
Stoplight Detection and Image
Processing with FPGA

A Major Qualifying Project Report

Submitted to the faculty of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements of the

Degree of Bachelor of Science

By:

Michael Derryberry, Electrical and Computer Engineering

Jeremiah McCarthy, Electrical and Computer Engineering

Submitted to:

Project Advisor: Professor Xinming Huang, Department of Electrical and

Computer Engineering

Submitted on:

 March 27, 2015

2

Abstract

 This project focuses on real-time stoplight detection for advanced driver assistance system using

a Field Programmable Gate Array (FPGA). The main algorithms include Color Filtration, Blob Detection,

and Histogram Analysis. In order to reduce the computational complexity of this process, the Color

Filtration was to be accomplished by an FPGA while the more complicated Blob Detection and

Histogram Analysis was to be accomplished on a microprocessor. The architecture is targeted on a Xilinx

Zynq-7000 All Programmable SoC ZC702. A system on chip (SoC) device was selected in order to

maximize performance and allow easy transition from the FPGA and the embedded processor on the

same device. This implementation accurately detects stoplights and is able to alert the user through

both audio and visual peripherals.

3

Acknowledgements

 Our group would like to thank everyone that gave us the opportunity work on this project and to

experience the success that resulted from it.

 First, we would like to thank our advisor, Dr. Xinming Huang for his guidance and advice on this

project. His input and experience helped us to develop the project as a whole and keep us on track to

completing it.

 We would also like to thank Yuteng Zhou, a graduate student in the Embedded Computing Lab

at WPI. Without his extensive knowledge of the Zynq 702 board and Xilinx systems this project would

not have been possible.

 We would also like to sincerely thank the Worcester Polytechnic Institute (WPI) for providing the

facilities and equipment for this research.

 Without the assistance of these people, this project would not have been as successful as it was.

Thank you!

4

Authorship

This paper was done in equal parts by both authors; Michael Derryberry and Jeremiah

McCarthy. All sections were created and edited as a team.

5

Table of Contents
Abstract ... 2

Acknowledgements ... 3

Authorship .. 4

Table of Figures ... 7

Executive Summary ... 9

1. Introduction .. 11

1.1. Stoplight Detection .. 11

1.2. FPGA/SoC Systems ... 12

2. Algorithm .. 13

2.1. Basic Image Filters .. 13

2.1.1. Color Extraction... 14

2.1.2. Grayscale Conversion & Color Inversion ... 15

2.2. Blob Detection ... 17

2.3. Image Histograms .. 18

2.4. Additional Simulation Tests ... 22

2.4.1. Alternate Color Schemes .. 22

2.4.2. Blob Detection Accuracy ... 23

2.4.3. Stoplight Identification ... 24

3. Hardware Design ... 25

3.1. FPGA Selection ... 25

3.1.1 Altera DE1-SoC Development Kit ... 25

3.1.2. Xilinx ZC702 Evaluation Kit .. 28

3.3. FPGA Block Design ... 31

3.4. Color Filtration ... 34

3.5. Handoff to Processor ... 35

4. Software Design .. 35

4.1. Blob Detection Algorithm .. 36

4.1.1. Blob Detection Example .. 38

4.2. Histogram Decision Algorithm ... 42

5. System Output .. 43

5.1. Video Output .. 44

6

5.2. Peripheral Output .. 44

5.2.1 Circuit Description .. 45

6. Closing Remarks .. 46

6.1. Final Results ... 46

6.2. Future Work ... 47

6.2.1. FPGA Only Implementation .. 47

6.2.2. Support Vector Machine ... 48

6.2.3. Daytime Functionality ... 48

6.2.4. Interfacing with Other Driving Assistance Technologies .. 49

References .. 50

Appendix A: Matlab Color Extraction GUI... 53

Appendix B: Matlab Implementation ... 56

Appendix C: Color Filtration – Verilog ... 58

Appendix D: Frame Buffer Initialization .. 60

Appendix E: Blob Detection/Histogram Analysis Algorithm ... 61

7

Table of Figures
Figure 1: Comparison of Processing Power - FPGA vs Microprocessor (National Instruments, 2013)....... 12

Figure 2: RGB Color Scheme (Phanomeme) ... 14

Figure 3: Matlab Color Extraction GUI .. 15

Figure 4: Grayscale Color Scheme (Think Silicon) ... 16

Figure 5: Basic Filters .. 17

Figure 6: Bounding Boxes on Original Image .. 18

Figure 7: Example Histograms of Potential Stoplights .. 19

Figure 8: Average Histogram of 30 Stoplights .. 20

Figure 9: Final Algorithm Testing Example.. 21

Figure 10: HSV Color Scheme (Wikipedia) .. 22

Figure 11: HSV Test Results ... 23

Figure 12: Altera DE1-SoC ... 26

Figure 13: Quartus II User Interface .. 27

Figure 14: Qsys User Interface .. 28

Figure 15: Xilinz ZC702 FPGA .. 29

Figure 16: XPS User Interface .. 30

Figure 17: Xilinx SDK User Interface .. 31

Figure 18: Avnet HDMI Daughter Board Connected to Xilinx ZC702 .. 32

Figure 19: HDMI Pass Through Block Diagram ... 32

Figure 20: Proposed Block Diagram .. 33

Figure 21: YCbCr to RGB Conversion ... 34

Figure 22: Example Blob to Detect ... 36

Figure 23: Finite State Machine Transitions ... 37

8

Figure 24: Blob Detection Example Frame.. 39

Figure 25: Processing of Grayscale Values Not Surrounded by A White Region .. 40

Figure 26: Processing of White Region Not Fully Surrounded by Grayscale, Horizontal 41

Figure 27: Processing of White Region Not Fully Surrounded by Grayscale, Vertical 42

Figure 28: RGB to YCbCr Conversion ... 44

Figure 29: Peripheral Schematic ... 46

Figure 30: Final Results Debug Screen Capture .. 47

Figure 31: Matlab Simulation Single Frame Execution Profile .. 47

Figure 32: Daylight Color Filter Testing ... 49

9

Executive Summary

 Automobile use is an integral part of everyday life in modern society. As more and more drivers

have entered the roadways the number of injuries sustained from vehicle accidents has greatly

increased. A staggering amount of these injuries have been due to ignoring stoplights. Over the past

years, many solutions have been suggested, but very few of these are inexpensive, accurate, and fast

enough for real-time processing. This project looks to address these issues through developing a system

that is relatively inexpensive with real-time performance to assist drivers with stoplight detection in an

automobile.

 Accurately detecting stoplights is a challenging task due to many factors. The largest of these

factors is light pollution and false positives. Light pollution can be caused by other street lights or

sunlight causing obscurity of the stoplights in an image. False positives are also a large problem due to

many other red objects in the environment such as car tail lights, street signs, and other red entities.

Due to these problems, a Histogram Analysis approach was developed to verify that an object in

question was indeed a stoplight. This process isolates possible stoplight candidates and takes a

histogram of color values in the region. From this analysis, many false positives can be removed

because each object has its own unique color distribution. Stoplights are fairly standard and were found

to have the same histogram traits, which allowed them to be identified easily. Color filtration and Blob

Detection were used in order to find the possible regions of red lights. This project attempts to use a

System on Chip, or SoC, solution in order to perform these computations in real time.

 Software implementation was first done in Matlab, which has built in support for Color

Filtration, Blob Detection, and Histogram Analysis functions. This simulated code was performed to

prove the viability of the algorithm and to check its accuracy. From there, the code was customized to

meet other system requirements and the Blob Detection and Histogram Analysis were implemented in

10

C. This allowed the software to work faster and be usable on the microprocessor. This algorithm was

tested using video streams recorded by dash board cameras driving around Worcester, MA. The final

project was able to accurately identify red lights at approximately eighteen frames per second.

 Hardware implementation was done using the Xilinx 7000 ZC702 evaluation kit. The algorithm

was split into two major parts; basic filtration and advanced image analysis. The basic filtration was the

most computationally expensive part of the algorithm, due to it looking at every pixel in the image

multiple times; therefore, it was implemented in Verilog with Xilinx ISE Design Tools to be performed by

the field programmable gate array, or FPGA. This system was tested by using a laptop connected to the

board through a HDMI IN port on the board. The laptop streamed the dash cams video to the system,

which then displayed the processed video on a display through a HDMI OUT port. Before the final

output displayed, the project searched for and highlighted the stoplights. There were also user

peripherals that were added that activated when a stoplight was detected. These included visual signals

such as an LED and audio signals from a buzzer. In the future, this project would be adapted to work

with a HDMI camera rather than a laptop and would be a part of an all-encompassing vehicle vision

detection device. This project was meant to be just one of many parts to an advanced driver assistance

system.

11

1. Introduction

1.1. Stoplight Detection

Stoplight detection is a problem that has been examined before for image processing. With the

rise of vehicle assistance systems, detecting stoplights is an obvious choice. Many solutions have been

presented, but very few of them do so in real time. Vehicles move at high-speed in a variety of

environments, so any solution that is presented must operate in real time with high accuracy in a variety

of situations.

There are thousands of accidents at intersections that cause damage or injuries every year. In

the United States alone from 2007-2011, there were an average of 751 deaths and 165,000 injuries due

to drivers running stoplights (U.S. Federal Highway Administration, 2014).

The major problem with creating a stoplight detection device is the speed at which it has to

work. Many factors play into whether an object is a stoplight or not, and the system has to analyze

these and make decisions extremely quickly. The average human reaction time is about 262

milliseconds (Human Benchmark, 2015), which means that if a car is traveling at thirty miles per hour, it

moves about ten feet in the time it takes someone to react. Therefore, a system for driver assistance

would need to work extremely fast in order to have a recognizable effect.

There are also many problems with classifying stoplights. Stoplights come in a variety of shapes

and sizes. There is also no standard area that stoplights must be placed on the road. They can be

directly ahead and above of the driver, to the side of the driver, or almost anywhere else in the driver’s

field of view. Light pollution also causes problems when classifying stoplights, as it saturates the color of

the light which could cause a system to not register it. Another problem is other lights in the area, such

12

as brake lights from cars or street lights on the road. These lights can be confused as stoplights to a

system with poor classification.

1.2. FPGA/SoC Systems

 Real time image processing is an extensive task that needs the right hardware to be

implemented. In recent studies, it has been proven that using a Field Programmable Gate Array (FPGA)

is an efficient method of image processing, as opposed to using a microprocessor (Sparsh Mittal, 2008).

An FPGA is an integrated circuit that is designed to be configured after manufacturing (Altera, 2015).

Since the need for high speed performance has been established, the project cannot be run just on a

processor because they are not fast enough (Sparsh Mittal, 2008). As explained in Mittal’s journal

article, real-time video rates of twenty five frames per second require about 33 million operations per

second. A microprocessor cannot complete this many operations in such a short time, but the FPGA can

because of its ability to do parallel processing. A study completed by National Instruments on the

processing speed of FPGAs and microprocessors determined that an FPGA can deliver a solution many

times the processing power per dollar in some applications (National Instruments, 2013). Therefore, an

FPGA was selected to be used for this system as they have been proven to be useful in image processing

projects.

Figure 1: Comparison of Processing Power - FPGA vs Microprocessor (National Instruments, 2013)

13

 FPGAs are extremely useful for tasks that need to be completed quickly. Applications for FPGAs

are written in the hardware language VHDL or Verilog, which are different from other languages such as

C or Java. Some FPGAs now come with an ARM processor. These systems are called System on Chips

(SoC) and this project was chosen to include one. The benefits of a SoC are that it allows for a more

customizable product because it gives extensive control over hardware, software, and I/O configuration

(Xilinx Inc., 2015). They also allow for an increased system performance and reduced power

consumption.

2. Algorithm

 This section discusses the details of algorithms that were used to create the overall stoplight

detection system. It will explain how each algorithm works, as well as why it was chosen for this

application through example. The final implementation was based on simulations performed in Matlab,

using the video and image processing toolboxes; however, due to different components of the algorithm

being split between the hardware and software some functionality was modified in the final system.

The procedures used consisted of basic image filters, such as color detection, and more advanced image

processing techniques, such as blob detection.

