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Abstract 

 This project focuses on real-time stoplight detection for advanced driver assistance system using 

a Field Programmable Gate Array (FPGA). The main algorithms include Color Filtration, Blob Detection, 

and Histogram Analysis.  In order to reduce the computational complexity of this process, the Color 

Filtration was to be accomplished by an FPGA while the more complicated Blob Detection and 

Histogram Analysis was to be accomplished on a microprocessor. The architecture is targeted on a Xilinx 

Zynq-7000 All Programmable SoC ZC702.  A system on chip (SoC) device was selected in order to 

maximize performance and allow easy transition from the FPGA and the embedded processor on the 

same device.  This implementation accurately detects stoplights and is able to alert the user through 

both audio and visual peripherals.    
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Executive Summary 

 Automobile use is an integral part of everyday life in modern society.  As more and more drivers 

have entered the roadways the number of injuries sustained from vehicle accidents has greatly 

increased.  A staggering amount of these injuries have been due to ignoring stoplights. Over the past 

years, many solutions have been suggested, but very few of these are inexpensive, accurate, and fast 

enough for real-time processing.  This project looks to address these issues through developing a system 

that is relatively inexpensive with real-time performance to assist drivers with stoplight detection in an 

automobile. 

 Accurately detecting stoplights is a challenging task due to many factors.  The largest of these 

factors is light pollution and false positives.  Light pollution can be caused by other street lights or 

sunlight causing obscurity of the stoplights in an image.  False positives are also a large problem due to 

many other red objects in the environment such as car tail lights, street signs, and other red entities.  

Due to these problems, a Histogram Analysis approach was developed to verify that an object in 

question was indeed a stoplight.  This process isolates possible stoplight candidates and takes a 

histogram of color values in the region.  From this analysis, many false positives can be removed 

because each object has its own unique color distribution.  Stoplights are fairly standard and were found 

to have the same histogram traits, which allowed them to be identified easily.  Color filtration and Blob 

Detection were used in order to find the possible regions of red lights.  This project attempts to use a 

System on Chip, or SoC, solution in order to perform these computations in real time.   

 Software implementation was first done in Matlab, which has built in support for Color 

Filtration, Blob Detection, and Histogram Analysis functions.  This simulated code was performed to 

prove the viability of the algorithm and to check its accuracy.  From there, the code was customized to 

meet other system requirements and the Blob Detection and Histogram Analysis were implemented in 
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C.  This allowed the software to work faster and be usable on the microprocessor.  This algorithm was 

tested using video streams recorded by dash board cameras driving around Worcester, MA.  The final 

project was able to accurately identify red lights at approximately eighteen frames per second. 

 Hardware implementation was done using the Xilinx 7000 ZC702 evaluation kit.  The algorithm 

was split into two major parts; basic filtration and advanced image analysis.  The basic filtration was the 

most computationally expensive part of the algorithm, due to it looking at every pixel in the image 

multiple times; therefore, it was implemented in Verilog with Xilinx ISE Design Tools to be performed by 

the field programmable gate array, or FPGA.  This system was tested by using a laptop connected to the 

board through a HDMI IN port on the board.  The laptop streamed the dash cams video to the system, 

which then displayed the processed video on a display through a HDMI OUT port.  Before the final 

output displayed, the project searched for and highlighted the stoplights.  There were also user 

peripherals that were added that activated when a stoplight was detected.  These included visual signals 

such as an LED and audio signals from a buzzer.  In the future, this project would be adapted to work 

with a HDMI camera rather than a laptop and would be a part of an all-encompassing vehicle vision 

detection device.  This project was meant to be just one of many parts to an advanced driver assistance 

system. 

  

  



11 
 

1. Introduction 

1.1. Stoplight Detection 

Stoplight detection is a problem that has been examined before for image processing.   With the 

rise of vehicle assistance systems, detecting stoplights is an obvious choice.  Many solutions have been 

presented, but very few of them do so in real time.  Vehicles move at high-speed in a variety of 

environments, so any solution that is presented must operate in real time with high accuracy in a variety 

of situations.   

There are thousands of accidents at intersections that cause damage or injuries every year.  In 

the United States alone from 2007-2011, there were an average of 751 deaths and 165,000 injuries due 

to drivers running stoplights (U.S. Federal Highway Administration, 2014).     

The major problem with creating a stoplight detection device is the speed at which it has to 

work.  Many factors play into whether an object is a stoplight or not, and the system has to analyze 

these and make decisions extremely quickly.  The average human reaction time is about 262 

milliseconds (Human Benchmark, 2015), which means that if a car is traveling at thirty miles per hour, it 

moves about ten feet in the time it takes someone to react.  Therefore, a system for driver assistance 

would need to work extremely fast in order to have a recognizable effect.   

There are also many problems with classifying stoplights.  Stoplights come in a variety of shapes 

and sizes.  There is also no standard area that stoplights must be placed on the road.  They can be 

directly ahead and above of the driver, to the side of the driver, or almost anywhere else in the driver’s 

field of view.  Light pollution also causes problems when classifying stoplights, as it saturates the color of 

the light which could cause a system to not register it.  Another problem is other lights in the area, such 
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as brake lights from cars or street lights on the road.  These lights can be confused as stoplights to a 

system with poor classification.  

1.2. FPGA/SoC Systems 

 Real time image processing is an extensive task that needs the right hardware to be 

implemented.   In recent studies, it has been proven that using a Field Programmable Gate Array (FPGA) 

is an efficient method of image processing, as opposed to using a microprocessor (Sparsh Mittal, 2008).  

An FPGA is an integrated circuit that is designed to be configured after manufacturing (Altera, 2015).  

Since the need for high speed performance has been established, the project cannot be run just on a 

processor because they are not fast enough (Sparsh Mittal, 2008).  As explained in Mittal’s journal 

article, real-time video rates of twenty five frames per second require about 33 million operations per 

second.  A microprocessor cannot complete this many operations in such a short time, but the FPGA can 

because of its ability to do parallel processing.  A study completed by National Instruments on the 

processing speed of FPGAs and microprocessors determined that an FPGA can deliver a solution many 

times the processing power per dollar in some applications (National Instruments, 2013).  Therefore, an 

FPGA was selected to be used for this system as they have been proven to be useful in image processing 

projects.   

 

Figure 1: Comparison of Processing Power - FPGA vs Microprocessor (National Instruments, 2013) 
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 FPGAs are extremely useful for tasks that need to be completed quickly.  Applications for FPGAs 

are written in the hardware language VHDL or Verilog, which are different from other languages such as 

C or Java.  Some FPGAs now come with an ARM processor.  These systems are called System on Chips 

(SoC) and this project was chosen to include one.  The benefits of a SoC are that it allows for a more 

customizable product because it gives extensive control over hardware, software, and I/O configuration 

(Xilinx Inc., 2015).  They also allow for an increased system performance and reduced power 

consumption.   

2. Algorithm 

 This section discusses the details of algorithms that were used to create the overall stoplight 

detection system.  It will explain how each algorithm works, as well as why it was chosen for this 

application through example.  The final implementation was based on simulations performed in Matlab, 

using the video and image processing toolboxes; however, due to different components of the algorithm 

being split between the hardware and software some functionality was modified in the final system.  

The procedures used consisted of basic image filters, such as color detection, and more advanced image 

processing techniques, such as blob detection. 

2.1. Basic Image Filters 

 Three basic image filters were used in this system to perform the task of preprocessing each 

frame for further use.  These basic filters performed simple tasks that were context free, meaning 

surrounding pixels did not matter, and required only discrete pixel values.  The three filters were used 

for color extraction, grayscale conversion, and color inversion. 
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2.1.1. Color Extraction 

 Color extraction is a commonly used image processing technique that separates sections or 

components of an image based on hue.  In the RGB color model shown in Figure 2, each pixel is 

composed of a 24-bit value.  This value is split into three bytes, with each byte representing the value of 

red, green, and blue light that additively composes the pixel’s color. 

 

Figure 2: RGB Color Scheme (Phanomeme) 

 The color filtering was performed by either passing or rejecting certain values in each of the 

three RGB composing bytes.  The appropriate passing bands were determined through Matlab 

simulations on static images, as shown in Figure 3 (See Appendix A for test code).  The GUI developed 

for this testing had six user editable fields.  These fields allowed the user to change the lower and upper 

pass band limits for each of the three RGB components.  The Matlab code would check the RGB 

components of each pixel, changing them to a value of 0 if they did not fall inside the specified pass 

band. 
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Figure 3: Matlab Color Extraction GUI 

2.1.2. Grayscale Conversion & Color Inversion 

The next basic filter in the system converted the color filtered image into its grayscale 

representation.  Grayscale is a color encoding scheme which contains only information on intensity.  This 

color structure is composed exclusively of shades of gray ranging from black, the weakest intensity, to 

white, the strongest.  The major benefit of grayscale is that each pixel value can be represented by a 

single byte, instead of the three byte structure the RGB encoding required.  This cuts the amount of 

processing that would need to be done later by 66% since a single byte now holds the relevant 

information that three bytes did before.  This conversion was performed using the Matlab function 

rgb2gray, which takes an image that uses the RGB color map and converts it to grayscale. 
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Figure 4: Grayscale Color Scheme (Think Silicon) 

 The major downside of grayscale is the loss of hue and the inability to recover the original RGB 

components.  This is not a downside for this application since the colors of interest were the only 

existing RGB components before this conversion, due to the prior color filter.   

 After the conversion to grayscale, the final basic filter converts the background black pixels to 

white.  The purpose of this conversion is for the blob detection that will be described later in this 

section.  To perform this conversion, each pixel value on the grayscale image is examined.  If the pixel is 

solid black it is changed to white.  This had been added to make the background more visually distinct 

during development, and was only used in the final implementation. 
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The final results of the basic filters are shown stage by stage in Figure 5.  Each of the basic filters 

requires a full pass over each pixel in the entire 1920 by 1080 frame.  Additionally, they are all 

computationally easy to perform.  Each basic filter requires single value comparisons and a single 

variable change. 

 

Figure 5: Basic Filters 

2.2. Blob Detection 

 Once the image was preprocessed, the next step was to determine the regions of interest 

through the use of blob detection.  A region of interest, or ROI, is an area of an image that has been 

identified for a specific purpose.  For this application, the ROIs were the areas of an image that could 

potentially be stoplights.  Blob detection is an image processing technique that is used to identify 

regions of an image that possess certain qualities compared to the surroundings.  A blob is a region of an 

image that has a common property. 
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 Matlab implements blob detection in the “regionprops” function.  This function takes an image 

and calculates sets of properties for each connected blob, or object, it finds.  To implement this in 

Matlab, a few additional side steps are required using the “regionprops” function.  The image was 

converted into a binary image using the grayscale value of 51 as the cutoff value.  This meant that each 

grayscale pixel that was greater than 51 in value was set to 0, and all others set to 1.  The “regionprops” 

function was used on the created binary image to find all of the blobs. 

 Additionally, for debugging purposes, the function “bwboundaries” was used to highlight the 

regions of interest.  The bounding boxes were determined from the binary image, however, the 

boundaries were drawn on the corresponding location in the original image, see Figure 6. 

 

Figure 6: Bounding Boxes on Original Image 

2.3. Image Histograms 

 The final stage in the algorithm was deciding if the identified ROIs were stop lights or not.  In the 

final implementation, a histogram analysis was used.  A histogram of an image is a representation of the 

distribution of pixel values.  The distribution is calculated by setting up a number of bins.  A bin stores 
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the number of times a pixel occurs in a set range of values.  Having a large number of bins increases 

accuracy for analysis at the cost of space in memory to store the necessary values.  For the simulation 

code, 256 bins were used, one for each pixel value on the entire grayscale spectrum.  Next, every pixel in 

each of the regions of interested were examined and classified into their corresponding bin.  To perform 

this task, the “imhist” function was used.  This function takes a grayscale image and calculates the 

histogram with 256 bins by default.  The results of examining a single frame of a video are shown in 

Figure 7. 

