First Responder Location System
Back End Receiver Design

Jason DeChiaro
System Overview
Receiver Block Diagram
Back End Block Diagram
Revision Overview

<table>
<thead>
<tr>
<th></th>
<th>Revision</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3*</td>
<td>0.4*</td>
</tr>
<tr>
<td>BW</td>
<td>750Mhz</td>
<td>50mhz</td>
<td>50 Mhz</td>
<td>750Mhz</td>
<td>750Mhz</td>
</tr>
<tr>
<td>Sampling Frequency</td>
<td>1.5Ghz</td>
<td>100mhz</td>
<td>100 Mhz</td>
<td>1.5Ghz</td>
<td>1.5Ghz</td>
</tr>
<tr>
<td>Sample capacity</td>
<td>? Billion</td>
<td>50,000</td>
<td>32Million</td>
<td>? Billion</td>
<td>? Billion</td>
</tr>
<tr>
<td>Sample Window</td>
<td>Seconds</td>
<td>500 uS</td>
<td>320 mS</td>
<td>Seconds</td>
<td>Seconds</td>
</tr>
<tr>
<td>FPGA Solution</td>
<td>none</td>
<td>Internal Memory</td>
<td>DDR Controller</td>
<td>DDR Controller</td>
<td>DDR Controller</td>
</tr>
<tr>
<td>PCB Solution</td>
<td>none</td>
<td>Eval Boards</td>
<td>Eval Boards</td>
<td>Custom</td>
<td>Custom</td>
</tr>
</tbody>
</table>

* Revision 3 and 4 represent target specifications
Version 0.0,0.3,0.4 System Targets

- BW = 750 Mhz
- ADC Resolution = 8bits
- Sampling Rate = 1.5 Gsps
- Direct RF sampling @ 440Mhz
 - Less complex analog design
 - Less components = less chance of error
ADC Maximum Ratings

• 1.5 Gsps Conversion Rate
• 2.2 Ghz Full-Power Analog Input Bandwidth
• 7.5 Effective Bits at $F_{in} = 750\text{Mhz}$ (Nyquist)
• ± 250mV Input Signal Range
• Latched, Differential PECL Digital Outputs
• Selectable 8:16 Demultiplexer
What Does It All Mean?

• At 1.5 Gsps we can do direct RF sampling of a 750Mhz RF signal.
• 7.5 Effective Bits = 2.7mV resolution
• PECL – ‘Positive Emitter Coupled Logic’
 – High speed
 – Differential
• 8:16 Demultiplexer slows the output data rate from 8bits@1.5Ghz to 16bits@750Mhz
Back End Block Diagram
Initial Logic Design Overview
Memory Interface Logic Timing

Data Ready on falling Edge

ADC Data Ready
Memory Interface Logic Timing

Sample 1
Sample 2
Sample 3
Sample 4

Enabled

Clock

12
Recap…

• We have 64Bits @ 187.5 Mhz
• We need 1.5GB of memory per second of captured data.
• Sounds like an SDRAM solution is needed
A bit about SDRAM

- Designed for high speed burst reads and writes
- Relatively cheap at large capacity
- SDRAM used in PC’s is cheap
- 1 GB of PC2100 = $109.00
SDRAM Buffer

- We need to buffer the bit stream so we can do burst writes
- SRAM can be used for this
- Also used to allow time for memory refresh
Level conversion

- PECL coming from ADC’s
- Registers PECL in and out
- SRAM TTL or LVTTL
Can We Use 1 FPGA Instead?

- Simplify PCB design
- Better signal integrity
- Chip delays Vs PCB delays
- Ability to change design
- Configurable I/O blocks eliminate the need for level conversion
Version 0.1 FPGA Specs

- 1 Million gates
- 200 Mhz internal clock frequency
- 324 general purpose I/O pins – 64 available
- $170.00 each (qty 1000)
FPGA Eval Board Components

- 32MB SDRAM on board
- RS232 capabilities
- USB capabilities
- 10/100 capabilities
Back End Block Diagram
What is a SDRAM controller

• Interface between data path and memory
• Responsible for:
 – Data Write Timing
 – Data Read Timing
 – Data Refresh
 – Data Addressing
DDR SDRAM Requirements

- Data read/writes occur synchronous to the memory clock
- Two data read/write per clock cycle
- Memory commands also occur synchronous to the clock
- Memory commands ONLY occur on the rising clock edge
Typical DDR SDRAM Timing Diagram

Consecutive Write Timing Diagram

Micron MT46VXXX Data sheet
DDR SDRAM Refresh

- Must refresh all rows in any rolling 64mS interval
- 64mS/8192Rows (256MB) = 7.8µS average refresh interval
- 7.8uS average refresh interval is maintained for higher density DDR SDRAMs
DDR SDRAM Buffer

- Allows burst writes
- Allows streaming input
- Allows time for refresh
Back End Block Diagram
Where Are We Today

- MAX108 ADC
- 100 MHZ sampling
- 8 bits/sample
Where Are We Today

- FPGA running at 200MHZ
- 50,000 8-bit Samples stored in FPGA
- Drives ADC@100 MHZ
- Serial connection to PC at 115,200bps
Where We Are Today

• Collect information from FPGA via serial connection
• Display Time domain signal
Where We Are Today

- Display Frequency domain signal
- View sidebands
- View carriers
OFDM Signal Captured

- Center frequency = 25 MHz
- Bandwidth = 10 MHz
- Maximum frequency = 30 MHz
- Fractional bandwidth = 1/3
- Number of carriers = 8192
- Carrier spacing = 3.6 kHz
- Symbol time = 273μS
OFDM Spectrum

Frequency composition of sampled waveform
Current Version 0.1

- Evaluation boards
- 50,000 samples
- 100 MHz sampling rate
- 50 Mhz bandwidth
Ver 0.2

- Evaluation boards
- 32 Million samples
- 100 MHz sampling rate
- 50 MHz bandwidth
Ver 0.3

- Custom PCB
- ?? Billion samples
- 1.5 Billion samples per second
- 750 MHz bandwidth
Layout Issues

• Propagation delay
• Edge rates (highest freq component)
• Trace impedance
• Cross-talk
• Grounding issues
• Power supply issues
Digital Design – Edge rates

- Data Ready fall time = 180pS
- Most energy contained below = 2.77 Ghz
- We need to design for edge rates not bit rates
FPGA D\textsubscript{Ready} output

- Rise time = 453.2 pS
- Energy contained below 1.1Ghz
FPGA 100MHz Clock Output Differential Probe

- Rise time = 1.02 nS
- Energy contained below 490MHz
FPGA 100MHz Clock Output Passive probe

- Rise time = 2.9ns
- Energy contained below 172.4 MHz
Review Specifications

- 8 bits @ 1.5 Gsps (max)
- 1.5 GB/s at max sampling rate
- DDR SDRAM memory
- High speed PCB design constraints
fin
Typical PECL Input And Output Stage

Micrel SY88893V Datasheet