Preface

This guide will help you to write your Major Qualifying Project (MQP) report. It explains the two types of biomedical engineering MQP’s, how to tailor your report to the type of MQP you choose, and how to format your report. Using this guide will help you to approach your MQP problem while providing you with the means of documenting the entire process.

What is an MQP report?

The MQP report is a unique document whose purpose is to document completely your MQP from problem conception to final result. In addition, the report must communicate that you have mastered the material needed to complete the project.

Mastery, at this point, does not mean that you have to become an expert in the field, just that you understand and can communicate the basic concepts underlying your project. For example, if your project deals with the absorption of light by blood, can you explain how such absorption is measured? Can you explain the physics behind such absorption, i.e., what happens to the blood when it absorbs the light? Can you explain the results you obtained? You need to convince the reader that you understand where the problem fits into your field and what all the relevant issues are.
What is the format of an MQP report?

Your report will have two parts. The first is the Proposal, where the problem is identified and put into context using background material. The second is the Methods and Results, where you describe what you did, what the results were, and how you are interpreting them.

Part I – Proposal

The Proposal chapters introduce the reader to the problem that your project is trying to address. Therefore, these chapters should present background material that helps the reader to understand the context of your project aim. Usually, providing a context entails summarizing previous published research. This context may also be supplemented by summarizing preliminary work performed by previous MQP groups or their recommendations. The purpose of background material is to convince the reader that your ideas are sound and that the work you are proposing has a good chance of succeeding.

Part II – Methods and Results

This part gives the reader the details of what you did and what the results were. In addition, this part includes chapters that discuss the results (Analysis and Discussion chapter) and a big-picture summary of their significance (Conclusions chapter).

Although the second part of the MQP report resembles a journal article, it contains more information than is usually presented in such an article. This additional information shows the reader the steps you took along the way to your final result. For example, in your report you will have a chapter covering the design of your experiment or device. There you will need to describe your initial through final designs and what criteria you used to decide on specifications or changes. By contrast, professional journal articles report only final designs and results.

Audience

Before you begin your report you should have a clear idea of your intended audience, which will determine the level of detail present in the report and the amount of background material that is presented. In the case of the MQP report, you are writing for other students who may be continuing the project or people outside of the field who may know something of what you are doing, but who are not experts. Your document should therefore contain more background information than you would include normally in a journal article. (Note that including this background material helps to demonstrate mastery of the subject.)

Summary

In summary, the goal of your MQP report is to document thoroughly your MQP from problem conception to final result. You must convince the reader that you understand the
history and relevance of the problem you are working on and why you chose to attack the problem in the manner that you did. The evolution of your design should be documented in a way such that the reader can follow your reasoning. The experimental methods that you used (whether for an experiment or for testing a device) should also be documented completely so that the reader can interpret the applicability and viability of your results. You should then state your final results and your interpretations of them. Finally, you should be able to make some recommendations for future work.

Contents of This Guide

This packet contains all the information necessary to complete your MQP report successfully. It is a good idea to look through this material before you start work on your project and to refer to it as your work progresses, so that you have a coherent and logical approach and that you follow the correct format. Enclosed you will find:

1. A document outlining the general format of an MQP report
2. A sample table of contents
3. A sample evaluation form used by the MQP report reviewer
4. A sample oral presentation evaluation form.

The general report format document briefly explains the purpose of each part of your report and what material should be included in that section or chapter. Each MQP report should include most if not all of this material (although the exact format of each section and chapter can vary and will depend upon the nature of the project). Before you begin to write your report consult your advisor(s) for more information specific to your MQP.

The sample table of contents covers all of the sections and chapters outlined in this document and where they should appear in your report. All of the sections and chapters in the sample are applicable to all projects.

Your MQP will be reviewed twice by people other than your advisor(s): first, during your formal oral project presentation on Project Presentation Day (before it is submitted for final grading), and second, after your report is finished and graded. Therefore, to allow you to see the evaluation criteria that faculty will be using, this packet includes both the report and oral presentation review forms.

Types of Projects

There are two broad types of MQP projects: scientific and engineering. Scientific projects involve the design and implementation of experiments conducted to answer a scientific question. Engineering projects usually involve the design and construction of a device for a specific purpose. For example, figuring out why tissue pH changes during ischemia would be a scientific project, whereas a project to design a more reliable tissue pH meter would be more properly classified as an engineering project. The type of project will determine both your approach to the project and the style and specific organization of the final report. Discuss below is how to adapt the initial chapters of
your report to the type of project you are doing and a summary of the differences between science-and engineering-based MQP’s.

For both types of projects, the initial step is to identify a problem to be solved. In a scientific study, the “problem” is usually a missing piece of knowledge. In other words, some observations have been made that cannot be explained with the current state of knowledge in the field. For example, it may not be known why tissue pH changes in response to a particular disease. However, in an engineering study, the “problem” is often that there is a need to be filled. For example, there may be a need for a noninvasive tissue pH-measuring device, because an early symptom of a particular disease results in a change in tissue pH.