 

Figure 7: Example Histograms of Potential Stoplights 

 The next step in the histogram analysis was to determine what parameter checks were required 

to determine if the region was a stoplight or not.  It was observed in the original tests that stoplights 

exhibited a high concentration of grayscale values in the 50-100 range.  Additionally, they tended to 

include very few values below 50, as well as low intensity in the range of approximately 100 to 250.  To 

determine the stoplight characteristic cutoff values for each bin, a histogram with the average of 30 
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stoplights was produced.  The small sample size of 30 was chosen instead of a larger set because each 

stoplight had to be hand-picked from the data sets to ensure that only true stoplights were being 

factored into the histogram.  The results of this data collection, shown in Figure 8, indicated that the 

original observations on stoplight histograms held true.  There were no values fewer than 50 observed, a 

high concentration of values around 100, and a low concentration located approximately within 120 and 

250. 

 

Figure 8: Average Histogram of 30 Stoplights 

From the results of the 30 stoplight histogram, a brute force stoplight identification algorithm 

was created.  This algorithm would be used on each object that was found by the blob detection.  For 

the simulation code only 4 bins were used.  The number of bins was chosen since there were four 

distinct areas in the histograms.  Each bin was given a requirement based on previous observations of 

stoplight histogram characteristics.  The bins are summarized in Table 1-1. 
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Table 1-1: Matlab Simulation Histogram Bins 

Bin Grayscale Range Stoplight Requirement 

Hist0 0-50 <5 

Hist1 50-110 >100 

Hist2 110-240 <50 

Hist3 240-255 >35, < 75 

 

 The resulting algorithm was tested over three videos of night time driving.  An example of a 

single frame from one of these test videos is shown in Figure 9.  In this image, the ROIs are drawn on the 

original frame to the left.  It was observed that in this frame there were many blobs identified as 

possible stoplights.  These blobs consisted of two stoplights and some other stray red lights including the 

taillights of a distant car and crosswalk signals.  On the right hand side of this figure are the blobs that 

had been determined to be stoplights based on the histogram analysis.  The analysis not only identified 

that there were two stoplights, but also filtered out the non-stoplight blobs, thus removing false 

positives. 

 

Figure 9: Final Algorithm Testing Example 
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2.4. Additional Simulation Tests 

 There were numerous temporary simulation versions created to test the effectiveness of other 

image processing methods.  The goal of this testing was to find a way to increase the efficiency or 

accuracy of the overall algorithm.  This section will discuss many of the alternative approaches tested for 

each stage of the final implementation. 

2.4.1. Alternate Color Schemes 

Since the algorithm required a conversion to the RGB color scheme, tests were performed on 

the hue-saturation-value, or HSV, format to see if results were more accurate.  The HSV color scheme is 

a cylindrical-coordinates representation of the RGB format, as shown in Figure 10.  The hue holds color 

information, and is represented by an angle around the z-axis.  Saturation holds color intensity 

information, and is represented as the radial distance from the z-axis, or a radius within the HSV 

cylinder.  Lastly, value holds brightness information, and is represented as the z-value or height within 

the cylinder. 

 

Figure 10: HSV Color Scheme (Wikipedia) 
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The idea behind the algorithm was to identify blobs from the saturation value, since it was 

observed that red lights appeared as high intensity circles surrounded by a low intensity halo.  It was 

found that the identified blobs were no different than the results of the RGB testing, as shown in Figure 

11.  Due to this, the RGB algorithms were used since that format was readily available in the FPGA 

implementation that had already been designed. 

 

Figure 11: HSV Test Results 

2.4.2. Blob Detection Accuracy 

Before the blob detection was performed, one version of the code filled the “holes” inside the 

binary image.  A “hole” is a white region in a binary image completely surrounded by black.  This test 

was accomplished using the Matlab function “imfill”.  This was tested to see if the blob detection 

accuracy would increase with the holes of the binary image being filled.  Another version attempted to 

increase this accuracy by filtering regions of circular objects in the binary image.  This shape testing was 

performed with the Matlab function “strel” and “imclose”.  These functions would fill in the circular 

objects in the binary image to ensure that the blob analysis would find each stoplight.   After testing 
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with both of these methods, it was determined that they did not improve the accuracy in detecting the 

regions that were stoplights.   

These additional stages most likely did not help the final algorithm because the color filter 

already removed a significant amount of the unwanted sections of the image.  The remaining image 

consisted primarily of red lights and some noise.  Since some unwanted red lights such as taillights are 

circular on some vehicle models, the additional shape checking provided no additional benefit.  Filling in 

the holes did not increase accuracy since stoplights always retained their shape after the color filter in 

the video feeds tested.  These additional stages were dropped from the final implementation to reduce 

the amount of computation. 

2.4.3. Stoplight Identification 

 The final tests performed were to attempt to increase the accuracy of the stoplight verification.  

These tests consisted of adding additional requirements for a blob to be flagged as a stoplight.  The first 

requirement tested was eccentricity.  Eccentricity can be used as a measure of how circular an object is.  

Since stoplights should be circular, verifying that the eccentricity of a blob was between zero and one, 

meaning that the object was between a circle and eclipse in shape, was believed to increase the 

accuracy in stoplight identification.  It was found that there was no increased accuracy, most likely due 

to the same reasons as the shape testing done previously. 

 The other supplemental assessments to verify that an object was a stoplight attempted to 

increase the distance in which a stoplight could be identified.  Since the histogram approach was based 

on a discrete number of pixel values, stoplights that were far away, and thus being few pixels in size, 

would not be seen until the driver moved closer.  This test attempted to fix this by having the histogram 

requirements normalized by the area of the blob.  Due to the testing being done at 640 by 480 pixels at 

the time, this failed to increase accuracy since the stoplights were too small. 
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After testing with these methods, it was determined that the final results of the system was not 

affected, thus both additional stages were dropped from the final implementation to reduce the amount 

of computation. 

3. Hardware Design 

 In this project, a system was used that integrated both hardware and software solutions via a 

SoC system.  The hardware design was accomplished on a FPGA which allowed for real-time processing.  

The approach used various modules to receive an incoming 1080p video and convert it to a format that 

was suitable for the project.  Multiple filters are then applied to the image in order to attempt to isolate 

potential stoplights.  Specifically, a red color filter, grayscale filter, and inversion filter were used to set 

the image up for the next steps of the algorithm, most notably blob detection.  The hardware 

implementation was performed on a Xilinx ZC702 Evaluation Kit.  

3.1. FPGA Selection 

3.1.1 Altera DE1-SoC Development Kit 

 The first FPGA that was considered was the Altera DE1-SoC Development Kit.  This kit is built 

around the Altera SoC FPGA, which combines a Cortex-A9 processor with programmable logic to 

increase design flexibility (Altera, 2013).  It also includes Altera’s design tools such as Quartus II Design 

Software and the Qsys System Design Tool.  The DE1-SoC also boasts a variety of features including 1GB 

DDR3 SDRAM, 64MB SDRAM and an 800MHz processor.  The combination of the Altera Cyclone V FPGA 

and Cortex-A9 processor make this device a suitable candidate for a real-time embedded image 

processing project. 
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Figure 12: Altera DE1-SoC 

 The Quartus II Design Software that is included in the Altera DE1-SoC Development Kit is a FPGA 

integration tool.  This software enables analysis and synthesis of HDL designs, which allows developers 

to compile their projects, perform timing analysis, and simulate a design.   It also enables the developer 

to configure the target device with the program and load their project to the board (Altera, 2014).  In 

Figure 13, the Quartus II software can be seen.  The user interface includes the text window where files 

can be viewed, the command window where errors and messages can be seen, a project navigator that 

shows all the files in the project, and the compilation pane which allows compilation of the project and 

shows progress. 
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Figure 13: Quartus II User Interface 

 The Altera DE1-SoC Development Kit also comes with Qsys System Design Tools.  Qsys is a 

program that automatically generates logic to connect intellectual property (IP) functions and 

subsystems.  This makes the FPGA design process much easier and faster than.  In Figure 14, the Qsys 

user interface can be seen.  Qsys allows a developer to select IP cores that have been generated from 

the IP Catalog window.  Once an IP core has been selected, it has been added to the system and will 

appear in the System Contents window.  This window shows all included IP cores and their 

corresponding connections.  From there, a developer can connect them how they see fit to customize 

the project and then generate FPGA logic automatically based upon the system design.   
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Figure 14: Qsys User Interface 

 While all of these tools point towards an appropriate solution to a real-time embedded platform 

for stoplight detection, this was not actually the case.  While Quartus II and the DE1-SoC were suitable 

for the project, it was discovered that Qsys was not.  There is very little documentation on Qsys available 

to the public and what is available is not very detailed.  Due to this lack of readily accessible information, 

using Qsys in order to create a project that would accomplish the goal was an extremely difficult task.  

Therefore, a new board and development kit was sought out in order to streamline the development 

process of the project. 

3.1.2. Xilinx ZC702 Evaluation Kit 

 The Xilinx ZC702 Evaluation Kit provides developers with a complete platform including 

hardware, development tools, pre-verified reference designs, and IP.  It also includes the Xilinx ISE 

Design Suite, which is ideal for developing embedded systems on a Xilinx FPGA.  The Zynq 702 FPGA also 

boasts an ARM dual-core Cortex-A9 processor.  These components are complimented by a variety of 

features including a maximum frequency of 667 MHz, 85000 logic cells, 53200 LUTs, 560KB of block ram, 
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1 GB DDR3 DRAM, a variety of user GPIO, and compatibility with a variety of peripherals (Xilinx Inc., 

2014).  By combining the power of an ARM processor with FPGA programmability makes this device 

ideal for a real-time stoplight detection application. 

 

Figure 15: Xilinz ZC702 FPGA 

 The Zynq 702 FPGA can be programmed using tools from the Xilinx ISE Design Suite.  The first 

tool of the design suite is the Xilinx Platform Studio (XPS).  XPS allows developers to build, connect and 

configure embedded processor-based systems through the use of graphical design views and 

sophisticated wizards (Xilinx, Inc., 2015).  Much like Altera’s Qsys system, XPS makes the FPGA design 

process much simpler and faster.  However, XPS has much more documentation for image processing 

projects which makes it more of an ideal candidate for this project.  The user interface for XPS can be 
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seen below.  It is extremely similar to Qsys in that it has an IP catalog, all of the current IP cores in the 

system and their connections to other IP cores.  

 

Figure 16: XPS User Interface 

 Another tool that comes with the Xilinx ISE Design Suite is the Xilinx Software Development Kit 

(SDK).  The SDK functions in a similar manner to Eclipse in both functionality and appearance.  The user 

interface can be seen in Figure 17.  In the SDK, the developer can write code in C or C++ to the processor 

in order to accomplish complicated tasks.  The SDK generates header files for all of the port connections 

in the IP cores and all mapped pins on the board.  This allows the SoC to interact directly with the FPGA.  

Due to the easy to use design suite that accompanies the Xilinx ZC702 Evaluation Kit as well as the 

physical capabilities of the board, this platform was chosen to accomplish a real-time embedded 

stoplight detection system. 
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Figure 17: Xilinx SDK User Interface 

 

3.3. FPGA Block Design 

 Now that the board was selected to implement the project on, a general block diagram was 

developed.  The first steps in deciding on the hardware design came from a tutorial designed by Avnet 

Electronics to create an HDMI pass through (Avnet Electronics, 2013).  A pass through is a simple 

application in which an HDMI image is input and then output without any changes to a monitor or other 

display device.  In order to accomplish this, the Avnet HDMI Input/Output FMC Module was used.  This 

module provides high-definition video interfaces to baseboards and allows HDMI video sources to 

provide video content and HDMI output to display any FPGA driven video content (Avent Electronics, 
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2015).  The Avnet HDMI board was able to connect directly to the Xilinx ZC702 through one of its GPIO 

banks.   