2.1. Basic Image Filters

 Three basic image filters were used in this system to perform the task of preprocessing each

frame for further use. These basic filters performed simple tasks that were context free, meaning

surrounding pixels did not matter, and required only discrete pixel values. The three filters were used

for color extraction, grayscale conversion, and color inversion.

14

2.1.1. Color Extraction

 Color extraction is a commonly used image processing technique that separates sections or

components of an image based on hue. In the RGB color model shown in Figure 2, each pixel is

composed of a 24-bit value. This value is split into three bytes, with each byte representing the value of

red, green, and blue light that additively composes the pixel’s color.

Figure 2: RGB Color Scheme (Phanomeme)

 The color filtering was performed by either passing or rejecting certain values in each of the

three RGB composing bytes. The appropriate passing bands were determined through Matlab

simulations on static images, as shown in Figure 3 (See Appendix A for test code). The GUI developed

for this testing had six user editable fields. These fields allowed the user to change the lower and upper

pass band limits for each of the three RGB components. The Matlab code would check the RGB

components of each pixel, changing them to a value of 0 if they did not fall inside the specified pass

band.

15

Figure 3: Matlab Color Extraction GUI

2.1.2. Grayscale Conversion & Color Inversion

The next basic filter in the system converted the color filtered image into its grayscale

representation. Grayscale is a color encoding scheme which contains only information on intensity. This

color structure is composed exclusively of shades of gray ranging from black, the weakest intensity, to

white, the strongest. The major benefit of grayscale is that each pixel value can be represented by a

single byte, instead of the three byte structure the RGB encoding required. This cuts the amount of

processing that would need to be done later by 66% since a single byte now holds the relevant

information that three bytes did before. This conversion was performed using the Matlab function

rgb2gray, which takes an image that uses the RGB color map and converts it to grayscale.

16

Figure 4: Grayscale Color Scheme (Think Silicon)

 The major downside of grayscale is the loss of hue and the inability to recover the original RGB

components. This is not a downside for this application since the colors of interest were the only

existing RGB components before this conversion, due to the prior color filter.

 After the conversion to grayscale, the final basic filter converts the background black pixels to

white. The purpose of this conversion is for the blob detection that will be described later in this

section. To perform this conversion, each pixel value on the grayscale image is examined. If the pixel is

solid black it is changed to white. This had been added to make the background more visually distinct

during development, and was only used in the final implementation.

17

The final results of the basic filters are shown stage by stage in Figure 5. Each of the basic filters

requires a full pass over each pixel in the entire 1920 by 1080 frame. Additionally, they are all

computationally easy to perform. Each basic filter requires single value comparisons and a single

variable change.

Figure 5: Basic Filters

2.2. Blob Detection

 Once the image was preprocessed, the next step was to determine the regions of interest

through the use of blob detection. A region of interest, or ROI, is an area of an image that has been

identified for a specific purpose. For this application, the ROIs were the areas of an image that could

potentially be stoplights. Blob detection is an image processing technique that is used to identify

regions of an image that possess certain qualities compared to the surroundings. A blob is a region of an

image that has a common property.

18

 Matlab implements blob detection in the “regionprops” function. This function takes an image

and calculates sets of properties for each connected blob, or object, it finds. To implement this in

Matlab, a few additional side steps are required using the “regionprops” function. The image was

converted into a binary image using the grayscale value of 51 as the cutoff value. This meant that each

grayscale pixel that was greater than 51 in value was set to 0, and all others set to 1. The “regionprops”

function was used on the created binary image to find all of the blobs.

 Additionally, for debugging purposes, the function “bwboundaries” was used to highlight the

regions of interest. The bounding boxes were determined from the binary image, however, the

boundaries were drawn on the corresponding location in the original image, see Figure 6.

Figure 6: Bounding Boxes on Original Image

2.3. Image Histograms

 The final stage in the algorithm was deciding if the identified ROIs were stop lights or not. In the

final implementation, a histogram analysis was used. A histogram of an image is a representation of the

distribution of pixel values. The distribution is calculated by setting up a number of bins. A bin stores

19

the number of times a pixel occurs in a set range of values. Having a large number of bins increases

accuracy for analysis at the cost of space in memory to store the necessary values. For the simulation

code, 256 bins were used, one for each pixel value on the entire grayscale spectrum. Next, every pixel in

each of the regions of interested were examined and classified into their corresponding bin. To perform

this task, the “imhist” function was used. This function takes a grayscale image and calculates the

histogram with 256 bins by default. The results of examining a single frame of a video are shown in

Figure 7.

Figure 7: Example Histograms of Potential Stoplights

 The next step in the histogram analysis was to determine what parameter checks were required

to determine if the region was a stoplight or not. It was observed in the original tests that stoplights

exhibited a high concentration of grayscale values in the 50-100 range. Additionally, they tended to

include very few values below 50, as well as low intensity in the range of approximately 100 to 250. To

determine the stoplight characteristic cutoff values for each bin, a histogram with the average of 30

20

stoplights was produced. The small sample size of 30 was chosen instead of a larger set because each

stoplight had to be hand-picked from the data sets to ensure that only true stoplights were being

factored into the histogram. The results of this data collection, shown in Figure 8, indicated that the

original observations on stoplight histograms held true. There were no values fewer than 50 observed, a

high concentration of values around 100, and a low concentration located approximately within 120 and

250.

Figure 8: Average Histogram of 30 Stoplights

From the results of the 30 stoplight histogram, a brute force stoplight identification algorithm

was created. This algorithm would be used on each object that was found by the blob detection. For

the simulation code only 4 bins were used. The number of bins was chosen since there were four

distinct areas in the histograms. Each bin was given a requirement based on previous observations of

stoplight histogram characteristics. The bins are summarized in Table 1-1.

21

Table 1-1: Matlab Simulation Histogram Bins

Bin Grayscale Range Stoplight Requirement

Hist0 0-50 <5

Hist1 50-110 >100

Hist2 110-240 <50

Hist3 240-255 >35, < 75

 The resulting algorithm was tested over three videos of night time driving. An example of a

single frame from one of these test videos is shown in Figure 9. In this image, the ROIs are drawn on the

original frame to the left. It was observed that in this frame there were many blobs identified as

possible stoplights. These blobs consisted of two stoplights and some other stray red lights including the

taillights of a distant car and crosswalk signals. On the right hand side of this figure are the blobs that

had been determined to be stoplights based on the histogram analysis. The analysis not only identified

that there were two stoplights, but also filtered out the non-stoplight blobs, thus removing false

positives.

Figure 9: Final Algorithm Testing Example

22

2.4. Additional Simulation Tests

 There were numerous temporary simulation versions created to test the effectiveness of other

image processing methods. The goal of this testing was to find a way to increase the efficiency or

accuracy of the overall algorithm. This section will discuss many of the alternative approaches tested for

each stage of the final implementation.

2.4.1. Alternate Color Schemes

Since the algorithm required a conversion to the RGB color scheme, tests were performed on

the hue-saturation-value, or HSV, format to see if results were more accurate. The HSV color scheme is

a cylindrical-coordinates representation of the RGB format, as shown in Figure 10. The hue holds color

information, and is represented by an angle around the z-axis. Saturation holds color intensity

information, and is represented as the radial distance from the z-axis, or a radius within the HSV

cylinder. Lastly, value holds brightness information, and is represented as the z-value or height within

the cylinder.

Figure 10: HSV Color Scheme (Wikipedia)

23

The idea behind the algorithm was to identify blobs from the saturation value, since it was

observed that red lights appeared as high intensity circles surrounded by a low intensity halo. It was

found that the identified blobs were no different than the results of the RGB testing, as shown in Figure

11. Due to this, the RGB algorithms were used since that format was readily available in the FPGA

implementation that had already been designed.

Figure 11: HSV Test Results

2.4.2. Blob Detection Accuracy

Before the blob detection was performed, one version of the code filled the “holes” inside the

binary image. A “hole” is a white region in a binary image completely surrounded by black. This test

was accomplished using the Matlab function “imfill”. This was tested to see if the blob detection

accuracy would increase with the holes of the binary image being filled. Another version attempted to

increase this accuracy by filtering regions of circular objects in the binary image. This shape testing was

performed with the Matlab function “strel” and “imclose”. These functions would fill in the circular

objects in the binary image to ensure that the blob analysis would find each stoplight. After testing

24

with both of these methods, it was determined that they did not improve the accuracy in detecting the

regions that were stoplights.

These additional stages most likely did not help the final algorithm because the color filter

already removed a significant amount of the unwanted sections of the image. The remaining image

consisted primarily of red lights and some noise. Since some unwanted red lights such as taillights are

circular on some vehicle models, the additional shape checking provided no additional benefit. Filling in

the holes did not increase accuracy since stoplights always retained their shape after the color filter in

the video feeds tested. These additional stages were dropped from the final implementation to reduce

the amount of computation.

2.4.3. Stoplight Identification

 The final tests performed were to attempt to increase the accuracy of the stoplight verification.

These tests consisted of adding additional requirements for a blob to be flagged as a stoplight. The first

requirement tested was eccentricity. Eccentricity can be used as a measure of how circular an object is.

Since stoplights should be circular, verifying that the eccentricity of a blob was between zero and one,

meaning that the object was between a circle and eclipse in shape, was believed to increase the

accuracy in stoplight identification. It was found that there was no increased accuracy, most likely due

to the same reasons as the shape testing done previously.

 The other supplemental assessments to verify that an object was a stoplight attempted to

increase the distance in which a stoplight could be identified. Since the histogram approach was based

on a discrete number of pixel values, stoplights that were far away, and thus being few pixels in size,

would not be seen until the driver moved closer. This test attempted to fix this by having the histogram

requirements normalized by the area of the blob. Due to the testing being done at 640 by 480 pixels at

the time, this failed to increase accuracy since the stoplights were too small.

25

After testing with these methods, it was determined that the final results of the system was not

affected, thus both additional stages were dropped from the final implementation to reduce the amount

of computation.

3. Hardware Design

 In this project, a system was used that integrated both hardware and software solutions via a

SoC system. The hardware design was accomplished on a FPGA which allowed for real-time processing.

The approach used various modules to receive an incoming 1080p video and convert it to a format that

was suitable for the project. Multiple filters are then applied to the image in order to attempt to isolate

potential stoplights. Specifically, a red color filter, grayscale filter, and inversion filter were used to set

the image up for the next steps of the algorithm, most notably blob detection. The hardware

implementation was performed on a Xilinx ZC702 Evaluation Kit.

3.1. FPGA Selection

3.1.1 Altera DE1-SoC Development Kit

 The first FPGA that was considered was the Altera DE1-SoC Development Kit. This kit is built

around the Altera SoC FPGA, which combines a Cortex-A9 processor with programmable logic to

increase design flexibility (Altera, 2013). It also includes Altera’s design tools such as Quartus II Design

Software and the Qsys System Design Tool. The DE1-SoC also boasts a variety of features including 1GB

DDR3 SDRAM, 64MB SDRAM and an 800MHz processor. The combination of the Altera Cyclone V FPGA

and Cortex-A9 processor make this device a suitable candidate for a real-time embedded image

processing project.

26

Figure 12: Altera DE1-SoC

 The Quartus II Design Software that is included in the Altera DE1-SoC Development Kit is a FPGA

integration tool. This software enables analysis and synthesis of HDL designs, which allows developers

to compile their projects, perform timing analysis, and simulate a design. It also enables the developer

to configure the target device with the program and load their project to the board (Altera, 2014). In

Figure 13, the Quartus II software can be seen. The user interface includes the text window where files

can be viewed, the command window where errors and messages can be seen, a project navigator that

shows all the files in the project, and the compilation pane which allows compilation of the project and

shows progress.

27

Figure 13: Quartus II User Interface

 The Altera DE1-SoC Development Kit also comes with Qsys System Design Tools. Qsys is a

program that automatically generates logic to connect intellectual property (IP) functions and

subsystems. This makes the FPGA design process much easier and faster than. In Figure 14, the Qsys

user interface can be seen. Qsys allows a developer to select IP cores that have been generated from

the IP Catalog window. Once an IP core has been selected, it has been added to the system and will

appear in the System Contents window. This window shows all included IP cores and their

corresponding connections. From there, a developer can connect them how they see fit to customize

the project and then generate FPGA logic automatically based upon the system design.

