Review of Single Use Technologies in BioManufacturing

Parrish M. Galliher
Outline

• Introduction – Strategic Outlook for BioPharma
• Advantages and Limitations of Single Use Systems
• Integration/Scale Up Challenges of Disposables
• Single Use Bioreactor Data
• Conclusions
BioPharma Strategy - New Paradigm

Industry Growth
- 15% annual avg.
- >15 approved mAbs
- >150 mAbs in clinic
- expanding pipelines

New Technology
- Better process yields
- Potent compounds
- Drug delivery

Smaller Markets
- Fewer blockbusters
- Personalized medicine
- Genetic screening

Cost Pressures
- Health care reform
- Pricing controls
- Biosimilar drugs

- Capacity demands
- Smaller batch sizes
- Smaller R&D budgets

Need for more efficient PD & Mfg.
fast, flexible and inexpensive manufacturing capacity
Xcellerex’s Technology will be Commercial Scale
Future Quantity Per Drug Demand for Biologics is decreasing

- Traditional Platform Scale – 2,000L to 20,000L
- Xcellerex XDR Platform Scale – 200L to 2,000L

Niche markets
- Improved potency
- Improving yields
Advantages of Single Use Systems

Reductions in:
– Cleaning
– Sterilization
– Engineering cost
– Equipment lead time
– Utility requirements
– Validation
– Quality / Regulatory burden
– Space
– Labor
– Waste generation

Improvements in:
– Manufacturing quality
– Capital investment
– Facility buildout time
– Cycle time
– Flexibility
– Environmental impact
– COGS
Limitation of Single Use Systems

- Mixing/Buffer/Media prep – Rate of liquid transfers
- Bioreaction – Lab to commercial scalability within the same reactor design/configuration
- Cell Harvest/TFF - Recirculating processes that require high pressure and high flow rates
- Disposable Chromatography is still TBD
- Non-standard, multiple connection options
- Disposable sensors are limited
Technology Survey

Products and vendors listed in the following slides are provided for reference and do not constitute a complete list or an endorsement of any specific vendor or product.
Enabling Single Use Technologies

- Bioprocess bags
- Cell culture bioreactors
- Separations (Cfg., TFF, rotary drum, filters)
 - Harvest
 - Virus removal / sterilization
 - Concentration / buffer exchange
- Purification – membranes
- Tubing welders / connectors / sealers
- Integrating stainless and disposables connectors
- Sensors
Mixing Systems

Applications: Media, buffer, product processing, formulation

Capacity: 10 L to 10,000 L

Vendors/Types: Hyclone MixTainer, LevTech/Sartorius levitated prop tank, Wave FlexMixer, Xcellerex XDM stirred tank

Integration Challenges: powder addition, connectors

Scale Up Challenges: powerful mixing, bags that flex to achieve mixing rely heavily on bag seam strength and durability
XDM-100 and 200 Disposable Tank Mixer
Invitrogen/Xcellerex XDM Commercial Disposable Mixers for powdered media mixing and delivery

XDM-100
Powdered media/buffer mixing

XDM-200
Powdered media/buffer mixing
BioProcess Bags/Tank Liners

Applications: culture media and buffers, product, samples or waste.

Capacity: 10 mL to 2500 L (up to 10,000 L)

Vendors: HyClone, Stedim, TC Tech, Charter, Newport: USP Class VI tested, gamma irradiated

Types: Monolayer, multilayer, LDPE, EVA, etc.

Integration Challenge: connectors not common

Scale Up Challenge: bag seam weld strength, rate of fluid transfers, robust, cheap tubing >1” diameter
Small Scale Cell Culture Bioreactors

Application: Culture of eukaryotic cells

Capacity: ~10 mL – ~10 L / 25K cm²

Vendors: Corning, Nunc, Wave, Bellco

Types: TC flasks, rollers, spinners, shake flasks, hollow fibers, expanded T-flasks (Cell Factory, Cell Cube), novel bioreactors (Wave, BelloCell)

Integration challenges: tubing/connectors sizes and compatibility

Scale Up Challenge: model system that scales to 10,000L
Mid Scale Cell Culture Bioreactors

Applications: Culture of mammalian, insect or plant cells in suspension. (Many vendors supply large hollow fiber systems for anchorage dependent cell culture).

