
MATERIALS & PROCESS DESIGN FOR HIGH TEMPERATURE CARBURIZING
Integrating Processing & Performance

Goal: Integrate model-based robust 
control of the HTC with concurrent design 
of novel HTC steels for higher performance 
and processability

Challenge:  Need mechanistic model to 
achieve robust control and performance 
Data to validate optimal processing

Benefits: 10X reduction in process cycle 
time, reduces scrap from quench distortion, 
enhanced performance through optimized 
steels, broader applications through deeper 
cases.

FY05 Activities: Robust application of 
new process model, demonstrate 
enhanced performance.

Participants:
WPI (CHTE)
NU (SRG)
Midwest Thermal-Vac
GM
QuesTek Innovations



Barrier-Pathway Approach

Barriers
• Lack of industry 

process control

• Lack of optimized 
steels

• Limited performance 
data

• Limited applications

Pathways
• Mechanistic process 

model for robust 
control

• Concurrent materials 
& process design 
(including final 
surface treatment)

• Industry test program

• Deeper cases

Critical Metrics
• Acceptable part-to-part 

variability (H, %C)

• Enhanced case hardness, 
residual stress, grain 
coarsening resistance, 
hardenability (reduced 
distortion)

• Fatigue Strength
(single-tooth, RCF)

• New markets
(camshafts, tool & die)
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MATERIALS & PROCESS DESIGN FOR HIGH TEMPERATURE CARBURIZING
Integrating Processing & Performance

AIM Technology Acceleration

Higher Performance Energy Efficient Powertrain

Reduced Scrap (Eliminate Quench Distortion)

Process Energy Savings – 20 trillion BTU/Yr

CycleTime Reduction – 10X

Benefits (est.)



Gas Carburizing vs. Vacuum Carburizing

Limited by saturation of Austenite or 
formation of continuous films
Faster (higher carbon potential/temp)
More homogeneous
Very predictable and reproducible
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Features of Vacuum Carburizing
and Capabilities of Software in Use

1) Diffusivity, D(C,T), varies with C content and time

2) Flux, J(t), varies with time 

3) Carbide formation and dissolution

4) Multiple phase diffusion process (only after continuous film formation)

Simple 1-D:
D(T)

J=constant

DICTRA 1-D
D(C,T)

J(t)

Carbide formation and dissolution

Multiple phase diffusion

DEFORM 2D/3D
D(C,T)

J (t)



Weight Gain and Surface Carbon Measurement for C61

Large enough surface area 
required for accurate weight 
gain measurement (for 
average or instant flux 
calculation)

Too long boost → carbide 
formation

Too long boost → retained 
austenite and plate martensite



Phases and Morphology after 
Long Boost for C69

Carbides on grain boundaries and 
left surface
Retained austenite in case
Plate shape martensite in case

5 um

20 um



Simulated Carbon and Measured Hardness Profile for C61
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DEFORM 3D Simulation for C61 Carburized at 950C

Boost + short diffuse
Depth: ~ 139um
Surface Hardness: ~ HRC 58

Boost only
Depth: ~ 110um
Surface Hardness: ~HRC 65

Corner effect:
High C potential of the gas
Can even be induced in diffuse cycles with low C potential



GUI of Versatile and Multi-constraint Software



GUI of Versatile and Multi-constraint Software

Challenge:
When to start a final diffuse trial
DICTRA workspace management 
(for rollback or different final 
diffuse trials)
Exportation from workspace
File management (plotting for 
different final diffuse trials)

Toughest challenge: implement 
all these flexibilities and 
constraints into one code



Case Study (1mm Depth)

Surface C

(max: 3 wt%)

Total C in region



Case Study (1mm Depth)

C profile
Desired Surface C: 0.55 wt%

Desired Case Depth: 1mm

Desired C at Case Depth: 0.14 wt%
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KBE

Work 
Flow

Analysis

Information 
Repository

LSF/Java

Geometric 
Modeling

Structural 
Modeling

Thermal 
Modeling

Gamma 
Prime 
Model 

Microsoft 
Excel

Gamma 
Prime 
Model 

PrecipiCalc

eMatrix

Oracle

Microsoft 
Access

Analysis Components

Models provided by Pratt 
& Whitney, General 
Electric, Questek, and 
others. Integrated by 
Engineous into the DKB 
architecture via iSIGHT

DRM *
Java/HTML

Exploration 
Tech.