28

Figure 14: Qsys User Interface

 While all of these tools point towards an appropriate solution to a real-time embedded platform

for stoplight detection, this was not actually the case. While Quartus II and the DE1-SoC were suitable

for the project, it was discovered that Qsys was not. There is very little documentation on Qsys available

to the public and what is available is not very detailed. Due to this lack of readily accessible information,

using Qsys in order to create a project that would accomplish the goal was an extremely difficult task.

Therefore, a new board and development kit was sought out in order to streamline the development

process of the project.

3.1.2. Xilinx ZC702 Evaluation Kit

 The Xilinx ZC702 Evaluation Kit provides developers with a complete platform including

hardware, development tools, pre-verified reference designs, and IP. It also includes the Xilinx ISE

Design Suite, which is ideal for developing embedded systems on a Xilinx FPGA. The Zynq 702 FPGA also

boasts an ARM dual-core Cortex-A9 processor. These components are complimented by a variety of

features including a maximum frequency of 667 MHz, 85000 logic cells, 53200 LUTs, 560KB of block ram,

29

1 GB DDR3 DRAM, a variety of user GPIO, and compatibility with a variety of peripherals (Xilinx Inc.,

2014). By combining the power of an ARM processor with FPGA programmability makes this device

ideal for a real-time stoplight detection application.

Figure 15: Xilinz ZC702 FPGA

 The Zynq 702 FPGA can be programmed using tools from the Xilinx ISE Design Suite. The first

tool of the design suite is the Xilinx Platform Studio (XPS). XPS allows developers to build, connect and

configure embedded processor-based systems through the use of graphical design views and

sophisticated wizards (Xilinx, Inc., 2015). Much like Altera’s Qsys system, XPS makes the FPGA design

process much simpler and faster. However, XPS has much more documentation for image processing

projects which makes it more of an ideal candidate for this project. The user interface for XPS can be

30

seen below. It is extremely similar to Qsys in that it has an IP catalog, all of the current IP cores in the

system and their connections to other IP cores.

Figure 16: XPS User Interface

 Another tool that comes with the Xilinx ISE Design Suite is the Xilinx Software Development Kit

(SDK). The SDK functions in a similar manner to Eclipse in both functionality and appearance. The user

interface can be seen in Figure 17. In the SDK, the developer can write code in C or C++ to the processor

in order to accomplish complicated tasks. The SDK generates header files for all of the port connections

in the IP cores and all mapped pins on the board. This allows the SoC to interact directly with the FPGA.

Due to the easy to use design suite that accompanies the Xilinx ZC702 Evaluation Kit as well as the

physical capabilities of the board, this platform was chosen to accomplish a real-time embedded

stoplight detection system.

31

Figure 17: Xilinx SDK User Interface

3.3. FPGA Block Design

 Now that the board was selected to implement the project on, a general block diagram was

developed. The first steps in deciding on the hardware design came from a tutorial designed by Avnet

Electronics to create an HDMI pass through (Avnet Electronics, 2013). A pass through is a simple

application in which an HDMI image is input and then output without any changes to a monitor or other

display device. In order to accomplish this, the Avnet HDMI Input/Output FMC Module was used. This

module provides high-definition video interfaces to baseboards and allows HDMI video sources to

provide video content and HDMI output to display any FPGA driven video content (Avent Electronics,

32

2015). The Avnet HDMI board was able to connect directly to the Xilinx ZC702 through one of its GPIO

banks.

Figure 18: Avnet HDMI Daughter Board Connected to Xilinx ZC702

 The tutorial provided a block diagram for the pass through which was successfully implemented

on the ZC702 using a laptop as the input and a monitor as the output. That block diagram can be seen in

the figure below. This system was implemented using the Xilinx Design Suite, specifically XPS. Two IP

cores were used in this design; the HDMI input and HDMI output blocks. An AXI I2C module was also

implemented (not shown) which allowed the FMC-IMAGEON module to be manipulated. The input and

output blocks were interfaced to this module. This test was the first step taken in the image processing

project as it showed how to take in video content and view the content on a different monitor. It also

gave the basis for how to manipulate the video content even though it was not done in this tutorial.

Figure 19: HDMI Pass Through Block Diagram

33

 After completing the HDMI pass through tutorial, the final system block design was designed. It

was built using the pass through tutorial as a base, but with more IP cores added to the system. The

total design can be seen in the figure below with the added modules inside of the red box.

Figure 20: Proposed Block Diagram

 The system begins similar to the pass through tutorial with the HDMI in block and 2AXI4S

module. This takes in the video content and configures it such that the ZC702 can integrate and

manipulate it. The next block that was added to the system was the YCbCr to RGB module. There are

two standard image formats that are commonly used; YCbCr and RGB. YCbCr describes the luma, or

light intensity, aspect of the image and the red-difference and blue-difference of the pixels. HDMI uses

YCbCr by default for images which means that the input video content is in this format. RGB format

breaks the pixels of the image into three channels representing the red content, green content, and blue

content. RGB is a much easier format to use for color extraction, which is one of the steps used in the

algorithm, and therefore a conversion had to be made. The conversion from YCbCr to RGB is fairly

simple. It consists of matrix mathematics on the three channels of the YCbCr, which is defined in Figure

21.

34

Figure 21: YCbCr to RGB Conversion

3.4. Color Filtration

At this point, the video content has been converted to RGB format and it is ready to be

manipulated in order to find stoplights. The next module in the block diagram is the color filtration IP

core. This module is used to do red color extraction, gray scale conversion, and inversion. The first step

is color extraction. The goal of the project is to see red stoplights and therefore the only pixels that

matter are those that are red. The video content is passed into the module and then each pixel is

examined to see if its RGB values are within a specific range of values. Based upon the original Matlab

testing, red lights were considered to be any pixels that had an R value greater than 150, a G value less

than 110, and a B value less than 110. If a pixel meets these specifications, it is left as it was. Otherwise

the pixel is set to black, which is a value of zero for all R, G, and B values.

 The next step of the color filtration module is the grayscale conversion. This takes in the video

image that is all red and black pixels and converts it to a grayscale image. This is done in preparation for

the histogram analysis that occurs later in the algorithm. While in RGB format, each pixel has three

channels that are each 8 bits, or 24 bits in total. However, when in grayscale format each pixel only has

one channel that is 8 bits long. If the original RGB image was used later in the algorithm for histogram

analysis, it would take three times as long to complete compared to the grayscale version since there

are three channels to look at instead of just one. In order to accomplish the grayscale conversion, the

following equation is used:

𝐺𝑟𝑎𝑦 = (𝑅𝑒𝑑 ≫ 2) + (𝑅𝑒𝑑 ≫ 5) + (𝐺𝑟𝑒𝑒𝑛 ≫ 1) + (𝐺𝑟𝑒𝑒𝑛 ≫ 4) + (𝐵𝑙𝑢𝑒 ≫ 4) + (𝐵𝑙𝑢𝑒 ≫ 5)

35

In the above equation, Red corresponds to the red channel, Green corresponds to the green

channel, and Blue corresponds to the blue channel. The function was performed on every pixel in the

frame in order to achieve a grayscale image that will be suitable for histogram analysis.

 The last step in the color filtration module was to invert the image. During the blob detection

step of the algorithm, it is important for there to be a sharp contrast between what could potentially be

blobs and what is not. This is to make sure that the algorithm picks up on all of the potential stoplights.

Therefore, it was decided that making the background pixels white instead of black would be better for

contrast. In order to accomplish this conversion, each pixel in the image was looked at to determine if it

was black or not. If the pixel was black, it was changed to white. Otherwise, it was left as the grayscale

value that it was at.

3.5. Handoff to Processor

 The video content is now fully pre-processed on the FPGA and is ready to be passed to the

microprocessor for more complicated algorithms such as blob detection and histogram analysis. For this

task, the next IP core in the design is the VDMA module. This block acts as a video buffer and sends the

video content to external memory. This is important because it allows the input video and output video

to run at different clock cycles and allows the microprocessor to access the video content after all of the

color filtration has been done (Avnet Electronics, 2013).

4. Software Design

This section describes the software developed to run on the SoC. The C code used in the final

design was developed using the Matlab algorithms as a basis. The software components of the system

consisted of blob detection and the histogram analysis.

36

4.1. Blob Detection Algorithm

 The blob detection algorithm used in the Matlab simulations could not be directly ported over

to the SoC, so an implementation in C had to be designed. There are numerous ways to perform blob

detection, however many of these require passing through the whole image multiple times. Since the

SoC computes significantly slower than the FPGA it was already the system bottleneck. Due to this, the

algorithm used needed to be as computationally simple as possible.

 The code used in the final design was based on searching for areas of white surrounded by solid

grayscale areas, shown in Figure 22 by examining transitions between the white and nonwhite objects.

Each frame was processed pixel by pixel, starting in the top left corner moving to the right edge before

going to the next consecutive row. Three flags were used in the implementation. One was used to

make the first entry into a grey region, entry_flag, a second was used to mark the second entry into a

grey region, reentry_flag, and lastly a flag to mark that the first entered gray region has been exited,

exit_flag.

Figure 22: Example Blob to Detect

37

The algorithm was structured as a finite state machine, or FSM, with four states. The states

were named based upon which transition they would represent: white_to_white, white_to_grey,

grey_to_grey, and grey_to_white. A broad overview of the FSM and its transitions can be seen in Figure

22.

Figure 23: Finite State Machine Transitions

The default state was white_to_white. When a nonwhite pixel was found the FSM would

transition to the white_to_grey state. Additionally, if the entry_flag was set, meaning that the current

pixel was possibly in a white region surrounded by a grayscale region, the distance between the last gray

to white transition and the current pixel were compared. If the distance between the last transition and

the current point was too large, the entry_flag was unset. The purpose of this was to reset the FSM

when it was believed that the current white area was not surrounded by gray.

In the grey_to_grey state each pixel is continued to be read until a white pixel is encountered.

When this happens the FSM transitions into the grey_to_white state.

In the grey_to_white state the FSM checks if the entry_flag was set. If the entry_flag is set and

the reentry_flag is not set the exit_flag is set, signifying that the next pixel is possibly surrounded by a

38

region of grayscale. The FSM transitions when the next pixel is read to the grey_to_white or

grey_to_grey state, based on the matching pixel value.

The final state in the FSM was the white_to_grey state. The first time this state is entered the

entry_flag is set to mark that entry into a blob has occurred. The next time this state is entered, if the

entry_flag is still set, then it is reset and the reentry_flag is set. The FSM transitions to the

grey_to_white or grey_to_grey state if the next pixel read is white or nonwhite respectively. If this state

is entered and the reentry_flag is set the system first assumes that a blob was found. To verify this, the

distance between the current white to grey, and previous grey to white transition is calculated. If this

value is within an expected value, the horizontal center point is calculated. From this horizontal center

point, the algorithm would check above and below to determine if the region was surrounded on all four

sides by grayscale values. This was performed by checking the pixels in the frame buffer in the same

column, but adjacent rows. If there were upper and lower boundaries within an accepted range the

center point was marked by changing the pixel color.

4.1.1. Blob Detection Example

 This section walks through the process of detecting a blob in the frame shown in Figure 24.

39

Figure 24: Blob Detection Example Frame

The system would step through pixel by pixel, remaining in the white_to_white state until it hit

the first grayscale values, which in this frame would be the top few pixels of the first stoplight. During

this transition, the entry_flag would be set. The system would stay in the grey_to_grey state for a few

cycles as illustrated in Figure 25. Upon leaving the gray region, the exit_flag would be set as well as a

value, leftside_x, which is used to remember when the region was exited. In the white_to_white state,

after 100 white pixels, the entry_flag, exit_flag, and leftside_x are all reset since this is too far away from

the grayscale region to be a stoplight. This same procedure would repeat for the next few rows of

processing the frame.