Capacity: 1 L – 200 L

Vendors: HyClone SUB stirred tank, Wave Biotech rocking system, Xcellerex XDR stirred tank bioreactor

Integration Challenge: liners, connectors, sensors, filters, controllers

Scale Up Challenge: model system that scales to 10,000L
Xcellerex
XDR-200
working volume
disposable stirred tank reactor
Large Scale Cell Culture Bioreactors

Application: Culture of mammalian, bacterial, yeast, insect or plant cells in suspension.

Capacity: 200-1,000L working volume

Vendors: Wave Biotech 500L rocker, HyClone SUB stirred tank, Xcellerex 1,000L stirred tank bioreactor

Integration Challenge: liners, connectors, sensors, filters, controllers

Scale Up Challenge: avoid stressing bag seams, small scale modeling system that scales to 10,000L
Xcellerex 1,000L (wv) Disposable Stirred Tank Reactor - XDR™
Cell Harvest

Application: Separation of cells from growth medium during perfusion or for terminal cell harvest.

Capacity: Up to 100-200 L/hr

Vendors/Types: Kendro (centrifuge), Steadfast (rotary drum filter), Spectrum and GE (recirc. hollow fiber), Millipore POD system (dead end), Cuno depth filtration. All product contact surfaces disposable

Integration Challenges: connectors

Scale Up Challenges: recirculating systems: disposable tubing not amenable to high flow rates and pressures
Dead End/Depth Filtration

Application: Clarification / sterilization of media, buffers and process intermediates, cell harvest, and removal of particulates.

Capacity: Syringe filters, 30” capsules, flat membrane generally available, (larger by custom order)

Vendors/Types: Millipore POD, Pall, Sartorius, Meissner, Cuno – larger capsules coming available, many available pre-sterilized and integrity tested.

Integration challenges: connector compatibility

Scale Up challenges: >1000L capacity is lacking
Tangential Flow Filtration

Application: Perfusion, cell harvest, purification, concentration, and formulation / buffer exchange.

Capacity: Up to 5.6 m²

Vendors/Types: Spectrum HF, GE hollow fiber

Integration: disposable pump integration that is durable yet disposable

Scale Up Challenge: recirculating systems: disposable tubing not amenable to high flows/pressures
Virus Reduction

Application: Mechanical reduction of viral load by nanofiltration.

Capacity: 15 - 200 L/hr. (depending on pore size, filter medium & process stream)

Vendors/Types: Millipore dead end, Pall dead end, Asahi-Kasei

Integration Challenges: connectors

Scale Up Challenges: larger scale requires more area
Purification – Membranes

Application: Flow-through removal of contaminants, bind-and-elute purification of small or dilute process streams.

Capacity: 20 L/min., 5g DNA binding capacity

Vendors/Types: Pall, Millipore and Sartorius functionalized filter membranes.

Integration Challenges: connectors, area

Scale Up Challenges: less binding capacity compared to chromatography resins in general
Vial Filling

Applications: Aseptic filling into vials
Capacity: Clinical to commercial {?}
Vendors/Types: Millipore Acerta bag based filling system, MedInstill injection filling/laser sealing
Integration Challenges: connectors
Scale Up Challenges: not clear yet
Sensors

Applications: Process wide

Capacity: N/A

Vendors/Types: Wave Biotech, (pH, DO2), Fluorometrix and PreSens optical sensors, microprobes

Integration Challenges: Cytoxicity, irradaitability, fit up into bags, tubing, dead zone elimination, signal response time

Scale Up Challenges: stability, non-fouling, validatable
Sterile Tubing Connectors

Applications: Aseptic / sterile connections

Capacity: 1/4” to 3/4” OD tubing

Vendors/Types: CPT (C-Flex), Pall ACDs, BioQuate, Millipore. CPT connector is similar to a tubing welder. Pall & BioQuate connectors are similar to a quick-connect which can make sterile connections in a non-sterile environment.