 

Figure 18: Avnet HDMI Daughter Board Connected to Xilinx ZC702 

 The tutorial provided a block diagram for the pass through which was successfully implemented 

on the ZC702 using a laptop as the input and a monitor as the output.  That block diagram can be seen in 

the figure below.  This system was implemented using the Xilinx Design Suite, specifically XPS.  Two IP 

cores were used in this design; the HDMI input and HDMI output blocks.  An AXI I2C module was also 

implemented (not shown) which allowed the FMC-IMAGEON module to be manipulated.  The input and 

output blocks were interfaced to this module.  This test was the first step taken in the image processing 

project as it showed how to take in video content and view the content on a different monitor.  It also 

gave the basis for how to manipulate the video content even though it was not done in this tutorial. 

 

Figure 19: HDMI Pass Through Block Diagram 
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 After completing the HDMI pass through tutorial, the final system block design was designed.  It 

was built using the pass through tutorial as a base, but with more IP cores added to the system.  The 

total design can be seen in the figure below with the added modules inside of the red box.   

 

Figure 20: Proposed Block Diagram 

 The system begins similar to the pass through tutorial with the HDMI in block and 2AXI4S 

module.  This takes in the video content and configures it such that the ZC702 can integrate and 

manipulate it.  The next block that was added to the system was the YCbCr to RGB module.  There are 

two standard image formats that are commonly used; YCbCr and RGB.  YCbCr describes the luma, or 

light intensity, aspect of the image and the red-difference and blue-difference of the pixels.  HDMI uses 

YCbCr by default for images which means that the input video content is in this format.  RGB format 

breaks the pixels of the image into three channels representing the red content, green content, and blue 

content.  RGB is a much easier format to use for color extraction, which is one of the steps used in the 

algorithm, and therefore a conversion had to be made.  The conversion from YCbCr to RGB is fairly 

simple.  It consists of matrix mathematics on the three channels of the YCbCr, which is defined in Figure 

21. 
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Figure 21: YCbCr to RGB Conversion  

3.4. Color Filtration 

At this point, the video content has been converted to RGB format and it is ready to be 

manipulated in order to find stoplights.  The next module in the block diagram is the color filtration IP 

core.  This module is used to do red color extraction, gray scale conversion, and inversion.  The first step 

is color extraction.  The goal of the project is to see red stoplights and therefore the only pixels that 

matter are those that are red.  The video content is passed into the module and then each pixel is 

examined to see if its RGB values are within a specific range of values.  Based upon the original Matlab 

testing, red lights were considered to be any pixels that had an R value greater than 150, a G value less 

than 110, and a B value less than 110.  If a pixel meets these specifications, it is left as it was.  Otherwise 

the pixel is set to black, which is a value of zero for all R, G, and B values.   

 The next step of the color filtration module is the grayscale conversion.  This takes in the video 

image that is all red and black pixels and converts it to a grayscale image.  This is done in preparation for 

the histogram analysis that occurs later in the algorithm.  While in RGB format, each pixel has three 

channels that are each 8 bits, or 24 bits in total.  However, when in grayscale format each pixel only has 

one channel that is 8 bits long.  If the original RGB image was used later in the algorithm for histogram 

analysis, it would take three times as long to complete compared to the grayscale version since there 

are three channels to look at instead of just one.  In order to accomplish the grayscale conversion, the 

following equation is used: 

𝐺𝑟𝑎𝑦 = (𝑅𝑒𝑑 ≫ 2) + (𝑅𝑒𝑑 ≫ 5) + (𝐺𝑟𝑒𝑒𝑛 ≫ 1) + (𝐺𝑟𝑒𝑒𝑛 ≫ 4) + (𝐵𝑙𝑢𝑒 ≫ 4) + (𝐵𝑙𝑢𝑒 ≫ 5) 
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In the above equation, Red corresponds to the red channel, Green corresponds to the green 

channel, and Blue corresponds to the blue channel.  The function was performed on every pixel in the 

frame in order to achieve a grayscale image that will be suitable for histogram analysis.   

 The last step in the color filtration module was to invert the image.  During the blob detection 

step of the algorithm, it is important for there to be a sharp contrast between what could potentially be 

blobs and what is not.  This is to make sure that the algorithm picks up on all of the potential stoplights.  

Therefore, it was decided that making the background pixels white instead of black would be better for 

contrast.  In order to accomplish this conversion, each pixel in the image was looked at to determine if it 

was black or not.  If the pixel was black, it was changed to white.  Otherwise, it was left as the grayscale 

value that it was at.   

3.5. Handoff to Processor 

 The video content is now fully pre-processed on the FPGA and is ready to be passed to the 

microprocessor for more complicated algorithms such as blob detection and histogram analysis.  For this 

task, the next IP core in the design is the VDMA module.  This block acts as a video buffer and sends the 

video content to external memory.  This is important because it allows the input video and output video 

to run at different clock cycles and allows the microprocessor to access the video content after all of the 

color filtration has been done (Avnet Electronics, 2013). 

4. Software Design 

This section describes the software developed to run on the SoC.  The C code used in the final 

design was developed using the Matlab algorithms as a basis.  The software components of the system 

consisted of blob detection and the histogram analysis. 
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4.1. Blob Detection Algorithm 

 The blob detection algorithm used in the Matlab simulations could not be directly ported over 

to the SoC, so an implementation in C had to be designed.  There are numerous ways to perform blob 

detection, however many of these require passing through the whole image multiple times.  Since the 

SoC computes significantly slower than the FPGA it was already the system bottleneck.  Due to this, the 

algorithm used needed to be as computationally simple as possible. 

 The code used in the final design was based on searching for areas of white surrounded by solid 

grayscale areas, shown in Figure 22 by examining transitions between the white and nonwhite objects.  

Each frame was processed pixel by pixel, starting in the top left corner moving to the right edge before 

going to the next consecutive row.  Three flags were used in the implementation.  One was used to 

make the first entry into a grey region, entry_flag, a second was used to mark the second entry into a 

grey region, reentry_flag, and lastly a flag to mark that the first entered gray region has been exited, 

exit_flag.   

 

Figure 22: Example Blob to Detect 
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The algorithm was structured as a finite state machine, or FSM, with four states.  The states 

were named based upon which transition they would represent: white_to_white, white_to_grey, 

grey_to_grey, and grey_to_white.  A broad overview of the FSM and its transitions can be seen in Figure 

22. 

 

Figure 23: Finite State Machine Transitions 

The default state was white_to_white.  When a nonwhite pixel was found the FSM would 

transition to the white_to_grey state.  Additionally, if the entry_flag was set, meaning that the current 

pixel was possibly in a white region surrounded by a grayscale region, the distance between the last gray 

to white transition and the current pixel were compared.  If the distance between the last transition and 

the current point was too large, the entry_flag was unset.  The purpose of this was to reset the FSM 

when it was believed that the current white area was not surrounded by gray.  

In the grey_to_grey state each pixel is continued to be read until a white pixel is encountered.  

When this happens the FSM transitions into the grey_to_white state. 

In the grey_to_white state the FSM checks if the entry_flag was set.  If the entry_flag is set and 

the reentry_flag is not set the exit_flag is set, signifying that the next pixel is possibly surrounded by a 
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region of grayscale.  The FSM transitions when the next pixel is read to the grey_to_white or 

grey_to_grey state, based on the matching pixel value.  

The final state in the FSM was the white_to_grey state.  The first time this state is entered the 

entry_flag is set to mark that entry into a blob has occurred.  The next time this state is entered, if the 

entry_flag is still set, then it is reset and the reentry_flag is set.  The FSM transitions to the 

grey_to_white or grey_to_grey state if the next pixel read is white or nonwhite respectively.  If this state 

is entered and the reentry_flag is set the system first assumes that a blob was found.  To verify this, the 

distance between the current white to grey, and previous grey to white transition is calculated.  If this 

value is within an expected value, the horizontal center point is calculated.  From this horizontal center 

point, the algorithm would check above and below to determine if the region was surrounded on all four 

sides by grayscale values.  This was performed by checking the pixels in the frame buffer in the same 

column, but adjacent rows.  If there were upper and lower boundaries within an accepted range the 

center point was marked by changing the pixel color. 

4.1.1. Blob Detection Example 

 This section walks through the process of detecting a blob in the frame shown in Figure 24. 
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Figure 24: Blob Detection Example Frame 

The system would step through pixel by pixel, remaining in the white_to_white state until it hit 

the first grayscale values, which in this frame would be the top few pixels of the first stoplight.  During 

this transition, the entry_flag would be set.  The system would stay in the grey_to_grey state for a few 

cycles as illustrated in Figure 25. Upon leaving the gray region, the exit_flag would be set as well as a 

value, leftside_x, which is used to remember when the region was exited.  In the white_to_white state, 

after 100 white pixels, the entry_flag, exit_flag, and leftside_x are all reset since this is too far away from 

the grayscale region to be a stoplight.  This same procedure would repeat for the next few rows of 

processing the frame. 
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Figure 25: Processing of Grayscale Values Not Surrounded by A White Region 

 The first time a different path in the algorithm is taken, occurs at the point illustrated in 

Figure26.  In this situation, a white region is found which is bounded by grayscale values to both the left 

and right hand side.  The next step in the algorithm was to determine the center point.  This was 

calculated by simply subtracting the rightside_x by the leftside_x value and dividing by two.  This would 

give the distance, in pixels, to the centerpoint from the current point. 
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Figure 26: Processing of White Region Not Fully Surrounded by Grayscale, Horizontal 

 From this horizontal center point, the algorithm would check for vertical bounding by grayscale, 

as shown in Figure27.  In this case, a lower bounding are is found, and a variable, down_counter, is set to 

remember this location.  Additionally in this case, an upper bound is not found.  After 100 pixels of 

searching upwards, it is determined that this region is not bounded by grayscale values, and therefore is 

not a stoplight. 
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Figure 27: Processing of White Region Not Fully Surrounded by Grayscale, Vertical 

 The final possibility in processing a blob is detecting a stoplight.  Similar to the previous 

example, the system searches for a region where it can find a horizontally bounded region of white.  In 

the event that a vertical center point is found, the vertical center point would be marked by changing 

the cbcr value, to a non-grayscale value.  The cbcr value can be changed without affecting the rest of the 

image since only the luma value is used for the transition detection.  This is because the grayscale 

representation is only shown in luma values, with the cbcr value constant since the color does not 

change.  As the system continues processing, if a horizontal center point is found later on, where the 

cbcr value was changed to a non-grayscale value, it is declared to be the centroid of a blob, and the 

histogram algorithm is performed from this centroid. 

4.2. Histogram Decision Algorithm 

Once a center point was found, the region was considered to be a blob, and thus possibly a 

stoplight.  The final part of the algorithm was the histogram analysis to determine whether or not the 

detected blobs were stoplights.  First, a box was created with a common centroid to the blob that had 
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been found.  Next, each pixel in the box was examined and classified into one of the bins.  When all 

pixels had been surveyed each bin was compared to a set of requirements that had been experimentally 

found to characterize stoplights.  By increasing the bins, the accuracy was significantly increased from 

the initial Matlab simulations.  The final requirements are provided in Table 4-1. 

