A One-Dimensional Viscoelastic Cell Motility Model

Andrew Port and Jeremy Ristau
2006-2007 Major Qualifying Project
Department of Mathematical Sciences

The 2006 Provost MQP Award

Abstract –
This project attempts to model the cell’s length, velocity, and internal stress experienced by a crawling cell as it moves on a substrate. We assume the cell’s viscoelastic properties can be described by a Maxwell element. Through balance equations, we develop a Moving Boundary Problem. We solve this MBP numerically, as well as analyze its traveling wave solution. We then change our model to assume that the cell’s actin concentration satisfies a second MBP and discuss our future plans for solving this new, more complicated model.

1. Introduction – Biological & Physical Background

3-Step Process of Crawling Cell Movement

I. The leading edge protrudes and adheres to a substrate
II. The rear breaks its adhesions
III. Contracture occurs, pulling the rear forward.

Viscoelasticity – Maxwell Element

A Maxwell element is a dashpot and spring connected in series.

\[\frac{\partial \varepsilon}{\partial t} = \frac{1}{\mathcal{E}} \left(\varepsilon - \sigma \right) \]

Stress-strain relationship of a Maxwell element:

\[\sigma = \varepsilon + \frac{\partial \varepsilon}{\partial t} \]

1D Continuum Mechanics

Conservation of Momentum: \(\rho \frac{D\varepsilon}{Dt} = \sigma + X \)

Assume low Reynold’s Number: \(\frac{D\varepsilon}{Dt} = 0 \)

Therefore: \(\frac{\partial \varepsilon}{\partial t} = \frac{\sigma}{\mu} \)

Differential Equation

Define total stress as the sum of viscoelastic and contractile stress: \(\sigma = \varepsilon + \tau \)

\[u = \text{displacement}, \quad \beta = \text{drag coefficient} \]

\[E = \mu, \quad \varepsilon = \frac{1}{E} \left(\beta \varepsilon + \tau \right) \]

Therefore: \(\varepsilon = \frac{\sigma}{\beta} \)

Model One:

\[\frac{\partial \varepsilon}{\partial t} = \frac{1}{\mathcal{L}} \left(\frac{\sigma}{\beta} - \varepsilon - \tau \right) \]

Boundary Conditions

\[r(t) = \text{rear of cell}, \quad f(t) = \text{front of cell}, \quad L(t) = f(t) - r(t) \]

\[\varepsilon = \frac{V_f}{L} + \frac{V_r}{L} \quad \text{From (2):} \quad \varepsilon = \frac{V_f}{L} + \frac{V_r}{L} \]

Mapping to a Fixed Domain

Let \(y = \frac{x - r(t)}{L(t)} \)

Moving Boundary Problem

Equation (3) and boundary conditions (4), (5) become

\[\sigma = \frac{-\varepsilon}{\beta} + \left(\frac{1}{\beta} \right) \left(\frac{\partial \varepsilon}{\partial t} \right) \]

\[\frac{\partial \varepsilon}{\partial t} = \frac{1}{\mathcal{E}} \left(\varepsilon - \sigma \right) \]

3. Numerical Results

Assumptions

Elastic Modulus: \(E(y) = E_a y \)

Contractile Stress: \(\tau(y) = f_a(y) \)

Actin Concentration: \(a(y) = y \)

Viscous Drag Coefficient: \(\beta(y) = \text{given function} \)

Numerical Method & Results

We use an implicit method to solve the Moving Boundary Problem (3), (4), (5)

Boundary Results

4. Traveling Wave Solutions

From the numerical results, we suspect that traveling wave solutions exist for the Model. This means there exist constants \(k, L > 0 \), and a function \(\sigma(\theta) \) such that \(\sigma(x + \theta - L) = \sigma(x) \). We use this to satisfy the MBP. We assume that \(E, \beta, \sigma \) are constants.

Non-Dimensionalization

After scaling the traveling wave equation, we obtain:

We modify the implicit method from our time-dependent problem to solve the above equations.

Numerical Results

Model Constants

Results

\(E = 0.21 \quad \mu = 0.01078 \quad k = 0.146818 \mu \text{m s}^{-1} \)

\(\beta = 0.2588 \quad \mu = 0.002 \quad L = 0.518326 \mu \text{m} \)

Traveling Wave Solutions

There exists a solution \(\sigma(\theta) \) to this traveling wave problem, and this solution is unique.

Proof: The problem is equivalent to showing that the graphs of the functions \(L = L_i(k) \) and \(L = L_j(k) \) intersect, where \(L_i \) and \(L_j \) are defined by the following equations:

5. Future Research

- Investigate the case when \(E \) is proportional to actin density.
- Prove the existence and uniqueness of traveling wave solutions for this case.
- Repeat our analysis for other viscoelastic elements (i.e. K-V, S-L, and S-S models).
- Collect laboratory data to compare the results of our model with real-life scenarios.

References

Advisor: Prof. Roger Lui