Abstract
The RIDL technique was used to decrease the population of *A. gambiae* s.s. and thereby reduce malaria incidence. Experiments were conducted in laboratory cages and in a two-year field study in Kou Village 4 (KV4) of Kou Valley, Burkina Faso. Our initial tests were successful, leading to a two-year field study in Kou Village 4 (KV4) of Kou Valley, Burkina Faso. Experiments were conducted in laboratory cages and in a field setting.

Background
Mosquitoes spread *Plasmodium* parasites from one host to another, serving as the vectors of malaria (8). In Kou Valley, Burkina Faso, the entomological inoculation rate is around 60 infected bites per person per year (2).

Global Distribution of *Plasmodium falciparum* (10)

Goals
We would like to thank Rebecca Ziino and Jim Monaco for their contributions to this project.

Acknowledgments

Conclusions
Successful field study
Expand field study area
Use of RIDL on other vectors

Future Applications

References

Abstract

The RIDL technique was used to decrease the population of *A. gambiae* s.s. and thereby reduce malaria incidence. Experiments were conducted in laboratory cages and in a two-year field study in Kou Village 4 (KV4) of Kou Valley, Burkina Faso. Our initial tests were successful, leading to the field study in which there was a decrease in the population of *A. gambiae* over the testing period.

Background

Mosquitoes spread *Plasmodium* parasites from one host to another, serving as the vectors of malaria (8). In Kou Valley, Burkina Faso, the entomological inoculation rate is around 60 infected bites per person per year (2).

Global Distribution of *Plasmodium falciparum* (10)

Goals

Acknowledgments

Conclusions

References