MATERIALS & PROCESS DESIGN FOR HIGH TEMPERATURE CARBURIZING Integrating Processing & Performance

Goal: Integrate model-based robust control of the HTC with concurrent design of novel HTC steels for higher performance and processability

Challenge: Need mechanistic model to achieve robust control and performance Data to validate optimal processing

Benefits: 10X reduction in process cycle time, reduces scrap from quench distortion, enhanced performance through optimized steels, broader applications through deeper cases.

FY05 Activities: Robust application of new process model, demonstrate enhanced performance.

Participants: WPI (CHTE) NU (SRG) Midwest Thermal-Vac GM QuesTek Innovations

MATERIALS & PROCESS DESIGN FOR HIGH TEMPERATURE CARBURIZING Integrating Processing & Performance

Barrier-Pathway Approach

Barriers

 Lack of optimized steels

- Limited performance data
- Limited applications

- Mechanistic process model for robust control
- Concurrent materials & process design (including final surface treatment)
- Industry test program
- Deeper cases

Critical Metrics

- Acceptable part-to-part variability (H, %C)
- Enhanced case hardness, residual stress, grain coarsening resistance, hardenability (reduced distortion)
- Fatigue Strength (single-tooth, RCF)
- New markets (camshafts, tool & die)

MATERIALS & PROCESS DESIGN FOR HIGH TEMPERATURE CARBURIZING Integrating Processing & Performance

Benefits (est.)

CycleTime Reduction – 10X

Process Energy Savings – 20 trillion BTU/Yr

Reduced Scrap (Eliminate Quench Distortion)

Higher Performance Energy Efficient Powertrain

AIM Technology Acceleration

Gas Carburizing vs. Vacuum Carburizing

Limited by soot formation

- Limited by saturation of Austenite or formation of continuous films
- □ Faster (higher carbon potential/temp)
- More homogeneous
 - Very predictable and reproducible

Features of Vacuum Carburizing and Capabilities of Software in Use

- 1) Diffusivity, D(C,T), varies with C content and time
- 2) Flux, J(t), varies with time
- 3) Carbide formation and dissolution
- 4) Multiple phase diffusion process (only after continuous film formation)

Weight Gain and Surface Carbon Measurement for C61

Phases and Morphology after Long Boost for C69

- Carbides on grain boundaries and left surface
- Retained austenite in case
- Plate shape martensite in case

Simulated Carbon and Measured Hardness Profile for C61

DEFORM 3D Simulation for C61 Carburized at 950C

Boost only Depth: ~ 110um Surface Hardness: ~HRC 65

□ Corner effect:

- □ High C potential of the gas
- □ Can even be induced in diffuse cycles with low C potential

Boost + short diffuse Depth: ~ 139um Surface Hardness: ~ HRC 58

GUI of Versatile and Multi-constraint Software

🗶 Qu	esTek CMD(TM)) Interface					
<u>F</u> ile	<u>E</u> dit						
Inpu	ut Compute	Create Plot Merge Plots Mi	n/Max Analysis 📔				
_C	omposition/Ma	odel Input			Models [carb]		
	Name Input Actions		ns 🔻 🛛		interm-da		
Fe	e: balance 🔶 v	wt%			m2c-st pecem-al		
	□ 1	С	0.12	$ \Delta $	ni-gpsol		
	⊒ 2	Co	16.1		ni-gpmulti ni-searea		
	<u>]</u> 3	Cr .	4.5		ni-comb1		
	⊒ 4	Мо	1.8		ni-comb2 \$env(HOME)/dictra/cmd/carb		
	<u> </u>	Ni	4.3				
	□ 6	v	0.1				
	7	W	0.1	L L F	TDBs [SSOL(+M2C)]		
	8	Overall Setup	- 2		SSOL(+M2C) - /usr/local/questek/lib/SSOL000201.TDB SERDP-MS - /usr/local/questek/lib/SERDP-MS.TDB		
	_ 9	Temperature(C)	1050		SERDP-MC - /usr/local/questek/lib/serdp_mc.TDB		
	」 10	Pressure(Pa)	101325		MART5 - /usr/local/questek/lib/MART5.TDB ssol - /usr/local/thermocalc/vern/linux/data/ssol/ssolsetup.1		
	_ 11	RegionWidth(mm)	2		pure - /usr/local/thermocalc/vern/linux/data/pure/puresetup		
1	12	GeometricalFactor	1.04		geo - /usr/local/thermocalc/vern/linux/data/geo/geosetup.td g35 - /usr/local/thermocalc/vern/linux/data/g35/g35setup.td		
	_ 13	NumberOfGrid	101		aq - /usr/local/thermocalc/vern/linux/data/aq/aqsetup.tdb		
	」 14	Flux (mg/hr/cm^2)	65	∇	chat - /usr/local/thermocalc/vern/linux/data/chat/chatsetup psub - /usr/local/thermocalc/vern/linux/data/psub/psubsetu		