The next step is to decide how to solve the problem. For a scientific project, you must develop a hypothesis, i.e., you must speculate on an explanation for the unexplained phenomenon. For example, your hypothesis might be that the tissue pH changes because a disease disrupts the production of ATP. Your scientific project would then seek to prove or disprove this hypothesis through experimentation.

Instead of Hypotheses, engineering projects have Project Objectives. In this case, an Objective might be to design and build a device that measures the change in pH over the disease progression.

You then need to state exactly what you intend to achieve during your MQP project. In a scientific project, this is detailed in your Specific Aims section. The Specific Aims should be tied directly into your hypotheses and it is common to have at least one Specific Aim for each hypothesis. For example, if your hypothesis is that the pH changes because ATP production is disrupted, one of your Specific Aims should be to measure the ATP production.

In an engineering project, this list of proposed achievements is called the Project Specifications. If your Objective is to measure the small pH change that occurs over the course of the disease progression, then a Project Specification of your project should be to construct a device with the required accuracy to measure that small change.

In general, the two methods can be summarized as follows:

<table>
<thead>
<tr>
<th>Step</th>
<th>Scientific Project</th>
<th>Engineering Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Make observations</td>
<td>Make observations</td>
</tr>
<tr>
<td>2</td>
<td>Identify missing knowledge</td>
<td>Identify a problem/need</td>
</tr>
<tr>
<td>3</td>
<td>Make hypotheses</td>
<td>Project Objective</td>
</tr>
<tr>
<td>4</td>
<td>Formulate Specific Aims</td>
<td>Project Specifications</td>
</tr>
<tr>
<td>5</td>
<td>Design experiments</td>
<td>Design device</td>
</tr>
<tr>
<td>6</td>
<td>Perform experiments</td>
<td>Build the device</td>
</tr>
<tr>
<td>7</td>
<td>Analyze the data</td>
<td>Test performance</td>
</tr>
<tr>
<td>8</td>
<td>Interpret the results</td>
<td>Decide on a final design</td>
</tr>
<tr>
<td>9</td>
<td>Lead to further questions</td>
<td>Identify areas needing improvement</td>
</tr>
</tbody>
</table>

Suresh Atapattu
atapattu@wpi.edu
The format given below is appropriate for both types of MQP’s. Each section heading shown below should appear in your MQP report; however, the contents of the sections will vary from project to project. This document is designed to give as much guidance as possible, but a single document cannot cover all eventualities. You should, therefore, consult your advisor when questions arise.

Report Sections

TITLE PAGE

The Title Page should include the title of the project, the name(s) of the author(s), the date of final approval (month and year), and the name(s) of the project advisor(s). The Project Office requires that you list three keywords pertaining to the project on the left side of the page, opposite the advisors’ signatures. Careful thought should be given to the selection of an appropriate project title. A sample Title Page is included at the end of this tutorial. Text that appears in < > is specific to your project.

TABLE OF CONTENTS

A Table of Contents directs readers to the location of specific information and gives them a quick overview of the entire project. Use the decimal numbering system for both sections and subsections. Note that material that is not the actual text of your document is numbered using Roman numerals (for example, the Table of Figures). Pages of document text are numbered using Arabic numerals.

AUTHORSHIP PAGE

The Authorship Page should identify the work for which each group member was responsible. Information should be provided not only for the actual project work, but also for the writing of the report. This section should not exceed one page.

ACKNOWLEDGMENTS

In this section, it is customary to list each person and organization that has contributed to your work. The nature of the contribution (e.g. permission for the use of equipment, access to facilities, etc.) should be described.

ABSTRACT

The Abstract should present a concise overview of the project. The Abstract should clearly state the project’s objectives, rationale, a brief summary of the procedure employed and the final results produced from the project. The Abstract should be written as a completely self-contained section, i.e., it should provide sufficient information for a general understanding of the project’s goals and results.
Because the Abstract is necessarily brief, it can be difficult to write. Effective abstracts:

1) will contain enough specific information to satisfy the needs of a researcher looking for information and of an administrator looking for a progress or status definition;
2) will be a complete, self-sufficient description of the work and the results;
3) will contain numerical results and their associated errors, if appropriate (e.g. 10.1 ± 0.3 sec);
4) will be brief and contain only the results themselves and the conclusions, but no discussion of the results;
5) will be written for the general reader in easily understood language, but may contain standard, generally recognized abbreviations, and
6) will be consistent in tone and emphasis with the parent report or paper.

Using the list above, you can see that an abstract should be written after the project work is complete, the data analyzed, and the first draft of the report written. However, because the Abstract is written last, it often suffers from being done quickly. This is unfortunate since the Abstract is usually read first and a reader will often form a general impression of the work from the Abstract. Thus, careful thought and planning is required to insure that this section reflects the quality of the entire report. The typical length of an abstract is approximately one double-spaced page; however, WPI limits abstracts to 80 words.

TABLE OF FIGURES

Figures should be numbered using the “chapter.figure #” format e.g., the third figure in Chapter 5 is Fig. 5.3. Note that in referring to a particular figure in the text or caption, the word “figure” is always capitalized and abbreviated (i.e. “Fig.”), except at the beginning of a sentence, where it is capitalized and spelled out. This table should be placed on a separate page.