Table 4-1: Red Light Histogram Identification 

Region Grayscale Range Stoplight Requirement 

Hist0 0-25 <5 

Hist1 26-50 <5 

Hist2 51-75 <35 

Hist3 76-100 <200 

Hist4 101-125 >25 

Hist5 126-150 >20 

Hist6 151-175 <30 

Hist7 176-200 <5 

Hist8 201-225 <5 

Hist9 226-250 <5 

 

5. System Output 

 After the processor is completed doing blob detection and histogram analysis, the system knows 

whether or not there is a stoplight in view, but the user does not.  Therefore, the user must be alerted in 

some way as to whether there is a stoplight or not in front of them.  Two different methods of output 
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were suggested; video output through the HDMI output module and peripheral output that includes an 

audio buzzer and warning lights. 

5.1. Video Output  

 The first method of user output that was explored was using video output.  This would utilize 

the HDMI out module from the HDMI pass through tutorial to show where stoplights were on a monitor.  

This was done using a few IP cores, which can be seen in the block diagram in Figure 20.  The first IP core 

was the RGB to YCbCr module.  Much like the YCbCr to RGB module that was used on the incoming 

video content, this module is used to convert the format of the image.  At this point, after the image has 

been processed by the ARM processor, its format is in RGB.  However, in order to output the image 

through an HDMI output module, the format needs to be in YCbCr.  Luckily, this conversion is rather 

simple and involves matrix multiplication much akin to the conversion from RGB to YCbCr.  The formula 

can be seen in Figure 28. 

 

Figure 28: RGB to YCbCr Conversion 

 At this point, the content gets passed to the AXI4S2 and HDMI output module.  These are the 

same as the modules used in the pass through tutorial.  An HDMI monitor can then be connected to the 

HDMI out port and the filtered image with stoplights highlighted can be seen, as illustrated in Figure 30.   

5.2. Peripheral Output 

 Along with video output, it was also decided that peripheral output would be useful.  The video 

output is a great asset when debugging the system; however in actual application it would be less than 

ideal.  Every car does not come equipped with an HDMI monitor to plug into and even if they do, a 
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driver should not have to stare at a monitor to know where a stoplight is.  The video output also shows 

the exact position of stoplights, but a driver only worries about whether they are there, not their exact 

location in front of them.   As such, two types of peripheral output were suggested; a visual indication 

and an audio indication. 

 A visual indication is useful in a system such as this because it acts as a binary on or off; the 

system either sees a stoplight or it does not.  This can be accomplished with a simple LED and one of the 

GPIO pins on the Xilinx ZC702 board.  When the system sees a stoplight, it sets the pin to high and the 

LED turns on.  Otherwise, the pin is set to low and the LED turns off.  The LED could be set in the 

dashboard of a vehicle so that it is in the driver’s field of view at all times and be a useful indicator.  

However, if the driver is drowsy or not paying attention, a visual indicator may not be enough to alert 

them to the presence of a stoplight.  In this case, a different kind of peripheral device could be used; an 

audio device. 

 An audio device, such as a buzzer, would work much in the same way as the LED.  It would be 

attached to one of the Xilinx ZC702 board’s GPIO pins and set to high when the system sees a stoplight.  

However, this method would be much more useful to a driver who is not paying attention.  A loud noise 

is much more likely to get someone’s attention than a light turning on.  Therefore, an audio buzzer is the 

preferred peripheral device to use with this system in order to alert a driver to an incoming stoplight. 

5.2.1 Circuit Description 

 In order to test the peripheral devices mentioned above, a test circuit was developed which can 

be seen in Figure 29.  The GPIO pin from the board is attached to VSIG and V+ is a 5V supply from the 

board.  As can be seen, the signal voltage attaches to an analog switch that, when high, sends 5V to the 

system.  This voltage is used to power the visual aid (LED) and also a 555 timer.  This 555 timer then 

supplies an output voltage, VOUT.  This output voltage is attached to an audio peripheral, the buzzer.  
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There is a potentiometer at R6 as well which functions as a volume control.  This allows the user to turn 

the volume up or down depending on the situation.  The volume control is also useful for debugging 

purposes. 

 

Figure 29: Peripheral Schematic 

6. Closing Remarks 

6.1. Final Results 

The final system was able to successfully identify stoplights in 13 minutes and 12 seconds of test 

video collected from driving the streets of Worcester, Massachusetts.  All test video was recorded with a 

dashboard mounted Samsung Galaxy S2 camera.  Additionally, test video was only collected in a single 

vehicle, a 2003 Honda Accord.  The results for different recording sources and vehicles are unknown. 
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Figure 30: Final Results Debug Screen Capture 

6.2. Future Work 

6.2.1. FPGA Only Implementation 

One desired change to the system would be to port over the C code to VHDL or Verilog so that 

the entire system could run on the FPGA.  The purpose of this would be to greatly increase the speed in 

which the system processes the frames.  In the Matlab simulations, it was determined that blob 

detection took the longest time, roughly 67% of the total execution time per frame, as illustrated in 

Figure 31.  Since blob detection was performed on the SoC in the final implementation, it was clear that 

this was the system’s processing bottleneck.  While the implementation was still able to alert the driver 

of stoplights faster than the average human reaction time, a decrease in blob detection execution time, 

would allow an increased amount of time for a more accurate and computationally intensive stoplight 

identification algorithm. 

 

Figure 31: Matlab Simulation Single Frame Execution Profile 
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6.2.2. Support Vector Machine 

 Another area to be researched would be to use a support vector machine (SVM) for the 

classification of stoplights.  A SVM is based upon the concept of decision planes in order to separate 

objects that have different class memberships.  An SVM is “trained” by providing it with many examples 

of different objects that fall into different categories.  After this, when a SVM is provided with a new 

case of an object, it makes a calculated guess based upon its training as to what to classify the new 

object as (StatSoft Inc., 2015).  In this case, the object classification would fall into two categories; a 

stoplight and a non-stoplight.  The SVM could be trained by providing it examples of images that are 

stoplights and could then be implemented on the device.  This would provide much more accurate 

results than the histogram analysis that was done in this project. 

6.2.3. Daytime Functionality 

Another area to investigate for future work is daytime stoplight detection.  While nighttime 

detection was deemed more important due to drowsy or distracted drivers, there are still a large 

amount of daytime accidents caused by drivers missing stoplights.  It was found that the algorithm used 

was not acceptable in daylight conditions.  One approach to solve this problem would be to add a 

daylight sensor to the system, and implement a different algorithm for day and nighttime.  Another 

approach would be to develop a completely new algorithm that would successfully identify stoplights in 

both light and dark conditions.  Since many automobiles already have daylight sensing technology, 

currently used for automatically turning on headlights when it is dark, the former approach would most 

likely be the best solution. 
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Figure 32: Daylight Color Filter Testing 

 

6.2.4. Interfacing with Other Driving Assistance Technologies 

 The final desired future work for this project is implementation with other driver assistance 

technologies.  One technology that could be used to increase the accuracy of the stoplight detection is 

lane detection.  The current implementation is unable to differentiate between stoplights in different 

lanes.  Due to this, for multilane roads, false positives are possible since different lanes may have 

different signals active at any given time.  By combining lane detection and stoplight detection, it could 

be possible to limit detection only to the appropriate lane stoplight. 

 Another technology that would work well with stoplight detection is range finding.  Currently, 

24GHz and 77GHz radars are used in driver assistance systems.  The 24GHz systems are used for close 

range detection including parking aides and blind spot detection.  The 77GHz systems are used for long 
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range detection purposes including adaptive cruise control and assisted braking.  By combining this 

technology with stoplight detection, the vehicle could have the capability of braking for a stoplight if the 

driver fails to do so within safe stopping distances based on the speed they were traveling. 

 An additional automotive technology to integrate with would be automatic braking systems.  

Currently, these systems are used for collision avoidance and adaptive cruise control.  Current 

technology has the ability to scan for large incoming objects with radar, laser, or visual technologies, and 

begin to brake without input from the driver (About.com, 2015).  The addition of a stoplight detection 

system would allow for preventing automobiles from running through stoplights instead of solely large 

objects it can track. 
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Appendix A: Matlab Color Extraction GUI 

% Color filter GUI 
function colorseparationgui(image) 
f = figure('Units', 'normalized', 'Position', [1/3, 1/3, 1/3, 1/3]);    % 

create GUI figure 
set(f, 'Name', 'GUI for Color Filtering');  % set GUI name 
set(f, 'NumberTitle', 'off'); 

  
% set default values 
rlimit = 230; 
blimit = 0; 
glimit = 0; 
rhigh = 255; 
ghigh = 240; 
bhigh = 240; 

  
colorFilter(image,rlimit,blimit,glimit,rhigh,bhigh,ghigh);  % run color 

filter 

  
% add static text fields 
BF = uicontrol('Style', 'text', 'Units', 'normalized',... 
    'Position', [0.7, 0.4, 0.1, 0.1], 'String', 'Upper Limit',... 
    'BackgroundColor', [.8 .8 .8]); 
BF = uicontrol('Style', 'text', 'Units', 'normalized',... 
    'Position', [0.8, 0.4, 0.1, 0.1], 'String', 'Lower Limit',... 
    'BackgroundColor', [.8 .8 .8]); 
BF = uicontrol('Style', 'text', 'Units', 'normalized',... 
    'Position', [0.5, 0.1, 0.1, 0.1], 'String', 'Red',... 
    'BackgroundColor', [.8 .8 .8]); 
BF2 = uicontrol('Style', 'text', 'Units', 'normalized',... 
    'Position', [0.5, 0.2, 0.1, 0.1], 'String', 'Blue',... 
    'BackgroundColor', [.8 .8 .8]); 
BF3 = uicontrol('Style', 'text', 'Units', 'normalized',... 
    'Position', [0.5, 0.3, 0.1, 0.1], 'String', 'Green',... 
    'BackgroundColor', [.8 .8 .8]); 

  
% add editable fields 
BF = uicontrol('Style', 'edit', 'Units', 'normalized',... 
    'Position', [0.8, 0.1, 0.1, 0.1], 'String', '240', ... 
    'BackgroundColor', [.9 .9 .9],... 
    'Callback', {@BF_Callback_low}); 
BF = uicontrol('Style', 'edit', 'Units', 'normalized',... 
    'Position', [0.7, 0.1, 0.1, 0.1], 'String', '255', ... 
    'BackgroundColor', [.9 .9 .9],... 
    'Callback', {@BF_Callback_high}); 
BF2 = uicontrol('Style', 'edit', 'Units', 'normalized',... 
    'Position', [0.8, 0.2, 0.1, 0.1], 'String', '200', ... 
    'BackgroundColor', [.9 .9 .9],... 
    'Callback', {@BF2_Callback_low}); 
BF2 = uicontrol('Style', 'edit', 'Units', 'normalized',... 
    'Position', [0.7, 0.2, 0.1, 0.1], 'String', '255', ... 
    'BackgroundColor', [.9 .9 .9],... 
    'Callback', {@BF2_Callback_high}); 
BF3 = uicontrol('Style', 'edit', 'Units', 'normalized',... 
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    'Position', [0.8, 0.3, 0.1, 0.1], 'String', '200', ... 
    'BackgroundColor', [.9 .9 .9],... 
    'Callback', {@BF3_Callback_low}); 
BF3 = uicontrol('Style', 'edit', 'Units', 'normalized',... 
    'Position', [0.7, 0.3, 0.1, 0.1], 'String', '255', ... 
    'BackgroundColor', [.9 .9 .9],... 
    'Callback', {@BF3_Callback_high}); 