40

Figure 25: Processing of Grayscale Values Not Surrounded by A White Region

 The first time a different path in the algorithm is taken, occurs at the point illustrated in

Figure26. In this situation, a white region is found which is bounded by grayscale values to both the left

and right hand side. The next step in the algorithm was to determine the center point. This was

calculated by simply subtracting the rightside_x by the leftside_x value and dividing by two. This would

give the distance, in pixels, to the centerpoint from the current point.

41

Figure 26: Processing of White Region Not Fully Surrounded by Grayscale, Horizontal

 From this horizontal center point, the algorithm would check for vertical bounding by grayscale,

as shown in Figure27. In this case, a lower bounding are is found, and a variable, down_counter, is set to

remember this location. Additionally in this case, an upper bound is not found. After 100 pixels of

searching upwards, it is determined that this region is not bounded by grayscale values, and therefore is

not a stoplight.

42

Figure 27: Processing of White Region Not Fully Surrounded by Grayscale, Vertical

 The final possibility in processing a blob is detecting a stoplight. Similar to the previous

example, the system searches for a region where it can find a horizontally bounded region of white. In

the event that a vertical center point is found, the vertical center point would be marked by changing

the cbcr value, to a non-grayscale value. The cbcr value can be changed without affecting the rest of the

image since only the luma value is used for the transition detection. This is because the grayscale

representation is only shown in luma values, with the cbcr value constant since the color does not

change. As the system continues processing, if a horizontal center point is found later on, where the

cbcr value was changed to a non-grayscale value, it is declared to be the centroid of a blob, and the

histogram algorithm is performed from this centroid.

4.2. Histogram Decision Algorithm

Once a center point was found, the region was considered to be a blob, and thus possibly a

stoplight. The final part of the algorithm was the histogram analysis to determine whether or not the

detected blobs were stoplights. First, a box was created with a common centroid to the blob that had

43

been found. Next, each pixel in the box was examined and classified into one of the bins. When all

pixels had been surveyed each bin was compared to a set of requirements that had been experimentally

found to characterize stoplights. By increasing the bins, the accuracy was significantly increased from

the initial Matlab simulations. The final requirements are provided in Table 4-1.

Table 4-1: Red Light Histogram Identification

Region Grayscale Range Stoplight Requirement

Hist0 0-25 <5

Hist1 26-50 <5

Hist2 51-75 <35

Hist3 76-100 <200

Hist4 101-125 >25

Hist5 126-150 >20

Hist6 151-175 <30

Hist7 176-200 <5

Hist8 201-225 <5

Hist9 226-250 <5

5. System Output

 After the processor is completed doing blob detection and histogram analysis, the system knows

whether or not there is a stoplight in view, but the user does not. Therefore, the user must be alerted in

some way as to whether there is a stoplight or not in front of them. Two different methods of output

44

were suggested; video output through the HDMI output module and peripheral output that includes an

audio buzzer and warning lights.

5.1. Video Output

 The first method of user output that was explored was using video output. This would utilize

the HDMI out module from the HDMI pass through tutorial to show where stoplights were on a monitor.

This was done using a few IP cores, which can be seen in the block diagram in Figure 20. The first IP core

was the RGB to YCbCr module. Much like the YCbCr to RGB module that was used on the incoming

video content, this module is used to convert the format of the image. At this point, after the image has

been processed by the ARM processor, its format is in RGB. However, in order to output the image

through an HDMI output module, the format needs to be in YCbCr. Luckily, this conversion is rather

simple and involves matrix multiplication much akin to the conversion from RGB to YCbCr. The formula

can be seen in Figure 28.

Figure 28: RGB to YCbCr Conversion

 At this point, the content gets passed to the AXI4S2 and HDMI output module. These are the

same as the modules used in the pass through tutorial. An HDMI monitor can then be connected to the

HDMI out port and the filtered image with stoplights highlighted can be seen, as illustrated in Figure 30.

5.2. Peripheral Output

 Along with video output, it was also decided that peripheral output would be useful. The video

output is a great asset when debugging the system; however in actual application it would be less than

ideal. Every car does not come equipped with an HDMI monitor to plug into and even if they do, a

45

driver should not have to stare at a monitor to know where a stoplight is. The video output also shows

the exact position of stoplights, but a driver only worries about whether they are there, not their exact

location in front of them. As such, two types of peripheral output were suggested; a visual indication

and an audio indication.

 A visual indication is useful in a system such as this because it acts as a binary on or off; the

system either sees a stoplight or it does not. This can be accomplished with a simple LED and one of the

GPIO pins on the Xilinx ZC702 board. When the system sees a stoplight, it sets the pin to high and the

LED turns on. Otherwise, the pin is set to low and the LED turns off. The LED could be set in the

dashboard of a vehicle so that it is in the driver’s field of view at all times and be a useful indicator.

However, if the driver is drowsy or not paying attention, a visual indicator may not be enough to alert

them to the presence of a stoplight. In this case, a different kind of peripheral device could be used; an

audio device.

 An audio device, such as a buzzer, would work much in the same way as the LED. It would be

attached to one of the Xilinx ZC702 board’s GPIO pins and set to high when the system sees a stoplight.

However, this method would be much more useful to a driver who is not paying attention. A loud noise

is much more likely to get someone’s attention than a light turning on. Therefore, an audio buzzer is the

preferred peripheral device to use with this system in order to alert a driver to an incoming stoplight.

5.2.1 Circuit Description

 In order to test the peripheral devices mentioned above, a test circuit was developed which can

be seen in Figure 29. The GPIO pin from the board is attached to VSIG and V+ is a 5V supply from the

board. As can be seen, the signal voltage attaches to an analog switch that, when high, sends 5V to the

system. This voltage is used to power the visual aid (LED) and also a 555 timer. This 555 timer then

supplies an output voltage, VOUT. This output voltage is attached to an audio peripheral, the buzzer.

46

There is a potentiometer at R6 as well which functions as a volume control. This allows the user to turn

the volume up or down depending on the situation. The volume control is also useful for debugging

purposes.

Figure 29: Peripheral Schematic

6. Closing Remarks

6.1. Final Results

The final system was able to successfully identify stoplights in 13 minutes and 12 seconds of test

video collected from driving the streets of Worcester, Massachusetts. All test video was recorded with a

dashboard mounted Samsung Galaxy S2 camera. Additionally, test video was only collected in a single

vehicle, a 2003 Honda Accord. The results for different recording sources and vehicles are unknown.

47

Figure 30: Final Results Debug Screen Capture

6.2. Future Work

6.2.1. FPGA Only Implementation

One desired change to the system would be to port over the C code to VHDL or Verilog so that

the entire system could run on the FPGA. The purpose of this would be to greatly increase the speed in

which the system processes the frames. In the Matlab simulations, it was determined that blob

detection took the longest time, roughly 67% of the total execution time per frame, as illustrated in

Figure 31. Since blob detection was performed on the SoC in the final implementation, it was clear that

this was the system’s processing bottleneck. While the implementation was still able to alert the driver

of stoplights faster than the average human reaction time, a decrease in blob detection execution time,

would allow an increased amount of time for a more accurate and computationally intensive stoplight

identification algorithm.

Figure 31: Matlab Simulation Single Frame Execution Profile

48

6.2.2. Support Vector Machine

 Another area to be researched would be to use a support vector machine (SVM) for the

classification of stoplights. A SVM is based upon the concept of decision planes in order to separate

objects that have different class memberships. An SVM is “trained” by providing it with many examples

of different objects that fall into different categories. After this, when a SVM is provided with a new

case of an object, it makes a calculated guess based upon its training as to what to classify the new

object as (StatSoft Inc., 2015). In this case, the object classification would fall into two categories; a

stoplight and a non-stoplight. The SVM could be trained by providing it examples of images that are

stoplights and could then be implemented on the device. This would provide much more accurate

results than the histogram analysis that was done in this project.

6.2.3. Daytime Functionality

Another area to investigate for future work is daytime stoplight detection. While nighttime

detection was deemed more important due to drowsy or distracted drivers, there are still a large

amount of daytime accidents caused by drivers missing stoplights. It was found that the algorithm used

was not acceptable in daylight conditions. One approach to solve this problem would be to add a

daylight sensor to the system, and implement a different algorithm for day and nighttime. Another

approach would be to develop a completely new algorithm that would successfully identify stoplights in

both light and dark conditions. Since many automobiles already have daylight sensing technology,

currently used for automatically turning on headlights when it is dark, the former approach would most

likely be the best solution.

49

Figure 32: Daylight Color Filter Testing

6.2.4. Interfacing with Other Driving Assistance Technologies

 The final desired future work for this project is implementation with other driver assistance

technologies. One technology that could be used to increase the accuracy of the stoplight detection is

lane detection. The current implementation is unable to differentiate between stoplights in different

lanes. Due to this, for multilane roads, false positives are possible since different lanes may have

different signals active at any given time. By combining lane detection and stoplight detection, it could

be possible to limit detection only to the appropriate lane stoplight.

 Another technology that would work well with stoplight detection is range finding. Currently,

24GHz and 77GHz radars are used in driver assistance systems. The 24GHz systems are used for close

range detection including parking aides and blind spot detection. The 77GHz systems are used for long

50

range detection purposes including adaptive cruise control and assisted braking. By combining this

technology with stoplight detection, the vehicle could have the capability of braking for a stoplight if the

driver fails to do so within safe stopping distances based on the speed they were traveling.

 An additional automotive technology to integrate with would be automatic braking systems.

Currently, these systems are used for collision avoidance and adaptive cruise control. Current

technology has the ability to scan for large incoming objects with radar, laser, or visual technologies, and

begin to brake without input from the driver (About.com, 2015). The addition of a stoplight detection

system would allow for preventing automobiles from running through stoplights instead of solely large

objects it can track.

References

About.com. (2015). What Is An Automatic Braking System? Retrieved March 24, 2015, from About

Autos: http://cartech.about.com/od/Safety/a/What-Is-An-Automatic-Braking-System.htm

Altera. (2013). DE1-SoC User Manual. Retrieved November 12, 2014, from Altera Web Site:

ftp://ftp.altera.com/up/pub/Altera_Material/13.1/Boards/DE1-SoC/DE1_SoC_User_Manual.pdf

Altera. (2014, December). Quartus II Design Software. Retrieved February 12, 2015, from Altera

Literature: http://www.altera.com/literature/br/br-quartus2-software.pdf

Altera. (2015). FPGAs. Retrieved February 8, 2015, from FPGAs:

http://www.altera.com/products/fpga.html

Avent Electronics. (2015). HDMI Input/Output FMC Module. Retrieved December 15, 2014, from Avnet

Electronics Marketing: http://www.em.avnet.com/en-us/design/drc/Pages/HDMI-Input-Output-

FMC-module.aspx

51

Avnet Electronics. (2013, January 3). FMC-Imageon Building a Video Design from Scratch Tutorial.

Retrieved December 12, 2014, from Xilinx Application Notes, Reference Designs, Video IP and

Development Kits: https://source.ece.iastate.edu/scm/viewvc.php/*checkout*/MP-

2/docs/Camera/FMC-IMAGEON-Tutorial.pdf?root=cpre488

Human Benchmark. (2015). Human Benchmark - Reaction Time Statistics. Retrieved February 5, 2015,

from Human Benchmark Reaction Time:

http://www.humanbenchmark.com/tests/reactiontime/statistics

Jri Lee, Y.-A. L.-H.-J. (2010). A Fully-Integrated 770GHz FMCW Radar Transciever in 65-nm CMOS

Technology. IEEE Journal of Solid-State Circuits, Vol. 45, No. 12, 11.

Mathworks, Inc. (2014). Image Processing Toolbox User's Guide. Retrieved February 18, 2015, from

Mathworks Help Website: http://www.mathworks.com/help/pdf_doc/images/images_tb.pdf

National Instruments. (2013, May 29). Smart Grid Ready Instrumentation. Retrieved February 22, 2015,

from Smart Grid Ready Instrumentation - National Instruments: http://www.ni.com/white-

paper/14529/en/

National Instruments. (2013, 5 29). Smart Grid Ready Instrumentation - National Instruments. Retrieved

2 9, 2015, from National Instruments Website: http://www.ni.com/white-paper/14529/en/

Phanomeme. (n.d.). Retrieved from http://phaenomeme.sueddeutsche.de/image/110823081234

Sparsh Mittal, S. G. (2008). FPGA: An Efficient and Promising Platform for Real-Time Image Processing

Applications. Proceedings ofthe National Conference on Research and Development in Hardware

& Systems, 4.