TABLE OF TABLES

Tables should be numbered using the same format as that used for figures. However, the table number and table description should be placed at the top of the table. The word “table” is always written out, not abbreviated. In references to a specific table in the text, the word “table” is always capitalized. This table should be placed on a separate page.

Part I - Proposal

The Proposal is made up of the first four chapters of your report. (Note: the word “chapters” is used rather loosely here. As defined, some of your chapters may be only one or two pages long.) In the Proposal, the goal is to present background information necessary to the understanding of your project and to detail how you intend to solve the problem you have chosen. Note that, by necessity, you will use past and future verb tenses in this section. The background information you present describes work that has already been done. Therefore, that material should be written using the past tense, e.g., “Firefly, et al. (1964), were the first to realize that a change in tissue ph accompanied...”
tissue ischemia.” The work you intend to do, however, must be written in the future tense, e.g., “We will find a cure for pancreatic cancer.” The use of the future tense indicates that you have not yet done the work, so this material should be written before you start your actual experiments or construction. Writing this material will help you synthesize the background reading you have done and ensure that you have a firm understanding of the problem and the necessary fundamentals.

CHAPTER 1—INTRODUCTION

The goal of this chapter is to provide an introduction to your project written in language that a general audience can understand. The introduction should, in the broadest terms, identify the problem and the project objectives. Remember that the background material has not yet been presented to the reader, so you should not assume that the reader has any special knowledge. This chapter should (briefly) address the following questions:

- **What is the general problem you are addressing?** For example, if your project is related to diabetes, you should give the reader a general impression of how prevalent diabetes is and some background of the disease. This is to give the reader some context with which to follow your literature review. This part should answer the question, “**why** are you doing the project?”
- **What are the overall goals of your project?** This should be written so that the reader has a clear grasp of the scope of your project. This part of the Introduction should answer the question, “**what** are you going to do?”
- **What is the general procedure that will be employed in conducting the project?** This material should answer the question, “**how** are you going to do it?”

The final paragraph/paragraphs of the Introduction should preview briefly the contents of each of the succeeding chapters. It is important that this material present an accurate description of what appears later in your MQP report and, therefore, should be one of the last chapters that you write. The Introduction will rarely exceed four or five pages.

CHAPTER 2—LITERATURE REVIEW

This chapter provides the intelligent but non-specialist reader all the introductory information needed to understand the general problem that your project addresses as well as your project’s Specific Aims. Your literature review must give the reader a brief summary of what is currently known about your problem area. You should think of this chapter as your chance to build a logical argument that will convince the reader that your approach is reasonable and one that will produce relevant results.

The goal of this chapter is to build a logical argument that leads to your project approach and Specific Aims. This chapter should include the following:

1. Information about the importance of the field that you are working in
2. How your specific project relates to the larger problem area
3. A summary of what is currently known (and unknown) about the area your project addresses

Suresh Atapattu
atapattu@wpi.edu
4. A summary of the current mathematical models used in this field and their
 assumptions and/or:
5. A summary of the relevant devices now in use in this field.

After reading your literature review, your audience should be able to follow the technical
reasoning you provide for your project design and your conclusions.

The literature review is important even for projects in which the goal is the design and
construction of a device. The reader must understand the general problem so that the
device specifications that you have chosen will be meaningful. In addition, if current
devices are not fully discussed, the reader has no context against which to judge the
success of your device.

The literature review elaborates upon details and topics that were treated in a cursory
fashion in the Introduction chapter (e.g., the importance of the project, debates
concerning aspects of the project, specifics on alternatives, benefits to be derived from
the results of the project, etc.). It should discuss only work performed by others, but not
the work you performed as part of this project.

This chapter is usually quite lengthy and extensively documented (footnotes may be
placed together at the end of the chapter to facilitate typing). References are necessary
for all quoted material, all specific facts that are not general knowledge, and all
quantitative data. WPI has adopted Kate Turabian’s *A Manual for Writers of Term
Papers, Theses, and Dissertations* (based on the larger *The Chicago Manual of Style*) as
the standard style guide for documentation. See the References section in this guide for
more information on the format for references.

The literature review can be difficult to write if treated as a repository for all of the
material that you read during the research phase of your project. If, however, you think
of the literature review as a story you are telling readers to get them to your level of
understanding, the literature review becomes much easier to write. Remember that when
telling a story, you don’t want to include everything you know about what happened. It
is better to put only the relevant facts in the review, the facts that lead the reader directly
to understanding your project approach. If approached in that manner, the background
material is much easier (for you) to organize and for the reader to understand.

You should include a work in the literature review for any of the following
reasons:

1. It provides a historical development of the subject. Remember that you are
 trying to provide the reader with the background information that will be
 needed to understand the choices made in the project and the interpretation of
 the results.
2. It points out limitations of previous work.
3. It provides supporting evidence (either data or theories) for your point of
 view.
4. It raises opposing viewpoints. You will have to address any data or theories that run counter to your hypotheses. Either they must be shown not to be applicable to your situation or countered with preliminary data that show them to be wrong.

The point is that you should cite work only when you have a reason – either to support what you are arguing or to ward off criticism of your work by showing how data or arguments that disagree with you are either flawed or inapplicable to your work. All material that you read during the research phase does not need to appear in the Literature Review.

