out that one can take the algebra

generated by | and X with
X2=0 and

AX)=X@Xand AD)=10X + X ® 1.

The chain complex is then generated by
enhanced states with loop labels | and X.




An example of the commutation of partials.




Virtual Problem of Single Circle Morphisms







Standard Khovanov Complex works
modulo two
for virtual knots and links
by setting the self -morphism to zero.

A non-trivial modification of the Khovanov
Complex due to Vassily Manturov
solves the problem for integral homology.

We will not discuss the use of Manturov’s idea
in this talk,but it enables the ideas that follow
to work for virtual knots and links.




Enhanced State Sum Formula for the Bracket
(K) =" ¢ (1)
J(8) = np(s) + A(s)

i(s) = nB(s) = number of B-smoothings in the
state s.
A($) = number of +1 loops minus number of -1 loops.

(X)
(K) =) _(-1)'¢’dim(C")
. 2,]
C ' = module generated by enhanced states

with i =ng and j as above.




(K) =) _(-1)'¢’dim(C*)

2,]

Khovanov constructs differential acting in the form
0:C" — 't

For j to be constant as i increases by |, we need

A\(s) to decrease by |.

[go back two slides]




The differential increases the homological
grading i by | and leaves fixed the quantum grading j.

Then

Zq Z )'dim/(C¥) quC'J
X(H(C*7)) = x(C*7)

qu (C*7))







RECALLING:
A Quantum Statistical Model for Khovanov Homolgy
and the Bracket Polynonmial.

Let C(K) denote a Hilbert space
with basis |s> where s runs over the
enhanced states of a knot or link diagram K.

We define a unitary transformation.
U:C(K)— C(K)
Uls) = (—=1)¢’]s)

q is chosen on the unit circle in the
complex plane.




V) =2 _1s)

Lemma. The evaluation of the bracket polynomial is given by the following formula

(K) = WIU).

This gives a new quantum algorithm for the
Jones polynomial (via Hadamard Test).




with  Uls) = (—=1)")¢?¥)|s),
O - C’Lj > C’i—l—lj
U0+ oU = 0.

This means that the unitary transformation
U acts on the homology so that

U:H(C(K)) -----> H(C(K))




C"j — @@'Ci’j
=> " Zq Z 1)'dim(C¥)
= 2_@'x(C™) Zq X(H(C™))

This shows how <K> as a quantum amplitude
contains information about the homology.




Eigenspace Picture

C = @AC;\

(U |y Z)\X




SUMMARY

We have interpreted the bracket polynomial as a
quantum amplitude by making a Hilbert space C(K)
whose basis is the collection of enhanced states of the
bracket.

This space C(K) is naturally intepreted as the
chain space for the Khovanov homology
associated with the bracket polynomial.

(K) = @[Uly).

The homology and the unitary transformation U
speak to one another via the formula

U0+ oU = 0.




Questions

We have shown how Khovanov homology fits
into the context of quantum information related to

the Jones polynomial and
replaced in this context by a

how the polynomial is
unitary transformation U

on the Hilbert space of the model. This transformation U

acts on the homology, and its
decomposition of the homo
quantum amplitude corresponc

The states of the moc

eigenspaces give a natural
ogy that is related to the
ing to the Jones polynomial.

el are intensely

combinatorial, related to the
representation of the knot or link.

How can this formulation be used in
quantum information theory and in
statistical mechanics?!




The Dichromatic Polynomial and the Potts Model

Dichromatic Polynomial

Z[G)(v, Q) = Z[G"](v, Q) + vZ[G"](v, Q)
Zle LG = QZ[G).

G G’ G”
Delete Contract




Z[X] +UZ><
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Figure 4. Medial Graph, Checkerboard Graph and K(G)
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Partition Function
Recall that the partition function of a physical

system has the form of the sum over all states s
of the system the quantity

exp[(J/kT)E(s)]

where
] = +1 or -1 (ferromagnetic or antiferromagnetic models)
k = Boltzmann’s constant

T = Temperature
E(s) = energy of the state s




Potts Model

In the Potts model, one has a graph G
and assigns labels (spins, charges) to each
node of the graph from a label set
{1,2,...,Q}.

A state s is such a labeling.

The energy E(s) is equal to the
number of edges in the graph where the

endpoints of the edge receive the same
label.

For Q = 2, the Potts model is equivalent to the
Ising model. The Ising model was shown by Osager
to have a phase transition in the limit of square
planar lattices ( in the the 1940’s).




The partition function P (Q,T) for the
Q-state Potts model on a graph G is given by the
dichromatic polynomial

Z|Gl(v, Q)

where
1
v=el* T — 1

] = +1 or -1 (ferromagnetic or antiferromagnetic models)

k = Boltzmann’s constant

T = Temperature




1
K =J—
Let T

v=rel* —1

Ps(Q,T) = Z[G](e" — 1,Q)
Po(Q.T)=">) e"F)

For planar graphs G we have
Pe(Q,T) = QYK (G)}Q,v=e" —1)

N = number of nodes of G.




Theorem: 7G| (v, Q) = QN/Z{K(G)}

where K(G) is an alternating link associated with
the medial graph of G and

X3 =X3+Q 20D
{0} = Q>

Q_%”U — 1




To analyze Khovanov homology, we adopt a new
bracket

X1=1X]-aD(]
Ol=q+q "

When rho = |, we have the topological
bracket in Khovanov form.

When L

we have the Potts model.







[K](g,p=1) qupc” qu H(C*7))

Away from rho=1, one can ask what is
the influence of the Khovanov homology
on the coefficients in the expansion of

Kl(q,p)

and corresponding questions about the
Potts model.




Tracking Potts

1

—qp = Q_§fU

whence

¢ —/Qq+1=0.

\/@IZ\/Q_ZL
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At criticality Potts meets Khovanov at four colors
and imaginary temperature!

BN E N
q 2
Criticality: —pg =1
1 -V@£/Q-i
q 2 |

Suppose that 0O = 1.

Then 2 = —/Q + /Q — 4.
o 4-Q = TVQVG 1.

And need Q =4 and eK =




Now consider rho = | without insisting on
criticality.

1 =—v/(¢vQ)

v —14++/1-4/Q
= —QFVQVQ 1
V= —(q — :
2
GK:1+?}:2—Q:\/Q\/Q—4.




K:

For () = 2 we have e +1.
For =3, ¢ = =1EV3i
For Q = 4 we have e®* = —1.

For Q >4, e* is real and negative.

Thus we get complex temperature values in
all cases where the coefficients of the Potts
model are given directly in terms of Euler
characteristics from Khovanov homology.