* Distributed Resource Management

Networking

3RD Party  tools to extend 
iSIGHT’s integration 
capabilities

Integration Infrastructure

Core Utilities

iSIGHT framework 
provided by Engineous 
Software

Documentum



Effect of Surface Treatments on 
Residual Stress
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Peening processes allow us to achieve -1.2 GPa, ~-1.5 GPa
residual stresses on the surface of C61, C69, respectively.

*Data Courtesy: B. Tiemens

1 2 3 4
0

200

400

600

800

1000

1200

1400

1600

Surface
Maxium

 

 

Shot peenedTempered
stage IV

Tempered
Stage I

Quenched

-σ
su

rfa
ce

 (M
P

a)



Effects of Surface Treatments

IN 718, Zhuang & Halford, International 
Journal of Fatigue, 2001 (23), S31

On Residual Stress
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C69 LPC61 SP

Pyrowear53 
SP

Pyrowear53 
LP

Surface Optical Image after Peening
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Surface Residual Stresses in Materials
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APS Experiment

E ~ 80 keV

Conical 
Slit

3D Probe of Strain/Stress

Conical Slit 2D Detector



C69

Ultimate Bending Strength

Displacement (mm)
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C61

Ultimate Bending Strength

Displacement (mm)
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Role of Load
Surface Residual Stress of Fatigue Tracks

Fatigue TrackNon-fatigue trackMaterial

823±4
Relaxation: -42%

1085±6
Relaxation: -23%

1410±31418±33Pyrowear53, 
LP

756±3
Relaxation: -20%

?1569±7946±21119±5Pyrowear53, 
SP

Hoop (MPa)Axial (MPa)Hoop 
(MPa)

Axial 
(MPa)

Residual stress relaxation of laser peened material is greater than 
that of shot peened material.



ID 
Number 

Task / Milestone Description Planned 
Completion 

Actual 
Completion 

Comments

     
1a ThermoCalc Modeling 7/31/05  90% 
1b Process Experiments 7/31/05  80% 
1c Industrial Experiments 7/31/05  35% 
1d Hardenability 10/31/03  10% 
2a Redesign Alloys 10/31/04  60% 
2b Grain Stability 10/31/04  60% 
3a RCF and Wear 7/31/05  50% 
3b Residual Stress 7/31/05  35% 
3c Redesign for Performance 7/31/05  30% 
3d Forming Dies 7/31/05  20% 
3e Forging/Casting Dies 7/31/05  0% 

 



Microstructural Design Example: C69
• Gears

– 0.015” to 0.050” case
– 0.040” typical

• Camshafts
– 0.100” typical
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Current Sales Ferrium® C61

CamshaftsRing and Pinion



Commercialization History of Carburized Alloys

• Product Sales
– Ring and Pinion
– Camshafts

• Application Trials
– Gears

• Racing
• Aerospace
• Helicopter
• Marine

– Dog Rings (racing)
– Input Shafts (racing)
– Roll Forms
– Cutlery
– Skate Blades

• Markets Surveyed
– Ball Screws

– Tool and Die

– Golf Clubs



Materials to be studied at WPI

• 8160 gears -- GM
• 5120 gears -- GM
• 8620 shafts -- Deere
• SAE 4118/4122 -- CAT
• SAE 9310 -- CAT
• Fe-Mo-Ni (P/M)-- Hoeganaes Corp.
• Fe-Cr-Mn-Mo (P/M) -- Hoeganaes Corp.

Carburization trial will be conducted at Surface Combustion,
OH, using their low pressure carburizing facilities.



FY05 (Y4) Plans

•AIM / iSIGHT robust process design

•Residual stress optimization of C69

•Performance testing of PM-C69Ti

•Prototype characterization of new LC alloys

•Quantify CCT

•Expand deep case applications (cams; tool & die)

•CHTE dissemination of process control (vendors & steels)