When citing a work, remember that you are trying to tell the reader a story and that the work that you want to refer to should be woven into the narrative. Imply rather than state that a work is important. Instead of, “This work is important because…” tell the reader the work’s main finding. For example, “Hackenbush, et al. (1964) found that the mean pO2 of C3H murine tumors increased by 50% when the animals were breathing carbogen gas.”

Though you should be concise, you should include enough detail so that the reader can understand the significance of the citation. Assumptions that were made and numerical results (with errors) should be reported if they are crucial to your argument. If you are critiquing a work, enough detail needs to be included so that the reader can fairly assess your criticisms.

CHAPTER 3—PROJECT APPROACH

For both types of projects (engineering and scientific), this chapter outlines your ideas about the solutions to your problem (your hypotheses or Project Objectives) and what you intend to do in your project (your Specific Aims or Project Specifications). A hypothesis is generally considered an educated guess, proposing a possible solution to the problem or question raised by your preliminary investigations and literature review. A Project Objective is a statement of what is needed to solve the problem presented by the client.

In a scientific project, a Specific Aim is a task that should either confirm or deny your hypothesis. In an engineering project, your Project Objective may simply be to meet the client’s needs and wants, but there may be additional aspects to your project. Your Specific Aims and Project Objectives should be discussed and formulated with your advisor(s) since this step determines what you will work on for the remainder of your project.

For a scientific project, this chapter should consist of a short list of your Hypotheses and the Specific Aim that is related to each. Accompanying the listing of each Hypothesis should be a short summary of your reasons for each Hypothesis (essentially a synopsis of the relevant part of the literature review). Any assumptions that you make in formulating your Hypotheses should be stated in the summary paragraph. The Specific Aim should follow the summary.
In an engineering project, this section should consist of your Project Objectives and Project Specifications. Each Specification should have a short justification accompanying it so that the reader can understand the rationale for each Specification. Again, assumptions should be stated in the Specification justification.

Hypotheses - Scientific Projects

First, base your hypotheses on the information you have gathered from your preliminary research including background material you found in the literature or by talking to other experts working in the field. Second, define your hypotheses. State your hypothesis in one sentence; for example: “Application of strong magnetic fields to a broken limb will speed the healing process.” From reading just this one sentence, what you intend to explore in your project is clear. Third, you must be able to test your hypotheses. If you are planning to investigate whether or not the application of magnetic fields speeds up the healing of bone fractures, you must be able to conduct experiments to test this specific hypothesis.

Remember that your hypotheses are only assumptions or educated guesses. You may find the results of your investigation do not support and may even rule out your hypotheses. Do not consider your project a failure if your investigation does not confirm your original hypotheses. Your results are valid and may be helpful in providing you or others with ideas or clues for further investigations.

Project Objectives - Engineering Projects

Hypotheses can also be used in engineering projects, but more often Project Objectives are used instead. Your Project Objectives should be based on both the information you have gathered from your preliminary research (including background material you found in the literature) and by talking to your client(s) (i.e., your client statement).

Assumptions

Every hypothesis carries with it a set of assumptions. For example, in your reading of the background literature you might find that the probability of interaction A is much smaller than interactions B, C, and D. Therefore, you decide to omit interaction A from your model. Your hypothesis is, then, that interactions B, C, and D are the crucial ones. By doing this, you are assuming that interaction A is not important to the process you are studying. This may, however, be a bad assumption. In fact, interaction A, though small, may be crucial to the process. Identifying the assumptions made in your work is crucial to the refinement of hypotheses and for recommendations of future work. In addition, your Conclusions chapter will discuss these assumptions and how they influence the interpretation of the results.
Specific Aims/Project Specifications

After you have identified the problem, discussed what others have done, and made hypotheses, you need to spell out exactly what this particular project is supposed to accomplish, i.e., your Specific Aims. The Specific Aims for a scientific project should be tied directly to your hypotheses. Therefore, if one of your hypotheses is that “muscle cells will multiply fastest in media whose ph is 7,” then one of your Specific Aims should be to design and conduct an experiment to test this hypothesis. Each hypothesis should have a Specific Aim attached to it.

For an engineering project, the Project Specifications can be a list which details the exact specifications (including accuracy or performance) of the instrument/device you intend to design. For example, “One Specification of this project is for the spectrometer to have a drift of no more than 5 ppm/hr as specified by our client.” This, however, need not be your only Project Specifications. The idea, however, is that the Project Specifications are concrete goals that you intend to achieve. In your Discussion and Conclusions, you will be going over your Project Specifications point by point and will detail how well your results met your Project Specifications.

CHAPTER 4—DESIGN

Scientific Projects
In scientific projects you will be designing experiments to test the hypotheses you have developed. In this chapter, you should list and discuss the design procedures used to decide which experiments will be performed.

Engineering Projects
Engineering MQP’s usually involve the design of a hardware/software product. The Design chapter, therefore, should list and discuss the design procedures of various components/systems starting with the design goal of each component. To start, you need to develop a design concept and describe how you tested this concept.

