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The situation

Suppose you have a massive amount of data and you would like to
perform computations on this data.

There is far more to be done than you have the computational
resources to do.

You would like to ship the data off to the cloud, and have these
computations done for you.

The trouble is, the data is confidential and whoever or whatever
will perform the computation in the cloud is not trusted.
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The dream

encrypt your data

send off the encrypted data to the cloud

have the computations done on the encrypted data

receive the output

decrypt the output and get the same answer as you would
have gotten if the computations had been performed on the
unencrypted data
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What is needed

First of all, we need an encryption function e(x) with the following
properties:

Given a sequence of inputs x1, x2, . . . , and an encryption key
k, it must be easy to compute e(x1), e(x2), . . . ,

Given a decryption key d , it must be easy to compute
x1, x2, . . . , if one is given e(x1), e(x2), . . . ,.

Without knowledge of a decryption key d , it must be hard to
compute x1, x2, . . . , if one is given e(x1), e(x2), . . . .

More stringent: Given an arbitrarily long sequence
(x1, e(x1)), (x2, e(x2)) . . . of plaintext-ciphertext pairs, it must
be very hard to obtain any information about a new input x ,
given a new output e(x).
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The homomorphic property

Most importantly, the encryption function must satisfy

e(x1 + x2) = e(x1) + e(x2)

and
e(x1x2) = e(x1)e(x2).

In other words, if the data lies in one ring R and the encrypted
data lies in another ring S , then

e : R → S

must be a ring homomorphism.

Unfortunately, this property is highly incompatible with the security
properties.
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The problem of 0

Suppose an attacker had the ability to recognize an encryption of 0.

In other words, suppose that if presented with a ciphertext e(x),
an attacker could decide whether or not x = 0.

In the simplest attack scenario, suppose also that by a lucky guess,
or by some small bit of knowledge of the underlying data, an
attacker obtains a pair (1, e(1)). Then, as e(2) = e(1) + e(1) the
pair (2, e(2)) is revealed. Similarly, e(n) for any integer n is
obtained.
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The problem of 0, cont.

Lists of data, although long, are still short enough that for any
given e(x), the quantity

e(x)− e(n) = e(x − n)

can be computed for enough n to find a match x = n. As an
encryption of 0 can be recognized, this decrypts e(x) and reveals x .
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The killer requirement

For this reason the following requirement must be satisfied by any
useful homomorphic encryption function:

Given an arbitrarily long sequence of encryptions of 0, and given a
new encryption e(x), it must be impractical to answer the question
“Does x = 0”, with a greater than random chance of success.

So actually, e can’t be a function. Given any x , there must be a
large number of possible e(x).
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The ideal recognition problem

Remember that
e : R → S

is a ring homomorphism. The decryption function

d : S → R

must also be a ring homomorphism, and the collection of all s ∈ S
such that s is an encryption of 0 is exactly the collection of all s
such that d(s) = 0, which is an ideal.
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What’s really happening

Think of R as a subring of S . Let I be an ideal of S . Then to
encrypt any x ∈ R, choose r at random from I and set
e(x) = x + r . Then the decryption function d is really a ring
homomorphism

d : S → S/I ' R.

Thus, encryptions of 0 are precisely the elements in I , and the 0
recognition requirement boils down to the following question:

Suppose you have access to an arbitrarily long sequence of
elements of I . If you are now given an element r of S , can you
determine whether or not r ∈ I .
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This is where it gets nasty...

If I is any finite dimensional structure, like a lattice or a vector
space then it just takes finitely many r ∈ I to generate a basis for I .

This forces the dimension of I to be infinite.

It is very tempting to choose a sequence of polynomials in several
variables, such as f1(x1, x2, x3), f2(x1, x2, x3), . . . , fn(x1, x2, x3), and
to let I be the ideal in, say, Z/qZ[x1, x2, x3] generated by the fi .
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The attempt

If you have secret knowledge of solutions to

f1(x1, x2, x3) = f2(x1, x2, x3) = · · · = fn(x1, x2, x3) = 0

then the substitution of these values into an f ∈ I sends f to 0.

If we think of R = Z/qZ as a subring of Z/qZ[x1, x2, x3], and an
encryption of n ∈ Z/qZ as

e(n) = n + f (x1, x2, x3),

for a random choice of f ∈ I , then substituting the secret solution
recovers n.
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What goes wrong

If the number of variables is at all large there is an explosion of the
size of ciphertexts as encrypted data is multiplied.

Many monomials of the form xa
1xb

2 xc
3 ... are formed.

If the number of variables is not large, then the method of Gröbner
bases has proved to be remarkably successful in identifying I .
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The advent of noise

In 2009, Craig Gentry came up with a new idea: Don’t use a
perfect ring homomorphism.

Suppose that instead of encrypting 0 as r ∈ I for a random choice
of r in the ideal I , one encrypted 0 as r + ε.

To decrypt, first reduce mod I to eliminate the r , and then do
some kind of “rounding” to get rid of ε.

The ε destroys the algebraic structure, but if it is small enough it
can be eliminated by the decryptor.
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The advent of noise, cont.

The problem is that when multiplying encrypted data one has

(m1 + r1 + ε1)(m2 + r2 + ε2)

= m1m2 + m1r2 + m1ε2 + r1m2 + r1r2 + r1ε2 + ε1m2 + ε1r2 + ε1ε2.

The extra terms

m1ε2 + r1ε2 + ε1m2 + ε1r2 + ε1ε2

seriously impact the noise level.
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Bootstrapping

Gentry’s solution was a recursive one in which the data processing
program would, after a few operations, decrypt its output
homomorphically using a homomorphic encryption of a decryption
key.