Integration Challenges: no one system connects all and they are one time use (versus welders that can reweld)

Scale Up Challenges: connectors >1” diameter
Connectors - Tubing Welders

Application: Aseptic / sterile connections
Capacity: 1/4” to 3/4” OD tubing

Vendors/Types: Terumo, Wave, Sebra. Several devices have been validated by the vendor and/or biopharm manufacturers. Can be used on PVC and EVA (Sebra), or Tygon, C-flex and Pharmed (Terumo, Wave) tubing.

Integration Challenges: no one system welds all

Scale Up Challenges: welding tubing >1” diameter
SIP Tubing Connectors

Application: SIP-able connections between disposable tubing to stainless steel valves.

Capacity: 1/2” ID x 3/4” OD

Vendors: Millipore, Colder, TC Tech

Comments: Can be added as option to tubing on bioprocess bags for sterile transfer to or from stainless steel systems.

Integration Challenges: no one connects all

Scale Up Challenges: none
SIP Filter Capsules

Application: Disposable filter capsule capable of withstanding temperature and pressure required for steam-in-place.

Capacity: 5” housing

Vendors/Types: Pall - Can house vent or liquid sterilizing filters or virus removal filters.

Integration Challenges: connections

Scale Up Challenges: larger size not available
Sampling System

Applications: Used in place of sampling ports on stainless steel tanks.

Capacity: 20 mL - 1 L sample bags

Vendors/Types: NovAseptic - sheathed cannula, tubing set and bag as a pre-sterilized, closed system. Outside of sheath sterilized during vessel SIP. Can load multiple cannulae into single septum sample port.

Integration Challenges: none

Scale Up Challenges: none
Technology Trends

• Standard connectors
• Non-recirculating TFF
• Integration of existing stainless to disposable
• Development of new enabling technology
 – Sensors
 – Chromatography (scaleable and economical)
• Fully disposable biomanufacturing >1,000L
• Yeast, bacteria, fungal systems coming!
Types of Cells Grown in XDRs

<table>
<thead>
<tr>
<th>Cell type/product</th>
<th>Mode</th>
<th>scale of runs done L (wv)</th>
<th>2007 planned runs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybridoma/mab</td>
<td>fedbatch</td>
<td>2x 200 - GMP</td>
<td>200 - GMP</td>
</tr>
<tr>
<td>CHO/mab-fusion</td>
<td>batch</td>
<td>2x200, 2 x 1,000L</td>
<td>1,000L</td>
</tr>
<tr>
<td>CHO/fus. protein</td>
<td>fed batch</td>
<td>2x 200, 3 x 500 GMP</td>
<td>200, 500 - GMP</td>
</tr>
<tr>
<td>Insect S2/vaccine</td>
<td>fed batch</td>
<td>200</td>
<td>200 - GMP</td>
</tr>
<tr>
<td>Insect SF9/vaccine</td>
<td>fed batch</td>
<td></td>
<td>200, 2,000</td>
</tr>
<tr>
<td>Human/fus. protein</td>
<td>perfusion</td>
<td>200</td>
<td>1,000</td>
</tr>
<tr>
<td>Yeast (Sacc.)</td>
<td>fed-batch</td>
<td>150</td>
<td>1,000</td>
</tr>
<tr>
<td>E. Coli</td>
<td>fed-batch</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Vero/vaccine</td>
<td>batch</td>
<td></td>
<td>200, 1,000</td>
</tr>
</tbody>
</table>
GMP XDR-200 and 1000 Systems
BioNet DeltaV GMP Process Controller
XDR-1000 DO Control, fusion protein

DO

Time

5/14/06 7:21
5/14/06 20:55
5/15/06 10:29
5/16/06 0:03
5/16/06 13:36
5/17/06 3:12
5/18/06 16:44
5/18/06 19:52
5/19/06 9:26

Review of Single Use Manufacturing Technologies
Copyright ©2007 Xcellerex
XDR-1000 pH control, fusion protein
XDR-1000 Temp Control

878-03 1000L Bioreactor Run, Temperatures, 3/11/2006

Temperature in Degrees C

Bioreactor Temp
Ambient Temp
XDR-1000 Mass Transfer
KLα measurements, single sparger