52

StatSoft Inc. (2015). Support Vector Machines (SVM) Introductory Overview. Retrieved February 17,

2015, from Support Vector Machines (SVM): http://www.statsoft.com/Textbook/Support-

Vector-Machines#overview

Think Silicon. (n.d.). Retrieved from http://www.think-silicon.com/images/grad640_dxt.png

U.S. Federal Highway Administration. (2014, September 4). Red-Light Running. Retrieved January 30,

2015, from U.S. Department of Transportation Safety:

http://safety.fhwa.dot.gov/intersection/redlight/

Wikipedia. (n.d.). HSV Cylinder. Retrieved from Wikipedia:

http://en.wikipedia.org/wiki/HSL_and_HSV#/media/File:HSV_color_solid_cylinder_alpha_lowga

mma.png

Xilinx Inc. (2014, June 4). ZC702 Evaluation Board for the Zynq-7000 XC7Z020 All Programmable SoC User

Guide. Retrieved December 3, 2014, from Xilinx ZC702 User Guide:

http://www.xilinx.com/support/documentation/boards_and_kits/zc702_zvik/ug850-zc702-eval-

bd.pdf

Xilinx Inc. (2015). SoC. Retrieved 2 9, 2015, from Xilinx Inc All Programmable SoC:

http://www.xilinx.com/products/silicon-devices/soc.html

Xilinx, Inc. (2015). Xilinx Platform Studio (XPS). Retrieved February 12, 2015, from Xilinx Platform Studio:

http://www.xilinx.com/tools/xps.htm

53

Appendix A: Matlab Color Extraction GUI

% Color filter GUI
function colorseparationgui(image)
f = figure('Units', 'normalized', 'Position', [1/3, 1/3, 1/3, 1/3]); %

create GUI figure
set(f, 'Name', 'GUI for Color Filtering'); % set GUI name
set(f, 'NumberTitle', 'off');

% set default values
rlimit = 230;
blimit = 0;
glimit = 0;
rhigh = 255;
ghigh = 240;
bhigh = 240;

colorFilter(image,rlimit,blimit,glimit,rhigh,bhigh,ghigh); % run color

filter

% add static text fields
BF = uicontrol('Style', 'text', 'Units', 'normalized',...
 'Position', [0.7, 0.4, 0.1, 0.1], 'String', 'Upper Limit',...
 'BackgroundColor', [.8 .8 .8]);
BF = uicontrol('Style', 'text', 'Units', 'normalized',...
 'Position', [0.8, 0.4, 0.1, 0.1], 'String', 'Lower Limit',...
 'BackgroundColor', [.8 .8 .8]);
BF = uicontrol('Style', 'text', 'Units', 'normalized',...
 'Position', [0.5, 0.1, 0.1, 0.1], 'String', 'Red',...
 'BackgroundColor', [.8 .8 .8]);
BF2 = uicontrol('Style', 'text', 'Units', 'normalized',...
 'Position', [0.5, 0.2, 0.1, 0.1], 'String', 'Blue',...
 'BackgroundColor', [.8 .8 .8]);
BF3 = uicontrol('Style', 'text', 'Units', 'normalized',...
 'Position', [0.5, 0.3, 0.1, 0.1], 'String', 'Green',...
 'BackgroundColor', [.8 .8 .8]);

% add editable fields
BF = uicontrol('Style', 'edit', 'Units', 'normalized',...
 'Position', [0.8, 0.1, 0.1, 0.1], 'String', '240', ...
 'BackgroundColor', [.9 .9 .9],...
 'Callback', {@BF_Callback_low});
BF = uicontrol('Style', 'edit', 'Units', 'normalized',...
 'Position', [0.7, 0.1, 0.1, 0.1], 'String', '255', ...
 'BackgroundColor', [.9 .9 .9],...
 'Callback', {@BF_Callback_high});
BF2 = uicontrol('Style', 'edit', 'Units', 'normalized',...
 'Position', [0.8, 0.2, 0.1, 0.1], 'String', '200', ...
 'BackgroundColor', [.9 .9 .9],...
 'Callback', {@BF2_Callback_low});
BF2 = uicontrol('Style', 'edit', 'Units', 'normalized',...
 'Position', [0.7, 0.2, 0.1, 0.1], 'String', '255', ...
 'BackgroundColor', [.9 .9 .9],...
 'Callback', {@BF2_Callback_high});
BF3 = uicontrol('Style', 'edit', 'Units', 'normalized',...

54

 'Position', [0.8, 0.3, 0.1, 0.1], 'String', '200', ...
 'BackgroundColor', [.9 .9 .9],...
 'Callback', {@BF3_Callback_low});
BF3 = uicontrol('Style', 'edit', 'Units', 'normalized',...
 'Position', [0.7, 0.3, 0.1, 0.1], 'String', '255', ...
 'BackgroundColor', [.9 .9 .9],...
 'Callback', {@BF3_Callback_high});

% callback function that changes the plot
 function BF_Callback_low(hObject, handles)
 user_entry = str2double(get(hObject, 'string'));
 if isnan(user_entry)
 errordlg('You must enter a numeric value','Bad Input','modal')
 uicontrol(hObject); return;
 end
 % Proceed with callback...
 rlimit = user_entry;
 colorFilter(image,rlimit,blimit,glimit,rhigh,bhigh,ghigh);
 end

 function BF_Callback_high(hObject, handles)
 user_entry = str2double(get(hObject, 'string'));
 if isnan(user_entry)
 errordlg('You must enter a numeric value','Bad Input','modal')
 uicontrol(hObject); return;
 end
 % Proceed with callback...
 rhigh = user_entry;
 colorFilter(image,rlimit,blimit,glimit,rhigh,bhigh,ghigh);
 end

 function BF2_Callback_low(hObject, handles)
 user_entry = str2double(get(hObject, 'string'));
 if isnan(user_entry)
 errordlg('You must enter a numeric value','Bad Input','modal')
 uicontrol(hObject); return;
 end
 % Proceed with callback...
 blimit = user_entry;
 colorFilter(image,rlimit,blimit,glimit,rhigh,bhigh,ghigh);
 end

 function BF2_Callback_high(hObject, handles)
 user_entry = str2double(get(hObject, 'string'));
 if isnan(user_entry)
 errordlg('You must enter a numeric value','Bad Input','modal')
 uicontrol(hObject); return;
 end
 % Proceed with callback...
 bhigh = user_entry;
 colorFilter(image,rlimit,blimit,glimit,rhigh,bhigh,ghigh);
 end

 function BF3_Callback_low(hObject, handles)
 user_entry = str2double(get(hObject, 'string'));
 if isnan(user_entry)

55

 errordlg('You must enter a numeric value','Bad Input','modal')
 uicontrol(hObject); return;
 end
 % Proceed with callback...
 glimit = user_entry;
 colorFilter(image,rlimit,blimit,glimit,rhigh,bhigh,ghigh);
 end

 function BF3_Callback_high(hObject, handles)
 user_entry = str2double(get(hObject, 'string'));
 if isnan(user_entry)
 errordlg('You must enter a numeric value','Bad Input','modal')
 uicontrol(hObject); return;
 end
 % Proceed with callback...
 ghigh = user_entry;
 colorFilter(image,rlimit,blimit,glimit,rhigh,bhigh,ghigh);
 end
end

56

Appendix B: Matlab Implementation

% Final simulation Matlab code.
% Note: All test code and debugging code has been removed
% Purpose: Processes a single frame for stoplight detection
% Input: RGB frame
% Output: Outputs 1 if stoplight detected, else 0

function out = colorseparation640exetime(image)
out = 0; % initialize output to 0, meaning no stoplight detected by

default
redBand = image(:,:,1); % create vector with only the red band of the RGB
greenBand = image(:,:,2); % create vector with only the green band of the

RGB
blueBand = image(:,:,3); % create vector with only the blue band of the

RGB

redMask = (redBand > 149); % create vector for red color filtering
greenMask = (greenBand < 110); % create vector for green color filtering
blueMask = (blueBand < 110); % create vector for blue color filtering

redobjectsmask = uint8(redMask & greenMask & blueMask); % create a color

filter mask

maskedrgb = uint8(zeros(size(redobjectsmask))); % initalize an empty vector
maskedrgb(:,:,1) = redBand .* redobjectsmask; % filter the red component
maskedrgb(:,:,2) = greenBand .* redobjectsmask; % filter the green component
maskedrgb(:,:,3) = blueBand .* redobjectsmask; % filter the blue component

binaryImage = ~im2bw(maskedrgb, 0.2); % create binary image for blob

detection

blobMeasurements = regionprops(binaryImage, 'Area','BoundingBox'); % perform

blob detection, calculate area and bounding boxes

numberOfBlobs = size(blobMeasurements, 1); % calculate the number of blobs

found

for k = 2:1:numberOfBlobs % for each blob
 if blobMeasurements(k).Area > 10 % if the blob's area is greater than

10 pixels
 thisBlobsBoundingBox = blobMeasurements(k).BoundingBox; % get the

corners of this blob

 % extend the blob size by 4 in each direction
 thisBlobsBoundingBox(1) = thisBlobsBoundingBox(1) - 4;
 thisBlobsBoundingBox(2) = thisBlobsBoundingBox(2) - 4;
 thisBlobsBoundingBox(3) = thisBlobsBoundingBox(3) + 8;
 thisBlobsBoundingBox(4) = thisBlobsBoundingBox(4) + 8;

 subImage = imcrop(image, thisBlobsBoundingBox); % crop out the blob

region from the original frame

 temp = rgb2gray(subImage); % convert the cropped image to grayscale

57

 hist = imhist(temp); % create the histogram of the cropped image
 part1 = sum(hist(1:50)); % sum up the values for bin1
 part2 = sum(hist(90:110)); % sum up the values for bin2
 part3 = sum(hist(151:220)); % sum up the values for bin3
 part4 = sum(hist(241:255)); % sum up the values for bin4

 % stoplight identification parameters
 if ((part1 < 5) && (part2 > 100) && (part2 > part4) && (part3 > 0) &&

(part4 > 0) && (part2 > part3))
 out = 1; % stoplight detected, set output
 end % end stoplight identification
 end % end if area too small
end % end this blob testing
end % end function

58

Appendix C: Color Filtration – Verilog

module Color_Filter (
 input clk,
 input reset,
 input [7:0] oVGA_Red,
 input [7:0] oVGA_Green,
 input [7:0] oVGA_Blue,
 output reg [23:0] filtered_color);

 //temp channels for color extraction
 reg [7:0] filtered_Red;
 reg [7:0] filtered_Green;
 reg [7:0] filtered_Blue;

 //temp channels for grayscale conversion
 reg [7:0] greyscale_Red;
 reg [7:0] greyscale_Green;
 reg [7:0] greyscale_Blue;

 //temp channels for black -> white conversion
 reg [7:0] updated_greyscale_Red;
 reg [7:0] updated_greyscale_Green;
 reg [7:0] updated_greyscale_Blue;

 //values for color extraction
 parameter redFilterValue = 150;
 parameter greenFilterValue = 110;
 parameter blueFilterValue = 110;

 parameter white = 8'b11111111;

 //filter out all color that isn't red
 always @ (posedge clk) begin

filtered_Red <= (oVGA_Red >= redFilterValue && oVGA_Green <= greenFilterValue &&
 oVGA_Blue <= blueFilterValue) ? oVGA_Red : 0;
 filtered_Green <= (oVGA_Red >= redFilterValue && oVGA_Green <= greenFilterValue &&
 oVGA_Blue <= blueFilterValue) ? oVGA_Green : 0;
 filtered_Blue <= (oVGA_Red >= redFilterValue && oVGA_Green <= greenFilterValue &&
 oVGA_Blue <= blueFilterValue) ? oVGA_Blue : 0;
 end