GUI of Versatile and Multi-constraint Software

🔲 15	RunMode(1:auto;0:manual)	1
16	Auto Mode Only	1
17	Final Surface C(wt%)	0.55
⊒ 18	FinalSurfaceCMaxError(%)	2
 19	CaseDepth(mm)	1
_ 20	DesiredCAtCaseDepth(wt%)	0.14
_ 21	DesiredCAtCaseDepthMaxError(%)	2
 22	BoostIsMultipleOf(s)	5
□ 23	MaxSurfaceCAfterBoost(wt%)	3
⊒ 24		
25		
 26	Max Surface CAfter Diffuse (wt%)	0.8
27		
 28		
 29	DiffuseIsMultipleOf(s)	60
⊒ 30	TotalIsMultipleOf(s)	60
 31	Both Auto and Manual Mode	2
□ 32	Cycle 1: MinBoostTime(s)	30
□ 33	Cycle 1: MaxBoostTime(s)	0
⊒ 34	Cycle 1: MinDiffuseTime(s)	0

Challenge:

- When to start a final diffuse trial
- DICTRA workspace management (for rollback or different final diffuse trials)
- Exportation from workspace
- File management (plotting for different final diffuse trials)
- Toughest challenge: implement all these flexibilities and constraints into one code

Case Study (1mm Depth)

Case Study (1mm Depth)

ARCHITECTURE DESIGN

Effect of Surface Treatments on Residual Stress

Peening processes allow us to achieve -1.2 GPa, ~-1.5 GPa residual stresses on the surface of C61, C69, respectively.

*Data Courtesy: B. Tiemens

Effects of Surface Treatments On Residual Stress

Surface Optical Image after Peening

 -1.371
 1695
 Унем

 Surface Map
 40464 x 306.41 un 0957/36 07-13-2004

 Rp1.70um
 Rq0.43um
 PV;3.07um

 Rv-1.37um
 Raq0.35um
 Mag : 20.3

C69 LP

Pyrowear53 SP

C61 SP

Pyrowear53 LP

Surface Residual Stresses in Materials

APS Experiment

C69

Single Tooth Bending Fatigue Performance

C61

Single Tooth Bending Fatigue Performance

Role of Load

Surface Residual Stress of Fatigue Tracks

Material	Non-fatigue track		Fatigue Track		
	Axial (MPa)	Hoop (MPa)	Axial (MPa)	Hoop (MPa)	
Pyrowear53, SP	1119±5	946±2	?1569±7	756±3 Relaxation: -20%	
Pyrowear53, LP	1418±33	1410±3	1085±6 Relaxation: -23%	823±4 Relaxation: -42%	

Residual stress relaxation of laser peened material is greater than that of shot peened material.

ID	Task / Milestone Description	Planned	Actual	Comments
Number		Completion	Completion	
1a	ThermoCalc Modeling	7/31/05		90%
1b	Process Experiments	7/31/05		80%
1c	Industrial Experiments	7/31/05		35%
1d	Hardenability	10/31/03		10%
2a	Redesign Alloys	10/31/04		60%
2b	Grain Stability	10/31/04		60%
3a	RCF and Wear	7/31/05		50%
3b	Residual Stress	7/31/05		35%
3c	Redesign for Performance	7/31/05		30%
3d	Forming Dies	7/31/05		20%
3e	Forging/Casting Dies	7/31/05		0%

Microstructural Design Example: C69

- Gears
 - 0.015" to 0.050" case
 - 0.040" typical

• Camshafts - 0.100" typical

Current Sales Ferrium[®] C61

Ring and Pinion

Camshafts

Commercialization History of Carburized Alloys

- Product Sales
 - Ring and Pinion
 - Camshafts

- Application Trials
 - Gears
 - Racing
 - Aerospace
 - Helicopter
 - Marine
 - Dog Rings (racing)
 - Input Shafts (racing)
 - Roll Forms
 - Cutlery
 - Skate Blades

- Markets Surveyed
 - Ball Screws
 - Tool and Die
 - Golf Clubs

Materials to be studied at WPI

- 8160 gears -- GM
- 5120 gears -- GM
- 8620 shafts -- Deere
- SAE 4118/4122 -- CAT
- SAE 9310 -- CAT
- Fe-Mo-Ni (P/M)-- Hoeganaes Corp.
- Fe-Cr-Mn-Mo (P/M) -- Hoeganaes Corp.

Carburization trial will be conducted at Surface Combustion, OH, using their low pressure carburizing facilities.

FY05 (Y4) Plans

- •AIM / iSIGHT robust process design
- •Residual stress optimization of C69
- •Performance testing of PM-C69Ti
- Prototype characterization of new LC alloys
- •Quantify CCT
- •Expand deep case applications (cams; tool & die)
- •CHTE dissemination of process control (vendors & steels)