This accomplished a theoretical breakthrough in which a partially
homomorphic scheme was leveraged into a fully homomorphic
scheme, but this advance came with a cost of highly increased
complexity.
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Subsequent work

Gentry’s first proposal was inspired by the ring-based NTRU public
key cryptosystem introduced in 1996 by H, Pipher,J. and
Silverman, J.

In this system, encryption is partially homomorphic in the sense
that with a proper choice of parameters a very small number of
multiplications and many additions can be applied to encrypted
data, and can be decrypted homorphically to the images of the
same operations performed on the original data.

Three significant recent improvements:

The Brakerski-Gentry-Vaikuntanathan cryptosystem (BGV),

The NTRU-based cryptosystem due to Lopez-Alt, Tromer,
and Vaikuntanathan (LTV) (Improved significantly in 2014 by
Dai, Doröz, and Sunar.)

The Gentry-Sahai-Waters cryptosystem (GSW).

17 / 28



The rings appearing in NTRU

NTRU uses the rings Z[x ]/(xN − 1) and Z/qZ[x ]/(xN − 1). Here
multiplication works as follows: If

f (x) =
N−1∑
i=0

aix
i and g(x) =

N−1∑
i=0

bix
i ,

Then

f ∗ g := f (x)g(x) ≡
N−1∑
k=0

ckxk (mod xN − 1),

where
ck =

∑
i+j≡0 (mod N)

aibj .
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Short times short equals short

For example, take N = 107, and f , g to have coefficients from
{−1, 0, 1}. Then the distribution of coefficients of f ∗ g looks like

Out[26]=
20 40 60 80 100

-40

-20

20

40
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The underlying idea

Suppose

r(x) = r1(x) + 3r2(x), s(x) = s1(x) + 3s2(x) ∈ Z/qZ[x ]

where r1(x), r2(x), s1(x) and s2(x) have small coefficients, say,
chosen from {1, 0,−1}.

Then r(x)s(x) (mod xN − 1, q) will still have small coefficients
with absolute value less than q/2.

As a result it makes sense to further reduce r(x)s(x) mod 3, after
reducing mod q, so

r1(x)s1(x) ≡
(

r(x)s(x) (mod xN − 1, q)
)

(mod 3).
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The underlying idea, cont.

This is the main idea underlying NTRU, and it is also the
underlying principle behind most of the homomorphic schemes
proposed to date.

The point is that 0 is encrypted as pr(x) for any random choice of
r(x) with small coefficients. A number m is encrypted as
m + pr(x). The pr(x) is the “noise”, and this is eliminated by
reduction mod p following a reduction mod q.
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Proposed approach by H, Silverman and Sunar

Instead of Z/qZ[x ]/(xN − 1), take q to be prime and use rings
such as R = Z/qZ[x ]/(f (x)) where, say

f (x) = xN − xN−2 + · · ·+ x2 − 1

is an irreducible polynomial modulo q with small coefficients.

The key point: As long as f (x) has small coefficients It is still true
in R that short times short equals short.

Another key point: R is now a finite field of order qN . All finite
fields of the same order are isomorphic, so if g(y) is any other
degree N polynomial that is irreducible over q, then

Z/qZ[y ]/(g(y)) ' Z/qZ[x ]/(f (x))
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Proposed approach, cont.

Public working space is Z/qZ[y ]/(g(y)), private working space is
Z/qZ[x ]/(f (x))

These are connected by a secret isomorphism:

x → ϕ(y) (mod g(y), q).

That is, encryption is via the isomorphism that sends

e(m(x) + pr(x)) ≡ m(ϕ(y)) + pr(ϕ(y)) (mod g(y), q).

Here ϕ(y) is a secret polynomial in y of degree ≤ N.
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The main point

The isomorphism between Z/qZ[y ]/(g(y)), and Z/qZ[x ]/(f (x))
does not respect the Archimedian property of size. The image of a
short polynomial in x is a polynomial in y with coefficients
uniformly distributed mod q.
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The main point, cont.

Parameters and number of multiplications are set so that if the
arithmetic were done in Z/qZ[x ]/(f (x)) the output would be
polynomials with coefficients having absolute value less than q/2.
Thus noise can be eliminated by reduction first mod q and then
mod 3.

The arithmetic will be done by the cloud in Z/qZ[y ]/(g(y)) and
coefficients will appear to be randomly distributed mod q.

To decrypt, the user applies the secret isomorphism, recovering,
after reduction mod q, a polynomial in x with short coefficients.

Finally, the user reduces mod p recovering the output of the
calculation, with the noise removed.
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Attacks

To decrypt, an attacker must find a field isomorphism that sends
each encrypted piece of data, taking the form of a polynomial in y
with coefficients uniformly distributed mod q, into a new field
where all the coefficients are short.

All known attacks of this sort are done via lattice reduction, and
involve a search for a linear transformation of vector spaces.

There are many potential solutions to this, but with high
probability there will a unique linear transformation that is also a
field isomorphism.

Only a field isomorphism will be useful for decryption.
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Concluding point

Lattice reduction attacks force current homomorphic schemes to
take N in the thousands.

Because of the fundamental non-linearity of this scheme, it appears
to be possible to take N far smaller, in the low hundreds.

Our belief is that this will vastly increase the efficiency of our
scheme . . .

. . . but this our dream, and not a fact. Lots of research needs to be
done!
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Thanks!!

;
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