 //RGB->Greyscale
 always @ (posedge clk) begin
 greyscale_Red <= (filtered_Red>>2) + (filtered_Red>>5) + (filtered_Green>>1) +
 (filtered_Green>>4) + (filtered_Blue>>4) + (filtered_Blue>>5);
 greyscale_Green <= (filtered_Red>>2) + (filtered_Red>>5) + (filtered_Green>>1) +
 (filtered_Green>>4) + (filtered_Blue>>4) + (filtered_Blue>>5);
 greyscale_Blue <= (filtered_Red>>2) + (filtered_Red>>5) + (filtered_Green>>1) +
 (filtered_Green>>4) + (filtered_Blue>>4) + (filtered_Blue>>5);
 end

59

 //Changes all greyscale values below 51 to white (black -> whtie)
 always @ (posedge clk) begin
 updated_greyscale_Red = (greyscale_Red < 51) ? white : greyscale_Red;
 updated_greyscale_Green = (greyscale_Green < 51) ? white : greyscale_Green;
 updated_greyscale_Blue = (greyscale_Blue < 51) ? white : greyscale_Blue;
 end

 //appends the three channels together to be the output 24 bit image data
 always @ (posedge clk) begin
 filtered_color <= {updated_greyscale_Red, updated_greyscale_Blue, updated_greyscale_Green};
 end

endmodule

60

Appendix D: Frame Buffer Initialization

#include <stdio.h>
#include "platform.h"
#include "fmc_imageon_hdmi_framebuffer.h"

#include "xgpiops.h"
#include "xparameters.h"

fmc_imageon_hdmi_framebuffer_t demo;
void print(const char *ptr);

int main(){

 init_platform();

 //initialize framebuffer
 demo.uBaseAddr_IIC_FmcImageon = XPAR_FMC_IMAGEON_IIC_0_BASEADDR;
 demo.uDeviceId_VTC_HdmiiDetector = XPAR_V_TC_0_DEVICE_ID;
 demo.uDeviceId_VTC_HdmioGenerator = XPAR_V_TC_1_DEVICE_ID;
 demo.uDeviceId_VDMA_HdmiFrameBuffer = XPAR_AXI_VDMA_0_DEVICE_ID;
 demo.uBaseAddr_MEM_HdmiFrameBuffer = XPAR_DDR_MEM_BASEADDR + 0x10000000;
 demo.uNumFrames_HdmiFrameBuffer = XPAR_AXIVDMA_0_NUM_FSTORES;
 fmc_imageon_hdmi_framebuffer_init(&demo);

 cleanup_platform();
 return 0;
}

61

Appendix E: Blob Detection/Histogram Analysis Algorithm

#include <stdio.h>
#include "xgpiops.h"
#include "xparameters.h"
#include "fmc_imageon_hdmi_framebuffer.h"

#define offset 0x01000000
#define HISTTEST 1 //undefine to check histogram values in candidate regions
#define REDTEST 1 //define to draw box around stoplights
//#define SINGLELIGHT 1 //define in order to only look for one stoplight instead of all
#define LEDTEST 1 //define to use peripherals

#define PINNUMBER 11 //GPIO pin number for peripherals

#define hist0_v 5 //less than
#define hist1_v 5 //less than
#define hist2_v 35 //5 //less than
#define hist3_v 25 // 40 //greater than
#define hist3_v_high 200 //less than
#define hist4_v 20//100 //greater than
#define hist5_v 30 //less than
#define hist6_v 5 //less than
#define hist7_v 5 //less than
#define hist8_v 5 //less than
#define hist9_v 5 //less than

unsigned char saw_red_light = 0;

#ifdef SINGLELIGHT
unsigned char check_vertical_center_point(unsigned int found_center, unsigned int extra, Xuint8 *filter,
 unsigned int i, unsigned char cbcr, unsigned char luma, unsigned int x, unsigned int y, XGpioPs my_Gpio);
#endif
#ifndef SINGLELIGHT
void check_vertical_center_point(unsigned int found_center, unsigned int extra, Xuint8 *filter,
 unsigned int i, unsigned char cbcr, unsigned char luma, unsigned int x, unsigned int y, XGpioPs my_Gpio);
#endif

Xuint8 fmc_imageon_hdmii_edid_content[256] =
{
 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00,
 0x06, 0xD4, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x16, 0x01, 0x03, 0x81, 0x46, 0x27, 0x78,
 0x0A, 0x32, 0x30, 0xA1, 0x54, 0x52, 0x9E, 0x26,
 0x0A, 0x49, 0x4B, 0xA3, 0x08, 0x00, 0x81, 0xC0,
 0x81, 0x00, 0x81, 0x0F, 0x81, 0x40, 0x81, 0x80,
 0x95, 0x00, 0xB3, 0x00, 0x01, 0x01, 0x02, 0x3A,
 0x80, 0x18, 0x71, 0x38, 0x2D, 0x40, 0x58, 0x2C,
 0x45, 0x00, 0xC4, 0x8E, 0x21, 0x00, 0x00, 0x1E,
 0xA9, 0x1A, 0x00, 0xA0, 0x50, 0x00, 0x16, 0x30,
 0x30, 0x20, 0x37, 0x00, 0xC4, 0x8E, 0x21, 0x00,
 0x00, 0x1A, 0x00, 0x00, 0x00, 0xFC, 0x00, 0x46,

62

 0x4D, 0x43, 0x2D, 0x49, 0x4D, 0x41, 0x47, 0x45,
 0x4F, 0x4E, 0x0A, 0x20, 0x00, 0x00, 0x00, 0xFD,
 0x00, 0x38, 0x4B, 0x20, 0x44, 0x11, 0x00, 0x0A,
 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x01, 0x54,
 0x02, 0x03, 0x1F, 0x71, 0x4B, 0x90, 0x03, 0x04,
 0x05, 0x12, 0x13, 0x14, 0x1F, 0x20, 0x07, 0x16,
 0x26, 0x15, 0x07, 0x50, 0x09, 0x07, 0x01, 0x67,
 0x03, 0x0C, 0x00, 0x10, 0x00, 0x00, 0x1E, 0x01,
 0x1D, 0x00, 0x72, 0x51, 0xD0, 0x1E, 0x20, 0x6E,
 0x28, 0x55, 0x00, 0xC4, 0x8E, 0x21, 0x00, 0x00,
 0x1E, 0x01, 0x1D, 0x80, 0x18, 0x71, 0x1C, 0x16,
 0x20, 0x58, 0x2C, 0x25, 0x00, 0xC4, 0x8E, 0x21,
 0x00, 0x00, 0x9E, 0x8C, 0x0A, 0xD0, 0x8A, 0x20,
 0xE0, 0x2D, 0x10, 0x10, 0x3E, 0x96, 0x00, 0xC4,
 0x8E, 0x21, 0x00, 0x00, 0x18, 0x01, 0x1D, 0x80,
 0x3E, 0x73, 0x38, 0x2D, 0x40, 0x7E, 0x2C, 0x45,
 0x80, 0xC4, 0x8E, 0x21, 0x00, 0x00, 0x1E, 0x1A,
 0x36, 0x80, 0xA0, 0x70, 0x38, 0x1F, 0x40, 0x30,
 0x20, 0x25, 0x00, 0xC4, 0x8E, 0x21, 0x00, 0x00,
 0x1A, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01
};

int fmc_imageon_hdmi_framebuffer_init(fmc_imageon_hdmi_framebuffer_t *pDemo)
{
 int ret;
 Xuint32 timeout = 100;
 Xuint32 iterations = 0;

 xil_printf("\n\r");
 xil_printf("--\n\r");
 xil_printf("-- FMC-IMAGEON HDMI Video Frame Buffer --\n\r");
 xil_printf("--\n\r");
 xil_printf("\n\r");

 xil_printf("FMC-IMAGEON Initialization ...\n\r");

 ret = fmc_iic_xps_init(&(pDemo->fmc_imageon_iic),"FMC-IMAGEON I2C Controller",
 pDemo->uBaseAddr_IIC_FmcImageon);
 if (!ret)
 {
 xil_printf("ERROR : Failed to open FMC-IIC driver\n\r");
 exit(0);
 }

 fmc_imageon_init(&(pDemo->fmc_imageon), "FMC-IMAGEON", &(pDemo->fmc_imageon_iic));
 pDemo->fmc_imageon.bVerbose = pDemo->bVerbose;

 // Configure Video Clock Synthesizer
 fmc_imageon_vclk_init(&(pDemo->fmc_imageon));
 fmc_imageon_vclk_config(&(pDemo->fmc_imageon), FMC_IMAGEON_VCLK_FREQ_148_500_000);

 // Initialize HDMI Input (including EDID content)
 xil_printf("HDMI Input Initialization ...\n\r");

63

 ret = fmc_imageon_hdmii_init(&(pDemo->fmc_imageon),
 1, // hdmiiEnable = 1
 1, // editInit = 1
 fmc_imageon_hdmii_edid_content
);
 if (!ret)
 {
 xil_printf("ERROR : Failed to init HDMI Input Interface\n\r");
 exit(0);
 }

 // Configure Video Clock Synthesizer
 xil_printf("Video Clock Synthesizer Configuration ...\n\r");
 fmc_imageon_vclk_config(&(pDemo->fmc_imageon), FMC_IMAGEON_VCLK_FREQ_148_500_000);
 sleep(1);

#if 0
 xil_printf("Enabling spread-spectrum clocking (SSC)\n\r");
 xil_printf("\ttype=down-spread, amount=-0.75%%\n\r");
 {
 Xuint8 num_bytes;
 int i;
 Xuint8 iic_cdce913_ssc_on[3][2]=
 {
 0x10, 0x6D, // SSC = 011 (0.75%)
 0x11, 0xB6, //
 0x12, 0xDB //
 };
 fmc_imageon_iic_mux(&(pDemo->fmc_imageon), FMC_IMAGEON_I2C_SELECT_VID_CLK);
 for (i = 0; i < 3; i++)
 {
 num_bytes = pDemo->fmc_imageon.pIIC->fpIicWrite(pDemo->fmc_imageon.pIIC,
 FMC_IMAGEON_VID_CLK_ADDR, (0x80 | iic_cdce913_ssc_on[i][0]), &(iic_cdce913_ssc_on[i][1]), 1);
 }
 }
#endif

 // Set HDMI output to 1080P60 resolution
 pDemo->hdmio_resolution = VIDEO_RESOLUTION_1080P;
 pDemo->hdmio_width = 1920;
 pDemo->hdmio_height = 1080;
/*
 *
 { "720P", 720, 5, 5, 20, 1, 1280, 110, 40, 220, 1 }, // VIDEO_RESOLUTION_720P
 { "1080P", 1080, 4, 5, 36, 1, 1920, 88, 44, 148, 1 }, // VIDEO_RESOLUTION_1080P
 * */

 //pDemo->hdmio_timing.IsHDMI = 1; // HDMI Mode
 pDemo->hdmio_timing.IsHDMI = 0; // DVI Mode
 pDemo->hdmio_timing.IsEncrypted = 0;
 pDemo->hdmio_timing.IsInterlaced = 0;

64

 pDemo->hdmio_timing.ColorDepth = 8;

 pDemo->hdmio_timing.HActiveVideo = 1920;
 pDemo->hdmio_timing.HFrontPorch = 88;
 pDemo->hdmio_timing.HSyncWidth = 44;
 pDemo->hdmio_timing.HSyncPolarity = 1;
 pDemo->hdmio_timing.HBackPorch = 148;/*
 pDemo->hdmio_timing.HFrontPorch = 110;
 pDemo->hdmio_timing.HSyncWidth = 40;
 pDemo->hdmio_timing.HSyncPolarity = 1;
 pDemo->hdmio_timing.HBackPorch = 220;*/

 pDemo->hdmio_timing.VActiveVideo = 1080;/*
 pDemo->hdmio_timing.VFrontPorch = 5;
 pDemo->hdmio_timing.VSyncWidth = 5;
 pDemo->hdmio_timing.VSyncPolarity = 1;
 pDemo->hdmio_timing.VBackPorch = 20;*/
 pDemo->hdmio_timing.VFrontPorch = 4;
 pDemo->hdmio_timing.VSyncWidth = 5;
 pDemo->hdmio_timing.VSyncPolarity = 1;
 pDemo->hdmio_timing.VBackPorch = 36;

 xil_printf("HDMI Output Initialization ...\n\r");
 ret = fmc_imageon_hdmio_init(&(pDemo->fmc_imageon),
 1, // hdmioEnable = 1
 &(pDemo->hdmio_timing), // pTiming
 0 // waitHPD = 0
);
 if (!ret)
 {
 xil_printf("ERROR : Failed to init HDMI Output Interface\n\r");
 //exit(0);
 }