For both types of projects you should detail the sources of the information used in your design process. By referring to reputable sources you raise the credibility of your design. Even statements such as, “We called Jeffrey T. Spaulding, chief engineer at Spaulding International, who told us that PVC tubing would be sufficient for our purposes" are important information for the reader and other researchers.

This chapter should include some of the following material as appropriate:

Needs Analysis and Specifications: One of the most important tasks in design is to determine, as precisely as possible, what the actual requirements are. Therefore, you need to discuss with the prospective users or recipients of your results their “needs and wants”. In the context of design, “needs” refers to properties that your result must have. Examples would be: 1) a voltage drift of less than 0.05 mV/hr over 12 hours or 2) the diffusion coefficient of water in the liver measured to a precision of 0.1×10^{-5} cm2/s.

Suresh Atapattu
atapattu@wpi.edu
“Wants” refers to things that you would like to have, but that may not be possible given other constraints. One way to sort out the needs and wants pertaining to your design is to list them in a design matrix and assign weights to the different entries. Using weighting factors can help you prioritize the entries according to a certain scale (e.g., 0 to 10, with 10 being the most important). This method is discussed in the book *Engineering Design: A Project-Based Introduction* by Clive Dym and Patrick Little (2000). Once you have discussed the functional needs, you must also discuss physical limitations (size, weight, etc.) which, together with needs, helped you to define the specifications of your end product or experiments.

Feasibility Study: Although this was investigated in the design process, at some point in the project an assessment has to be made of whether or not the experiments can be performed or the device manufactured given the limitations of the project budget and duration. This is not always possible to determine from the initial design since, in almost every project, changes to the original specifications are made as the project progresses and your understanding of the problem deepens. At some point, therefore, tests might be performed to determine the feasibility of the project. A feasibility study can be used to eliminate different approaches to the project that pass the needs/wants tests, but that, for example, may be too costly given the budget constraints of an MQP. If you performed tests to determine the feasibility of the final design, these tests should be documented in this chapter.

Alternative Designs: Here you should discuss how you got to your final design. Alternative designs should be detailed as well as information used to decide for or against your preliminary designs. Include information acquired from patents, publications, or brainstorming with your partners. Scanned pages from your notebook are relevant and can either be included in this chapter or in an Appendix and merely referred to in this chapter. This material should be treated as a comprehensive answer to the question, “How did you come up with your final design?”

Modeling: Each design reaches a point at which decisions must be made about the material to use, the dimensions of parts, the components of a complex system, or the relationships among different components of a system. Here you should describe any physical models, mathematical models, or real-time computer-based simulations that you utilized to test your design.

Decisions: Design depends heavily on making decisions. Here you should describe, in a systematic way, how you made different decisions concerning your design. For example, the order in which the components were designed, the inter-relationships among components, and the selection of materials all involve decisions. One method to describe the decision process is to use a decision matrix.

Optimization: Here you should discuss the process of selecting a set of specifications, such as dimensions and material characteristics that resulted in the best product or experiment for the particular design configuration chosen.
Preliminary Data: If, in your design process, you have either conducted preliminary experiments or built models and used the data obtained from these to decide on a design, then this data should be included in this chapter. Did the Preliminary Data make you go back and rethink your design?

Part II - Methods and Results

The last five chapters constitute the Methods and Results part of your report. In this part, the goal is to present what you did, how you are interpreting the results, and what should be done in the future. Because you will be writing these chapters and sections after the project has been completed, they will necessarily be in the past tense. Note that the chapters for the results and your discussion of these results are separate. This separation allows you to draw on all of your results in your discussion and allows easier discussion of the big picture.

CHAPTER 5—METHODS

This chapter is at the heart of the project. It should convince the reader that the author clearly understood the problem and has pursued a logical task-sequence to achieve the project's objectives. By describing how the Specific Aims were met, this chapter explains how the project was conducted.

It is important to provide the reader with enough information so that he or she could reproduce your project work. In this chapter it is better to err on the side of more detail rather than less. Think of this chapter as a tutorial for new people in your group. If you wanted them to repeat your work, what information would you have to provide?

This chapter should include material on both your experimental methods your data analysis. To describe your experimental methods, use a clearly defined sequence of tasks. Divide major tasks into sub tasks, which you may tabulate, or represent graphically with GANTT or PERT charts. GANTT charts are discussed in the book *Engineering Design: A Project-Based Introduction* by Clive Dym and Patrick Little (2000).

For an engineering project “data analysis” will include all of the testing that was done on the final device to ensure compliance with the Specific Aims. For example, “We measured the voltage drift over a 12-hour period five times and computed a mean and standard error of the mean” includes information on both the experimental method and the data analysis.

Some projects evaluate alternative methods to achieve a desired end. In that case, what criteria were used to evaluate the alternatives? What specific measures were utilized to gain insight into these criteria? (A matrix, detailing the criteria and measures on one dimension and the alternatives considered on the other, may be a valuable table to include in this chapter.)
CHAPTER 6—RESULTS

This chapter presents the raw results of the project. “Results” can mean different things for different types of projects. A result could be data, findings, or tests of designs. For example, if your project measures the blood glucose levels from a number of subjects, this is the chapter to report what the levels were for each patient at each time point, what the average levels were over the entire group and what the associated errors were that you calculated for the study. This material should flow logically and, if possible, should report the results in the order in which you did the experiments. So, for example, the results of your experiments in which you first calibrated your instrument should be reported before the final results of the study. The structure of the chapter should be very similar to that of procedure/methodology, since these are the actual outcomes of the procedures outlined there. The key is to keep the presentation of the results separated from their discussion. The meaning and significance of your results should be discussed in the Analysis and Discussion chapter, not here.