<table>
<thead>
<tr>
<th>XDR-1000 - F impellers, Air Only, 37C, 6 g/L Salt, F-68 1 g/L, polyol antifoam</th>
</tr>
</thead>
<tbody>
<tr>
<td>rpm</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>132</td>
</tr>
<tr>
<td>167</td>
</tr>
</tbody>
</table>
XDR-1000L KLa hr-1 vs RPM and Sparge Rate (Multiple spargers)
Review of Single Use Manufacturing Technologies
Copyright ©2007 Xcellerex
XDR-200 Comparison, Viability
XDR-200 Comparison Titer

Production Titer

Age (hrs) vs. Titer (mg/mL)

- 3000L eng
- GMP1
- GMP2
- GMP3
- 300L
- XDR200
- XDR200-2

Review of Single Use Manufacturing Technologies
Copyright ©2007 Xcellerex
XDR-200 Comparison, pCO2

Production pCO2 (mmHg)

Age (hours)

pCO2 (mmHg)

3000L eng
GMP1
GMP2
GMP3
300L
XDR200
XDR2002-2

Review of Single Use Manufacturing Technologies
Copyright ©2007 Xcellerex
XDR-200 CHO Perfusion Culture - Viable Cell Density

XDR200 vs 10L BR (Viable Cell Density)

Perfusion rate = 1 VVD

Review of Single Use Manufacturing Technologies
Copyright ©2007 Xcellerex
XDR-200 CHO Perfusion Culture - % Viability

Days in Production
60.0
70.0
80.0
90.0
100.0

Viability (%)
-5.0
0.0
5.0
10.0
15.0
20.0
25.0

XDR200 vs 10L BR (Viability)

XDR200
10L BR
XDR-200 Insect Cells S2
- fed batch

XDR-200 Growth Curves Vials #21

Highest cell density achieved in stainless steel bioreactors was 32 x E6 cell/ml

Induce with 0.2 M CuSO₄
Added Glucose
Added Antifoam
Added Antifoam and Glucose

#21-1A Viable cells/ml
#21-1A Viability (%)

Review of Single Use Manufacturing Technologies
Copyright ©2007 Xcellerex
XDR-200 Insect Cells S2 - fed batch - pCO2

pO2 and pCO2

Time (h)

pO2 (mm Hg)

pCO2 (mm Hg)
XDR-200 Yeast - S. cerevisiae

Run 130-999 - XDR-200: S. cerevisiae fermentation

- OD600
- EtOH
- Glucose
- 2 per. Mov. Avg. (Glucose)
- Poly. (Density)
XDR-1000, CHO, fusion mAb viable cell density

XDR-1000 Bioreactor Runs
CHO Cell Line
Viable Cell Density

Run#2
Run#1

Viable Cell/mL

0.00E+00 1.00E+06 2.00E+06 3.00E+06 4.00E+06 5.00E+06 6.00E+06

0 25 52 74 97 122 145 168 195 217 239

Hours
XDR-1000, CHO, engineered mAb cell viability

![Graph showing cell viability over time for two runs of XDR-1000 Bioreactor. The graph displays the percentage of viable cells over hours, with two runs labeled Run#1 and Run#2. The graph shows a decrease in cell viability over time for both runs, with Run#2 showing a more significant drop beyond 200 hours.]
Progress for Single Use Systems

- Wide acceptance of bioprocess bags
- Single use bioreactors are scalable and performance is comparable to SS bioreactors
- 1,000L (wv) stirred tank bioreactor breakthrough opens large scale/commercial applications
- Single pass cell clarification/removal (POD) simplifies 1° recovery
- Membranes for purification improving
Summary - Challenges for Disposables

- Mixing/Buffer/Media prep – Rate of liquid transfers
- Bioreaction – Lab to commercial scalability within the same reactor design/configuration
- Cell Harvest/TFF - Recirculating processes that require high pressure and high flow rates
- Membrane Purification – capacity and DNA/virus clearance
- Disposable Chromatography is still TBD
- Non-standard, multiple connection options
- Disposable sensors are limited
- Plastic durability and weld strength needed for scale up
Acknowledgements

• Geoff Hodge
• Dan Mardirosian
• Patrick Guertin
• Michael Fisher
• Keith Kropp
• Pat Puma