 // Clear frame stores
 Xuint32 i;
 Xuint32 storage_size = pDemo->uNumFrames_HdmiFrameBuffer * ((1920*1080)<<1);
 volatile Xuint8 *pStorageMem = (Xuint8 *)pDemo->uBaseAddr_MEM_HdmiFrameBuffer;
 for (i = 0; i < storage_size; i += 2)
 {
 // Black Pixel
 *pStorageMem++ = 0x80; // CbCr (chroma)
 *pStorageMem++ = 0x00; // Y (luma)
 }

 volatile Xuint8 *filter = (Xuint8 *)(pDemo->uBaseAddr_MEM_HdmiFrameBuffer+offset);
 for (i = 0; i < storage_size; i += 2)
 {
 // Black Pixel
 *filter++ = 0x80; // CbCr (chroma)
 *filter++ = 0x00; // Y (luma)
 }

65

 // Initialize Output Side of AXI VDMA
 xil_printf("Video DMA (Output Side) Initialization ...\n\r");
 vfb_common_init(
 pDemo->uDeviceId_VDMA_HdmiFrameBuffer, // uDeviceId
 &(pDemo->vdma_hdmi) // pAxiVdma
);
 vfb_tx_init(
 &(pDemo->vdma_hdmi), // pAxiVdma
 &(pDemo->vdmacfg_hdmi_read), // pReadCfg
 pDemo->hdmio_resolution, // uVideoResolution
 pDemo->hdmio_resolution, // uStorageResolution
 (pDemo->uBaseAddr_MEM_HdmiFrameBuffer+offset), // uMemAddr
 pDemo->uNumFrames_HdmiFrameBuffer // uNumFrames
);

 // Configure VTC on output data path
 xil_printf("Video Timing Controller (generator) Initialization ...\n\r");
 vgen_init(&(pDemo->vtc_hdmio_generator), pDemo->uDeviceId_VTC_HdmioGenerator);
 vgen_config(&(pDemo->vtc_hdmio_generator), pDemo->hdmio_resolution, 1);

 while (1)
 {
 if (iterations > 0)
 {
 xil_printf("\n\rPress ENTER to re-start ...\n\r");
 getchar();
 }
 iterations++;

 xil_printf("Waiting for ADV7611 to locked on incoming video ...\n\r");
 pDemo->hdmii_locked = 0;
 timeout = 100;
 while (!(pDemo->hdmii_locked) && timeout--)
 {
 usleep(100000); // wait 100msec ...
 pDemo->hdmii_locked = fmc_imageon_hdmii_get_lock(&(pDemo->fmc_imageon));
 }
 if (!(pDemo->hdmii_locked))
 {
 xil_printf("\tERROR : ADV7611 has NOT locked on incoming video, aborting !\n\r");
 //return -1;
 continue;
 }
 xil_printf("\tADV7611 Video Input LOCKED\n\r");
 usleep(100000); // wait 100msec for timing to stabilize

 // Get Video Input information
 fmc_imageon_hdmii_get_timing(&(pDemo->fmc_imageon), &(pDemo->hdmii_timing));
 pDemo->hdmii_width = pDemo->hdmii_timing.HActiveVideo;
 pDemo->hdmii_height = pDemo->hdmii_timing.VActiveVideo;
 pDemo->hdmii_resolution = vres_detect(pDemo->hdmii_width, pDemo->hdmii_height);

66

 xil_printf("ADV7611 Video Input Information\n\r");
 xil_printf("\tVideo Input = %s", pDemo->hdmii_timing.IsHDMI ? "HDMI" : "DVI");
 xil_printf("%s", pDemo->hdmii_timing.IsEncrypted ? ", HDCP Encrypted" : "");
 xil_printf(", %s\n\r", pDemo->hdmii_timing.IsInterlaced ? "Interlaced" : "Progressive");
 xil_printf("\tColor Depth = %d bits per channel\n\r", pDemo->hdmii_timing.ColorDepth);
 xil_printf("\tHSYNC Timing = hav=%04d, hfp=%02d, hsw=%02d(hsp=%d), hbp=%03d\n\r",
 pDemo->hdmii_timing.HActiveVideo,
 pDemo->hdmii_timing.HFrontPorch,
 pDemo->hdmii_timing.HSyncWidth, pDemo->hdmii_timing.HSyncPolarity,
 pDemo->hdmii_timing.HBackPorch
);
 xil_printf("\tVSYNC Timing = vav=%04d, vfp=%02d, vsw=%02d(vsp=%d), vbp=%03d\n\r",
 pDemo->hdmii_timing.VActiveVideo,
 pDemo->hdmii_timing.VFrontPorch,
 pDemo->hdmii_timing.VSyncWidth, pDemo->hdmii_timing.VSyncPolarity,
 pDemo->hdmii_timing.VBackPorch
);
 xil_printf("\tVideo Dimensions = %d x %d\n\r", pDemo->hdmii_width, pDemo->hdmii_height);

 if ((pDemo->hdmii_resolution) == -1)
 {
 xil_printf("\tERROR : Invalid resolution, aborting !\n\r");
 //return -1;
 continue;
 }

 // Reset VTC on input data path
 vdet_init(&(pDemo->vtc_hdmii_detector), pDemo->uDeviceId_VTC_HdmiiDetector);
 vdet_reset(&(pDemo->vtc_hdmii_detector));

 xil_printf("Video DMA (Input Side) Initialization ...\n\r");

 // Stop Input Side of AXI_VDMA (from previous iteration)
 vfb_rx_stop(
 &(pDemo->vdma_hdmi) // pAxiVdma
);

 // Clear frame stores
 Xuint32 i;
 Xuint32 storage_size = pDemo->uNumFrames_HdmiFrameBuffer * ((1920*1080)<<1);
 volatile Xuint8 *pStorageMem = (Xuint8 *)pDemo->uBaseAddr_MEM_HdmiFrameBuffer;
 for (i = 0; i < storage_size; i += 2)
 {
 // Black Pixel
 *(pStorageMem+2*i+1) = 0x80; // CbCr (chroma)
 *(pStorageMem+2*i+2) = 0x00; // Y (luma)
 }

 volatile Xuint8 *filter = (Xuint8 *)(pDemo->uBaseAddr_MEM_HdmiFrameBuffer+offset);
 for (i = 0; i < storage_size; i += 2)
 {
 // Black Pixel
 *(filter+2*i+1) = 0x80; // CbCr (chroma)

67

 *(filter+2*i+2) = 0x00; // Y (luma)
 }

 // Initialize Input Side of AXI VDMA
 vfb_rx_init(
 &(pDemo->vdma_hdmi), // pAxiVdma
 &(pDemo->vdmacfg_hdmi_write), // pWriteCfg
 pDemo->hdmii_resolution, // uVideoResolution
 pDemo->hdmio_resolution, // uStorageResolution
 pDemo->uBaseAddr_MEM_HdmiFrameBuffer, // uMemAddr
 pDemo->uNumFrames_HdmiFrameBuffer // uNumFrames
);

 xil_printf("HDMI Output Re-Initialization ...\n\r");
 ret = fmc_imageon_hdmio_init(&(pDemo->fmc_imageon),
 1, // hdmioEnable = 1
 &(pDemo->hdmio_timing), // pTiming
 0 // waitHPD = 0
);
 if (!ret)
 {
 xil_printf("ERROR : Failed to init HDMI Output Interface\n\r");
 //exit(0);
 }

#if 0 // Activate for debug
 sleep(1);
 // Status of AXI VDMA
 vfb_dump_registers(&(pDemo->vdma_hdmi));
 if (vfb_check_errors(&(pDemo->vdma_hdmi), 1/*clear errors, if any*/))
 {
 vfb_dump_registers(&(pDemo->vdma_hdmi));
 }
#endif

 //*(volatile int*) (0x7D800000) = 0;

 //---

 //put image processing algorithm below

 Xuint32 new_storage_size = (storage_size*2)/5;
 unsigned int display_size = storage_size;
 unsigned int leftside_x, rightside_x = 0;
 unsigned char entry_flag, reentry_flag, exit_flag = 0;

 unsigned char cbcr = 0;
 unsigned char luma = 0;
 unsigned int pixel_count_total = 0;

68

 unsigned int x, y = 0;
 enum {white_to_white, white_to_grey, grey_to_grey, grey_to_white};
 unsigned char current_state, last_state = 0;

 unsigned int found_center, center_y_temp = 0;

 unsigned char stop_flag = 0;

 unsigned int found = 0;

 unsigned char break_flag = 0;

 unsigned int on_counter = 0;
 unsigned int off_counter = 0;

 XGpioPs_Config *GPIO_Config;
 XGpioPs my_Gpio;
 int Status;
#ifdef LEDTEST
 //set up GPIO peripheral pin to be an output and writable
 GPIO_Config = XGpioPs_LookupConfig(XPAR_PS7_GPIO_0_DEVICE_ID);
 Status = XGpioPs_CfgInitialize(&my_Gpio, GPIO_Config, GPIO_Config->BaseAddr);

 XGpioPs_SetDirectionPin(&my_Gpio, PINNUMBER, 1);
 XGpioPs_SetOutputEnablePin(&my_Gpio, PINNUMBER, 1);
#endif

#define TRUE 1
#define FALSE 0
 while(TRUE)
 {
 //initialize state variables
 break_flag = 0;
 stop_flag = 0;
 pixel_count_total = 1;
 found = 0;
#ifdef LEDTEST
 //if a stoplight was seen in the last frame
 if(saw_red_light == 1) {
 on_counter++;
 off_counter = 0;
 //if a stoplight has been seen for 5 frames in a row
 if(on_counter > 5) {
 //turn on GPIO peripheral pin
 XGpioPs_WritePin(&my_Gpio, PINNUMBER, 1);
 }
 }
 else {
 off_counter++;
 on_counter = 0;
 //if a stoplight has not been seen for 5 frames in a row
 if(off_counter > 5) {

69

 //turn off GPIO peripheral pin
 XGpioPs_WritePin(&my_Gpio, PINNUMBER, 0);
 }
 }
 saw_red_light = 0;
#endif
 //load video data into filter
 memcpy(filter, pStorageMem, display_size);
 //look through half of the filter (ignore bottom half of image)
 for(i = 0; i < new_storage_size; i += 2) {
 if(break_flag == 1) {
 break;
 }
 //set up ycbcr value of current pixel
 cbcr = *(filter + i + 1); // cbcr
 luma = *(filter + i); // y

 //get coordinates of current pixel indexed from 1, 1
 x = pixel_count_total % 1920;
 y = (pixel_count_total / 1920) + 1;
 pixel_count_total++;

 //state machine for blob detection
 switch (current_state) {

 case (white_to_white):
 if(luma == 255) {
 current_state = white_to_white;
 }
 else {
 current_state = white_to_grey;
 }
 //reset if distance is too great
 if(((x - leftside_x) > 100) && entry_flag) {
 leftside_x = 0;
 rightside_x = 0;
 entry_flag = FALSE;
 reentry_flag = FALSE;
 exit_flag = FALSE;
 }
 last_state = white_to_white;
 break;

 case (white_to_grey) :
 if(entry_flag) {
 reentry_flag = TRUE;
 entry_flag = FALSE;
 }
 if(reentry_flag) {
 rightside_x = x;
 found++;
 found_center = (rightside_x-leftside_x)/2;