If your project contains multiple parts, each with its own results, begin your Results chapter with a summary of the total set to provide your reader with an overview. The overview should be written as simply as possible - go for the big picture - this is not the place to get bogged down in the details (which should have been presented in the Experimental Methods chapter). Remember that you are giving the reader only a reminder. If your project focuses on only one experiment, you do not need to provide an overview.

The actual numbers that you measured (along with their associated errors) should be presented next. Again, present your results in a logical order. When you write, imagine that you are explaining your project to someone who knows nothing about it and the logical order will be evident.

If you performed any additional statistical tests on the data after you acquired it, present these results last. Again, it is not a bad idea to present things in the order in which you did them (unless, for example, you forgot to calibrate your instrument and had to go back and do it at the end).

CHAPTER 7—ANALYSIS AND DISCUSSION

This is the part of the report that requires you to decide what the results of your project mean. Your goal in this chapter should be to place your results in the context of previous work and have the reader understand the unique aspects of what you have done. In this chapter you should strive to convince the reader that you fully understand the problem and that you have thought seriously about what your data means. In general, you need to discuss each of your results separately, discuss each of your assumptions and how they influence the interpretation of the results, and build a logical argument that convinces the reader of your point of view. In addition, this chapter sets the stage for the conclusions drawn in the final chapter.

Suresh Atapattu
atapattu@wpi.edu
In a scientific project, this chapter convinces the reader that you have met your Specific Aims and that your results prove (or disprove) your hypothesis. Remember that your Specific Aims are the goals for your experiments and these should be met whether or not your hypotheses turn out to be true. In an engineering project, this chapter convinces the reader that you have met your Project Objectives/Specifications.

This is also the chapter where you discuss how your results compare with those found by others (the latter should have been discussed in the Literature Review). For an engineering project, this chapter examines how the performance of your designed instrument or device compares with other existing devices. If you made measurements, you should discuss what your values mean in light of other work that has been reported previously. For example, is your value significantly less than the currently accepted value? If so, you should provide possible explanations. If your results differ from other published results, you need to explain these discrepancies. Your explanation might consider differences in materials, experimental methods, data analysis or any other factors you feel are relevant.

Additionally, this chapter discusses limitations of your data. Such a discussion usually will diffuse any criticism of these limitations, because you will have acknowledged them and discussed how either they are not critical to the success of your experiment or that your data is meant to address a limited aspect of a problem.

CHAPTER 8—CONCLUSIONS

In this chapter your goal is to draw global conclusions about your results. Therefore, you should summarize the big picture for the reader, what your results mean and what you have accomplished by your work. Numerical results are not necessary in this chapter.

The conclusions and the abstract contain similar information; however, their goals are different and, as such, the presentation of the information is different. As noted above, numerical results are necessary in the Abstract, but not in the Conclusions. Another difference is that there should be no interpretation or discussion in the Abstract, just a statement of the main result, while the Conclusions should be a summary of your interpretation of your data.

CHAPTER 9—RECOMMENDATIONS

Recommendations are a logical consequence of the conclusions. They suggest remedial actions to some problem or further in-depth studies in some specific areas. In this chapter, you should write about all of the things that were left undone either due to lack of time, finances, or equipment. A good project should always point the way to the next problem to be solved or measurement to be made. Suggesting things that might be done to carry on your research indicates that you understand the problem you are working on.

REFERENCES

Suresh Atapattu
atapattu@wpi.edu
This section lists any sources you have consulted, whether they are print, electronic, or personal communications. Reference any facts in your report that you have not directly verified and that are not immediately obvious to the layman. For example, if you state that heart disease is the number one cause of death for adult males over the age of 65, you should provide a reference for this fact. If, however, you state that WPI is located in Massachusetts, you need not supply a reference.

The References section should be written according to common practices, i.e., there are many permissible styles of writing reference entries – do not invent your own. Ask your advisor(s) about common styles in their field or look at journal articles that you used to write the Literature Review chapter. One common style is shown below:

Include sources for figures in your References as well as listing the source in the figure caption itself. In addition, any conversations or interviews that were conducted should be referenced.

GLOSSARY

The non-specialist reader normally will not understand the technical vocabulary necessary to describe your project and its results fully. Therefore, it is often helpful to add a Glossary section. When a technical term is first used in the text, briefly define it, then refer the reader to the Glossary for a fuller explanation.

APPENDICES

Use Appendices for important material that is too voluminous and digressive for inclusion within the project text. For example, if you have written computer code that is important to the project, you should include it as an Appendix. If you have done some calculations that are somewhat peripheral to the project, or have come up with a new way of looking at a derivation, put it in an Appendix. All material placed in an Appendix must be referenced within the text of the project. Where necessary, separate Appendices should be used - rather than one large Appendix - to facilitate easy reference to the materials. Each Appendix should be lettered (i.e., A, B, C...), given an appropriate title, paged, and included -- with appropriate title and page -- in the Table of Contents.