  
% callback function that changes the plot 
    function BF_Callback_low(hObject, handles) 
        user_entry = str2double(get(hObject, 'string')); 
        if isnan(user_entry) 
            errordlg('You must enter a numeric value','Bad Input','modal') 
            uicontrol(hObject); return; 
        end 
        % Proceed with callback... 
        rlimit = user_entry; 
        colorFilter(image,rlimit,blimit,glimit,rhigh,bhigh,ghigh); 
    end 

  
    function BF_Callback_high(hObject, handles) 
        user_entry = str2double(get(hObject, 'string')); 
        if isnan(user_entry) 
            errordlg('You must enter a numeric value','Bad Input','modal') 
            uicontrol(hObject); return; 
        end 
        % Proceed with callback... 
        rhigh = user_entry; 
        colorFilter(image,rlimit,blimit,glimit,rhigh,bhigh,ghigh); 
    end 

  
    function BF2_Callback_low(hObject, handles) 
        user_entry = str2double(get(hObject, 'string')); 
        if isnan(user_entry) 
            errordlg('You must enter a numeric value','Bad Input','modal') 
            uicontrol(hObject); return; 
        end 
        % Proceed with callback... 
        blimit = user_entry; 
        colorFilter(image,rlimit,blimit,glimit,rhigh,bhigh,ghigh); 
    end 

  
    function BF2_Callback_high(hObject, handles) 
        user_entry = str2double(get(hObject, 'string')); 
        if isnan(user_entry) 
            errordlg('You must enter a numeric value','Bad Input','modal') 
            uicontrol(hObject); return; 
        end 
        % Proceed with callback... 
        bhigh = user_entry; 
        colorFilter(image,rlimit,blimit,glimit,rhigh,bhigh,ghigh); 
    end 

  
    function BF3_Callback_low(hObject, handles) 
        user_entry = str2double(get(hObject, 'string')); 
        if isnan(user_entry) 
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            errordlg('You must enter a numeric value','Bad Input','modal') 
            uicontrol(hObject); return; 
        end 
        % Proceed with callback... 
        glimit = user_entry; 
        colorFilter(image,rlimit,blimit,glimit,rhigh,bhigh,ghigh); 
    end 

  
    function BF3_Callback_high(hObject, handles) 
        user_entry = str2double(get(hObject, 'string')); 
        if isnan(user_entry) 
            errordlg('You must enter a numeric value','Bad Input','modal') 
            uicontrol(hObject); return; 
        end 
        % Proceed with callback... 
        ghigh = user_entry; 
        colorFilter(image,rlimit,blimit,glimit,rhigh,bhigh,ghigh); 
    end 
end 
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Appendix B: Matlab Implementation 

% Final simulation Matlab code. 
% Note: All test code and debugging code has been removed 
% Purpose: Processes a single frame for stoplight detection 
% Input: RGB frame 
% Output: Outputs 1 if stoplight detected, else 0 

  
function out =  colorseparation640exetime(image) 
out = 0;    % initialize output to 0, meaning no stoplight detected by 

default 
redBand = image(:,:,1); % create vector with only the red band of the RGB 
greenBand = image(:,:,2);   % create vector with only the green band of the 

RGB 
blueBand = image(:,:,3);    % create vector with only the blue band of the 

RGB 

  
redMask = (redBand > 149);  % create vector for red color filtering 
greenMask = (greenBand < 110);  % create vector for green color filtering 
blueMask = (blueBand < 110);    % create vector for blue color filtering 

  
redobjectsmask = uint8(redMask & greenMask & blueMask); % create a color 

filter mask 

  
maskedrgb = uint8(zeros(size(redobjectsmask))); % initalize an empty vector 
maskedrgb(:,:,1) = redBand .* redobjectsmask;   % filter the red component 
maskedrgb(:,:,2) = greenBand .* redobjectsmask; % filter the green component 
maskedrgb(:,:,3) = blueBand .* redobjectsmask;  % filter the blue component 

  
binaryImage = ~im2bw(maskedrgb, 0.2);   % create binary image for blob 

detection 

  
blobMeasurements = regionprops(binaryImage, 'Area','BoundingBox');  % perform 

blob detection, calculate area and bounding boxes 

  
numberOfBlobs = size(blobMeasurements, 1);  % calculate the number of blobs 

found 

  
for k = 2:1:numberOfBlobs   % for each blob 
    if blobMeasurements(k).Area > 10    % if the blob's area is greater than 

10 pixels 
        thisBlobsBoundingBox = blobMeasurements(k).BoundingBox;  % get the 

corners of this blob 

         
        % extend the blob size by 4 in each direction 
        thisBlobsBoundingBox(1) = thisBlobsBoundingBox(1) - 4; 
        thisBlobsBoundingBox(2) = thisBlobsBoundingBox(2) - 4; 
        thisBlobsBoundingBox(3) = thisBlobsBoundingBox(3) + 8; 
        thisBlobsBoundingBox(4) = thisBlobsBoundingBox(4) + 8; 

         
        subImage = imcrop(image, thisBlobsBoundingBox); % crop out the blob 

region from the original frame 

         
        temp = rgb2gray(subImage);  % convert the cropped image to grayscale 
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        hist = imhist(temp);    % create the histogram of the cropped image 
        part1 = sum(hist(1:50));    % sum up the values for bin1 
        part2 = sum(hist(90:110));  % sum up the values for bin2 
        part3 = sum(hist(151:220)); % sum up the values for bin3 
        part4 = sum(hist(241:255)); % sum up the values for bin4 

         
        % stoplight identification parameters 
        if ((part1 < 5) && (part2 > 100) && (part2 > part4) && (part3 > 0) && 

(part4 > 0) && (part2 > part3)) 
            out = 1; % stoplight detected, set output 
        end % end stoplight identification 
    end % end if area too small 
end % end this blob testing 
end % end function 
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Appendix C: Color Filtration – Verilog 

module Color_Filter ( 
 input   clk, 
 input   reset, 
 input  [7:0] oVGA_Red, 
 input  [7:0]  oVGA_Green, 
 input   [7:0] oVGA_Blue, 
 output reg [23:0] filtered_color); 
  
 //temp channels for color extraction 
 reg [7:0] filtered_Red; 
 reg [7:0] filtered_Green; 
 reg [7:0] filtered_Blue; 
  
 //temp channels for grayscale conversion 
 reg [7:0] greyscale_Red; 
 reg [7:0] greyscale_Green; 
 reg [7:0] greyscale_Blue; 
  
 //temp channels for black -> white conversion 
 reg [7:0] updated_greyscale_Red; 
 reg [7:0] updated_greyscale_Green; 
 reg [7:0] updated_greyscale_Blue; 
  
 //values for color extraction 
 parameter redFilterValue = 150; 
 parameter greenFilterValue = 110; 
 parameter blueFilterValue = 110; 
  
 parameter white = 8'b11111111; 
  
 //filter out all color that isn't red 
 always @ (posedge clk) begin 

filtered_Red <= (oVGA_Red >= redFilterValue && oVGA_Green <= greenFilterValue &&   
   oVGA_Blue <= blueFilterValue) ? oVGA_Red : 0; 
  filtered_Green <= (oVGA_Red >= redFilterValue && oVGA_Green <= greenFilterValue &&  
   oVGA_Blue <= blueFilterValue) ? oVGA_Green : 0; 
  filtered_Blue <= (oVGA_Red >= redFilterValue && oVGA_Green <= greenFilterValue &&   
   oVGA_Blue <= blueFilterValue) ? oVGA_Blue : 0; 
 end 
  
 //RGB->Greyscale 
 always @ (posedge clk) begin 
  greyscale_Red <= (filtered_Red>>2) + (filtered_Red>>5) + (filtered_Green>>1) +   
   (filtered_Green>>4) + (filtered_Blue>>4) + (filtered_Blue>>5); 
  greyscale_Green <= (filtered_Red>>2) + (filtered_Red>>5) + (filtered_Green>>1) +   
   (filtered_Green>>4) + (filtered_Blue>>4) + (filtered_Blue>>5); 
  greyscale_Blue <= (filtered_Red>>2) + (filtered_Red>>5) + (filtered_Green>>1) +   
   (filtered_Green>>4) + (filtered_Blue>>4) + (filtered_Blue>>5); 
 end 
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 //Changes all greyscale values below 51 to white (black -> whtie) 
 always @ (posedge clk) begin 
  updated_greyscale_Red = (greyscale_Red < 51) ? white : greyscale_Red;  
  updated_greyscale_Green = (greyscale_Green < 51) ? white : greyscale_Green;  
  updated_greyscale_Blue = (greyscale_Blue < 51) ? white : greyscale_Blue;  
 end 
  
 //appends the three channels together to be the output 24 bit image data 
 always @ (posedge clk) begin 
  filtered_color <= {updated_greyscale_Red, updated_greyscale_Blue, updated_greyscale_Green}; 
 end 
 
endmodule  
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Appendix D: Frame Buffer Initialization 

#include <stdio.h> 
#include "platform.h" 
#include "fmc_imageon_hdmi_framebuffer.h" 
 
 
#include "xgpiops.h" 
#include "xparameters.h" 
 
 
fmc_imageon_hdmi_framebuffer_t demo; 
void print( const char *ptr); 
 
int main(){ 
 
 init_platform(); 
  
 //initialize framebuffer 
 demo.uBaseAddr_IIC_FmcImageon = XPAR_FMC_IMAGEON_IIC_0_BASEADDR; 
 demo.uDeviceId_VTC_HdmiiDetector = XPAR_V_TC_0_DEVICE_ID; 
 demo.uDeviceId_VTC_HdmioGenerator = XPAR_V_TC_1_DEVICE_ID; 
 demo.uDeviceId_VDMA_HdmiFrameBuffer = XPAR_AXI_VDMA_0_DEVICE_ID; 
 demo.uBaseAddr_MEM_HdmiFrameBuffer = XPAR_DDR_MEM_BASEADDR + 0x10000000; 
 demo.uNumFrames_HdmiFrameBuffer = XPAR_AXIVDMA_0_NUM_FSTORES; 
 fmc_imageon_hdmi_framebuffer_init( &demo ); 
 
 cleanup_platform(); 
 return 0; 
} 
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Appendix E: Blob Detection/Histogram Analysis Algorithm 

#include <stdio.h> 
#include "xgpiops.h" 
#include "xparameters.h" 
#include "fmc_imageon_hdmi_framebuffer.h" 
 
#define offset 0x01000000 
#define HISTTEST 1 //undefine to check histogram values in candidate regions 
#define REDTEST 1 //define to draw box around stoplights 
//#define SINGLELIGHT 1 //define in order to only look for one stoplight instead of all 
#define LEDTEST 1 //define to use peripherals 
 
#define PINNUMBER 11 //GPIO pin number for peripherals 
 
#define hist0_v 5 //less than 
#define hist1_v 5 //less than 
#define hist2_v 35 //5 //less than 
#define hist3_v 25 // 40 //greater than 
#define hist3_v_high 200 //less than 
#define hist4_v 20//100 //greater than 
#define hist5_v 30 //less than 
#define hist6_v 5 //less than 
#define hist7_v 5 //less than 
#define hist8_v 5 //less than 
#define hist9_v 5 //less than 
 
unsigned char saw_red_light = 0; 
 
#ifdef SINGLELIGHT 
unsigned char check_vertical_center_point(unsigned int found_center,  unsigned int extra, Xuint8 *filter, 
 unsigned int i, unsigned char cbcr, unsigned char luma, unsigned int x, unsigned int y, XGpioPs my_Gpio); 
#endif 
#ifndef SINGLELIGHT 
void check_vertical_center_point(unsigned int found_center,  unsigned int extra, Xuint8 *filter, 
  unsigned int i, unsigned char cbcr, unsigned char luma, unsigned int x, unsigned int y, XGpioPs my_Gpio); 
#endif 
 