70

 // check that vertical central point was found at
 //this location previously
 if ((*(filter + i - 2*(found_center) + 1)) == 127) {
#ifdef SINGLELIGHT
 break_flag = check_vertical_center_point(
 found_center, 0, filter, i,
 cbcr, luma, x, y, my_Gpio);
 if(break_flag == 1) {
 break;
 }
#endif
#ifndef SINGLELIGHT

 check_vertical_center_point(found_center,
 0, filter, i, cbcr, luma, x, y, my_Gpio);
#endif
 }
 else {
 (filter + i - 2(found_center+1)+1) = 129;
 }

 if ((*(filter + i - 2*(found_center+1)+1)) == 127) {
// additional checks for odd right-left since c truncates
#ifdef SINGLELIGHT
 break_flag = check_vertical_center_point(
 found_center+1, 0, filter,
 i, cbcr, luma, x, y, my_Gpio);
 if(break_flag == 1) {
 break;
 }
#endif
#ifndef SINGLELIGHT

 check_vertical_center_point(found_center+1,
 0, filter, i, cbcr, luma, x, y, my_Gpio);
#endif
 }
 else {
 (filter + i - 2(found_center+1)+1) = 129;
 }

 unsigned int center_y = 0;
 unsigned char up_counter = 0;
 unsigned int temp_color_up = 255;

 unsigned char down_counter = 0;
 unsigned char temp_color_down = 255;

 while(temp_color_up == 255 &&
 up_counter < 100 &&
 ((y - up_counter) > 0)) {
 temp_color_up = *(filter + i -
 2*(found_center)-

71

 (2*1920)*up_counter);
 up_counter++;
 }

 while(temp_color_down == 255 &&
 down_counter < 100 &&
 ((y + down_counter) < 541)) {
 temp_color_down = *(filter + i -
 2*(found_center)+
 (2*1920)*down_counter);
 down_counter++;
 }
 center_y_temp =
 up_counter+down_counter/2;
 if(up_counter > down_counter) {
 center_y = up_counter -
 center_y_temp;

 if (*(filter + i- 2*(found_center) -
2*(center_y*1920) + 1) == 129)
 {
#ifdef SINGLELIGHT
 break_flag =
check_vertical_center_point(found_center, -1*(center_y*1920), filter, i, cbcr, luma, x, y, my_Gpio);
 if(break_flag == 1) {
 break;
 }
#endif
#ifndef SINGLELIGHT

 check_vertical_center_point(found_center, -1*(center_y*1920), filter, i, cbcr, luma, x, y, my_Gpio);
#endif
 }

 else
 *(filter + i-
2*(found_center) - 2*(center_y*1920) + 1) = 127;
 }
 else {
 center_y = down_counter -
center_y_temp;

 if (*(filter + i- 2*(found_center) -
2*(center_y*1920) + 1) == 129)
 {
#ifdef SINGLELIGHT
 break_flag =
check_vertical_center_point(found_center, center_y*1920, filter, i, cbcr, luma, x, y, my_Gpio);
 if(break_flag == 1) {
 break;
 }
#endif
#ifndef SINGLELIGHT

72

 check_vertical_center_point(found_center, center_y*1920, filter, i, cbcr, luma, x, y, my_Gpio);
#endif
 }

 else
 *(filter + i-
2*(found_center) - 2*(center_y*1920) + 1) = 127;
 }
 leftside_x = 0;
 rightside_x = 0;
 entry_flag = FALSE;
 reentry_flag = FALSE;
 exit_flag = FALSE;
 }
 else {
 entry_flag = TRUE;
 reentry_flag = FALSE;
 }
 if(luma == 255) {
 current_state = grey_to_white;
 }
 else {
 current_state = grey_to_grey;
 }
 last_state = white_to_grey;
 break;

 case (grey_to_grey) :
 if(luma != 255) {
 current_state = grey_to_grey;
 }
 else {
 current_state = grey_to_white;
 }
 last_state = grey_to_grey;
 break;

 case (grey_to_white) :
 if(entry_flag && !reentry_flag) {
 exit_flag = TRUE;
 }
 if(exit_flag) {
 leftside_x = x;
 }
 current_state = white_to_white;
 last_state = grey_to_white;
 break;
 default:
 current_state = white_to_white;
 break;
 }
 }

73

 if (stop_flag == 1){
 for(i = 0; i < (1920*20); i += 2) {
 *(filter + i + 1) = 255; // cbcr
 *(filter + i) = 90; // y
 }
 }
 }

 //put image processing algorithm above
 //---
 xil_printf("\n\r");
 xil_printf("Done\n\r");
 xil_printf("\n\r");

 sleep(1);
 }

 return 0;
}

#ifdef SINGLELIGHT
unsigned char check_vertical_center_point(unsigned int found_center, unsigned int extra, Xuint8 *filter, unsigned
int i,
 unsigned char cbcr, unsigned char luma,
unsigned int x, unsigned int y, XGpioPs my_Gpio) {

 (filter + i - 2(found_center) + 2*(extra)) = 0;

 unsigned char flag = 0;
 signed int x_min, x_max, y_min, y_max = 0;
 unsigned long hist0;
 unsigned long hist1;
 unsigned long hist2;
 unsigned long hist3;
 unsigned long hist4;
 unsigned long hist5;
 unsigned long hist6;
 unsigned long hist7;
 unsigned long hist8;
 unsigned long hist9;
 signed int x_min_temp, x_max_temp, y_min_temp, y_max_temp = 0;
 unsigned char temp_cbcr, temp_luma;

 // crude go out and draw a box 31 by 31 (picked semiarbitrarily for proof of concept)
 // for each pixel in side the range
 x_min = -15;
 x_max = 16;
 y_min = -15;
 y_max = 16;
 x_min_temp = -35;
 x_max_temp = 40;
 y_min_temp = -35;
 y_max_temp = 40;

74

 hist0 = 0;
 hist1 = 0;
 hist2 = 0;
 hist3 = 0;
 hist4 = 0;
 hist5 = 0;
 hist6 = 0;
 hist7 = 0;
 hist8 = 0;
 hist9 = 0;
 for(x_min = -15; x_min < x_max; x_min++) {
 for (y_min = 0; y_min < y_max; y_min++) {
 cbcr = *(filter + i - 2*(found_center + x_min) - 2*(1920)*(y_min) + 1); // cbcr
 luma = *(filter + i - 2*(found_center + x_min) - 2*(1920)*(y_min)); // y
#ifndef HISTTEST
 if (luma > 250) { // sub test to check that we see the right region
 (filter + i - 2(found_center + x_min) - 2*(1920)*(y_min) + 1) = 255; // cbcr
 (filter + i - 2(found_center + x_min) - 2*(1920)*(y_min)) = 0; // y
 }
#endif
#ifdef HISTTEST
 if (luma < 25)
 hist0++;
 else if (luma < 50)
 hist1++;
 else if (luma < 75)
 hist2++;
 else if (luma < 100)
 hist3++;
 else if (luma < 125)
 hist4++;
 else if (luma < 150)
 hist5++;
 else if (luma < 175)
 hist6++;
 else if (luma < 200)
 hist7++;
 else if (luma < 225)
 hist8++;
 else if (luma < 250)
 hist9++;
 // if statement to check histogram values to determine if its a red light
 // do whatever when we know its a red light
 if(hist0 < hist0_v && hist1 < hist1_v && hist2 < hist2_v && hist3 > hist3_v && hist3 <
hist3_v_high && hist4 > hist4_v &&
 hist5 < hist5_v && hist6 < hist6_v && hist7 < hist7_v && hist8 <
hist8_v && hist9 < hist9_v) {
#ifdef LEDTEST
 saw_red_light = 1;
#endif
 flag = 1;
#ifdef REDTEST
 for(x_min_temp = -35; x_min_temp < x_max_temp; x_min_temp++) {

75

 for(y_min_temp = -35; y_min_temp < y_max_temp; y_min_temp++) {
 temp_cbcr = *(filter + i - 2*(found_center + x_min_temp) -
2*(1920)*(y_min_temp) + 1); // cbcr
 temp_luma = *(filter + i - 2*(found_center + x_min_temp) -
2*(1920)*(y_min_temp)); // y

 if (temp_luma > 250) {
 (filter + i - 2(found_center + x_min_temp) -
2*(1920)*(y_min_temp) + 1) = 255; // cbcr
 (filter + i - 2(found_center + x_min_temp) -
2*(1920)*(y_min_temp)) = 0; // y
 }
 }
 }
#endif
 }
#endif
 }
 }
 return flag;
}
#endif

#ifndef SINGLELIGHT
void check_vertical_center_point(unsigned int found_center, unsigned int extra, Xuint8 *filter, unsigned int i,
 unsigned char cbcr, unsigned char luma,
unsigned int x, unsigned int y, XGpioPs my_Gpio) {
 (filter + i - 2(found_center) + 2*(extra)) = 0;

 signed int x_min, x_max, y_min, y_max = 0;
 unsigned long hist0;
 unsigned long hist1;
 unsigned long hist2;
 unsigned long hist3;
 unsigned long hist4;
 unsigned long hist5;
 unsigned long hist6;
 unsigned long hist7;
 unsigned long hist8;
 unsigned long hist9;
 signed int x_min_temp, x_max_temp, y_min_temp, y_max_temp = 0;
 unsigned char temp_cbcr, temp_luma;

 // crude go out and draw a box
 // for each pixel in side the range
 x_min = -15;
 x_max = 16;
 y_min = -15;
 y_max = 16;
 x_min_temp = -35;

76

 x_max_temp = 40;
 y_min_temp = -35;
 y_max_temp = 40;
 hist0 = 0;
 hist1 = 0;
 hist2 = 0;
 hist3 = 0;
 hist4 = 0;
 hist5 = 0;
 hist6 = 0;
 hist7 = 0;
 hist8 = 0;
 hist9 = 0;
 for(x_min = -15; x_min < x_max; x_min++) {
 for (y_min = 0; y_min < y_max; y_min++) {
 cbcr = *(filter + i - 2*(found_center + x_min) - 2*(1920)*(y_min) + 1); // cbcr
 luma = *(filter + i - 2*(found_center + x_min) - 2*(1920)*(y_min)); // y
#ifndef HISTTEST
 if (luma > 250) { // sub test to check that we see the right region
 (filter + i - 2(found_center + x_min) - 2*(1920)*(y_min) + 1) = 255; // cbcr
 (filter + i - 2(found_center + x_min) - 2*(1920)*(y_min)) = 0; // y
 }
#endif
#ifdef HISTTEST
 if (luma < 25)
 hist0++;
 else if (luma < 50)
 hist1++;
 else if (luma < 75)
 hist2++;
 else if (luma < 100)
 hist3++;
 else if (luma < 125)
 hist4++;
 else if (luma < 150)
 hist5++;
 else if (luma < 175)
 hist6++;
 else if (luma < 200)
 hist7++;
 else if (luma < 225)
 hist8++;
 else if (luma < 250)
 hist9++;

 // if statement to check histogram values to determine if its a red light
 // do whatever when we know its a red light
 if(hist0 < hist0_v && hist1 < hist1_v && hist2 < hist2_v && hist3 > hist3_v && hist3 <
hist3_v_high && hist4 > hist4_v &&
 hist5 < hist5_v && hist6 < hist6_v && hist7 < hist7_v && hist8 <
hist8_v && hist9 < hist9_v) {
#ifdef LEDTEST
 saw_red_light = 1;

77

#endif

#ifdef REDTEST
 for(x_min_temp = -35; x_min_temp < x_max_temp; x_min_temp++) {
 for(y_min_temp = -35; y_min_temp < y_max_temp; y_min_temp++) {
 temp_cbcr = *(filter + i - 2*(found_center + x_min_temp) -
2*(1920)*(y_min_temp) + 1); // cbcr
 temp_luma = *(filter + i - 2*(found_center + x_min_temp) -
2*(1920)*(y_min_temp)); // y

 if (temp_luma > 250) {
 (filter + i - 2(found_center + x_min_temp) -
2*(1920)*(y_min_temp) + 1) = 255; // cbcr
 (filter + i - 2(found_center + x_min_temp) -
2*(1920)*(y_min_temp)) = 0; // y
 }
 }
 }
#endif
 }
#endif
 }
 }
}
#endif