Writing Help

If you would like to discuss a draft of your document with a writing consultant, make an appointment with WPI’s writing workshop (www.wpi.edu/+writing). For information about registration procedures, go to www.wpi.edu/Academics/Projects/started.html.

Last modified: September, 2007

Suresh Atapattu
atatpatu@wpi.edu
Sample MQP title page

Project Number:<BME-0903>

<ANALYSIS OF A BIOMEDICAL IMPLANT MATERIAL TO ALLEVIATE BACK PAIN>

A Major Qualifying Project Report:

Submitted to the Faculty

Of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

<student(s) signatures>

<students names>

Date: <enter date of submission>

Approved:

<signature of major advisor>

Prof. <Otis P. Driftwood>, Major Advisor

<signature of co-advisor>

Prof. <Quincy Adams Wagstaff>, Co-Advisor
Sample Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTHORSHIP PAGE</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>TABLE OF FIGURES</td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF TABLES</td>
<td>v</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. LITERATURE REVIEW</td>
<td>3</td>
</tr>
<tr>
<td>3. PROJECT APPROACH</td>
<td>5</td>
</tr>
<tr>
<td>4. DESIGN</td>
<td>15</td>
</tr>
<tr>
<td>5. METHODS</td>
<td>35</td>
</tr>
<tr>
<td>6. RESULTS</td>
<td>58</td>
</tr>
<tr>
<td>7. ANALYSIS AND DISCUSSION</td>
<td>86</td>
</tr>
<tr>
<td>8. CONCLUSIONS</td>
<td>109</td>
</tr>
<tr>
<td>9. RECOMMENDATIONS</td>
<td>112</td>
</tr>
<tr>
<td>LITERATURE REVIEW</td>
<td>115</td>
</tr>
<tr>
<td>GLOSSARY</td>
<td>120</td>
</tr>
<tr>
<td>APPENDICES</td>
<td></td>
</tr>
</tbody>
</table>
Biomedical Engineering Department
MQP Review Form

Project Title: __
__

Student(s): __
(list outside departments) __

Advisor(s): __
(list outside departments) __

Number of Pages: ________

Additional Materials (e.g., CD’s): ___

Sponsorship: Faculty research__________ External:__________

Was the project presented orally? Project Presentation Day____ Other Department______
No presentation______
Please rate the items listed below based on the following scale:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>N/F</td>
<td>Not Found</td>
</tr>
<tr>
<td>1</td>
<td>Severely deficient</td>
</tr>
<tr>
<td>2</td>
<td>Deficient</td>
</tr>
<tr>
<td>3</td>
<td>Adequate</td>
</tr>
<tr>
<td>4</td>
<td>Good</td>
</tr>
<tr>
<td>5</td>
<td>Excellent</td>
</tr>
</tbody>
</table>

I. Please rate how does the MQP demonstrate the following outcomes and assessment criteria?

(a) An ability to design and construct experiments on living and non-living systems (2.1):

<table>
<thead>
<tr>
<th></th>
<th>N/A</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please rate the extent to which design goals were clearly stated.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Please rate the extent to which the MQP addressed the design and implementation of effective experiments on living systems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Please rate the extent to which the MQP addressed the design and construction of effective experiments on non-living systems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Please rate the extent to which tests, simulations, and measurements were made in a structured manner.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) An ability to analyze and interpret experimental data (2.2):

<table>
<thead>
<tr>
<th></th>
<th>N/A</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please rate the extent to which appropriate statistical techniques were applied to analyze and interpret data.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Please rate the extent to which data were analyzed in a valid and meaningful way.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Please rate the extent to which observed results, correlations, unexpected outcomes and unmet specifications were fully explained.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Please rate the extent to which data limitations were considered.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Please rate the extent to which the conclusions were supported by analysis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(c) An ability to design systems, components and processes to meet desired needs (2.3):

<table>
<thead>
<tr>
<th>Question</th>
<th>N/A</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Pages: ____________________</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please rate the extent to which the design goals were clearly stated.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Please rate the extent to which the students synthesized material from various sources in their design.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Please rate the extent to which the students considered and incorporated a variety of realistic constraints including: economic factors, safety, reliability, and aesthetics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Please rate the extent to which the design process demonstrates critical, original, and creative thinking.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(d) An ability to function in a multidisciplinary team (2.4):

<table>
<thead>
<tr>
<th>Question</th>
<th>yes</th>
<th>no</th>
<th>Pages: ____________________</th>
</tr>
</thead>
<tbody>
<tr>
<td>Did the project involve participants (students or faculty advisors) from other majors or disciplines?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(e) An ability to identify, formulate and solve BME problems (2.5):

<table>
<thead>
<tr>
<th>Question</th>
<th>N/A</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Pages: ____________________</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please rate the extent to which the students established that they had correctly identified the problem through interviews with stakeholders.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Please rate the extent to which the students established clear objectives for the problem.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Please rate the extent to which the students considered reasonable alternative solutions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Please rate the extent to which the proposed solution was implemented effectively.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Please rate the extent to which the end results were consistent with the original specifications.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(f) An ability to communicate effectively (2.6):