Xuint8 fmc_imageon_hdmii_edid_content[256] = 
{ 
  0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 
  0x06, 0xD4, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 
  0x00, 0x16, 0x01, 0x03, 0x81, 0x46, 0x27, 0x78, 
  0x0A, 0x32, 0x30, 0xA1, 0x54, 0x52, 0x9E, 0x26, 
  0x0A, 0x49, 0x4B, 0xA3, 0x08, 0x00, 0x81, 0xC0, 
  0x81, 0x00, 0x81, 0x0F, 0x81, 0x40, 0x81, 0x80, 
  0x95, 0x00, 0xB3, 0x00, 0x01, 0x01, 0x02, 0x3A, 
  0x80, 0x18, 0x71, 0x38, 0x2D, 0x40, 0x58, 0x2C, 
  0x45, 0x00, 0xC4, 0x8E, 0x21, 0x00, 0x00, 0x1E, 
  0xA9, 0x1A, 0x00, 0xA0, 0x50, 0x00, 0x16, 0x30, 
  0x30, 0x20, 0x37, 0x00, 0xC4, 0x8E, 0x21, 0x00, 
  0x00, 0x1A, 0x00, 0x00, 0x00, 0xFC, 0x00, 0x46, 
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  0x4D, 0x43, 0x2D, 0x49, 0x4D, 0x41, 0x47, 0x45, 
  0x4F, 0x4E, 0x0A, 0x20, 0x00, 0x00, 0x00, 0xFD, 
  0x00, 0x38, 0x4B, 0x20, 0x44, 0x11, 0x00, 0x0A, 
  0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x01, 0x54, 
  0x02, 0x03, 0x1F, 0x71, 0x4B, 0x90, 0x03, 0x04, 
  0x05, 0x12, 0x13, 0x14, 0x1F, 0x20, 0x07, 0x16, 
  0x26, 0x15, 0x07, 0x50, 0x09, 0x07, 0x01, 0x67, 
  0x03, 0x0C, 0x00, 0x10, 0x00, 0x00, 0x1E, 0x01, 
  0x1D, 0x00, 0x72, 0x51, 0xD0, 0x1E, 0x20, 0x6E, 
  0x28, 0x55, 0x00, 0xC4, 0x8E, 0x21, 0x00, 0x00, 
  0x1E, 0x01, 0x1D, 0x80, 0x18, 0x71, 0x1C, 0x16, 
  0x20, 0x58, 0x2C, 0x25, 0x00, 0xC4, 0x8E, 0x21, 
  0x00, 0x00, 0x9E, 0x8C, 0x0A, 0xD0, 0x8A, 0x20, 
  0xE0, 0x2D, 0x10, 0x10, 0x3E, 0x96, 0x00, 0xC4, 
  0x8E, 0x21, 0x00, 0x00, 0x18, 0x01, 0x1D, 0x80, 
  0x3E, 0x73, 0x38, 0x2D, 0x40, 0x7E, 0x2C, 0x45, 
  0x80, 0xC4, 0x8E, 0x21, 0x00, 0x00, 0x1E, 0x1A, 
  0x36, 0x80, 0xA0, 0x70, 0x38, 0x1F, 0x40, 0x30, 
  0x20, 0x25, 0x00, 0xC4, 0x8E, 0x21, 0x00, 0x00, 
  0x1A, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 
}; 
 
int fmc_imageon_hdmi_framebuffer_init( fmc_imageon_hdmi_framebuffer_t *pDemo ) 
{ 
   int ret; 
   Xuint32 timeout = 100; 
   Xuint32 iterations = 0; 
 
   xil_printf("\n\r"); 
   xil_printf("------------------------------------------------------\n\r"); 
   xil_printf("--       FMC-IMAGEON HDMI Video Frame Buffer        --\n\r"); 
   xil_printf("------------------------------------------------------\n\r"); 
   xil_printf("\n\r"); 
 
   xil_printf( "FMC-IMAGEON Initialization ...\n\r" ); 
 
   ret = fmc_iic_xps_init(&(pDemo->fmc_imageon_iic),"FMC-IMAGEON I2C Controller",  
 pDemo->uBaseAddr_IIC_FmcImageon ); 
   if ( !ret ) 
   { 
      xil_printf( "ERROR : Failed to open FMC-IIC driver\n\r" ); 
      exit(0); 
   } 
 
   fmc_imageon_init(&(pDemo->fmc_imageon), "FMC-IMAGEON", &(pDemo->fmc_imageon_iic)); 
   pDemo->fmc_imageon.bVerbose = pDemo->bVerbose; 
 
   // Configure Video Clock Synthesizer 
   fmc_imageon_vclk_init( &(pDemo->fmc_imageon) ); 
   fmc_imageon_vclk_config( &(pDemo->fmc_imageon), FMC_IMAGEON_VCLK_FREQ_148_500_000); 
 
   // Initialize HDMI Input (including EDID content) 
   xil_printf( "HDMI Input Initialization ...\n\r" ); 
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   ret = fmc_imageon_hdmii_init( &(pDemo->fmc_imageon), 
                                 1, // hdmiiEnable = 1 
                                 1, // editInit = 1 
                                 fmc_imageon_hdmii_edid_content 
                                 ); 
   if ( !ret ) 
   { 
      xil_printf( "ERROR : Failed to init HDMI Input Interface\n\r" ); 
      exit(0); 
   } 
 
   // Configure Video Clock Synthesizer 
   xil_printf( "Video Clock Synthesizer Configuration ...\n\r" ); 
   fmc_imageon_vclk_config( &(pDemo->fmc_imageon), FMC_IMAGEON_VCLK_FREQ_148_500_000); 
   sleep(1); 
 
#if 0 
   xil_printf( "Enabling spread-spectrum clocking (SSC)\n\r" ); 
   xil_printf( "\ttype=down-spread, amount=-0.75%%\n\r" ); 
   { 
    Xuint8 num_bytes; 
    int i; 
    Xuint8 iic_cdce913_ssc_on[3][2]= 
    { 
       0x10, 0x6D, // SSC = 011 (0.75%) 
       0x11, 0xB6, // 
       0x12, 0xDB  // 
    }; 
       fmc_imageon_iic_mux( &(pDemo->fmc_imageon), FMC_IMAGEON_I2C_SELECT_VID_CLK ); 
       for ( i = 0; i < 3; i++ ) 
       { 
           num_bytes = pDemo->fmc_imageon.pIIC->fpIicWrite( pDemo->fmc_imageon.pIIC, 
 FMC_IMAGEON_VID_CLK_ADDR, (0x80 | iic_cdce913_ssc_on[i][0]), &(iic_cdce913_ssc_on[i][1]), 1); 
       } 
   } 
#endif 
 
   // Set HDMI output to 1080P60 resolution 
   pDemo->hdmio_resolution = VIDEO_RESOLUTION_1080P; 
   pDemo->hdmio_width  = 1920; 
   pDemo->hdmio_height = 1080; 
/* 
 * 
   { "720P",   720,    5,    5,   20,    1, 1280,  110,   40,  220,    1 }, // VIDEO_RESOLUTION_720P 
   { "1080P", 1080,    4,    5,   36,    1, 1920,   88,   44,  148,    1 }, // VIDEO_RESOLUTION_1080P 
 * */ 
 
 
 
   //pDemo->hdmio_timing.IsHDMI        = 1; // HDMI Mode 
   pDemo->hdmio_timing.IsHDMI        = 0; // DVI Mode 
   pDemo->hdmio_timing.IsEncrypted   = 0; 
   pDemo->hdmio_timing.IsInterlaced  = 0; 
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   pDemo->hdmio_timing.ColorDepth    = 8; 
 
   pDemo->hdmio_timing.HActiveVideo  = 1920; 
   pDemo->hdmio_timing.HFrontPorch   =   88; 
   pDemo->hdmio_timing.HSyncWidth    =   44; 
   pDemo->hdmio_timing.HSyncPolarity =    1; 
   pDemo->hdmio_timing.HBackPorch    =  148;/* 
   pDemo->hdmio_timing.HFrontPorch   =   110; 
   pDemo->hdmio_timing.HSyncWidth    =   40; 
   pDemo->hdmio_timing.HSyncPolarity =    1; 
   pDemo->hdmio_timing.HBackPorch    =  220;*/ 
 
   pDemo->hdmio_timing.VActiveVideo  = 1080;/* 
   pDemo->hdmio_timing.VFrontPorch   =    5; 
   pDemo->hdmio_timing.VSyncWidth    =    5; 
   pDemo->hdmio_timing.VSyncPolarity =    1; 
   pDemo->hdmio_timing.VBackPorch    =   20;*/ 
   pDemo->hdmio_timing.VFrontPorch   =    4; 
   pDemo->hdmio_timing.VSyncWidth    =    5; 
   pDemo->hdmio_timing.VSyncPolarity =    1; 
   pDemo->hdmio_timing.VBackPorch    =   36; 
 
   xil_printf( "HDMI Output Initialization ...\n\r" ); 
   ret = fmc_imageon_hdmio_init( &(pDemo->fmc_imageon), 
                               1,                      // hdmioEnable = 1 
                               &(pDemo->hdmio_timing), // pTiming 
                               0                       // waitHPD = 0 
                               ); 
   if ( !ret ) 
   { 
      xil_printf( "ERROR : Failed to init HDMI Output Interface\n\r" ); 
      //exit(0); 
   } 
 
   // Clear frame stores 
   Xuint32 i; 
   Xuint32 storage_size = pDemo->uNumFrames_HdmiFrameBuffer * ((1920*1080)<<1); 
   volatile Xuint8 *pStorageMem = (Xuint8 *)pDemo->uBaseAddr_MEM_HdmiFrameBuffer; 
   for ( i = 0; i < storage_size; i += 2 ) 
   { 
      // Black Pixel 
      *pStorageMem++ = 0x80; // CbCr (chroma) 
      *pStorageMem++ = 0x00; // Y (luma) 
   } 
 
 
   volatile Xuint8 *filter = (Xuint8 *)(pDemo->uBaseAddr_MEM_HdmiFrameBuffer+offset); 
      for ( i = 0; i < storage_size; i += 2 ) 
      { 
         // Black Pixel 
         *filter++ = 0x80; // CbCr (chroma) 
         *filter++ = 0x00; // Y (luma) 
      } 
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   // Initialize Output Side of AXI VDMA 
   xil_printf( "Video DMA (Output Side) Initialization ...\n\r" ); 
   vfb_common_init( 
      pDemo->uDeviceId_VDMA_HdmiFrameBuffer, // uDeviceId 
      &(pDemo->vdma_hdmi)                    // pAxiVdma 
      ); 
   vfb_tx_init( 
      &(pDemo->vdma_hdmi),                   // pAxiVdma 
      &(pDemo->vdmacfg_hdmi_read),           // pReadCfg 
      pDemo->hdmio_resolution,               // uVideoResolution 
      pDemo->hdmio_resolution,               // uStorageResolution 
      (pDemo->uBaseAddr_MEM_HdmiFrameBuffer+offset),  // uMemAddr 
      pDemo->uNumFrames_HdmiFrameBuffer      // uNumFrames 
      ); 
 
   // Configure VTC on output data path 
   xil_printf( "Video Timing Controller (generator) Initialization ...\n\r" ); 
   vgen_init( &(pDemo->vtc_hdmio_generator), pDemo->uDeviceId_VTC_HdmioGenerator ); 
   vgen_config( &(pDemo->vtc_hdmio_generator), pDemo->hdmio_resolution, 1 ); 
 
  while (1) 
  { 
   if ( iterations > 0 ) 
   { 
      xil_printf( "\n\rPress ENTER to re-start ...\n\r" ); 
      getchar(); 
   } 
   iterations++; 
 
   xil_printf( "Waiting for ADV7611 to locked on incoming video ...\n\r" ); 
   pDemo->hdmii_locked = 0; 
   timeout = 100; 
   while ( !(pDemo->hdmii_locked) && timeout-- ) 
   { 
      usleep(100000); // wait 100msec ... 
      pDemo->hdmii_locked = fmc_imageon_hdmii_get_lock( &(pDemo->fmc_imageon) ); 
   } 
   if ( !(pDemo->hdmii_locked) ) 
   { 
      xil_printf( "\tERROR : ADV7611 has NOT locked on incoming video, aborting !\n\r" ); 
      //return -1; 
      continue; 
   } 
   xil_printf( "\tADV7611 Video Input LOCKED\n\r" ); 
   usleep(100000); // wait 100msec for timing to stabilize 
 
   // Get Video Input information 
   fmc_imageon_hdmii_get_timing( &(pDemo->fmc_imageon), &(pDemo->hdmii_timing) ); 
   pDemo->hdmii_width  = pDemo->hdmii_timing.HActiveVideo; 
   pDemo->hdmii_height = pDemo->hdmii_timing.VActiveVideo; 
   pDemo->hdmii_resolution = vres_detect( pDemo->hdmii_width, pDemo->hdmii_height ); 
 



66 
 

   xil_printf( "ADV7611 Video Input Information\n\r" ); 
    xil_printf( "\tVideo Input      = %s", pDemo->hdmii_timing.IsHDMI ? "HDMI" : "DVI" ); 
   xil_printf( "%s", pDemo->hdmii_timing.IsEncrypted ? ", HDCP Encrypted" : "" ); 
   xil_printf( ", %s\n\r", pDemo->hdmii_timing.IsInterlaced ? "Interlaced" : "Progressive" ); 
   xil_printf( "\tColor Depth      = %d bits per channel\n\r", pDemo->hdmii_timing.ColorDepth ); 
   xil_printf( "\tHSYNC Timing     = hav=%04d, hfp=%02d, hsw=%02d(hsp=%d), hbp=%03d\n\r", 
      pDemo->hdmii_timing.HActiveVideo, 
      pDemo->hdmii_timing.HFrontPorch, 
      pDemo->hdmii_timing.HSyncWidth, pDemo->hdmii_timing.HSyncPolarity, 
      pDemo->hdmii_timing.HBackPorch 
      ); 
   xil_printf( "\tVSYNC Timing     = vav=%04d, vfp=%02d, vsw=%02d(vsp=%d), vbp=%03d\n\r", 
      pDemo->hdmii_timing.VActiveVideo, 
      pDemo->hdmii_timing.VFrontPorch, 
      pDemo->hdmii_timing.VSyncWidth, pDemo->hdmii_timing.VSyncPolarity, 
      pDemo->hdmii_timing.VBackPorch 
      ); 
   xil_printf( "\tVideo Dimensions = %d x %d\n\r", pDemo->hdmii_width, pDemo->hdmii_height ); 
 
   if ( (pDemo->hdmii_resolution) == -1 ) 
   { 
      xil_printf( "\tERROR : Invalid resolution, aborting !\n\r" ); 
      //return -1; 
      continue; 
   } 
 
   // Reset VTC on input data path 
   vdet_init( &(pDemo->vtc_hdmii_detector), pDemo->uDeviceId_VTC_HdmiiDetector ); 
   vdet_reset( &(pDemo->vtc_hdmii_detector) ); 
 
   xil_printf( "Video DMA (Input Side) Initialization ...\n\r" ); 
 
   // Stop Input Side of AXI_VDMA (from previous iteration) 
   vfb_rx_stop( 
      &(pDemo->vdma_hdmi)                    // pAxiVdma 
      ); 
 
   // Clear frame stores 
   Xuint32 i; 
   Xuint32 storage_size = pDemo->uNumFrames_HdmiFrameBuffer * ((1920*1080)<<1); 
   volatile Xuint8 *pStorageMem = (Xuint8 *)pDemo->uBaseAddr_MEM_HdmiFrameBuffer; 
   for ( i = 0; i < storage_size; i += 2 ) 
   { 
      // Black Pixel 
      *(pStorageMem+2*i+1) = 0x80; // CbCr (chroma) 
      *(pStorageMem+2*i+2) = 0x00; // Y (luma) 
   } 
 
   volatile Xuint8 *filter = (Xuint8 *)(pDemo->uBaseAddr_MEM_HdmiFrameBuffer+offset); 
      for ( i = 0; i < storage_size; i += 2 ) 
      { 
         // Black Pixel 
         *(filter+2*i+1) = 0x80; // CbCr (chroma) 
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         *(filter+2*i+2) = 0x00; // Y (luma) 
      } 
 
 
 
   // Initialize Input Side of AXI VDMA 
   vfb_rx_init( 
      &(pDemo->vdma_hdmi),                   // pAxiVdma 
      &(pDemo->vdmacfg_hdmi_write),          // pWriteCfg 
      pDemo->hdmii_resolution,               // uVideoResolution 
      pDemo->hdmio_resolution,               // uStorageResolution 
      pDemo->uBaseAddr_MEM_HdmiFrameBuffer,  // uMemAddr 
      pDemo->uNumFrames_HdmiFrameBuffer      // uNumFrames 
      ); 
 
   xil_printf( "HDMI Output Re-Initialization ...\n\r" ); 
   ret = fmc_imageon_hdmio_init( &(pDemo->fmc_imageon), 
                               1,                      // hdmioEnable = 1 
                               &(pDemo->hdmio_timing), // pTiming 
                               0                       // waitHPD = 0 
                               ); 
   if ( !ret ) 
   { 
      xil_printf( "ERROR : Failed to init HDMI Output Interface\n\r" ); 
      //exit(0); 
   } 
 
 
#if 0 // Activate for debug 
   sleep(1); 
   // Status of AXI VDMA 
   vfb_dump_registers( &(pDemo->vdma_hdmi) ); 
   if ( vfb_check_errors( &(pDemo->vdma_hdmi), 1/*clear errors, if any*/ ) ) 
   { 
      vfb_dump_registers( &(pDemo->vdma_hdmi) ); 
   } 
#endif 
 
   //*(volatile int*) (0x7D800000) = 0; 
 
   //-----------------------------------------------------------------------------------------------  
 
   //put image processing algorithm below 
    
 
   Xuint32 new_storage_size = (storage_size*2)/5; 
   unsigned int display_size = storage_size; 
   unsigned int leftside_x, rightside_x = 0; 
   unsigned char entry_flag, reentry_flag, exit_flag = 0; 
 
   unsigned char cbcr = 0; 
   unsigned char luma = 0; 
   unsigned int pixel_count_total = 0; 
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   unsigned int x, y = 0; 
   enum {white_to_white, white_to_grey, grey_to_grey, grey_to_white}; 
   unsigned char current_state, last_state = 0; 
 
   unsigned int found_center, center_y_temp = 0; 
 
   unsigned char stop_flag = 0; 
 
   unsigned int found = 0; 
 
   unsigned char break_flag = 0; 
 
   unsigned int on_counter = 0; 
   unsigned int off_counter = 0; 
 
 
 XGpioPs_Config *GPIO_Config; 
 XGpioPs my_Gpio; 
 int Status; 
#ifdef LEDTEST 
 //set up GPIO peripheral pin to be an output and writable 
 GPIO_Config = XGpioPs_LookupConfig(XPAR_PS7_GPIO_0_DEVICE_ID); 
 Status = XGpioPs_CfgInitialize(&my_Gpio, GPIO_Config, GPIO_Config->BaseAddr); 
 
 XGpioPs_SetDirectionPin(&my_Gpio, PINNUMBER, 1); 
 XGpioPs_SetOutputEnablePin(&my_Gpio, PINNUMBER, 1); 
#endif 
 
#define TRUE 1 
#define FALSE 0 
   while(TRUE) 
   { 
    //initialize state variables 
    break_flag = 0; 
    stop_flag = 0; 
    pixel_count_total = 1; 
    found = 0; 
#ifdef LEDTEST 
    //if a stoplight was seen in the last frame 
    if(saw_red_light == 1) { 
     on_counter++; 
     off_counter = 0; 
     //if a stoplight has been seen for 5 frames in a row 
     if(on_counter > 5) { 
      //turn on GPIO peripheral pin 
      XGpioPs_WritePin(&my_Gpio, PINNUMBER, 1); 
     } 
    } 
    else { 
     off_counter++; 
     on_counter = 0; 
     //if a stoplight has not been seen for 5 frames in a row 
     if(off_counter > 5) { 
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      //turn off GPIO peripheral pin 
      XGpioPs_WritePin(&my_Gpio, PINNUMBER, 0); 
     } 
    } 
    saw_red_light = 0; 
#endif 
    //load video data into filter 
    memcpy(filter, pStorageMem, display_size); 
    //look through half of the filter (ignore bottom half of image) 
    for(i = 0; i < new_storage_size; i += 2) { 
     if(break_flag == 1) { 
      break; 
     } 
     //set up ycbcr value of current pixel 
     cbcr = *(filter + i + 1); // cbcr 
     luma = *(filter + i); // y 
 
     //get coordinates of current pixel indexed from 1, 1 
     x = pixel_count_total % 1920; 
     y = (pixel_count_total / 1920) + 1; 
     pixel_count_total++; 
 
     //state machine for blob detection 
     switch (current_state) { 
 
       case (white_to_white): 
               if(luma == 255) { 
                current_state = white_to_white; 
               } 
               else { 
                current_state = white_to_grey; 
               } 
               //reset if distance is too great 
               if(((x - leftside_x) > 100) && entry_flag) { 
                leftside_x = 0; 
                rightside_x = 0; 
                entry_flag = FALSE; 
                reentry_flag = FALSE; 
                exit_flag = FALSE; 
               } 
               last_state = white_to_white; 
               break; 
 
       case (white_to_grey) : 
         if(entry_flag) { 
          reentry_flag = TRUE; 
          entry_flag = FALSE; 
         } 
               if(reentry_flag) { 
                rightside_x = x; 
                found++; 
                found_center = (rightside_x-leftside_x)/2; 
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                // check that vertical central point was found at  
         //this location previously 
                if ((*(filter + i - 2*(found_center) + 1)) == 127) { 
#ifdef SINGLELIGHT 
                break_flag = check_vertical_center_point( 
         found_center, 0, filter, i,  
         cbcr, luma, x, y, my_Gpio); 
                       if(break_flag == 1) { 
                        break; 
                       } 
#endif 
#ifndef SINGLELIGHT 
                            
       check_vertical_center_point(found_center, 
         0, filter, i, cbcr, luma, x, y, my_Gpio); 
#endif 
                } 
                else { 
                 *(filter + i - 2*(found_center+1)+1) = 129; 
                } 
 
                if ((*(filter + i - 2*(found_center+1)+1)) == 127) { 
// additional checks for odd right-left since c truncates 
#ifdef SINGLELIGHT 
                 break_flag = check_vertical_center_point( 
         found_center+1, 0, filter,  
         i, cbcr, luma, x, y, my_Gpio); 
                 if(break_flag == 1) { 
                  break; 
                 } 
#endif 
#ifndef SINGLELIGHT 
                      
       check_vertical_center_point(found_center+1,  
        0, filter, i, cbcr, luma, x, y, my_Gpio); 
#endif 
                } 
                else { 
                 *(filter + i - 2*(found_center+1)+1) = 129; 
                } 
 
              unsigned int center_y = 0; 
              unsigned char up_counter = 0; 
              unsigned int temp_color_up = 255; 
 
              unsigned char down_counter = 0; 
              unsigned char temp_color_down = 255; 
 
              while(temp_color_up == 255 &&   
            up_counter < 100 &&  
            ((y - up_counter) > 0)) { 
               temp_color_up = *(filter + i -  
          2*(found_center)- 
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          (2*1920)*up_counter); 
               up_counter++; 
              } 
 
              while(temp_color_down == 255 &&  
            down_counter < 100 &&  
            ((y + down_counter) < 541)) { 
               temp_color_down = *(filter + i -  
          2*(found_center)+ 
          (2*1920)*down_counter); 
               down_counter++; 
              } 
              center_y_temp =     
         up_counter+down_counter/2; 
              if(up_counter > down_counter) { 
               center_y = up_counter -   
          center_y_temp; 
 
               if (*(filter + i- 2*(found_center) - 
2*(center_y*1920) + 1) == 129) 
               { 
#ifdef SINGLELIGHT 
                break_flag = 
check_vertical_center_point(found_center, -1*(center_y*1920), filter, i, cbcr, luma, x, y, my_Gpio); 
                if(break_flag == 1) { 
                 break; 
                } 
#endif 
#ifndef SINGLELIGHT 
               
 check_vertical_center_point(found_center, -1*(center_y*1920), filter, i, cbcr, luma, x, y, my_Gpio); 
#endif 
               } 
 
               else 
                *(filter + i- 
2*(found_center) - 2*(center_y*1920) + 1) = 127; 
              } 
              else { 
               center_y = down_counter - 
center_y_temp; 
 
               if (*(filter + i- 2*(found_center) - 
2*(center_y*1920) + 1) == 129) 
               { 
#ifdef SINGLELIGHT 
                break_flag = 
check_vertical_center_point(found_center, center_y*1920, filter, i, cbcr, luma, x, y, my_Gpio); 
                if(break_flag == 1) { 
                 break; 
                } 
#endif 
#ifndef SINGLELIGHT 
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 check_vertical_center_point(found_center, center_y*1920, filter, i, cbcr, luma, x, y, my_Gpio); 
#endif 
               } 
 
               else 
                *(filter + i- 
2*(found_center) - 2*(center_y*1920) + 1) = 127; 
              } 
              leftside_x = 0; 
              rightside_x = 0; 
              entry_flag = FALSE; 
              reentry_flag = FALSE; 
              exit_flag = FALSE; 
               } 
         else { 
          entry_flag = TRUE; 
          reentry_flag = FALSE; 
         } 
               if(luma == 255) { 
                current_state = grey_to_white; 
               } 
               else { 
                current_state = grey_to_grey; 
               } 
         last_state = white_to_grey; 
               break; 
 
       case (grey_to_grey) : 
         if(luma != 255) { 
          current_state = grey_to_grey; 
         } 
         else { 
          current_state = grey_to_white; 
         } 
         last_state = grey_to_grey; 
               break; 
 
       case (grey_to_white) : 
         if(entry_flag && !reentry_flag) { 
          exit_flag = TRUE; 
         } 
               if(exit_flag) { 
                leftside_x = x; 
               } 
               current_state = white_to_white; 
         last_state = grey_to_white; 
               break; 
       default: 
        current_state = white_to_white; 
        break; 
     } 
    } 
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    if (stop_flag == 1){ 
    for(i = 0; i < (1920*20); i += 2) { 
     *(filter + i + 1) = 255; // cbcr 
     *(filter + i) = 90; // y 
    } 
    } 
   } 
 
   //put image processing algorithm above 
   //----------------------------------------------------------------------------------------------- 
   xil_printf("\n\r"); 
   xil_printf( "Done\n\r" ); 
   xil_printf("\n\r"); 
 
   sleep(1); 
  } 
 
   return 0; 
} 
 
#ifdef SINGLELIGHT 
unsigned char check_vertical_center_point(unsigned int found_center,  unsigned int extra, Xuint8 *filter, unsigned 
int i, 
         unsigned char cbcr, unsigned char luma, 
unsigned int x, unsigned int y, XGpioPs my_Gpio) { 
 
 *(filter + i - 2*(found_center) + 2*(extra)) = 0; 
 
 unsigned char flag = 0; 
 signed int x_min, x_max, y_min, y_max = 0; 
 unsigned long hist0; 
 unsigned long hist1; 
 unsigned long hist2; 
 unsigned long hist3; 
 unsigned long hist4; 
 unsigned long hist5; 
 unsigned long hist6; 
 unsigned long hist7; 
 unsigned long hist8; 
 unsigned long hist9; 
 signed int x_min_temp, x_max_temp, y_min_temp, y_max_temp = 0; 
 unsigned char temp_cbcr, temp_luma; 
 
 // crude go out and draw a box 31 by 31 (picked semiarbitrarily for proof of concept) 
 // for each pixel in side the range 
 x_min = -15; 
 x_max = 16; 
 y_min = -15; 
 y_max = 16; 
 x_min_temp = -35; 
 x_max_temp = 40; 
 y_min_temp = -35; 
 y_max_temp = 40; 
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 hist0 = 0; 
 hist1 = 0; 
 hist2 = 0; 
 hist3 = 0; 
 hist4 = 0; 
 hist5 = 0; 
 hist6 = 0; 
 hist7 = 0; 
 hist8 = 0; 
 hist9 = 0; 
 for(x_min = -15; x_min < x_max; x_min++) { 
  for (y_min = 0; y_min < y_max; y_min++) { 
    cbcr = *(filter + i - 2*(found_center + x_min) - 2*(1920)*(y_min) + 1); // cbcr 
    luma = *(filter + i - 2*(found_center + x_min) - 2*(1920)*(y_min)); // y 
#ifndef HISTTEST 
    if (luma > 250) { // sub test to check that we see the right region 
     *(filter + i - 2*(found_center + x_min) - 2*(1920)*(y_min) + 1) = 255; // cbcr 
     *(filter + i - 2*(found_center + x_min) - 2*(1920)*(y_min)) = 0; // y 
    } 
#endif 
#ifdef HISTTEST 
    if (luma < 25) 
     hist0++; 
    else if (luma < 50) 
     hist1++; 
    else if (luma < 75) 
     hist2++; 
    else if (luma < 100) 
     hist3++; 
    else if (luma < 125) 
     hist4++; 
    else if (luma < 150) 
     hist5++; 
    else if (luma < 175) 
     hist6++; 
    else if (luma < 200) 
     hist7++; 
    else if (luma < 225) 
     hist8++; 
    else if (luma < 250) 
     hist9++; 
    // if statement to check histogram values to determine if its a red light 
    // do whatever when we know its a red light 
    if(hist0 < hist0_v && hist1 < hist1_v && hist2 < hist2_v && hist3 > hist3_v && hist3 < 
hist3_v_high && hist4 > hist4_v && 
      hist5 < hist5_v && hist6 < hist6_v && hist7 < hist7_v && hist8 < 
hist8_v && hist9 < hist9_v) { 
#ifdef LEDTEST 
     saw_red_light = 1; 
#endif 
     flag = 1; 
#ifdef REDTEST 
     for(x_min_temp = -35; x_min_temp < x_max_temp; x_min_temp++) { 
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      for(y_min_temp = -35; y_min_temp < y_max_temp; y_min_temp++) { 
       temp_cbcr = *(filter + i - 2*(found_center + x_min_temp) - 
2*(1920)*(y_min_temp) + 1); // cbcr 
       temp_luma = *(filter + i - 2*(found_center + x_min_temp) - 
2*(1920)*(y_min_temp)); // y 
 
       if (temp_luma > 250) { 
        *(filter + i - 2*(found_center + x_min_temp) - 
2*(1920)*(y_min_temp) + 1) = 255; // cbcr 
        *(filter + i - 2*(found_center + x_min_temp) - 
2*(1920)*(y_min_temp)) = 0; // y 
       } 
      } 
     } 
#endif 
    } 
#endif 
  } 
 } 
 return flag; 
} 
#endif 
 
 
 
 
#ifndef SINGLELIGHT 
void check_vertical_center_point(unsigned int found_center,  unsigned int extra, Xuint8 *filter, unsigned int i, 
         unsigned char cbcr, unsigned char luma, 
unsigned int x, unsigned int y, XGpioPs my_Gpio) { 
 *(filter + i - 2*(found_center) + 2*(extra)) = 0; 
 
 signed int x_min, x_max, y_min, y_max = 0; 
 unsigned long hist0; 
 unsigned long hist1; 
 unsigned long hist2; 
 unsigned long hist3; 
 unsigned long hist4; 
 unsigned long hist5; 
 unsigned long hist6; 
 unsigned long hist7; 
 unsigned long hist8; 
 unsigned long hist9; 
 signed int x_min_temp, x_max_temp, y_min_temp, y_max_temp = 0; 
 unsigned char temp_cbcr, temp_luma; 
 
 // crude go out and draw a box 
 // for each pixel in side the range 
 x_min = -15; 
 x_max = 16; 
 y_min = -15; 
 y_max = 16; 
 x_min_temp = -35; 
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 x_max_temp = 40; 
 y_min_temp = -35; 
 y_max_temp = 40; 
 hist0 = 0; 
 hist1 = 0; 
 hist2 = 0; 
 hist3 = 0; 
 hist4 = 0; 
 hist5 = 0; 
 hist6 = 0; 
 hist7 = 0; 
 hist8 = 0; 
 hist9 = 0; 
 for(x_min = -15; x_min < x_max; x_min++) { 
  for (y_min = 0; y_min < y_max; y_min++) { 
    cbcr = *(filter + i - 2*(found_center + x_min) - 2*(1920)*(y_min) + 1); // cbcr 
    luma = *(filter + i - 2*(found_center + x_min) - 2*(1920)*(y_min)); // y 
#ifndef HISTTEST 
    if (luma > 250) { // sub test to check that we see the right region 
     *(filter + i - 2*(found_center + x_min) - 2*(1920)*(y_min) + 1) = 255; // cbcr 
     *(filter + i - 2*(found_center + x_min) - 2*(1920)*(y_min)) = 0; // y 
    } 
#endif 
#ifdef HISTTEST 
    if (luma < 25) 
     hist0++; 
    else if (luma < 50) 
     hist1++; 
    else if (luma < 75) 
     hist2++; 
    else if (luma < 100) 
     hist3++; 
    else if (luma < 125) 
     hist4++; 
    else if (luma < 150) 
     hist5++; 
    else if (luma < 175) 
     hist6++; 
    else if (luma < 200) 
     hist7++; 
    else if (luma < 225) 
     hist8++; 
    else if (luma < 250) 
     hist9++; 
 
    // if statement to check histogram values to determine if its a red light 
    // do whatever when we know its a red light 
    if(hist0 < hist0_v && hist1 < hist1_v && hist2 < hist2_v && hist3 > hist3_v && hist3 < 
hist3_v_high && hist4 > hist4_v && 
      hist5 < hist5_v && hist6 < hist6_v && hist7 < hist7_v && hist8 < 
hist8_v && hist9 < hist9_v) { 
#ifdef LEDTEST 
     saw_red_light = 1; 
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#endif 
 
#ifdef REDTEST 
     for(x_min_temp = -35; x_min_temp < x_max_temp; x_min_temp++) { 
      for(y_min_temp = -35; y_min_temp < y_max_temp; y_min_temp++) { 
       temp_cbcr = *(filter + i - 2*(found_center + x_min_temp) - 
2*(1920)*(y_min_temp) + 1); // cbcr 
       temp_luma = *(filter + i - 2*(found_center + x_min_temp) - 
2*(1920)*(y_min_temp)); // y 
 
       if (temp_luma > 250) { 
        *(filter + i - 2*(found_center + x_min_temp) - 
2*(1920)*(y_min_temp) + 1) = 255; // cbcr 
        *(filter + i - 2*(found_center + x_min_temp) - 
2*(1920)*(y_min_temp)) = 0; // y 
       } 
      } 
     } 
#endif 
    } 
#endif 
  } 
 } 
} 
#endif 