<table>
<thead>
<tr>
<th>Question</th>
<th>N/A</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Pages: ____________________</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please rate the clarity and logical organization of the MQP report.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Please rate the quality of grammar and style. N/A 1 2 3 4 5

Please rate the clarity with which complex ideas or arguments are presented using graphs, tables and adequate explanations. N/A 1 2 3 4 5

Please rate the professional appearance of the MQP report. N/A 1 2 3 4 5

(g) Understanding the impact of the engineering solutions in a global and societal context (2.7):

Please rate the extent to which the students addressed the potential effects of their work on the well-being of people, animals, and the environment? N/A 1 2 3 4 5

(h) Knowledge of contemporary issues (2.8):

Please rate the extent to which the MQP report addressed an important contemporary biomedical issues. N/A 1 2 3 4 5

Please rate the extent to which the MQP was influenced by contemporary biomedical issues. N/A 1 2 3 4 5

(i) Use of modern engineering tools (2.9):

Please rate the extent to which the students used appropriate state-of-the-art design, computer simulation, analysis or presentation software, manufacturing techniques, evaluation techniques, etc. in their MQP. N/A 1 2 3 4 5

(j) Demonstrate an understanding of professional and ethical responsibilities (3.1):

Please rate the extent to which relevant ethical issues were identified and addressed. N/A 1 2 3 4 5

(k) Recognize the need for and have the ability to engage in life-long learning (3.2):

Please rate the extent to which the references demonstrate an ability to gather data from a wide variety of professional sources. N/A 1 2 3 4 5
Please rate the extent to which the literature review demonstrates that the students can integrate effectively ideas from a variety of sources.

II. Please rate the quality of various sections of the MQP report:

<table>
<thead>
<tr>
<th>Section</th>
<th>N/A</th>
<th>N/F</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>N/A</td>
<td>N/F</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>N/A</td>
<td>N/F</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>AUTHORSHIP PAGE</td>
<td>N/A</td>
<td>N/F</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>N/A</td>
<td>N/F</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>TABLE OF FIGURES</td>
<td>N/A</td>
<td>N/F</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>TABLE OF TABLES</td>
<td>N/A</td>
<td>N/F</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>N/A</td>
<td>N/F</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>LITERATURE REVIEW</td>
<td>N/A</td>
<td>N/F</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>SPECIFIC AIMS</td>
<td>N/A</td>
<td>N/F</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>PROJECT APPROACH</td>
<td>N/A</td>
<td>N/F</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>DESIGN</td>
<td>N/A</td>
<td>N/F</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>METHODS</td>
<td>N/A</td>
<td>N/F</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>RESULTS</td>
<td>N/A</td>
<td>N/F</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>ANALYSIS AND DISCUSSION</td>
<td>N/A</td>
<td>N/F</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>N/A</td>
<td>N/F</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>RECOMMENDATIONS</td>
<td>N/A</td>
<td>N/F</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>N/A</td>
<td>N/F</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>GLOSSARY</td>
<td>N/A</td>
<td>N/F</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>N/A</td>
<td>N/F</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
III. Capstone Design Content
To achieve a Capstone rating, the project must substantially include the first 5 elements listed below, but does not have to include fabrication and testing.

Did the project show that an open-ended need existed for a device, system, process, or experiment? N/A 1 2 3 4 5

Was the problem defined and the design criteria stated fully? N/A 1 2 3 4 5

Were alternative designs created and reviewed? N/A 1 2 3 4 5

Was at least one design analyzed? N/A 1 2 3 4 5

Was the final design discussed or refined in terms of meeting design criteria? N/A 1 2 3 4 5

Was the final design fabricated? N/A Yes No

Was the final design tested? N/A Yes No

Is the design sufficient to satisfy the Capstone design? N/A Yes No

Reviewer’s Comments:
Biomedical Engineering Department
Evaluation of MQP Presentation

Date: _____________________

Project Title: __
__

Name of Student(s): ________________________ ________________________ ________________________ ________________________

Reviewer’s Name: ________________________

Form of Presentation: Poster ________ Oral ________

Please rate the items listed below based on the following scale:
N/A = Not Applicable 3 = Adequate
1 = Severely deficient 4 = Good
2 = Deficient 5 = Excellent

1. Content:
 a. Project objectives were stated N/A 1 2 3 4 5
 b. Key ideas were explained N/A 1 2 3 4 5
 c. Presentation ended with a conclusion N/A 1 2 3 4 5
 d. Overall organization of the presentation N/A 1 2 3 4 5

2. Presentation Skills:
 a. Presentation was delivered with enthusiasm N/A 1 2 3 4 5
 b. Students used visual aids N/A 1 2 3 4 5
 c. Students used prototype/model demonstrations N/A 1 2 3 4 5
 d. Quality of visual aids N/A 1 2 3 4 5
 e. Presentation demonstrated effective teamwork N/A 1 2 3 4 5
 f. Handling of Questions N/A 1 2 3 4 5

Reviewer’s Comments: