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ABSTRACT: 

Tautologically, castability is a critical requirement in any casting process. The two 

most important factors impacting castability are the susceptibility of a metal to 

hot tearing and the degree of casting fluidity a material possesses. This work 

concerns itself with fluidity of molten metal. Since experimental investigations 

into casting fluidity began, researchers have sought to maximize fluidity through 

superheat, mold temperature, alloy chemistry, melt cleanliness, and mold design. 

Researchers who have examined the published results in the field have remarked 

on the difficulty of making quantitative comparisons and drawing conclusions 

from the data. Ragone developed a horizontal vacuum fluidity apparatus and an 

analytical expression for fluid length to help resolve these issues. This was 

expanded on by Flemings et al. Still, the comparison of results is complicated by 

experimental uncertainties and a plurality of experimental procedures. This work 

seeks to resolve these issues through an analysis of experimental uncertainties 

present in existing fluidity tests and the development of an improved test and 

procedure which is very precise, accurate, and reliable. Certain existing tests and 

software packages have been shown to be unsuitable for quantitative fluidity 

measurement. Expressions for experimental uncertainty in fluidity testing have 

been derived. The capability to predict variations in fluidity as a function of alloy 

chemistry and other variables whose range of values are intrinsic to the 

economics of the process will help to more accurately determine the superheat 

needed for successful castings and will in turn lead to a decrease in scrap rates. 

This will enable metal casters to more reliably cast thin sections, and to reduce 

cycle time or scrap rate to achieve productivity goals. Superheat was shown to 

remain the dominant factor in fluidity, but the test allowed investigation of alloy 

modifications within an alloy specification in this alloy system. Factors known to 

have negative effects on structural properties were found often to have neutral 

or positive impacts on fluidity. A deep understanding of variations in fluidity 

measurements is the next necessary step in a century-long quest to understand 

how best to make metal castings through the use of fluidity experiments. 
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1 INTRODUCTION: 

 

At the surface, the question “what is fluidity” to a metallurgist is a relatively 

simple question. Having said that, the necessary caveat ‘to a metallurgist’ has 

already revealed one problem. Physicists define fluidity to be the inverse of 

viscosity. Metallurgists, on the other hand, refer to the ability of a molten metal 

to flow and fill a channel or cavity as fluidity. This is most often measured by the 

length metal can flow through a given mold before freezing. A definition of 

casting fluidity is presented below, but the ‘why’ of fluidity is as important as the 

‘what.’ 

 

The answer to the question ‘why is fluidity important’ is highly dependent on who 

is asking. There are at least three: 

• To a foundry worker, the answer is “because it is useful.” Fluidity refers to 

an important property of cast alloys. The more fluid an alloy is, the more 

easily it should be able to fill a given cavity. As the response of fluidity 

with increasing superheat is known to be linear, fluidity directly relates to 

the amount of superheat needed to fill a given cavity. 

• Theorists express interest in the impacts and causes of changes in fluidity, 

principally as it relates to the study of solidification and interdendritic 

metal flow. However, variations in precision and accuracy of fluidity 

measurements make correlating data between experimenters problematic. 

The majority of fluidity investigations in the last 25 years have focused on 

maximizing fluidity with respect to precise alloy chemistry. The influence 

of minor alloy additions is often slight when compared with that of 

superheat, head pressure, or melt cleanliness. 

• A third answer, one which might satisfy an ambitious experimentalist, is 

that there are believed to be significant problems with the repeatability 

and precision of fluidity measurements.  Surmounting these challenges so 

that more accurate and repeatable measurements of fluidity can be 
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conducted would be an important contribution in the area of 

experimentation, and given the interest in fluidity from both theorists and 

industrialists, these accomplishments would receive praise beyond the 

scope of just the experimentalist community. 

 

All of these answers are equally correct, but each touches on a different aspect 

of the ways fluidity measurements are conducted and used. Herein, the 

definition of fluidity shall be: Fluidity is a material’s ability to flow into and 

fill a given cavity, as measured by the dimensions of that cavity under 

specified experimental conditions. It is understood that fluidity is heavily 

dependent on heat flow during solidification, and many of the critical specified 

experimental conditions will reflect this. 

 

Past work in the field has focused on maximizing fluidity. However, this work 

holds that decreasing the variations in fluidity is as important as determining 

under which conditions fluidity is maximized. There are two main aspects to 

variation in fluidity:  

• One is the standard deviation of test methods used in the lab to 

determine fluidity. 

• The other is the range over which fluidity values will vary in a real casting 

environment where alloy chemistry and temperature controls vary within 

some range.  

 

Based on the perceived potential for improvement in fluidity testing, and thus for 

improvement in castings, a research project was begun. The literature review 

revealed a lack of confidence in present testing methods, as is discussed in 

greater length in that section. Following a comprehensive literature review, 

theoretical calculations were performed to determine the most critical sources of 

error. Preliminary tests were engaged in to determine how complex testing 

equipment and procedures needed to be in order to produce repeatable and 
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reliable results and statistical tools were used to evaluate repeatability. These 

results, along with the results of an informal industrial survey, helped to further 

define the problem. An existing testing apparatus was located and refurbished, 

and a new procedure was generated for it. Successive testing with well-

understood phenomena, such as superheat, as well as other questions of interest 

allowed for further refinement of the apparatus and procedure. Attempts to 

model the rapid filling of thin sections during these sorts of tests have revealed 

that present commercial casting modeling software is no substitute for lab 

foundry testing. These successive steps are detailed in the rest of this 

dissertation. 

 

The experimental techniques described here are most appropriate for cases 

where cooling is dominated by heat transfer during rapid solidification, as 

opposed to cases where solidification is slower and dominated by the mold heat 

conductivity. A dissertation on an improved mold-dominated sand spiral test has 

recently been completed by a colleague [1], while theoretical calculations for 

both cases are presented in this work. 
 

The likely benefits of this work are threefold: A robust and reliable testing 

apparatus and methodology will allow for comparisons between groups working 

in different parts of the world, confidence in fluidity testing will improve, and 

metal casters will be able to use the derived theoretical error equations and 

testing methodologies to more closely fine-tune their processes to optimize scrap 

rates, superheat, and alloy chemistry. More consistent fluidity should lead to 

more consistent castings. 
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2 LITERATURE REVIEW: 

 

2.1) History of Fluidity Tests 

Since the earliest spiral castings of aluminum by Saito and Hayaschi in 1919 [2], 

simple one-dimensional castings of metals have been conducted to determine 

how well a given metal can fill a cavity. Their innovation was an improvement on 

earlier techniques where metal was poured in a straight line, but where the 

grade and temperature might not be equal—sand spirals insured uniform 

levelness and temperature. Refinements on this technique by Ragone et al. in 

1956 [2, 3], along with analytical solutions for pure metals, were a great leap 

forward in the understanding of fluid length. Ragone’s technique, employing 

borosilicate glass tubes to directly observe metal velocity, and vacuum to draw 

the melt into a horizontal channel, reduced experimental error as compared with 

spiral castings. The work was expanded by M.C. Flemings et al. [4-7] to include 

multi-phase alloy systems. Key to this development were micrographic 

investigations that led to conclusions regarding the solidification mechanisms at 

work. In brief, the flow of mostly-pure alloys stops by the growth of columnar 

grains near the entrance of the mold, while flow in multi-component systems is 

brought to a halt by nucleation of grains, often equiaxed dendrites, which halt 

flow near the tip after nucleating earlier in the casting and coarsening as they 

flow, to the point of flow stoppage once a critical fraction solid is reached. 

 

With this work as a foundation, investigations into the impact of foundry 

variables such as mold coatings, alloying additions, head pressure, and especially 

superheat have been investigated and correlated with mechanisms. Specific 

investigations are often alloy or metal/mold/coating specific in scope, but subtle 

influences of minor variations in alloy purity can be detected with careful 

application of fluidity testing. Some metal systems present special challenges. 

Magnesium, for example, must be tested in vacuum or under a protective cover 
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gas. Variants on the existing testing devices have been devised which take these 

requirements into account [8-13].  

 

 2.1.1) Rheological Definition of Fluidity 

In physics, fluidity has a very simple definition. Fluidity is defined as one over the 

viscosity [14, 15], and the field of rheology contains numerous techniques for 

measuring viscosity. This, however, is not what is meant when a metal caster 

speaks of fluidity, as will be discussed below. Viscosity, it turns out, has little to 

do with the casting fluidity within a single alloy system, as the chief interest of 

the metal caster is when rheological flow ceases. 

 

 2.1.2) Metal Casting Definition of Fluidity 

At the surface, the question “what is fluidity” to a metallurgist is a relatively 

simple question. Metallurgists refer to the ability of a molten metal to flow and fill 

a channel or cavity as fluidity. This is most often measured by the length metal 

can flow through a given mold before freezing.   

 

The answer to the question ‘why is fluidity important’ is highly dependent on who 

is asking. There are at least three: 

• To a foundry worker, the answer is “because it is useful.” Fluidity refers to 

a very important property of cast alloys. The more fluid an alloy is, the 

more easily it should be able to fill a given cavity. As the response of 

fluidity with increasing superheat is known to be linear, fluidity directly 

relates to the amount of superheat needed to fill a given cavity. 

• Theorists express interests in the impacts and –causes- of changes in 

fluidity, principally as it relates to the study of solidification and 

interdendritic metal flow. Variations in precision and accuracy of fluidity 

measurements make correlating data between experimenters problematic, 

however. The majority of fluidity investigations in the last 25 years have 

focused on maximizing fluidity with respect to precise alloy chemistry. The 
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influence of minor alloy additions, however, is often slight when compared 

with that of superheat, head pressure, or (in some alloy systems) melt 

cleanliness. 

• A third answer, one which might satisfy an ambitious experimentalist, is 

that there are believed to be significant problems with the repeatability 

and precision of fluidity measurements.  Surmounting these challenges so 

that more accurate and repeatable measurements of fluidity can be 

conducted would be an important contribution in the area of 

experimentation, and given the interest in fluidity by both theorists and 

industrialists, these accomplishments would receive praise beyond the 

scope of just the experimentalist community. 

 

All answers are equally correct, but each touches on a different aspect of the 

ways fluidity measurements are conducted and used. Herein, the definition of 

fluidity shall be: Fluidity is a material’s ability to flow into and fill a given 

cavity, as measured by the dimensions of that cavity under specified 

experimental conditions. It should be noted that one of the most critical of 

those experimental conditions is heat flow during solidification. 

 

2.2) Methods of Analysis 

Most experimentation on fluidity is conducted in one of three ways. Metal is 

poured into a spiral mold or otherwise cast into a cavity or cavities having long 

thin sections, extracted from a heated crucible by vacuum, or extruded from a 

die casting machine into a tortuous die. In each case, it is the length which is 

reported and specific parameters (superheat, mold material, mold coating, mold 

temperature, other experimental conditions) must be precisely determined and 

controlled for equivalent results. Even within one experiment (for example, two 

experimenters at different labs working with the same alloy and following what 

they believe to be the same procedure) results vary widely although qualitative 

trends are comparable. In all three cases, microstructural examination of the 
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cross section, especially near the end of the casting, is used to examine how 

solidification mechanisms ‘choked off’ the flow. Often, in alloy development work 

for example, it is unclear which fluidity test should be performed. Experimenters 

frequently report the results of both a sand spiral and a Ragone-style vacuum 

suction apparatus or fin casting [13, 16-19], and since this covers a wide range 

of solidification conditions it is a good general procedure for an alloy intended for 

a variety of solidification conditions. An alloy which is only expected to be cast in 

die castings should be tested in a die casting fluidity die or Ragone glass tube 

test, and an alloy intended only for sand casting ought to be tested in a sand 

spiral test. Even so, there are many, many ways to conduct a particular test. 

Indicating that it was “a sand spiral” or “Ragone-type test” is not sufficiently 

precise. 

 

 2.2.1) Linear Mold Casting 

The vast majority of fluidity tests involve a controlled flow of metal of known 

composition and superheat into a channel of known temperature and constant 

and known dimensions. Subsequent to solidification, the length of the resulting 

sample is measured and reported as the fluidity of the metal in question [5, 16].  

 

 2.2.1.1) Sand Spiral 

Spiral testing employs a simple concept to fluidity testing, but when all of the 

details required for precise and repeatable experimentation are considered, the 

final product is a great deal more complex. Liquid metal whose fluidity is to be 

determined is poured into a cylinder which terminates in a long thin cavity. The 

walls of this cavity might be sand or coated metal, heated or unheated, but the 

idea is that the fluidity is equal to the length of the final casting which is 

produced. The mold is coiled into a spiral so that the experimental setup does 

not take up an excessively large amount of space[5, 16]. An advantage of this 

process is that through selection of the mold material, the test is correlated with 

the specific casting procedure of interest, eg. sand casting for a sand spiral. 
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Compared to its predecessor, a long linear sand mold along a foundry floor, the 

spiral also takes up less room, is more likely to be level over its entire length, 

and is more uniform in temperature. 

 

Predating Ragone and Flemings et al.’s [2-7] clarification of the solidification 

mechanisms through the use of clear tubes and vacuum suction, early work was 

performed by Kondic in 1950 [20], with sand spirals and mixed results. Other 

experimenters [21, 22] refer to the theoretical work of Flemings et al. [4], but 

conduct sand spiral tests rather than the vacuum tests on which Flemings’ work 

was based. Although Ragone did not make use of sand spirals in his research, his 

work with vacuum suction was in part an attempt to overcome certain 

experimental difficulties in working with sand spirals [2, 3]. Flemings and 

Campbell both present diagrams of sand spirals in their discussions of fluidity [5, 

16]. 

 

A common variation on the single sand spiral is the dual-spiral test [23], 

although some experimenters have encountered problems with ensuring equal 

pressure head, mold temperature, etc. to both spirals [24]. Although not spiral in 

geometry, the serpentine test is similar to the spiral test in most critical respects 

[25]. 

 

Much of Di Sabatino’s work was done with refining sand spiral fluidity testing [1, 

24, 26-28]. Di Sabatino compares sand spiral results to those of a commercial 

thin strip (N-Tec) mold  [27], and finds that they have qualitatively similar 

results. Her work built on previous work by Dahle et al. [29].  

 

 2.2.1.2) Horizontal Suction 

In the vacuum crucible method, metal is brought to a desired temperature in a 

crucible. Melt is then extracted by a vacuum pump through a glass tube, and the 

final length of the metal is reported as the fluidity. In the traditional Ragone 
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setup [2-7], some portion of the melt was drawn against gravity due to a curve 

in the tube. Ragone’s initial procedure involved using a wax plug to seal the tip 

of his vacuum-filled tube, but subsequent experimenters modified the procedure 

not to use this feature. Ragone also made use of a high-speed camera to 

monitor the metal filling the tube, and he observed that the melt velocity was 

nearly constant until the very end (when flow stops). Subsequent experimenters 

did not make use of a camera, but it was an important procedural detail of the 

initial work by Ragone, and one of the reasons his glass tubes were an 

improvement on existing procedures. Ragone worked with pure metals, but later 

experimenters in the same laboratory worked with alloys, and met with 

unexpected difficulties [6]. It was discovered that commercial levels of alloy 

additions change the solidification mechanism such that flow stops at the tip, 

rather than the entrance neck. Horizontal fluidity testers were used in the 

investigation of the solidification mechanisms and microstructures [5]. The final 

‘crossing of t’s and dotting of i's’ of this theory was Flemings’ British Foundryman 

paper [4].  

 

A diagram of Ragone’s horizontal vacuum setup can be found in both 

Flemings[5] and Campbell [16]. Researchers in fluidity who never use Ragone’s 

setup still sometimes  provide diagrams of it to accompany discussions of fluidity 

equations [29]. 

 

 

 

Figure 2.2.1.2.A Schematically depicting sand spiral and horizontal vacuum 

testing. [5] 



 10 

 

 2.2.1.3) Vertical Suction 

Comparable experimental procedures to Ragone’s exist which draw the metal 

vertically. These tests often cite the Ragone procedure without explicitly noting 

the difference in their experimental construction, so that in an experiment with 

no diagram, it is often unclear whether a vertical or horizontal vacuum suction 

test was performed [10], [30]. According to White [15], velocity will be constant 

in both vertical and horizontal suction tests until the forces of gravity and 

pressure begin to equalize. Given the freezing lengths of fluidity tests, this point 

is not reached during testing. 

 

Vertical suction tests have been performed using different tube materials and 

different bore sizes, which confirm the theoretical predictions of Flemings et al. 

discussed in Section 2.3.1 with respect to heat transfer coefficient and mold 

dimensions [31], [32]. 

 

Similar vertical tests in borosilicate glass have been performed with liquid metal 

and SSM metal poured into a vertical tube with a funnel and without vacuum 

[33], [34]. 

 

 2.2.1.4) Permanent Mold Tests 

Heated permanent molds with confined geometries, such as cast iron molds in a 

spiral shape, are also used for fluidity testing. Heating the mold slows the cooling 

rate and insures uniform temperature. In many respects these are similar to 

sand molds, but the different materials allow for somewhat different geometries, 

such as the N-Tec mold. 

 

The N-Tec mold is a variation on the idea of a permanent mold spiral test. 

Instead of pouring into a spiral of fixed cross section, metal feeds into five 

‘fingers’ of varied cross section. The fluidity reported from this experiment is the 
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sum of the lengths in the five fingers. This procedure conflates the cavity 

parameters with the fluidity of the metal. If the goal of the experiment was only 

to investigate the impact of cavity thickness on a given melt, this might be valid, 

but the N-Tec mold is intended to be a general test for fluidity measurements 

[27, 35, 36]. 

 

Researchers investigating the impact of grain refiners and oxide inclusions in Al-

Cu alloys made use of a permanent mold setup with integrated removable 

stopper and thermocouple. It seems from their diagrams that there will be 

thermal variations between the central and edge fingers [37, 38]. Such design 

complications appear to be common in permanent mold fluidity designs. 

 

Permanent mold metal finger tests can easily be modified for magnesium testing, 

because steel is a preferred mold material for magnesium casting. One example 

incorporated eight radial spokes from a central filling well, as well as appropriate 

protective cover gas equipment [8]. Other groups present similar solutions to the 

same problem [13]. 

 

A discussion of the repeatability of the N-Tec mold is included in Section 4.3. 

 

 2.2.1.5) Die Casting Meander Dies 

Fluidity measurement in die casting is generally conducted by injecting metal into 

a tortuous cavity in a standard die casting machine, and the length of the final 

casting is the measure of fluidity. Although results may vary widely between this 

procedure and the permanent mold and vertical vacuum techniques discussed 

above, it is similar in many ways. Procedural differences in surface coating, mold 

temperature, cavity diameter, etc. have a profound impact on the resulting fluid 

length [17]. 
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An important paper in die casting fluidity indicated that, unlike in permanent 

mold, sand castings etc., solidification range is unimportant for die casting fluid 

length [39]. The most immediate consequence of this work is that laboratory 

tests of the type discussed in the rest of this thesis do not apply in the high 

pressure, short time environment of a die casting machine. An exception would 

be when Ragone-type testers are used to evaluate pure metal which is to be 

diecast in a fluidity-critical die [40, 41]. 

 

 2.2.2) Fins, Plates and Blades 

Fluidity tests in two and three dimensional molds, principally in casting fins, 

plates, and blades have also been conducted. Kondic [42] encouraged such work 

for educational purposes in metal casting education. These tests have also been 

used with other alloy systems. Wrought alloy manufacturers, such as those 

working with Al-Zn-Mg-Cu alloys, and aerospace turbine blade manufacturers 

developing investment nickel superalloy fins have also employed these 

techniques [43, 44]. Magnesium work toward high-temperature resistant Mg 

alloys which also must be fluid must take into account the reactability of the 

material in the mold design, further outlining the similarity between this 

technique and the linear casting techniques, as both must be adapted in similar 

ways [45]. In work on the impact of oxides on three dimensional thin walled 

castings, Campbell evaluated the fluidity of plates and boxes [46]. 

 

 2.2.3) Other Tests 

Some fluidity research involves novel approaches which are not easily covered by 

this analysis. This observation is not to impugn the methods of these authors, 

but merely to note that their work does not neatly fit into one of the categories 

already discussed. Often, it seems that these tests are not measuring the same 

things as the above tests, and are instead a form of rheometry. Other tests are 

modifications of existing test methods for unusual alloy circumstances [9]. 
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Exotic tests include forcing semisolid metal through a packed bed of beads [47], 

novel simultaneous measurements of viscosity, density, and surface tension [48], 

use of thin section fluidity tests to measure defects in zinc with a mind towards 

controlling die soldering [41], and assessment of melt cleanliness via a porous 

filter [49]. In addition to a standard sand spiral test, Ware investigated casting 

elbows, cylindrical castings, Tatur molds, etc. [50]. Frequently, these papers are 

investigating rheological fluidity rather than casting fluidity [14]. 

 

 2.2.4) Modeling and Pure Theory 

Though finite element modeling is a recent development, treatments of the 

fluidity of metals on the basis of theory are quite old. Some have attempted to 

make predictions of fluidity purely on the basis of thermodynamic phase diagram 

analysis [51]. Similarly, Chikov discusses the impact on fluidity of adding any 

arbitrary transition metal to aluminum [52]. Work in this vein date back to 1936, 

where Portevin discussed ternary alloy casting theory and gave some sand spiral 

examples [53]. 

 

While not the focus of this thesis, since there is activity in this area to model 

fluidity tests as a test of the casting/ solidification software programs, it bears 

mention [54]. Work in this area began quite early in finite element modeling, 

though early codes were of necessity much simpler as a consequence of limited 

computer resources [55]. Simulation of sand spirals is one example [56]. Often, 

this work is more concerned with the modeling and pure math involved than with 

the physical system being represented [57]. Recently, efforts have been made to 

improve the modeling capability of thin sections, which would seem to relate 

closely to fluidity testing, as this is another technique used to evaluate casting of 

thin sections [58]. 
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2.3) Existing Body of Knowledge 

Fluidity has seen great advances since Ragone’s 1956 doctoral thesis, thanks in 

large part to his work in developing the vacuum testing apparatus, which 

Flemings et al. built upon [2-7].  Key points are discussed below. 

 

 2.3.1) Theory of Casting Length 

Over a period of 8 years, Flemings and collaborators produced the fluidity 

equations and outlined the solidification mechanisms which are at work in linear 

castings during standard fluidity tests, for pure alloys as well as commercially 

pure and commercially alloyed compositions. The most common reference source 

for these is Flemings’ Solidification Processing, which references the other 

research papers [2-7]. 

  

The fluidity equation from Flemings [5] for metal with some superheat ΔT and a 

mold which conducts heat rapidly is: 

       eqn. 1 

Ragone demonstrated that the influence of viscosity or a change in viscosity on 

casting fluidity is minimal, and while the equations he presented did include a 

viscosity term, subsequent formulations correctly dropped it as insignificant as 

compared with other sources of experimental error [2]. 

 

Flemings, Niyama, and Taylor [6] presented a more complex formulation: 

      eqn. 2a 

where        eqn. 2b 

where, 

 

Lf  Final length, fluidity 
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a channel radius 

A mold surface area (proportional to roughness) 

S  circumference of mold channel 

ΔX  choking range 

c specific heat of metal 

(T-Tr) liquid metal temperature minus room temperature 

 the time average melt temp in the fluidity test, approximately equal to 

 

To room temperature 

h heat transfer coefficient at mold-metal interface 

Tm metal melting temperature 

ΔT   superheat 

k  thermal conductivity of mold material 

ρ  density of metal 

v velocity of metal flow 

Hf  Heat of fusion of metal 

T’ temperature of superheated metal entering flow channel 
λ critical solid concentration required to stop flow in ‘mushy’ alloys 
 

Flemings’ basic formula from British Foundryman [4] is: 

, but does not take into account superheat. An 

alternate derivation is presented for mold-resistance dominated tests such as 

sand spirals. 

 

Metal/ mold resistance, or ‘h type’ expression: 

         eqn. 3 

, or, with superheat:     
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       eqn. 4 

The expression for mold dominated resistance, or ‘theta-type’ expression, was: 

      eqn. 5 

Where         eqn. 6 

Where λ is evaluated at T=Tm, and is called the critical solid concentration. 

 

Flemings reports that the critical solid concentration is between 0.2 and 0.3 

fraction solid, and Campbell gives 0.5 to 0.6 using slightly different criteria [5, 

16, 59]. This is the fraction solid where the flow is choked off, as will be 

discussed under flow stoppage mechanisms. Attempts to tie this choking off to 

dendrite coherency by Dahle, as explored by Backerud, were inconclusive. Dahle 

did not find an unambiguous impact of dendrite coherency measurements on 

fluidity [29, 60, 61]. The specific fraction solid at which this takes place varies 

with alloy composition and solidifying phase morphology. This critical fraction 

solid is usually higher for die casting due to the increased pressure involved, but 

the extent of increase is likely to depend on alloy-specific morphology 

characteristics. Much work on determining the solid fractions where flow is 

possible has been done in the area of SSM, in terms of both alloy rheology and 

thermodynamics, and this may have much to contribute in understanding how 

this factor changes according to the specific casting and alloy conditions [62]. 

 

These formulations of fluidity include a term , which is the time average melt 

temperature in the fluidity test, which is approximately equal to . 

(This takes into account the fact that the mold does not necessarily remain 

isothermal throughout the test.) 
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In Campbell’s Casting [16], he gives the following equations for fluidity in mold 

and metal-mold interface dominated cases. 

Sand:         eqn. 7 

Die:        eqn. 8 

Where: 

k = a constant 

m= casting modulus (Volume/Area) 

V= velocity 

 

This is a simplified form of Flemings’ formulations, which were discussed above. 

Campbell cites the paper by Niesse, Flemings et al. [7]. He also discusses the 

impact of surface tension in filling narrow channels, which can impact filling and 

fluidity through narrow channels [16]. 

 

2.3.2) The Impact of Alloy Composition on Solidification 

Mechanisms 

Ragone’s initial work was on pure metals, and he found that flow stops as a 

result of the growth of columnar grains near the point where metal first flows 

into the channel. Small alloy additions, as occur in commercially pure materials, 

display the same behavior with a reduction in fluidity. Eutectic alloys also behave 

in much the same manner. Commercial alloys containing more significant alloying 

additions cease flowing not as a result of columnar grain formation, but from the 

the nucleation of equiaxed primary grains at that same point near the beginning 

of the channel which subsequently flow down to the tip. When the fraction solid 

of these primary grains crosses some critical threshold, metal flow is blocked [2-

7].  
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Although increasing alloy additions typically reduce fluidity, there are some 

important exceptions. Additions of silicon to aluminum increase the fluidity for 

two reasons. First, the high heat of fusion of silicon prolongs metal flow. Second, 

in the case of hypereutectic silicon, the morphology of primary silicon and 

requisite undercooling result in prolonged metal flow [1, 17, 18, 24, 25, 30, 33, 

35, 47, 56, 63-65]. 

 

Though a great deal of research has been done to determine the impact of minor 

alloy additions, with some papers reporting minor increases of fluidity under one 

set of conditions and other researchers reporting minor decreases in fluidity 

under slightly different conditions, the aggregate impact of these small changes 

in composition to overall fluidity is minor [1-7, 17, 18, 23, 27, 29, 35, 38, 43, 50, 

52, 66-71]. As will be discussed in Section 2.3.3, superheat is a much more 

powerful mechanism for increasing fluidity. Similarly to the addition of minor 

alloying elements, high hydrogen levels increase porosity but have no great 

influence on metal fluidity [26]. 

 

 2.3.3) Superheat Effects 

As can be seen in the equations developed by Flemings et  al. (see also Section 

2.3.1), and in the research which supports those equations, the response of 

fluidity to superheat is linear [2-7]. Mold preheating has a similar effect, as can 

be seen by examining the aforementioned equations, and as is shown 

experimentally [12]. An apparent exception can be found in magnesium casting, 

where increasing temperature also increases the rate of oxidation and so 

contributes additional solid material which will choke flow. But before this occurs 

a linear response is still seen. Similarly, high superheat temperatures in 

aluminum metal matrix composites can also induce a reaction which rapidly 

decreases fluidity [72]. 

 

 2.3.4) Mold Surface Treatment 
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As can be seen in Section 2.3.1, the heat transfer coefficient has a strong 

influence on the fluidity of cast metals. This is reflected in research which shows 

that by changing mold materials, applying mold coatings, and otherwise 

retarding heat flow one may increase fluidity [4, 21, 22, 73-86].  

 

2.4) Theory of Error Analysis 

As mentioned previously, while general trends exist, there is a great deal of 

quantitative variation between even carefully conducted tests using the same 

experimental method. When methodologies vary such as when results from 

vacuum suction testing are compared with those from spiral testing, this high 

degree of experimental uncertainty is exacerbated. 

 

Much of what these tests measure is process dependent. The results of two 

spiral tests, one with a boron nitride coated metal mold and another conducted 

with green sand, will show quite different results depending on the interaction of 

specific melts with the specific interface. Since wetability of the metal and mold 

will vary as a function of alloy chemistry in these two cases, so too will the heat 

transfer coefficients. (For an example of how heat transfer coefficients can vary 

dramatically within a single experimental apparatus as a function of time, see 

Farouk, Apelian, and Kim [76]). As is known from the derived results above (see 

Section 2.3.1), this will have a profound impact on the flow length, but this 

behavior cannot be generalized, especially if mold coating is not the parameter 

under investigation. Heat flow considerations are seldom considered, since, while 

there are direct measurements of temperature and length, there are typically no 

measurements of the heat transfer coefficients of the molds in question. 

 

Compounding these problems is the fact that, while experimental procedures and 

setup are critically important to obtaining self-consistent results, to say nothing 

of results reproducible by other researchers, there is not a standard for either 

experimental design or procedure. There are, instead, a variety of commercial 



 20 

setups, home-built setups, and a wide range of precision in specifications of 

experimental procedures. While there are widely known and reliable sources for 

other physical properties, such as tensile strength, there is no such universal 

database of quantitative fluidity data. Based on an analysis of Flemings’ 

equations, presented above in Section 2.3.1, two standard tests are called for. 

One standard vacuum fluidity test, and one standard sand spiral test. Work to 

improve the sand spiral test has already been performed by Di Sabatino [1]. 

 

The consequence of this experimental uncertainty is a general lack of faith in 

reports of fluidity measurements. Many researchers feel that fluidity is inherently 

unreliable, and if the concept were not so useful it would likely have been 

discarded long ago.  

 

Fortunately, statistical tools exist to define how well fluidity is known and what 

determines its variation. 

 

2.4.1) Gage Repeatability and Reliability and Measurement 

System Variability  

The method to be used to establish reproducibility and reliability in the 

experimental procedures discussed later in this thesis, measurement systems 

variability (MSV), is widely used in industry [87]. MSV is very similar to gage 

repeatability and reliability (GR&R), another industrial measurement standard, 

but GR&R is only intended for nondestructive tests of nominally identical samples 

[88-90]. GR&R could be used to measure the diameter of 10 coins to establish 

the accuracy of a micrometer, for instance. MSV might be used to analyze bomb 

calorimeters which incinerate small quantities of petroleum that are not 

guaranteed to be of equal volume or volatility due to uncertainties in the 

chemistry of the fuel and volume dispensed into the apparatus. Terms and 

procedures in GR&R and MSV have been defined for ease of implementation by 
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technicians, rather than mathematical rigor, as can be seen by comparing the 

definitions from GR&R and MSV with those in a standard statistics text [91-93].  

 

Closer examination of the methodologies of MSV in concert with personal 

communications with statisticians suggest that while GR&R has a firm theoretical 

basis for the calculations and procedures it prescribes, MSV appears not to. It is 

possible this foundation exists, but it was not presented along with the standard 

text of procedures [94]. Still, examining the results of multiple people performing 

the same test can provide a qualitative guide to the repeatability and accuracy of 

a given test. 

 

 2.4.2 Formal Statistical Analysis of Variations 

When a formula describes a phenomenon, it is possible to describe the variation 

of that phenomenon in terms of the variations of its parameters, for example 

with the equation below [95]. 

If:             eqn. 9a 

then:    eqn. 9b 

For             eqn. 10 

If:            eqn. 11a 

then:   eqn. 11b 
 
where dq is the relative uncertainty (i.e. q_true = q +/- dq). 

 

The above assumes that there are small, random errors, where dx is the error in 

x, and so on for the other variables. Although this sort of analysis is common in 

physics, no work of this kind has been done with fluidity. Section 4.1 applies 

this to Flemings’ equations, discussed above[4]. 
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2.5) Commercial Importance of Fluidity 

Numerous advisors to the metal casting industry have written about the 

importance of process control in the foundry. Among the tests they advocate 

performing are fluidity tests. Fluidity depends on metal which is free from oxides, 

on having the proper superheat, and on being within an expected chemistry 

range. Consequently, fluidity tests can help to establish the quality of metal 

before parts are cast badly and must be scrapped [96-98].  

 

Given the high part numbers involved in die casting, questions of repeatability 

are especially important. Fluidity failure can result in increased scrap rates, and 

the costs associated with scrap are known to be high in die casting [99, 100]. 

Thin sections are desirable for a variety of reasons, and can be achieved with 

increased mean fluidity, but if that increase comes at the expense of increased 

fluidity variation, this will have the undesirable effect of increasing scrap rates. 

Often, the factors which can be adjusted to improve fluidity have other impacts 

on the casting process, and so a careful tradeoff must be achieved to insure 

there is enough fluidity, and a margin of safety, without causing deleterious side 

effects. Greater fluidity is often achieved by increasing melt superheat, but as 

will be discussed below, this has negative implications for die soldering. Mold 

coatings can decrease the heat transfer coefficient, and thus increase fluidity, 

but this may have a small negative impact on cycle time. While minor alloy 

additions often have little impact on fluidity, the secondary alloy components 

(specifically, their heat of fusion and morphology) do contribute to fluidity. 

 

This work to improve the laboratory testing of vacuum fluidity measurements is 

largely focused on improving the repeatability of measurements by controlling 

the various experimental parameters. After a controlled volume of melt is 

collected, a thermocouple is inserted into it. When the metal cools to a pre-set 

temperature, it is elevated such that the end of a borosilicate tube is immersed 

in the melt, and vacuum is applied. The measurement of that length is then 
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made before the borosilicate tube is removed from the experimental setup, as 

the rapid fracturing of the glass and other factors otherwise make it difficult to 

determine the ‘zero point.’ Through repeated measurements under controlled 

experimental conditions the reliability of the test was established.   

 

A continuing trend in engineering, including metal casting, is the application of 

modeling software to problems of interest. These codes, in the case of casting 

intended to predict filling, hot spots, etc., are no more reliable than the data 

upon which they are built. It is hoped that increased precision of fluidity testing 

will have a positive impact on these modeling codes by allowing direct 

comparison of simple geometries between simulation and the laboratory. Since 

these codes do not include direct fluidity calculations, accurate experimental 

tests of fluidity would seem to be a good independent check.  

 

2.6) Area for Original Work  

Much has already been accomplished in the theoretical understanding of fluidity, 

but there are still fertile areas for research. All of the above cited fluidity research 

has sought to maximize fluidity, but the standard deviation of fluidity is also of 

importance. There are two aspects to the standard deviation of fluidity results: 

that of the test methods used to determine fluidity, and that occurring in the 

industrial casting processes due to variations in alloy chemistry, superheat, mold 

coating, etc. In order to investigate and improve the laboratory standard 

deviation, methodological improvements are required.  

 

In reviewing the above literature, there was little indication that results were 

necessarily comparable between different lab apparatuses, even if they were of 

the same nominal type and dimensions. Results can certainly be normalized and 

compared qualitatively, but there is great skepticism as to the quantitative nature 

of the results. If someone were to establish a standard test, or procedure for 

comparing the fidelity of differing tests, this would be of great value to the field. 
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Accompanying this dissertation is Appendix B: ACRC Fluidity Survey. This 

survey only reflects practices within the consortium, but as these are leaders in 

the field who have taken a progressive view as to the value of pre-competitive 

research, trends within the consortium reflect the best of metal casting in 

general. This study revealed how fluidity is actually used, and how often, in 

industrial light metals casting. The following conclusions were drawn from the 

survey: 

• The majority of consortium members use computer modeling software to 

evaluate castability effects, including fluidity. (This software must be 

based upon reliable fluidity tests, and does not provide an indication of 

the uncertainty of its measurements.) 

• When fluidity testing is done directly, it is in the context of alloy or 

process development. 

• Ambiguity exists as to what is and is not a ‘fluidity test.’ Consequently, a 

variety of methodologies are used and skepticism of the results of internal 

and external tests is high. A standard testing apparatus/procedure would 

presumably alleviate these concerns. 

  

2.7) Importance of this work 
In increasing order of impact, the expected deliverables of this research are: 

• Existing experimental methods that determine fluidity will be quantitatively 

analyzed 

• An improved procedure for conducting and discussing fluidity 

measurements will be implemented to further communications and 

comparisons between different research groups 

• Validated formulas that highlight the most important factors which affect 

variations in fluidity results will be produced 

• The factors affecting the variation of lab fluidity results also impact the 

variation (standard deviation) of the fluidity of actual industrial castings. 
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Through the above, simple calculations will allow anticipation of variations 

in foundry practice from a small number of lab tests. 

 

Quantitative predictive ability of the impact of alloy chemistry on the variations in 

fluidity in foundry casting (sand casting, permanent mold, etc.) will allow for 

process parameter (alloy, superheat, mold composition and coating etc.) 

selection not only to maximize fluid length but also to minimize variations in that 

length in foundry practice. This, in turn will help to reduce scrap rate. More 

consistent fluidity should lead to more consistent castings. 



 26 

3 METHODOLOGY: 
 

This section details the procedures and equipment used to collect data in this 

dissertation. Results of these methods are discussed below, in Section 4, 

Results and Discussion. Throughout this work appropriate spark testing was 

done on coupons prepared according to standard procedures to insure that metal 

chemistries were in line with expectations. 

 

Work in this dissertation fell into four categories, but in each phase of work the 

dependent variable was fluidity and its variation. (There were additional 

dependent variables during MSV testing.) 

 

 Phase 1: Preliminary experiments (detailed in Sections 3.2-3.3). 

Independent variables included: 

o Superheat 

o Tube diameter 

o Depth of tube 

o Crucible/mold temperature 

o Testing method (permanent mold versus vertical vacuum) 

o Operator variation 

 Phase 2: Confirmation of a reliable test (detailed in Sections 3.4-

3.4.1). 

Independent variables included: 

o Superheat 

o Date of experiment 

 Phase 3: Demonstration on variables of interest (detailed in Sections 

3.5.1-3.5.7.) 

Independent variables included: 

o Silicon content 

o Iron and Manganese content 
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o Alloy system (binary hypereutectic Al/Si, pure Al, A356.2) 

o Grain refinement 

o Eutectic modification 

o Oxide level 

o Degassing level 

 Phase 4: Computer modeling  

Independent variables included Phase 2 variables and, if the models 

matched with experimental data, Phase 3 variables as well.  

 

The following table, Table 3.A, indicates the number of data points comprising 

each experimental run of the four phases discussed above. Data displayed in 

Section 4, Results, will often comprise the mean of multiple sets of points 

conducted under the same experimental conditions. It also indicates where the 

relevant methodology and results are reported. The full data for these 

experiments is presented in Appendix A. 

 

Table 3.A: Table of N  

Name Date Method Result N T (C) 
4 mm, meth. 1  3.2.1 4.2.1 6 n/a 
5 mm, meth. 1  3.2.1 4.2.1 6 n/a 
5 mm, meth. 2  3.2.1 4.2.1 19 n/a 
5 mm, meth. 2b  3.2.1 4.2.1 10 n/a 
5 mm, meth. 3  3.2.1 4.2.1 19 n/a 
      
msv BD N-Tec 5/1/2007 3.3 4.3 10 700 
msv BD Vac 5/3/2007 3.3 4.3 10 700 
msv SL N-Tec 5/24/2007 3.3 4.3 10 700 
msv SL Vac 5/10/2007 3.3 4.3 10 700 
msv KS N-Tec a 5/4/2007 3.3 4.3 5 700 
msv KS N-Tec b 5/10/2007 3.3 4.3 5 700 
msv KS Vac  5/8/2007 3.3 4.3 10 700 
      
SH - 1 9/24/2007 3.4 4.4 10 680 
SH - 2 9/25/2007 3.4 4.4 9 680 
SH - 10 10/11/2007 3.4 4.4 10 680 
SH - 4 10/1/2007 3.4 4.4 10 700 
SH - 6 10/2/2007 3.4 4.4 10 700 
SH - 9 10/11/2007 3.4 4.4 10 700 
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SH - 3 9/27/2007 3.4 4.4 10 720 
SH - 11 11/2/2007 3.4 4.4 10 720 
SH - 5 10/1/2007 3.4 4.4 10 740 
SH - 7 10/2/2007 3.4 4.4 10 740 
SH - 8 10/2/2007 3.4 4.4 10 760 
SH - 12 11/2/2007 3.4 4.4 10 760 
      
no degas 1 1/24/2008 3.5.7 4.5.7 15 700 
no degas 2 1/25/2008 3.5.7 4.5.7 10 700 
no degas 3 1/28/2008 3.5.7 4.5.7 10 700 
degas high a 1/22/2008 3.5.7 4.5.7 14 700 
degas high b 1/22/2008 3.5.7 4.5.7 15 700 
degas high c 1/24/2008 3.5.7 4.5.7 15 700 
degas high d 1/24/2008 3.5.7 4.5.7 14 700 
degas low a 1/25/2008 3.5.7 4.5.7 10 700 
degas low b 1/25/2008 3.5.7 4.5.7 10 700 
degas low c 1/28/2008 3.5.7 4.5.7 10 700 
degas low d 1/28/2008 3.5.7 4.5.7 10 700 
      
no gr 1 1/29/2008 3.5.4 4.5.4 10 700 
gr lv 1 A 1/29/2008 3.5.4 4.5.4 10 700 
gr lv 1 B 1/29/2008 3.5.4 4.5.4 10 700 
gr lv 1 C 1/29/2008 3.5.4 4.5.4 10 700 
gr lv 1 D 1/31/2008 3.5.4 4.5.4 10 700 
gr lv 2 A 1/31/2008 3.5.4 4.5.4 10 700 
gr lv 2 B 1/31/2008 3.5.4 4.5.4 10 700 
gr lv 2 C 1/31/2008 3.5.4 4.5.4 10 700 
gr lv 2 D 1/31/2008 3.5.4 4.5.4 10 700 
gr lv 2 E 2/4/2008 3.5.4 4.5.4 10 700 
gr lv 3 A 2/4/2008 3.5.4 4.5.4 10 700 
gr lv 3 B 2/4/2008 3.5.4 4.5.4 10 700 
gr lv 3 C 2/4/2008 3.5.4 4.5.4 10 700 
gr lv 4 D 2/4/2008 3.5.4 4.5.4 10 700 
      
A356.2 1 2/6/2008 3.5.1 4.5.1 10 700 
A356.2 2 2/7/2008 3.5.1 4.5.1 10 700 
A356.2 3 3/19/2008 3.5.1 4.5.1 10 700 
A356.2 4 3/20/2008 3.5.1 4.5.1 10 700 
A356.2 5 3/26/2008 3.5.1 4.5.1 10 700 
Si ++ A 2/6/2008 3.5.1 4.5.1 10 700 
Si ++ B 2/6/2008 3.5.1 4.5.1 10 700 
Si ++ C 2/6/2008 3.5.1 4.5.1 10 700 
Si + A 3/19/2008 3.5.1 4.5.1 10 700 
Si + B 3/19/2008 3.5.1 4.5.1 10 700 
Si + C 3/19/2008 3.5.1 4.5.1 10 700 
Si - A 3/26/2008 3.5.1 4.5.1 10 700 
Si - B 3/26/2008 3.5.1 4.5.1 10 700 
Si - C 3/26/2008 3.5.1 4.5.1 10 700 
Si -- A 2/7/2008 3.5.1 4.5.1 10 700 
Si -- B 2/7/2008 3.5.1 4.5.1 10 700 



 29 

Si -- C 2/7/2008 3.5.1 4.5.1 10 700 
      
baseline 6/25/2008 3.5.1 4.5.1 15 700 
Si addition A 6/25/2008 3.5.1 4.5.1 10 698.5 
Si addition B 6/25/2008 3.5.1 4.5.1 10 698.5 
Si 'reduction' A 6/25/2008 3.5.1 4.5.1 10 702.5 
Si 'reduction' B 6/25/2008 3.5.1 4.5.1 10 702.5 
      
very high Si A 6/18/2008 3.5.1 4.5.1 10 700 
very high Si B 6/18/2008 3.5.1 4.5.1 10 700 
very high Si C 6/18/2008 3.5.1 4.5.1 9 700 
      
no Sr baseline 1 2/12/2008 3.5.5 4.5.5 10 700 
no Sr baseline 2 6/11/2008 3.5.5 4.5.5 10 700 
no Sr baseline 3 6/11/2008 3.5.5 4.5.5 10 700 
Sr lv 1 A 2/12/2008 3.5.5 4.5.5 10 700 
Sr lv 1 B 2/12/2008 3.5.5 4.5.5 10 700 
Sr lv 1 C 2/12/2008 3.5.5 4.5.5 10 700 
Sr lv 2 A 2/12/2008 3.5.5 4.5.5 10 700 
Sr lv 2 B 2/12/2008 3.5.5 4.5.5 10 700 
Sr lv 2 C 2/12/2008 3.5.5 4.5.5 10 700 
Sr lv 3 A 6/11/2008 3.5.5 4.5.5 10 700 
Sr lv 3 B 6/11/2008 3.5.5 4.5.5 10 700 
Sr lv 3 C 6/11/2008 3.5.5 4.5.5 10 700 
      
Fe/Mn A356.2 1 3/28/2008 3.5.2 4.5.2 10 700 
Fe/Mn A356.2 2 4/4/2008 3.5.2 4.5.2 10 700 
low Fe A 28-Mar 3.5.2 4.5.2 10 700 
low Fe B 28-Mar 3.5.2 4.5.2 10 700 
high Fe A 28-Mar 3.5.2 4.5.2 10 700 
high Fe B 31-Mar 3.5.2 4.5.2 10 700 
high Fe C 31-Mar 3.5.2 4.5.2 10 700 
low Mn A 4/4/2008 3.5.2 4.5.2 13 700 
low Mn B 4/4/2008 3.5.2 4.5.2 13 700 
low Mn C 4/8/2008 3.5.2 4.5.2 10 700 
high Mn A 4/8/2008 3.5.2 4.5.2 15 700 
high Mn B 4/8/2008 3.5.2 4.5.2 15 700 
high Fe+Mn A 4/1/2008 3.5.2 4.5.2 14 700 
high Fe+Mn B 4/1/2008 3.5.2 4.5.2 13 700 
      
oxide A356.2 1 4/11/2008 3.5.6 4.5.6 8 700 
oxide lv 1 4/11/2008 3.5.6 4.5.6 10 700 
oxide lv 2 A 4/11/2008 3.5.6 4.5.6 10 700 
oxide lv 2 B 4/14/2008 3.5.6 4.5.6 10 700 
oxide lv 2 C 4/14/2008 3.5.6 4.5.6 10 700 
oxide lv 3 A 4/14/2008 3.5.6 4.5.6 10 700 
oxide lv 3 B 4/14/2008 3.5.6 4.5.6 10 700 
oxide lv 3 C 4/14/2008 3.5.6 4.5.6 10 700 
borax A356.2 1 6/12/2008 3.5.6 4.5.6 10 700 
borax A356.2 2 6/12/2008 3.5.6 4.5.6 10 700 
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borax lv 1 A 6/12/2008 3.5.6 4.5.6 10 700 
borax lv 1 B 6/12/2008 3.5.6 4.5.6 10 700 
borax lv 2 A 6/12/2008 3.5.6 4.5.6 10 700 
borax lv 2 B 6/12/2008 3.5.6 4.5.6 10 700 
borax lv 3 A 6/12/2008 3.5.6 4.5.6 10 700 
borax lv 3 B 6/12/2008 3.5.6 4.5.6 10 700 
      
pure Al 1 -tech a 6/13/2008 3.5.3 4.5.3 9 670 
pure Al 1 -tech b 6/13/2008 3.5.3 4.5.3 9 670 
pure Al 2 -tech a 6/13/2008 3.5.3 4.5.3 10 670 
pure Al 2 -tech b 6/13/2008 3.5.3 4.5.3 10 670 
      
combined 
baseline n/a 3.4.1 4.4.1 288 700 

 

3.1 Uncertainty Calculations 

The expressions for the uncertainty of variables resulting from the multiplication, 

addition, and raising of other uncertain terms (Equations 9-11) were applied to 

the expressions given by Flemings in his British Foundryman paper for fluidity in 

terms of other experimental variables (Equations 4-6) in accord with standard 

mathematical practices of algebraic substitution to calculate the uncertainty [4, 

95]. As indicated in the earlier discussion of those equations, this involves 

assuming independent random errors.  

 

3.2 Development of Experimental Apparatus 

Practical means of statistical analysis for experimental results have been 

available for some time, and present a number of tools to evaluate variations in 

experimental results. Given an expression for the property of interest, fluidity, in 

terms of simpler parameters, it is possible to calculate the standard deviation of 

fluidity as a function of the standard deviations and values of those parameters. 

As was detailed above in Section 3.1, these calculations have been performed. 

 

These theoretical calculations suggest which experimental parameters must be 

closely controlled to minimize experimental error. With this as a guide, initial 

efforts were directed toward producing a test and related experimental method 

which would be both inexpensive and robust while allowing different groups to 
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quantitatively compare results. In general, a process of successive incremental 

improvements was employed.  

 

Based on a review of the literature as well as personal correspondence, these 

tests were vertical vacuum fluidity measurements. While the specific 

experimental design was informed by these theoretical investigations into the 

causes of experimental variation, it was assumed that the experimental setup 

would resemble in many ways the vacuum suction tests of Ragone and Flemings. 

A major reason that the vertical test is preferred over the horizontal test is that 

the experimental setup is seen as being simpler to assemble, as the glass (or 

metal) tubes do not need an ‘L’ shaped bend. 

 

As the experiments conducted have been a succession of refinements to discern 

the optimal procedure, the procedure used has necessarily changed over time. 

Consequently, those aspects of procedure which remained invariant during this 

phase will be presented first, followed by the variable procedures presented in 

chronological order. 

 

3.2.1) Preliminary Analyses 

All early tests were conducted with a half horsepower Alcatel 2008A vacuum 

roughing pump, which was attached to a 18.9 L air compressor tank with NPT 

fittings and rubber hosing as shown in Figures 3.2.1.A and B. Though the tank 

was subsequently changed, this pump was used for all of the experimental work 

detailed in this dissertation. Borosilicate tubes and a standard chemistry test tube 

stand were used to perform vertical suction. After the valve had been opened, 

the pressure gage read a vacuum of better than -27 mmHg. (Prior to opening, 

the vacuum is greater than -28.5 mmHg.) K-type thermocouples and a handheld 

reader were used in all cases for this phase of work. The crucibles were coated 

with boron nitride and hold approximately 1.3 kg of A365 each.  
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Figure 3.2.1.A, B: Pressure testing setup, including air tank, ½ hp pump, gauge, valves. 

Front (A) and Rear (B). 

 

 

    

Figure 3.2.1.C,D: C) Lab stand, borosilicate tube, and crucible in upright position. D) Close-

up of borosilicate tube, stand, rubber tube, and rubber stopper in lower position. 

 

    

Figure 3.2.1.E,F: E) Induction unit controls and F) induction unit 
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Figure 3.2.1.G,H:  Resistance heated furnace (G), used to preheat crucibles (H) 

 

Initially, thermocouples were inserted into the crucible to record the final 

temperature immediately after the test was completed. Molds were preheated in 

a resistance furnace to 400 oC. Both 4mm and 5mm tubes were used in an 

attempt to determine which was more suitable for further testing. On the basis 

of ease of handling, 5mm tubes were selected for further tests. The valve was 

open, such that the tube was vacuuming prior to being inserted into the melt. As 

soon as the tube touched the surface, melt was drawn up. The height the frozen 

melt had reached was measured while the tube was still inserted in the melt. 

 

In all subsequent tests, 5mm glass tubes were used. The thermocouple was 

inserted into the melt prior to fluidity testing, so that the temperature of the melt 

at the time of testing could be measured more precisely. This improvement 

showed that the crucible needed to be pre-heated to a higher temperature to 

insure rapid melt cooling did not take place as soon as metal was poured into the 

crucible. Consequently, all subsequent preliminary tests used crucibles which had 

been preheated to 800 oC. In other respects, tests were conducted as discussed 

above. 

 

Measuring the melt while it was still within the crucible resulted in inaccuracies if 

the level of the melt in the crucible was not exactly even with the top of the 

crucible, and also presented a burn and spill danger. The procedure was 
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modified to measure the tubes after they had been extracted from the melt. The 

tradeoff was an additional glass hazard, as an extracted tube sheds its 

borosilicate coating (especially when fluidity greater than 10 cm is reached). 

 

The above tests, as previously mentioned, only involved lowering the tube until it 

first made contact with the surface. This was done to insure that the depth the 

tube was inserted into the melt was not a factor, but after one accidental 

immersion led to a much greater fluidity than simple pressure differential as a 

result of head pressure would suggest, subsequent tests were conducted. There 

is clearly an effect, presumably due to increased oxide content, when suction is 

at the surface. Metal dropping below the level of the tube, resulting in a 

cessation of flow and the freezing of the metal, is another possible factor. 

 

Finally, tests were conducted with the suction off. The tube was inserted to a 

depth in the melt, then clamped off. (After removal from the melt, the depth the 

tube was submerged was recorded as well.) The valve was then opened, and 

vacuum sucked the melt up the tube.  
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3.2.2) Development of an Improved Apparatus 

 
Fig. 3.2.2.A: Vertical vacuum apparatus in the lab foundry 

 
Above, in Figure 3.2.2.A, the vertical vacuum setup is shown. When a sample 

reaches a pre-set temperature, a pneumatic jack raises the crucible so that a 

1016 mm long, 5 mm OD, 3.35 mm ID borosilicate tube is submerged into the 

melt. This automatically triggers a valve which evacuates the tube and draws the 

metal up the tube with a 95%+ vacuum. Measurements are conducted by the 

operator immediately afterwards, before the tube is removed. This unit was 

selected because it fulfilled the needs determined in earlier testing. Existing 

Alcan equipment was refurbished, and a new testing procedure devised. 

 

To reach the desired precision with the vacuum testing apparatus, several 

possible improvements were considered. 
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One testing method considered was ultrasonic height measurement of the liquid 

metal, but since the speed of sound is highly sensitive to air pressure (and 

ultrasonic testing is not possible at all under high vacuum), this is not a feasible 

technique. 

 

Though laser range-finding seemed a promising upon initial consideration, both 

of the major laser range-finding technologies are unsuitable[101]. The first 

method of laser range-finding separates the emitter and receiver, and calculates 

the distance based upon the angle. This presents a number of problems, the 

most serious being that the narrow tubes being used for vacuum suction do not 

present enough angular width for this technique. Other problems include 

possible reflection off of the walls of the tube and, the rounded or irregular 

shape of the flow front. The second technique also separates the emitter and 

receiver, and is primarily used for surveying. This technique uses time-of-flight of 

the beam, and is also unsuitable, since the architectural technique assumes the 

emitter and receiver will be separated over distances much greater than a meter. 

Even if a system could have been developed or adapted, a task more suitable for 

the MPI Center for Imaging Studies (CIS), it would need to be robust enough for 

frequent use in a foundry lab setting [101]. 

 

Mounting a digital camera such that it would photograph the melt on completion 

of its flow and analyze the height with software was considered. There are 

several professors in the Computer Science Department who work on computer 

vision, including the department head. After speaking with Ph.D. Gennert [102], 

it became clear there were a number of complications which had not been 

considered. Such an arrangement would require a great deal of work to tune the 

lighting to avoid false reflections, to ensure proper contrast, etc. It would be very 

sensitive to the angle of its mounting, and the software would need time for 

tuning as well. In computer vision, the camera is among the least important 

parts of the system, and doing this properly is still an active area of research in 
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computer science. Again, since the intent at the ACRC is to be at the forefront of 

light metals casting, rather than computer science, the work needed to make this 

solution practical is enough to suggest other alternatives. 

 

It turns out that there is a common instrument which does not suffer from these 

problems of angular deflection, contrast in variable lighting conditions, 

programming, etc. With additional care to specify the position of the observer, 

the necessary measurements will be taken with the human eye and a fixed 

measuring stick. With the chin placed on a specified spot (the corner of the cart-

top, sighting between the tip of the now-solid fluidity sample and a ruler), note 

and record the height of the uppermost bit of metal drawn up the tube. 

Measurements are now taken with the dominant eye. Sufficient measurements 

have been taken (the height from chin to pupil) to allow another experimenter 

either to place their pupil in exactly the same spot or to calculate an offset. This 

offset problem should impact accuracy rather than precision, and so testing 

against a known standard can also be helpful. 

 

Additional procedural improvements have been made, such as filling the crucible 

directly from the induction unit rather than with an intermediate ladle. (The 

dimensions of that crucible are the same as specified in Section 3.2.1.) 

 

In addition to procedural improvements, the experimental setup has also been 

improved. A fill-line has been inscribed in the crucible three inches (7.62 cm) up 

from its base, since attempting to fill it to the top led to problems with the exact 

height of the meniscus, the displacement of metal by the tongs, which grip it by 

the edge, and spilling. Other improvements include adding fire-resistant glass 

cloth for fireproofing purposes, repainting and consolidating the experimental 

setup, replacing defective switches, performing mechanical repairs, etc. The 

consolidation of equipment has simplified the setup procedure considerably. This 

new setup, and a new written procedure, were tested in Section 3.3 below.  
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Figure 3.2.2.B: schematic of fluidity testing apparatus 

 

The above schematic, Figure 3.2.2.B, depicts the fluidity testing apparatus 

used in all later stages of research after the initial work described in Section 

3.2.1. The various numbered components on the diagram are: 1) pneumatic 

jack 2) switch which, when triggered by a L-shaped rod attached to the bottom 

of platform, opens a valve evacuating the glass tube and drawing liquid metal up 

the tube 3) steel platform covered by heat resistant tile which is raised and 

lowered by the jack and which supports the plexiglass case 4) protective fiber 

surrounding bottom of plexiglass case 5) crucible inscribed on the inside with a 

fill-line 6) ruler affixed to the rear of the plexiglass box 7) thermocouple 

connected by wire to temperature controller 8) temperature controller which 

triggers pneumatic jack if the appropriate lever is in the ‘on’ position and the 

temperature of the melt as indicated by the thermocouple is below the set point 
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9) lever controlling jack, a pressure gage, and a fitting for the pressurized air 

supply 10) lab ringstand which helps to maintain glass tube in vertical orientation 

11) clamp holding rubber stopper connecting rubber tubing to pyrex tube 12) 

connections between vacuum reservoir, vacuum pump, vacuum gage, and tube 

terminating in rubber stopper and pyrex tube which is controlled by the switch 

activated by the raising of the pneumatic jack 12b) vacuum gage 13) vacuum 

pump 14) vacuum reservoir 15) switch for ac power supply to pump and 

temperature controller, not shown 16) ac power line in 17) level wheels on which 

cart is mounted. 

 

3.3) Measurement Systems Variability (MSV)  

Two sets of experimental apparatus and their respective procedures for use were 

investigated to determine their reproducibility and reliability. As each device has 

strengths and weaknesses outside of the scope of reliability and reproducibility, 

this is not an attempt to show that one test is superior in all respects, but rather 

whether they can and do produce trustworthy quantitative data when used 

correctly according to a written procedure.  

 

The method to be used to establish reproducibility and reliability, measurement 

systems variability (MSV), is widely used in industry[87, 89, 90]. MSV is very 

similar to gage repeatability and reliability (GR&R), another industrial 

measurement standard, but GR&R is only intended for nondestructive tests of 

nominally identical samples. GR&R could be used to measure the diameter of 10 

coins to establish the accuracy of a micrometer, for instance. MSV might be used 

to analyze bomb calorimeters which incinerate small quantities of petroleum that 

are not guaranteed to be of equal volume or volatility due to uncertainties in the 

chemistry of the fuel and volume dispensed into the apparatus. 

 

The tests which were evaluated were the vertical vacuum testing unit and the N-

Tec test. In the vertical vacuum testing unit, a pneumatic jack raises a crucible of 
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melt up when a pre-set temperature is reached so that a vertical vacuum test 

may be conducted with the attached vacuum equipment through a borosilicate 

tube. Existing Alcan equipment has been refurbished, and a new procedure 

written. The N-Tec test is a permanent mold test of fluidity has also had a 

detailed procedure written for it. Five fingers of varied cross-sectional area but 

equal length extend from a central well. The manufacturer sells the test for 

qualitative measurement, but attempts at quantitative use are not unknown in 

the literature [24]. Insofar as is possible, the same experimental conditions were 

used for both tests. 

 

One alloy composition, A356, was used for all experiments, and the other casting 

parameters (superheat range, degassing, and grain refinement) were selected 

and kept constant as well. Testing was done on 700 oC metal, with no degassing 

or grain refinement addition. Mold temperatures were kept constant for each 

instrument, but varied based on the needs of the apparatus. 

 

Each test has a separate procedure, which is presented at the end of this 

section. Each test was repeated ten times by different experimenters. One of 

these experimenters was already familiar with the pieces of equipment. All 

experimenters were instructed to follow a written experimental procedure for the 

piece of equipment. The experimenters were Brian Dewhirst, Shimin Li, and 

Kimon Symeonidis. The assistance provided by the latter two is appreciated by 

the former. 

 

In the case of the vertical vacuum test, each of the 30 tests (10 tests each by 

three people, divided into two blocks of five each) was a measured length. The 

result of the N-Tec test was the sum of the lengths of the fingers. Volumetric 

measures, which measure the total volume of metal in each of the fingers, weigh 

thin fingers less heavily than thicker fingers, which was considered undesirable 

for this test. 
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MSV analysis is algorithmic, and spreadsheet macros were written to perform the 

relevant steps[87, 89, 90]. The result is four numbers: %EV (percent equipment 

variation), %AV (percent appraiser variation), %PV (percent part variation), and 

%MSV (percent measurement system variation), and standards exist to assist in 

evaluating these results. These numbers are determined based upon a user-

specified TV (total variation), which was 100 mm for these experiments. 

 

When %MSV is greater than 100%, the process is considered out of control, and 

is best suited for qualitative work. A %MSV of 60 to 100% indicates that the 

process can be used for quantitative work, but any changes which could be 

made to reduce variability should be investigated. A %MSV less than 60% 

indicates everything is functioning properly, and further improvement is generally 

unwarranted.  

 
N-Tec procedure: 

 
1. Coat all metal tools (other than N-Tec mold or coupon mold) with 

hardcoat boron nitride and allow 24 hours for drying (grey) 
2. Coat all ceramic surfaces with Lubricoat (white or blue) and allow 24 

hours to dry 
3. Ensure mold thermocouple is working  
4. Clean N-Tec mold with a brush or vacuum 
5. Preheat N-Tec mold by setting the Backplate to 320 oC 

a. 304-264 oC is an acceptable range for the mold temp, but as it 
cools during operation one ought to start higher (294 oC) in 
anticipation of it getting lower (274 oC) during operation. 

6. There is an insulating cover to place on the fluidity mold as it heats up. It 
should be placed on top of the mold during mold heating. It must be 
removed before testing. 

7. Remove one of the coupon molds from the shelf. 
8. Use induction heating procedure, attached, to melt the metal 
9. Obtain 35 lb ingot of the metal to be tested (in this case, A356) 

a. no degassing (for this experiment) 
b. no grain refiner added (for this experiment) 

10. Use the large ladle with the rounded bottom 
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11. Insert a sand pouring sleeve (without a filter at the bottom) into the 
measuring ring 

a. Attach the carrying handle and block without crushing the filter, as 
shown. 

b. Using the carrying handle, place the filling cone as shown, so that it 
is suspended at a constant depth from the bottom of the mold. 

 
Sampling procedure: 
 

12. Note initial mold temperature 
13. Preheat the ladle (Note: With care, testing can be conducted with the 

induction unit running continuously) 
14. Skim oxide from top of melt with the back of the skimmer 
15. Fill the ladle 

a. Insofar as possible, the ladle should be full (to insure equal head 
pressure between tests) 

16. Insert a (coated) large thermocouple into the filled ladle to determine 
when the superheat of the melt has decreased to the desired temperature 
for testing (in this case, T= 700. oC) 

a. Rest it on a refractory brick while waiting 
17. Remove the thermocouple and pour in one smooth motion into the N-Tec 

mold while being careful to not spill or splash the top of the mold or the 
table beneath 

18. Do not overfill the sand spout 
19. Pour coupon into coupon mold as soon after pouring the fluidity sample as 

practical. 
a. After initial solidification, open the coupon mold on at least one 

side. If one waits until it cools, this is nearly impossible to open. 
20. Carefully remove the support for the sand pouring cups and place it to 

one side. 
21. Note the final mold temperature after pouring cupon and record the mold 

temp range 
22. Allow five minutes time for solidification to complete 
23. Remove the sample for measurement, and label according to labeling 

procedure 
24. Carefully brush or blow out the mold before returning the top on, bearing 

in mind temperature safety. 
25. Repeat above procedure until desired number of fluidity samples have 

been obtained.  
 
Labeling Procedure: 
 
Fluidity samples and chemistry coupons must be given matching labels which 
identify the tester and the sample number. For example, one would write “BD 1” 
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on both the fluidity sample and the top rim of the coupon. (Were one running 
many tests, one might write “BD 1-1” to indicate it is the first sample in the first 
group.) 
 
Measurement Procedure: 
 

26. Coupon evaluation procedure: 
a. Refer to Spectro procedure, attached 
b. If the composition of the coupon is outside of that of A356 

aluminum, that fluidity test is to be rejected and repeated. 
27. Record the length of each finger from the engraved line on the bottom to 

the tip, from thickest to thinnest, with the ruler (which is graded in 
millimeters). 

28. The value to be evaluated shall be the arithmetic sum of these lengths 
 

Vertical Vacuum Procedure: 

 

Prep procedure: 
 

1. Coat all metal tools (except coupon mold) with hardcoat boron nitride and 
allow 24 hours for drying (grey) 

2. Coat all ceramic surfaces with Lubricoat (white or blue) and allow 24 
hours to dry 

3. Thermocouple preparation 
4. Remove one of the coupon molds from the shelf. 
5. Crucible must be of the same size throughout experimentation, and 

whenever possible the same crucible should be used throughout. 
6. Use induction heating procedure, attached 
7. Obtain 35 lb ingot of the metal to be tested (in this case, A356) 

a. no degassing (for this experiment) 
b. no grain refiner added (for this experiment) 

8. Attach the compressed air hose (keeping it clear of where it might be 
exposed to liquid metal) at the fitting. 

9. Turn on the flow of air by opening the valve at the wall 
10. Plug in extension (keeping it clear of molten metal) 
11. Plug in vacuum pump 
12. Make sure valve between pump and tank is closed, and that vacuum is 

developing according to gage 
13. Unplug vacuum pump 
14. Test pneumatic jack by turning the valve to the ‘up’ position and setting 

the melt timer to a low temperature (the stage should rise) 
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15. Set the pneumatic valve to the ‘down’ position so that the stage lowers 
once again, and then set the melt timer to the desired testing temperature 
(700 oC) 

16. Attach the (101.6 cm ( 40”) long, 0.5 cm diameter) Pyrex (borosilicate) 
glass tube to rubber stopper so that bottom is flush with indicator, as 
shown. Transfer the glass tube inside the Lexan protective case while 
keeping the end of the tube at this height (by keeping the rubber stopper 
at the same height, and cross-checking with the indicator) 

a. Bottom of glass tube should be 15.24 cm (6”) from bottom of 
lowered platform 

17. Attach black hose to end of stopper 
 

 
Sampling procedure: 
 

18. (Note: With care, testing can be conducted with the induction unit running 
continuously) 

19. Plug vacuum pump in. Vacuum pump should not be left on for extended 
periods between tests. 

20. Check to make sure melt timer is on 
21. Open the black valve so the end of the glass tube is under vacuum 
22. Skim oxide from top of melt with the back of the skimmer 
23. Grip the sampling crucible with tongs, and lower it into the melt until full 

(but not so full that it will spill on transport or when the pneumatic jack 
rises) 

24. Transfer ladle to inside of plexiglass cabinet 
25. Insert a (coated) large size thermocouple into the crucible to determine 

when the superheat of the melt has decreased to the desired temperature 
for testing  

a. Watch the melt timer to see when the thermocouple has risen to a 
temperature above the setpoint (700 oC). Pneumatics must not 
be turned on before this occurs 

26. Turn handle to put pneumatics into ‘up’ position (after thermocouple is in 
hot melt and melt timer is properly set) so that jack will raise melt into 
vacuumed tube when it reaches desired temperature 

27. Once the desired temperature is reached, the jack will automatically raise 
the melt and a sample will be taken 

28. After sampling has occurred, close black handle and  
29. Lower pneumatic jack by moving pneumatic lever to ‘down’ position 
30. Remove thermocouple from melt 
31. Pour coupon into coupon mold as soon as possible after preparing to take 

the fluidity sample  
a. After initial solidification, open the coupon mold on at least one 

side. If one waits until it cools, this is nearly impossible. 
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32. Allow time for glass to finish fragmenting 
a. Alternately, measure the sample before fragmenting begins and 

transfer sample to the galvanized steel can. (Measurement is 
discussed below.) 

33. Remove sample for measurement. (Measurement discussed below) 
34. It is preferable to remove metal from crucible while still molten or semi-

solid. Some flash can be removed after solidification, but it is hard to 
empty the whole block out.  

35. If the sample’s fluid length is less than 50-60% of the mean, or if the jack 
triggered immediately after the pneumatic valve was thrown (and the 
temperature gage indicates it was either below 700 degrees at this time, 
or the thermocouple was still heating up and the temp is too high) 
disregard the result and repeat. 

 
Repeat above procedure until desired number of fluidity samples have been 
obtained.  
 
Labeling Procedure: 
 
Chemistry coupons must be given matching labels with the post-vacuum samples 
which identify the tester and the sample number. For example, one would write 
“BD 1” on both the fluidity sample (by way of a small piece of tape) and the top 
rim of the coupon. (Were one running many tests, one might write “BD 1-1” to 
indicate it is the first sample in the first group.) 
 
 
Measurement Procedure: 
 

36. Coupon evaluation procedure: 
a. Refer to Spectro procedure, attached 
b. If the composition of the coupon is outside of that of A356 

aluminum, that fluidity test is to be rejected and repeated. 
37. Record the length of each the sample from the ‘water line,’ with the metal 

ruler (which is graded in millimeters). 
 

3.4) Further Refinements and the Demonstration of Linear Superheat 

Following the results of the MSV testing whose methodology was discussed 

above and whose results are presented in Section 4.3 below, additional 

modifications were made to improve the vertical vacuum procedure. Observation 

of the execution of the procedures indicated there were significant problems in 

measuring the tube length consistently. The borosilicate tubes used in these 
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experiments remain intact for only about 15 seconds after the melt has been 

drawn up the tube. After this, they begin to violently eject glass flakes, and 

frequently break off and fall back into the melt. Different experimenters 

measured from different points, which explains why the standard deviations of 

their results do not overlap. 

 

This revised procedure is presented below with modifications indicated by 

boldface type. Boldface type is not used for simple clarifications/simplifications. 

This procedure was used to collect the data presented in Section 4.4, with 

multiple runs of A356 fluidity testing being conducted for each temperature, and 

ten data points per run as indicated by Table 3.A. This investigation of varied 

superheat was conducted because it was known this alloy should respond in a 

linear fashion to superheat. A linear response would indicate close agreement 

with theory, and thus further validate this test apparatus and procedure. Tests 

were conducted at 680 C, 700 C, 720 C, 740 C, and 760 C with multiple runs for 

each condition. 

 
 
Prep procedure: 
 

1. Coat all metal tools (except coupon mold) with hardcoat boron nitride and 
allow 24 hours for drying (grey) 

2. Coat all ceramic surfaces with Lubricoat (white or blue) and allow 24 
hours to dry 

3. Thermocouple prep 
4. Remove one of the coupon molds from the shelf. 

Crucible must be of the same size throughout experimentation, and 
whenever possible the same crucible should be used throughout. It 
should be inscribed at a depth of 3 inches (7.62 cm), measured 
from the inside, and must be visible during filling. 

5. Use the ACRC induction heating procedure 
6. Obtain 35 lb ingot of the metal to be tested (in this case, A356) 

a. No degassing (unless otherwise specified) 
b. No grain refiner added (unless otherwise specified) 

7. Attach the compressed air hose (keeping it clear of where it might be 
exposed to liquid metal) at the fitting. 
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8. Turn on the flow of air by opening the valve at the wall 
9. Plug in extension (keeping it clear of molten metal) 
10. Test pneumatic jack, vacuum pump, and melt timer 
11. Attach the (101.6 cm ( 40”) long, 0.5 cm diameter) Pyrex (borosilicate) 

glass tube to rubber stopper so that bottom is flush with indicator, as 
shown. Transfer the glass tube inside the Lexan protective case while 
keeping the end of the tube at this height (by keeping the rubber stopper 
at the same height, and cross-checking with the indicator) 

a. Bottom of glass tube should be 15.24 cm (6”) from bottom of 
lowered platform 

 
Sampling procedure: 
 

12. (Note: With care, testing can be conducted with the induction unit running 
continuously) 

13.  Switch vacuum pump on. Vacuum pump should not be left on for 
extended periods between tests. 

14. Check to make sure melt timer is on and set to the specified 
temperature 

15. Skim oxide from top of melt with the back of the skimmer 
16. Grip the sampling crucible with tongs, and lower it into the melt until it 

reaches the fill line. 
17. Transfer crucible to inside of the plexiglass cabinet 
18. Insert a (coated) large size thermocouple into the crucible to determine 

when the superheat of the melt has decreased to the desired temperature 
for testing  

a. Watch the melt timer to see when the thermocouple has risen to a 
temperature above the set point. Pneumatics must not be turned 
on before this occurs. 

b. It may be necessary to pre-warm the thermocouple and 
mold at the beginning of testing. If it does not reach the 
target temperature, return the melt to the induction unit 
and try again. 

19. Turn handle to put pneumatics into ‘up’ position (after thermocouple is in 
hot melt and melt timer is properly set) so that jack will raise melt into 
vacuumed tube when it reaches desired temperature 

a. See 27 
20. Once the desired temperature is reached, the jack will automatically raise 

the melt and a sample will be taken 
21. Lower pneumatic jack by moving pneumatic lever to ‘down’ position 
22. With one’s chin flat on the corner of the fluidity cart where 

indicated and with one’s head upright, measure the height of the 
sample against the meter stick affixed to the plexiglass with only 
the right eye. 
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23. Remove thermocouple from melt 
24. Remove the tube and place it into the metal waste bin before it 

begins to fragment. 
a. Alternately, allow time for glass to finish fragmenting and 

do not return the glass-rich metal back into the induction 
unit subsequently 

25. Pour the metal from the crucible back into the induction unit. 
26. Pour a coupon into coupon mold as soon as possible after preparing to 

take the fluidity sample  
a. After initial solidification, open the coupon mold on at least one 

side. If one waits until it cools, this is nearly impossible. 
b. Often, it is possible to prepare a coupon between turning 

the pneumatic valve to the ‘up’ position and the collection 
of a sample 

27. If the sample’s fluid length is less than 50-60% of the mean, or if the jack 
triggered immediately after the pneumatic valve was thrown (and the 
temperature gage indicates it was either below 700 degrees at this time, 
or the thermocouple was still heating up and the temp is too high) 
disregard the result and repeat. 

 
Repeat above procedure until desired number of fluidity samples have been 
obtained.  
 
 
Labeling Procedure: 
 
Chemistry coupons must be given matching labels with the post-vacuum samples 
which identify the tester and the sample number. 
 
Measurement Procedure: 
 

28. Coupon evaluation procedure: 
a. Refer to Spectro procedure 
b. If the composition of the coupon is outside of that of A356 

aluminum, that fluidity test is to be rejected and repeated. 
 

For exact fluidity measurements, it is necessary to subtract the height 

of the inscribed line and melt stand from the final result, as the meter 

stick is affixed level with the melt lift stage. Calibration for a user’s line 

of sight is also required.  

 

 



 49 

3.4.1) Confirmation of Improvements by Baseline Comparison 

After superheat testing demonstrated the test was reliable, work continued in 

investigating variables of interest. During that testing, detailed below in Section 

3.5, samples of unmodified A356.2 were tested at 700 oC alongside the modified 

materials in a series of experiments discussed below. This large baseline allows 

for investigation of the repeatability and stability of this apparatus and these 

related procedures (apart from the baseline points from the Section 3.5 work, 

data from the 700 oC points of Section 3.4 was included). 

 

3.5 Application of Apparatus to Variables of Interest 

Subsequent to the work described above, additional modifications were made. 

These modifications are indicated by boldface type or strikethroughs. Boldface 

type and strikethroughs are not used to indicate simple 

clarifications/simplifications. This procedure was used to collect the data 

presented in Section 4.5, with repeated trials as indicated by Table 3.A.  

 
Prep procedure: 
 

1. Coat all metal tools (except coupon mold) with hardcoat boron nitride and 
allow 24 hours for drying (grey) 

2. Coat all ceramic surfaces with Lubricoat (white or blue) and allow 24 
hours to dry 

3. Thermocouple prep 
4. Remove one of the coupon molds from the shelf.   
5. Crucible must be of the same size throughout experimentation, and 

whenever possible the same crucible should be used throughout. It should 
be inscribed at a depth of 3 inches (7.62 cm), measured from the 
outside, and must be visible during filling. 

6. Use the ACRC induction heating procedure 
7. Obtain 35 lb ingot of the metal to be tested (in this case, A356.2) 

a. No degassing (unless otherwise specified) 
b. No grain refiner added (unless otherwise specified) 

8. Attach the compressed air hose (keeping it clear of where it might be 
exposed to liquid metal) at the fitting. 

9. Turn on the flow of air by opening the valve at the wall 
10. Plug in extension (keeping it clear of molten metal) 
11. Test pneumatic jack, vacuum pump, and melt timer 
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12. Attach the (101.6 cm (40”) long, 0.5 cm outer diameter) Pyrex 
(borosilicate) glass tube to rubber stopper so that bottom is flush with 
indicator. Transfer the glass tube inside the Lexan protective case while 
keeping the end of the tube at this height (by keeping the rubber stopper 
at the same height, and cross-checking with the indicator) 

a. Bottom of glass tube should be 15.24 cm (6”) from bottom of 
lowered platform 

 
 
Sampling procedure: 
 

13. (Note: With care, testing can be conducted with the induction unit running 
continuously) 

14.  Switch vacuum pump on. Vacuum pump should not be left on for 
extended periods between tests. 

15. Check to make sure melt timer is on and set to the specified temperature 
16. Skim oxide from top of melt with the back of the skimmer 
17. Grip the sampling crucible with tongs, and lower it into the melt until it 

reaches the fill line. 
18. Transfer crucible to inside of the plexiglass cabinet 
19. Insert a (coated) large size thermocouple into the crucible to determine 

when the superheat of the melt has decreased to the desired temperature 
for testing  

a. Watch the melt timer to see when the thermocouple has risen to a 
temperature above the set point. Pneumatics must not be turned 
on before this occurs. 

b. It may be necessary to pre-warm the thermocouple and mold at 
the beginning of testing. If it does not reach the target 
temperature, return the melt to the induction unit and try again. 

20. Turn handle to put pneumatics into ‘up’ position (after thermocouple is in 
hot melt and melt timer is properly set) so that jack will raise melt into 
vacuumed tube when it reaches desired temperature 

a. See 28 
21. Once the desired temperature is reached, the jack will automatically raise 

the melt and a sample will be taken 
22. Lower pneumatic jack by moving pneumatic lever to ‘down’ position 
23. With one’s chin flat on the corner of the fluidity cart where indicated and 

with one’s head upright, measure the height of the sample against the 
meter stick affixed to the plexiglass with only the right eye. 

24. Remove thermocouple from melt 
25. Remove the tube and place it into the metal waste bin before it begins to 

fragment. 
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a. Alternately, allow time for glass to finish fragmenting and do not 
return the glass-rich metal back into the induction unit 
subsequently 

26. Pour the metal from the crucible back into the induction unit. 
27. Prior to the first test, following the last test, and following any 

introduction of agents to modify alloy chemistry, conduct a 
coupon test as follows: Pour a coupon into coupon mold as soon as 
possible after preparing to take the fluidity sample  

a. After initial solidification, open the coupon mold on at least one 
side. If one waits until it cools, this is nearly impossible. 

b. Often, it is possible to prepare a coupon between turning the 
pneumatic valve to the ‘up’ position and the collection of a sample 

28. If the sample’s fluid length is less than 50-60% of the mean, or if the jack 
triggered immediately after the pneumatic valve was thrown (and the 
temperature gage indicates it was either below 700 degrees at this time, 
or the thermocouple was still heating up and the temp is too high) 
disregard the result and repeat. 

 
Repeat above procedure until desired number of fluidity samples have been 
obtained.  
 
 
Labeling Procedure: 
 
Chemistry coupons must be given appropriate labels identifying when the 
sample was taken and by whom such that the origin of the coupon is 
clear.  
 
Measurement Procedure: 

29. Coupon evaluation procedure: 
a. Refer to Spectro procedure 
b. If the composition of the coupon is outside of that of A356.2 

aluminum, that fluidity test is to be rejected and repeated. 
30. For exact fluidity measurements, it is necessary to subtract the height of 

the inscribed line and melt stand from the final result, as the meter stick is 
affixed level with the melt lift stage. The proper offset is 9.0 cm. An 
operator-based correction may also be needed to accommodate operators 
of different head heights. This data was collected with an operator 
whose pupil height was 12 cm. 

 

 

All experiments were performed at 700 C, with the exception of a small number 

of experiments conducted with the specific intent of maintaining constant 
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superheat. The base alloy for this work, unless otherwise specified, was A356.2. 

These experiments involved applying the testing apparatus and procedures 

presented above to a number of areas of interest listed below in Sections 3.5.1 

through 3.5.7. Unless otherwise specified, degassing was not performed. 

 

3.5.1) Si Level Adjustment 

Readings with pure A356.2 with a silicon level in the middle of the range (7% Si) 

were recorded as a baseline, then the level of silicon was adjusted up or down 

through the addition of a 36% silicon master alloy or pure aluminum. Si content 

was raised in this fashion by 0.6% and 1.1% and lowered by 0.4% and 0.7%. 

These experiments were conducted at 700 C. A binary alloy of Al-Si at 15% Si 

was prepared by combining primary Si and Al and was tested at 700 C as well. 

Subsequent experiments were conducted at constant superheat, rather than 

constant temperature, with a baseline A356.2 (7.0% Si) point at 700 C, a 

reduced Si (6.5% Si) point at 698.5 C, and an increased Si (7.5% Si) point at 

702.5 C. Investigations of alloy modifications over gross changes in chemistry 

have been performed before, but this work explores the effect of fluidity within 

the range of allowed chemistries of a commercial alloy. 

 

3.5.2) Fe and Mn Addition 

Readings with pure A356.2 with 0.08% Fe and 0.002% Mn were recorded as a 

baseline, and then the levels of those constituents were modified through adding 

master alloys. Iron content was increased to 0.2% (the specified limit), then later 

increased to 1.0% (a level more typical of a secondary or die casting alloy). 

Manganese is often added to control iron intermetallics in a 2:1 ratio of Fe:Mn, 

so 0.5% Mn was added to the A356.2 with 1% Fe. Subsequently, 0.25% Mn was 

added to fresh A356.2. A356 alloys may contain up to 0.2 Fe and 0.1 Mn, so 

here again this work includes research into the effect of alloying elements within 

the accepted range of a commercial alloy. 
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3.5.3) Pure Aluminum Testing 

In addition to the experiments conducted with A356.2, and the binary 

hypereutectic Al-Si alloy, tests were conducted with pure Al for the purposes of 

comparison, as it is known that pure metals have very high fluidities. In addition 

to the standard procedure indicated above, measurements were taken with the 

eye parallel to the melt level. When the fluidity is very large the difference 

between measurements taken with the head in a fixed location and the true 

height become large. Measurements with the eye in a fixed position are still 

more precise, even if they are less accurate. Due to the higher fluidity, testing 

was conducted at 670 C. 

 

3.5.4) Grain Refinement 

Readings with pure A356.2 were recorded as a baseline. TiBor grain refiner sticks 

(5 % Ti, 1% B) were added to the 25 lb of pure A356.2 to achieve three levels of 

refinement in addition to the baseline. 27 grams TiBor was added to achieve the 

recommended 10-20 ppm B, an additional 133 grams was added to reach 5-6 

times that level, and a further addition of 140 grams was added to achieve 10-12 

times the recommended commercial addition. Micrographs were taken to insure 

refinement had taken place. 

 

3.5.5) Eutectic Modification (Sr) 

Readings with pure A356.2 were recorded as a baseline. Strontium master alloy 

(90% Al, 10% Sr) was added to achieve three levels of modification in addition 

to the baseline. The first two levels were prepared from the same initial 27 lb 

melt of A356.2, while the final level was prepared from a 28 lb melt at a later 

date. First, 37.5 grams of Sr master alloy were added to achieve a level greater 

than 0.02% Sr. Subsequently, 32.5 additional grams were added to bring the 

level above 0.04% Sr. Mercury Marine produces a series of die casting alloys 

called Mercalloy which have Sr levels as high as 0.1% Sr, and so 150 grams were 

added to a later melt of A356.2 to see how this larger addition impacts fluidity. 
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3.5.6) Artificial Introduction of Oxides 

The impact of oxides and oxide films is much commented on in the aluminum 

literature, and the deleterious effects on the fluidity of other aluminum alloys has 

been established by other researchers. Here, the intent was to vary the oxide 

level by introducing aluminum powder and borax to the melt. Oxides produced 

on the surface of the melt were also stirred back in rather than skimmed off. 

Since borax contains significant quantities of combined water which produce 

oxides and significant quantities of solid ‘grit’ are left behind, this may prove to 

be a more potent artificial oxide source.  

 

Readings with pure A356.2 were recorded as a baseline. Subsequent to baseline 

testing of the 32 lb melt, 99% pure Al powder (ASP 17-23 microns) was added at 

three levels (cumulative additions of 142 g, 402 g, and 498 g in aluminum foil.) 

Adding this fine powder to the melt presented the melt with a great quantity of 

additional surface area. In other testing, standard best practice with regards to 

protecting castings from oxide related defects was followed. Oxides were 

skimmed from the top, poring heights were minimized, etc. During this testing, 

these practices were reversed. Oxides were not skimmed off, but were instead 

deliberately stirred into the melt.  Thus, the total quantity of oxides will not 

directly correspond to the masses of Al powder added.  

 

Testing was also conducted with borax (Na2B4O7•10H2O) addition. The 

procedure, including steps to counteract best practice (stirring in oxides, etc), 

was the same as was followed for the addition of powder, but rather than just 

increasing the surface area available for oxidation the combined water in borax 

reacts directly to form oxides and a sodium boron oxide is left behind in the melt 

contributing to poor melt quality. Cumulative additions to the melt were 184 g, 

336 g, and 501 g of borax in aluminum foil to a 28 lb melt.  
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3.5.7) Degassing 

Readings with pure A356.2 were recorded as a baseline. Degassing was 

performed using a rotary degasser with argon gas for 15 minutes and 35 

minutes. Gas levels for un-degassed and heavily degassed metal were directly 

measured with the Alscan setup. The indicated intermediate (15 min) level, 0.15 

ml/cc, is based on past experience with the Alscan setup, A356, etc. Direct 

measurements indicated that the high (35 min) degassing produced levels below 

0.1 ml/cc of hydrogen and that the levels of hydrogen with no degassing were 

over 0.3 ml/cc. 

 

These measured levels of hydrogen are not precise, because both the Alscan 

testing and degassing were performed at a lower temperature than testing, and 

time passed while the metal was brought up to a suitable temperature for testing 

allowing hydrogen to diffuse back into the melt. Naturally, time also passed 

during testing, as it takes quite a while for the Alscan tester to reach equilibrium 

and results are supposed to be the average of multiple measurements. 

 

3.6) Predictive Modeling  

Modeling is becoming an increasingly popular tool in the metals casting industry, 

and while work in alloy and process involvement often involves explicit fluidity 

testing, industry survey results presented in Appendix B suggest use of 

computer models to determine fluidity is much more common in industry. 

Unfortunately, current models do not provide an estimate of the uncertainty of 

their calculations and they are constrained by the quality of their databases. If 

modeling is sufficiently able to predict the results of fluidity tests, need for lab 

tests will be obviated in many cases. 

 

Three common molten metal modeling software packages were investigated for 

this work: 
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 Comsol, a finite element package used in many areas of the physical 

sciences, especially for problems involving interactions between multiple 

simultaneously modeled phenomena. 

 CAPCAST, by EKK inc., is a finite element software package, intended for 

casting simulation, which is noted for its meshing tool. 

 MAGMA, by MAGMASOFT, is a finite difference software package, also 

intended for casting simulation, which claims it can predict the properties 

of castings through modeling. 

 

First, each of these packages was evaluated with consultation with their 

manufacturers to determine their suitability for modeling the apparatus discussed 

in Section 3.2.2 Comsol's manufacturer indicated that it was not suitable for 

this application. The manufacturers of the more casting-specific packages both 

felt that their products were potentially suitable and provided assistance in 

conducting the modeling.  

 

Models were prepared based on descriptive details of the geometries and 

materials involved, comparable to those found in Section 3, and were tested with 

specified superheats. If the model results agreed with the experimental results 

then a more comprehensive effort to evaluate the impact of various 

modifications (Sections 3.5.1-3.5.7) would be conducted. Without a robust 

baseline from valid superheat modeling to compare these modified models to, 

however, it would not be possible to reliably evaluate the results. 
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4 RESULTS AND DISCUSSION: 
 
Much work has been done on the fluidity of light metals over the last 50 years, 

and the equations developed by Flemings are still the best available to account 

for the factors involved in the filling of thin channels. The expected variations 

from these equations in the absence of certain systemic measurement biases 

have been calculated, and are a good guide to improving fluidity testing. This 

understanding allowed for an improved, robust, quantitative testing procedure. A 

quantitative understanding of the factors involved in variations in fluidity testing 

can also illuminate factors which will have an impact on the scrap rates of parts 

containing secondary and ternary constituents which differ from those found in 

primary alloys. It was possible, for the first time, to conduct accurate fluidity 

testing within the specified chemistry range of a given alloy outside of those 

alloys cast exclusively in die casting. These experimental results have been 

compared with computational modeling work and as is discussed in Section 4.6, 

this underscored the importance of experimental work to determine fluidity. 

 

All of the raw data reported on in this section can be found in Appendix A. 

 

4.1) Uncertainty Calculations 

When the methods described in Section 3.1 are applied to Flemings’ equations, 

the following results are obtained for the interface-dominated and mold 

dominated cases. Recall equations 9a-11b: 

If:             eqn. 9a 

then:    eqn. 9b 

For             eqn. 10 

If:            eqn. 11a 
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then:   eqn. 11b 
where dq is the relative uncertainty (i.e. q_true = q +/- dq). 

 
4.1.1) Error in Metal-Mold Interface Dominated Case 

 
Recall equations 4 and 6: 
 

       eqn. 4 

Where         eqn. 6 

Define some useful terms:  and  
 

   where      and     
 

      

      

 

 

 

 

 

 

eqn. 12a 

 eqn. 12b 
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4.1.2) Error in Mold Resistance Dominated Case  
 
By the same process, this method can be applied to the ‘theta type’ calculation 

also from Flemings’ British Foundryman paper [4]. 

 
First recall equations 5 and 6: 
 

      eqn. 5 

Where         eqn. 6 

 

 eqns. 13a&b 

Where  

Recall equation 10: For          eqn. 10 

    eqn 13c 

    eqn 13d 

 

 

It can be seen that fluidity is a complex parameter, and though it is composed of 

several terms which are material properties, it is also dependent on nonmaterial 

factors. The error equations developed above, Equations 12 and 13, show how 

fluidity is sensitive to error as a function of these same variables. There are, in 

general, two categories into which error terms can be separated. One set 

includes all of the factors whose error an ideal test would reduce to zero 

(variation in the velocity of metal flow Vo, the tube diameter a, the uncertainty in 
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the measurements of the temperatures). The other includes all the intrinsic 

factors, factors which may well vary in actual casting practice (variation in the 

specific heat c, heat transfer coefficient h, mold thermal conductivity k, etc.) 

Some variables can fall into both categories. When a variation in heat transfer 

coefficient is due to a change in chemistry or local mold characteristic, this is of 

interest, but if an experimental apparatus has a persistent air bubble which 

would not be found in casting practice, it is desirable to eliminate the variation. 

(Since the heat transfer coefficient between glass and molten metal is likely to be 

quite different from that found in a die cavity, it is good that it is constant in this 

test.) 

 

Though the degree of uncertainty will vary between the lab test and the casting 

facility, the same terms determine the uncertainty implicit in filling a thin section 

in the foundry. Though heat transfer is, one hopes, well-controlled in the 

laboratory setting, the presence or absence of an air gap between melt and mold 

(or between melt and mold coating) can significantly affect the thermal 

conductivity and heat transfer coefficient [76], and so lead to great variation in 

the observed fluidity in the foundry setting. This variation can be estimated by 

using the above equations.  

 

 

4.2) Development of Experimental Apparatus 

Though the general structure of the results section is patterned after the 

methodology section, there are no data corresponding to Section 3.2 to 

discuss. 
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4.2.1) Preliminary Analyses 

 

Figure 4.2.1.A: Graph of fluidity versus temperature for vertically suctioned A356 under 

varied experimental conditions, as detailed in Section 3.2.1. 

 

The results of the five procedures above are presented in Figure 4.2.1.A. As 

can be seen, the various refined procedures generated greater fluidity than the 

procedures they replaced. Only the final procedure shows the expected linear 

response between superheat and fluidity. Presumably, this was because of 

confounding factors in the earlier test procedures (oxides, insufficient tube depth 

to permit continued flow of metal, etc). It was found that the testing mechanism 

and procedure were converging with the design decisions made for the 

refurbished Alcan fluidity tester. Correcting problems with this apparatus and 

procedure would bring it even closer to the Alcan setup. Future vacuum fluidity 
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testing was conducted with the Alcan apparatus. Based on these experiments, a 

new procedure was written for the apparatus.  

 

4.3) Measurement Systems Variability (MSV)  

The Design of Experiments for MSV was followed as presented above in Section 

3.3. Results are presented in the standard format for MSV and GR&R. The three 

experimenters are designated Operators 1, 2, and 3. Similarly, the samples are 

numbered 1-5. MSV calculations make use of intermediate calculations of 

averages (X) and ranges (R), as well as the range of the averages, and these 

intermediate values are displayed. K1, K2, and K3 are statistical constants based 

upon sample size, and the total number of tests, n, is 30. The most important 

result of these calculations is %MSV, and the lower this value is, the better the 

results a testing procedure/apparatus can provide. 

 

The following table contains the MSV results and analysis of N-Tec testing. This 

format is standard for GR&R/ MSV testing and follows the procedure, above, in 

Section 3.3.  
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Table 4.3.A: N-Tec MSV Testing Results 

 Sample#1 Sample#2 Sample#3 Sample#4 Sample#5 -- -- 
1 (Oper. 1) 678.00 302.00 317.00 731.00 835.00     
2 (Oper. 1) 607.00 566.00 360.00 800.00 375.00     
3 (Oper. 2) 793.26 742.41 635.63 883.00 665.00     
4 (Oper. 2) 300.02 750.04 931.00 675.00 500.00     
5 (Oper. 3) 631.00 1071.00 784.00 954.00 906.00     
6 (Oper. 3) 537.00 858.00 823.00 822.00 583.00     

Oper. 1 
Ave 642.50 434.00 338.50 765.50 605.00 

X bar 
Oper. 1 557.10 

Oper. 1 
Range 71.00 264.00 43.00 69.00 460.00 

R bar 
Oper. 1 181.40 

Oper. 2 
Ave 546.64 746.23 783.31 779.00 582.50 

X bar 
Oper. 2 687.54 

Oper. 2 
Range 186.26 176.41 275.63 83.00 290.00 

R bar 
Oper. 2 202.26 

Oper. 3 
Ave 584.00 964.50 803.50 888.00 744.50 

X bar 
Oper. 3 796.90 

Oper 3. 
Range 94.00 213.00 39.00 132.00 323.00 

R bar 
Oper. 3 160.20 

Sample 
Ave 591.05 714.91 641.77 810.83 644.00    

--           Rp 219.79 
R bar 181.29             

X bar diff 239.80             
                

MSV               
EV 826.67 %EV 826.67 K1 4.56     
AV 647.46 %AV 647.46 K2 2.70     
PV 457.16 %PV 457.16 K3 2.08     
TV 100.00 %MSV 1145.24 n 30.00     

 

The following table contains the MSV results and analysis of vertical vacuum 

testing. This format is standard for GR&R/ MSV testing and follows the 

procedure, above, in Section 3.3. 
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Table 4.3.B: Vertical Vacuum MSV Testing Results 

 Sample#1 Sample#2 Sample#3 Sample#4 Sample#5 -- -- 
1 (Oper. 1) 255.00 248.00 273.00 289.00 270.00     
2 (Oper. 1) 244.00 297.00 244.00 264.00 259.00     
3 (Oper. 2) 314.96 317.50 317.50 317.50 322.60     
4 (Oper. 2) 304.80 304.80 304.80 320.00 325.10     
5 (Oper. 3) 237.00 210.00 236.00 237.00 236.00     
6 (Oper. 3) 240.00 242.00 239.00 234.00 251.00     

Oper. 1 Ave 249.50 272.50 258.50 276.50 264.50 
X bar 
Oper. 1 264.30 

Oper. 1 
Range 11.00 49.00 29.00 25.00 11.00 

R bar 
Oper. 1 25.00 

Oper. 2 Ave 309.88 311.15 311.15 318.75 323.85 
X bar 
Oper. 2 314.96 

Oper. 2 
Range 70.96 20.50 73.50 53.50 63.60 

R bar 
Oper. 2 56.41 

Oper. 3 Ave 238.50 226.00 237.50 235.50 243.50 
X bar 
Oper. 3 236.20 

Oper 3. 
Range 3.00 32.00 3.00 3.00 15.00 

R bar 
Oper. 3 11.20 

Sample Ave 265.96 269.88 269.05 276.92 277.28    
--           Rp 11.32 

R bar 30.87             
X bar diff 78.76             

                
MSV               
EV 140.77 %EV 140.77 K1 4.56     
AV 212.64 %AV 212.64 K2 2.70     
PV 23.55 %PV 23.55 K3 2.08     
TV 100.00 %MSV 256.10 n 30.00     

 

In order to better compare and contrast the results of these two tables, Table 

4.3.C below collects the results for side-by-side analysis. 

 

Table 4.3.C: The key values for N-tec and Vertical Vacuum are presented together 
Vertical 
Vacuum  N-Tec  

%EV 140 %EV 830 
%AV 210 %AV 650 
%PV  24 %PV 460 

%MSV 260 %MSV 1100 
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From Table 4.3.C, the following can be noted:  

• While both tests have %MSV (percent measurement systems variation) 

values which are much higher than the desired 100% or 60%, the vertical 

vacuum test produced much more favorable overall results (240% versus 

1100%).  

• %MSV results can be improved by further refining the procedure and 

apparatus. N-Tec variations were high across the board, rather than in any 

one area which might be targeted. In contrast, the part and equipment 

variations for the vertical vacuum test were low, suggesting that the step 

which needs improvement is the measurement of completed samples.  

• Experimental methodologies which either incorporate more data points or 

allow for broader tolerances on total variation (such as applying a linear fit to 

superheat values) would likely not help reduce %MSV to below 100%, the 

threshold for quantitative work according to %MSV, without further 

procedural improvements.  

• These results underscore the importance of investigating and improving the 

testing methods for fluidity. 

 

While both tests have %MSV (percent measurement systems variation) values 

which are much higher than the desired 100% or 60%, the vertical vacuum test 

produced much more favorable overall results. %MSV results can be improved by 

further refining the procedure and apparatus. N-Tec variations were high across 

the board, rather than in any one area which might be targeted. In contrast, the 

part and equipment variations for the vertical vacuum test were low, suggesting 

that the step which needs improvement is the measurement of completed 

samples. Experimental methodologies which either incorporate more data points 

or allow for broader tolerances on total variation (such as applying a linear fit to 

superheat values) would likely help reduce %MSV to below 100%, the threshold 

for quantitative work. 
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In these experiments (as mentioned above) there were variations across the 

board for the N-Tec permanent mold. The manufacturers of this mold do not 

claim it is suitable for quantitative testing. Though it might be possible to 

incorporate it into a quantitative setup, in part through controlling melt velocity 

and mold temperature more precisely, it is by far the less promising of the two 

tests under consideration. Variations in mold temperature are clearly a factor in 

the variation, as can be seen from examining Equations 12 and 13, presented 

earlier. Many commercial and experimental molds have features in common with 

the N-Tec mold which suggest they may not be suitable for robust and reliable 

experimentation. These data confirm, in the case of these kinds of tests, the 

common belief that fluidity testing is unreliable and difficult to compare between 

labs. Manufacturers marketing fluidity tests would likely benefit from more robust 

procedures and tighter temperature and temperature gradient controls in their 

equipment.  

 

As mentioned in Section 2.4.1, previous work on repeatability had made use of 

the MSV testing methodology. Before conducting further MSV testing, resources 

within WPI’s mathematics department in the person of a professor of statistics, 

Dr. Petruccelli [103], about aspects of the MSV methodology which were of 

concern. Though he agreed that the GR&R testing on which the MSV 

methodology is based is sound, he shared the misgivings expressed about how 

part variation is calculated for tests involving the destruction of samples. The 

nature of the material available on MSV makes it difficult to see the mathematical 

arguments that went into its design, as the books and papers which were 

available are not intended for mathematicians but rather for technicians, but it 

may be there is a solid foundation for these methods. Since the underlying math 

cannot be evaluated (as it is not included with the algorithmic procedure), more 

traditional statistical methods were employed throughout the rest of the work 

(standard deviation of the mean, etc.) Review of the data collected previously 

using such methods confirms the conclusions reached: the vacuum methodology 
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is closer to the desired level of refinement, but still needs work to increase 

precision and accuracy. 

 

4.4) Further Refinements and the Demonstration of Linear Superheat 

As indicated in Section 3.4, multiple tests were taken for a series of 

temperatures to establish the precision of the improved apparatus and 

procedure. Results of these improvements are presented in a series of graphs. 

Figures 4.4.A-D are the results of these experiments. Each is followed by 

relevant discussion. The 9 cm offset mentioned in the procedure has been 

subtracted from this data.  

 

 

Figure 4.4.A: The mean values of the runs are presented along with the 

standard deviations of the means. 

 

When the mean and the standard deviations of the mean are depicted, the 

overall linear trend becomes clear. As expected, a linear trend with respect to 

superheat is observed. The linear trend and small standard deviation of the 

mean indicates that this is an accurate and repeatable apparatus and procedure. 
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This response to increased superheat is the principle way of increasing fluidity in 

practice. Two points at 680 C have been omitted for reasons discussed below. 

 

 

 

Figure 4.4.B: Data points, mean, and standard deviation of the three 

experimental runs taken at 680 oC 

 

Data in Figure 4.4.B are presented in chronological order. Please note the 

different scale from the previous figure. Between the second and third points a 

switch was replaced due to its failure. It is believed it was operating 

intermittently during the first two runs, resulting in variable suction. The smaller 

range (thus, smaller standard deviation) of the third data point and its 

agreement with the overall linear trend support the contention that it represents 

the correct value. Regardless, the three ranges are still within three standard 

deviations of each another. 
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Figure 4.4.C: Comparison of means and standard deviations of old MSV (green 

squares) and new (blue diamonds) fluidity values at 700 oC. (note: remove 9cm 

offset from this graph) 

 

As can be seen, the new data are much more consistent, and the standard 

deviations do not account for the variation seen in the old MSV experiments, but 

do a good job of accounting for the variation in current testing. Please note the 

different scale from above, and recall that the MSV results were collected by 

three separate experimenters in accordance with the MSV procedure. The 

contention was that the main cause for this variation was the measuring 

procedure, and it seems that affixing the position of the eye doing the measuring 

has greatly improved the reproducibility of results. (Discussion following testing 

revealed that experimenters were measuring the lengths in subtly different 

ways—the most variant feature was the ‘metal line,’ from which measurements 

were supposed to be taken.) 

 

Sufficient improvements to the testing apparatus and experimental procedure 

were made to move on to the next phase, testing of fluidity and its variation 
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when alloy additions consistent with the differences between primary and 

secondary alloys are considered. 

 

4.4.1) Confirmation of Improvements by Baseline Comparison 

 

Figure 4.4.1.A: Baseline of A356.2 fluidity data recorded at 700 C 

The above graph displays all available fluidity data of A356.2 at 700 C using the 

refurbished Alcan apparatus and related procedures. The first three points are 

the MSV points, and as can be seen they are the least consistent with following 

data and with each other. The average of point ten appears to have been thrown 

off by a single data point collected at a higher than intended superheat, but was 

included for completeness. The data displayed was collected over thirteen 

months and spanned the three procedures discussed above in Sections 3.3 to 

3.5 as well as necessary repairs and adjustments to the apparatus and 

thermocouples and crucibles which were successively repaired and replaced. The 

observed long term variation in the data was compared to the barometric and 

relative humidity data from the Worcester Airport at the time of testing, but no 

correlation was observed. It is possible that the humidity and air pressure in the 

lab foundry vary with respect to different factors as compared to that collected at 

the Worcester Airport. Such factors include whether someone has performed a 
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quenching experiment nearby, which exhaust fans are running, whether the door 

is open, and may include other factors. Given the variations in procedure, long 

length of time over which experiments were run, mechanical and thermocouple 

failures, and other factors this graph shows the present apparatus/procedure to 

be very reliable, but underscores the need for taking baseline points at a known 

composition and temperature for the highest accuracy. 

 

4.5) Application of Apparatus to Variables of Interest 

As indicated in Section 3.5, multiple tests were taken for a series of 

experimental conditions to establish the impact of those conditions on fluidity. 

Results of these experiments are presented in a series of graphs. Figures 

4.5.1.A-4.5.7.A are the results of these experiments. Each graph is followed by 

relevant discussion. Unless otherwise indicated, all data was taken at 700 C. 

 

4.5.1) Si Level Adjustment 

 

Figure 4.5.1.A: Impact of varied Si level on A356.2 fluidity at 700 C  

 

The presence of additional silicon in commercial alloys, as opposed to pure and 

commercially pure aluminum, is known to improve fluidity through increasing the 
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heat of fusion of the melt and through modifications of the morphology of the 

solidifying melt. These tendencies, however, were studied on a much coarser 

scale— investigations of binary Al-Si alloys over a relatively wide range of silicon 

concentrations, or comparisons of different commercial alloys which again 

involved relatively coarse changes in silicon concentration alloy to alloy. While it 

is not the case that the rankings of the mean value of ten data points over five 

varied compositions are always ordered from greatest to least silicon 

concentration, it is the case that through successive experiments a trend can be 

seen. Though difficult, changes due to Si content can be seen at this scale. The 

large additions (6.3% Si and 8.1% Si) are slightly outside of the range of 

acceptable chemistries for A356.2, while the smaller additions (6.4% Si and 

7.6%Si) are right on the edge of those composition ranges. While it is difficult to 

discern the difference between two silicon additions (7.6% Si and 8.1%Si), it is 

very easy to distinguish between addition and removal (7.6% Si and 6.4% Si, for 

instance), and possible to distinguish between the baseline average (7% Si) and 

the smaller additions. The resolution at this number of experimental trials seems 

to be +/- 0.5% Si. Again, the importance of this trial was not that Si improves 

fluidity, but that the impacts of individual alloy constituents can be detected 

within the range of an alloy specification for this kind of alloy.  
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Figure 4.5.1.B: Comparison of hypereutectic binary Al-Si alloy at constant temperature to Si-

content modified A356.2 

 

In Figure 4.5.1.B this linear trend is seen with respect to silicon content 

continue as Si content increases. Hypereutectic silicon alloys are known to be 

especially fluid up until 16 or 17% Si, though the specific maximum is dependent 

on processing conditions and other aspects of the alloy such as copper and 

phosphorous content. Note the larger scale in this figure as compared to 

previous figures. 
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Figure 4.5.1.C: Comparison of Al-Si alloys at constant superheat  

 

In general, it is more appropriate to show fluidity data with constant superheat 

as opposed to constant temperature, but data was recorded at constant 

temperature for ease of comparison and to facilitate the baseline study discussed 

in Section 4.4.1 above. This figure shows an even stronger linear correlation 

between composition and fluidity, and the difference in fluidity at the extremes 

of the allowed range of commercial alloy compositions is again apparent. Note 

the smaller scale in this figure as compared to previous figures. 
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4.5.2) Fe and Mn Addition 

 

Figure 4.5.2.A: Impact of Fe and Mn addition on A356.2 fluidity at 700 C  

 

Figure 4.5.2.A, above, investigates the impact of iron additions, manganese 

additions, and iron combined with manganese along with a baseline. When a 

small amount of iron is added to the melt, corresponding to the maximum 

allowable iron content in A356 alloys, a small increase in fluidity is observed. 

When higher iron levels are added, fluidity returns a point intermediate between 

base and the low iron addition. Adding manganese to this high iron level in the 

ratio of two parts iron to one part manganese used to arrest some of the 

negative features associated with iron intermetallics does not greatly change the 

fluidity observed as compared to the level reached through the addition of 

significant quantities of iron alone. It should be noted that the larger iron 

additions also include a larger quantity of pure aluminum, which dilutes the other 

alloying constituents as discussed above in Figure 4.5.2.A, above, and this may 

be mitigating the impact of additional added iron. As compared with the iron 

additions, manganese does not have much of an impact, positive or negative, on 

the fluidity of A356, either at the relatively low level corresponding to what is 

permissible in the A356 specification, or at the higher level which might be more 
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typical of secondary alloys. The higher fluidity of combined iron and manganese 

is most likely attributable to the iron content as opposed to the manganese 

content. While there are negatives associated with excess manganese content, 

such as sludge formation, they do not appear to be a threat to secondary alloy 

fluidity. The higher iron and manganese levels investigated here suggest that the 

higher fractions of these metals in secondary alloys do not have a marked 

negative impact on fluidity, though other deleterious effects of these constituents 

is well known, and other factors in secondary alloys may independently 

negatively impact fluidity. It is also noteworthy that the effect of relatively small 

iron additions can be detected. 

 

4.5.3) Pure Aluminum 

The fluidity of pure aluminum was measured at 670 C as discussed in the 

Methodology section. Using the standard procedure, the fluidity was 51.2 +/- 

0.5 cm, while measuring it directly with the eye approximately parallel to the 

flow front a fluidity of 45.5+/- 0.4 cm was measured. As mentioned previously, 

this discrepancy is due to the relatively large fluidity of pure aluminum. This 

point is addressed in Section 5.1, Future Work. Pure aluminum demonstrates 

very good fluidity, though this fluidity is known to be sensitive to very small 

alloying additions.   
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4.5.4) Grain Refinement 

 

Figure 4.5.4.A: Impact of TiBor grain refiner on fluidity of A356.2 at 700 C  

 

The above data in Figure 4.5.4.A depict a single batch of metal to which 

increasing levels of TiBor grain refiner has been added. The first data point is 

unmodified A356.2 and all subsequent points (with a range of TiBor addition 

between one and twelve times the recommended level of modification for 

commercial castings) have equivalent fluidity. The second point is modified at the 

commercial level. Fluidity remained constant when five to six times the 

commercial level was added for the third point. After adding a total of ten to 

twelve times the commercial modification level, no increase was observed. Past 

research on the impact of TiBor addition has been mixed, but there is a general 

consensus that the overall impact of grain modification is minor if present at all, 

which is consistent with these results. This higher level of precision in testing 

indicates TiBor addition is not a serious concern in this alloy at these 

concentrations, which is favorable news for recycling and reuse of previously 

refined materials. 

 



 78 

4.5.5) Eutectic Modification (Sr) 

 

Figure 4.5.5.A: Impact of strontium addition on fluidity of A356.2 at 700 C  

 

The above graph, Figure 4.5.5.A, depicts three levels of strontium modification. 

In comparing baseline A356.2 with very low strontium levels, commercial 

modification, and twice the necessary strontium addition to achieve commercial 

modification, a small dip in fluidity is observed at the level of commercial 

modification but this dip disappears at higher levels of strontium. When much 

higher levels of strontium are added, levels corresponding to those found in the 

Mercalloy die casting alloys, a slight decrease in fluidity is again observed. This 

decrease may be related to the change in surface tension brought about by the 

change in viscosity, though these surface tension effects are small compared to 

the impact of the vacuum on the metal. Strontium addition is known to 

dramatically increase the viscosity of aluminum melts, as has been demonstrated 

in the ACRC project on eutectic modification [104]. This increase in viscosity, 

however, does not significantly impact casting fluidity. Strontium is also well 

known for altering the morphology of the eutectic microstructure. Early fluidity 

work, preceding Ragone’s doctoral dissertation, continued to emphasize the role 

viscosity played in casting fluidity, and some researchers still stress the supposed 
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impact of viscosity on fluidity [105]. Ragone showed in his dissertation that 

fluidity did not play an important role in determining fluid length. The relative 

unimportance of viscosity to casting fluidity is again underscored by these 

results. This eutectic modification takes place too late in solidification to impact 

the casting fluidity of this alloy.  

 

4.5.6) Artificial Introduction of Oxides 

 

Figure 4.5.6.A: Impact of 20 micron Al powder addition on A356.2 fluidity at 700 C  

 

Given the volume of oxides added (half a kilogram into roughly 12 kilograms of 

melt) and the known impact of diluting the silicon content of the melt, the 

relatively constant response of A356.2 to oxide addition and deliberate melt 

mishandling is surprising. In addition to the relatively slight decrease in the 

mean, higher levels of aluminum powder addition were associated with a small 

number of points with very low fluidity. Though this does not impact the mean to 

a great extent, this variability would prove a hindrance to manufacturing 

methodologies calling for very low scrap rates.  
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Figure 4.5.6.B: impact of borax addition on the fluidity of 700 C A356.2 

 

The above graph shows the more pronounced impact of very high additions of 

borax and repeated melt mishandling on the fluidity of A356.2. Addition of 

almost 200 g of borax had a barely noticeable negative impact on fluidity, but at 

the higher levels of addition and after longer melt mishandling a decrease in 

fluidity was observed. This decrease came from an increased number of low 

fluidity tubes, rather than from a gradual lowering of the average. Even at the 

highest level of borax addition, there were still some tubes whose fluidity was 

comparable to that of the baseline. This increase in the spread of points led to 

the increased standard deviation of the mean of the points visible at the higher 

borax levels.   
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4.5.7) Degassing 

 

Figure 4.5.7.A: Impact of degassing on fluidity of A356.2 at 700 C  

 

The above graph, Figure 4.5.7.A, displays A356.2 metal at three different levels 

of gas inclusion. The baseline, undegassed, point is leftmost in this figure. A 

slight decrease in fluidity at the highest levels of degassing was observed, but 

this decrease is within the variation of the baseline data. Previous work on the 

effects of hydrogen levels on fluidity found no impact on fluidity within the limits 

of experimental uncertainty, but that work was done with sand molds which have 

slower solidification times and permit gas to escape through the porous sand.  

This suggests that data collected elsewhere in this dissertation, which was 

conducted without degassing, is applicable to degassed metal of like chemistry.  

 

4.6) Predictive Modeling 

Presented below are the results of modeling the refurbished apparatus discussed 

previously in this dissertation. 
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Figure 4.6.A: Results of MAGMA modeling A356 at 680 C. 

 

The above output from MAGMASOFT is the result of a model run on A356 at 680 

C. As compared to the experimental results for this temperature, this length is 

too short. Also noteworthy is that MAGMA assumes metal will flow at higher 

fraction solids than are suggested by the literature. From this we can conclude 

that MAGMA is unsuitable for the modeling of fluidity under these heat transfer 

dominated conditions. 
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Figure 4.6.B: Results of CAPCAST modeling A356 at 700 C. 

 

The above output from CAPCAST is the result of a model run on A356 at 700 C. 

As compared to the experimental results for this temperature, the fluid length is 

again underestimated. Also noteworthy is that a final fraction solid was input 

manually based on knowledge from the literature. The necessity of manual input 

undermines the tool's utility for prediction of fluidity in the absence of good data 

on what fraction solid results in flow stoppage, and often the literature is unclear 

as to when flow stoppage will occur under circumstances similar to fluidity 

testing. 

 

It would seem that both of the major casting modeling software packages do not 

accurately predict flow stoppage in narrow channels where heat transfer is an 

important factor. (Experiments showing agreement between modeling and lab 

testing for gravity-filled sand spirals have been published by Di Sabatino [56]. 

While these packages may be suitable for bulk filling, it seems further work is 

needed in the area of filling thin sections. 
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Based on these data, it seems that fluidity testing remains vital. One of the 

dangers of models such as these is that they yield plausible, colorful results, and 

if there is no experiment to compare them to, users may be insufficiently 

skeptical. 

 

These software packages do not, at present, simultaneously model the solidifying 

material on the micro and macro scales. Instead, rheological information for 

material at various fraction solids is present in a database. Presumably, the 

databases are assuming flow at higher fraction solids because of data conducted 

under conditions more like those in a die casting. This database lookup method 

does not account for the mechanisms known to take place during choking in 

fluidity tests, where metal is nucleated near the inlet, flows, coarsens, and 

eventually chokes off flow through agglomeration with other grains. Work is 

underway by groups with access to powerful radiation sources to directly observe 

nucleation and growth of metals, and it is possible that future models running on 

faster computers incorporating additional kinds of heterogeneous multiphase 

flow will be able to directly address this problem.  

 

Data from these experiments, especially those detailed in Section 4.4 may 

constitute sufficient information to assist the improvements of these databases 

for A356 (when coupled with Flemings' equation 4), and if so, further fluidity 

experiments with other alloys of interests may help to populate that database. 

Such work would require close cooperation from the software publisher, as they 

would be the ones most able to identify when and how such a database module 

would be consulted. These data are certainly not suitable for replacing the 

portions of code that handle bulk filling. In sum, from these analyses it can be 

concluded that the three modeling softwares examined do not predict fluidity 

with fidelity to experimental data. This further underscores the need for robust 

experimental methods such as those developed here for fluidity testing. 
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5 CONCLUSIONS: 

 
In conclusion, an improved testing apparatus and procedure capable of 

producing precise, accurate, and consistent results has been developed and 

tested. Certain existing tools to evaluate fluidity have been demonstrated to have 

limitations, and an alternative method has been described in detail. Now that the 

variations are understood and equations are available to estimate the fraction of 

samples which have a lower fluidity as compared to the mean in terms of a 

series of measurable experimental parameters, casters will have a greater degree 

of control over their products, especially those possessing thin sections. Accurate 

analysis of necessary superheat temperatures will either allow for a reduction of 

cycle time or scrap rate. This quantitative capability will help to meet productivity 

goals. Through an understanding of variations in fluidity, when coupled with 

parallel investigations into hot tearing, it is hoped that solutions to castability 

problems in alloy systems with desirable structural properties but low castability 

will be found. Any improvements in the understanding of the variation of fluidity 

and the tests needed to accurately determine fluidity values will have great value 

in metal casting. These improved testing procedures will also for improved 

communication between research groups and greater confidence in fluidity 

testing results. 

 

5.1) Future Work 

 At present, the apparatus consists of a number of adjustable components 

produced from a lab stand. The relative position of these components 

should be fixed, either through welding the present adjustable 

components in place or replacing the existing lab stand with a permanent 

machined and fastened fixture. 

 When measuring the fluidity of samples having very high fluidity, such as 

pure aluminum, the difference between the angular measurement and the 
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linear measurement become a significant factor. Moving the ruler closer to 

the crucible and glass tube is one important step which will help to resolve 

this issue. Another approach would be to directly measure the angular 

height with an instrument akin to an astrolabe or cross-staff, and to 

convert this angular measurement into a measurement of length. 

 As computer vision research improves, it will likely become practical to 

automate measuring fluid length with off-the-shelf equipment. 

 As computer modeling improves, comparing simple models such as the 

filling of a thin glass tube by vacuum and subsequent flow choking will 

remain a valuable check to see if improvements have been made in 

determining the conditions under which flow stops. Similarly, 

recommendations are given in Section 4.6 for how this research data 

might be incorporated into solidification models. 

 Testing in this dissertation has largely been confined to A356.2 and 

modifications of A356.2. Application of this apparatus to other alloys 

would seem worthwhile, especially when the specifications of those alloys 

suggest a wide range of fluidity values might be apparent at the extremes 

of the allowed chemistry range.  

 Work remains to promote this as the standard test. Relevant publications 

are planned. 
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The following are the data used to generate the presented charts in Section 4 
Results and Discussion. 
 
 
fluidity_eval update.xls 

 

 temp (C.) 
length 
(cm)  date  

      
 605 4.13  8/30/2006 * 'thermo after' method 
 677 6.19  9/7/2006 * 4 mm tube 
 615 4.4  9/7/2006 * 400 C mould 
 650 3.2  9/8/2006 * vac. first, surface slurp 
 616 4.8  9/8/2006  
 605 6  9/8/2006  

      
 707 5.1  8/28/2006 * 'thermo after' method 
 613 5.16  8/30/2006 * 5 mm tube 
 611 4.13  9/7/2006 * 400 C mould 
 606 9.21  9/7/2006 * vac first, surface slurp 
 611 6.7  9/8/2006  
 616 6.4  9/8/2006  
      
 633 6.83  12-Sep * all 5mm tube data 
 687 8.26  12-Sep * all with 'thermo in' method 

 746 7.94  12-Sep * 800 C 
 779 7.94  12-Sep * vac first, surface slurp 
 795 8.57  21-Sep  
 743 6.03  21-Sep  
 763.3 6.68  28-Sep  
 742.3 6.99  28-Sep  
 676.1 6.35  28-Sep  
      
 746.1 9.83  10/2/2006 * all 5mm tube data 
 741.6 7.62  10/2/2006 * all with 'thermo in' method 
 764.2 5.4  10/2/2006 * 800 C 
 785.9 8.89  10/2/2006 * vac first, surface slurp 
 642.6 6  10/5/2006  
 706.1 5.4  10/5/2006  
 717.5 5.72  10/5/2006  
 730.9 9.8  10/5/2006  
 714.5 11.7  10/5/2006  
 688.6 6.4  10/10/2006  
 680 4  10/12/2006 as above, tube extracted to measure 
 642 9  10/12/2006 as above, tube extracted to measure 
 649 11.8  10/12/2006 as above, tube extracted to measure 
 655 11.5  10/12/2006 as above, tube extracted to measure 
 654.4 9.5  10/12/2006 as above, tube extracted to measure 
      
 768 18  10/10/2006 * all 5mm tube data 
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 775 16.7  10/10/2006 * all with 'thermo in' method 
 760.5 17  10/10/2006 * 800 C 
 792 14.5  10/10/2006 submerged tube during suck 
 699.2 12.4  10/10/2006  
 718.5 20.3  10/12/2006 as above, tube extrated to measure 
   Below   
 761.7 33  10/17/2006 * all 5mm tube data 
 759 32.7 3.5 10/17/2006 * all with 'thermo in' method 
 805.5 35 7 10/17/2006 * 800 C 

 775 32.5 4 10/17/2006 
submerged tube first, then turned 
valve 

 710 24.5 4.5 10/17/2006  tube extrated to measure 
 760 25.7 7 10/17/2006  
 775 32.3 3.5 10/17/2006  
 775.1 32.7 4 10/17/2006  
 809.8 37.5 9 10/19/2006  
 775 33 8.5 10/19/2006  
 775 33.3 8 10/19/2006  
 750 29 40 10/19/2006  
 760 32.5 85 10/19/2006  
 790.7 32 70 10/24/2006  
 710 26 70 10/24/2006  
 739.8 26 7 10/24/2006  
 665 20.7 5.5 10/24/2006  
 775 35.5 7 10/24/2006  

 
 

MSV data.xls 
 

 
Dew 
Vac KS Vac SL Vac  

Dew 
Ntec 

KS 
Ntec SL Ntec   

1 255 520.7 237  678 793.26 631   
2 244 304.8 240  607 300.015 537   
3 122 317.5 210  302 742.41 1071   
4 297 304.8 242  566 750.04 858   
5 273 317.5 236  317 635.625 784   
6 244 304.8 239  360 931 823   
7 289 317.5 237  731 883 954   
8 264 320 234  800 675 822   
9 134 322.6 236  835 665 906   

10 259 325.1 251  375 500 583   
11 330 sp         

zero 248         
one 270         

          
n.b. all units mm        
          

 
* Data for the bold numbers was replaced by the zero and one values in the following 
calculations 
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Phase I master.xls 
 

run # date temp length  
1 9/24/2007 680 21.3 21.91 
1 9/24/2007 680 21.1 1.46 
1 9/24/2007 680 21.5 0.46 
1 9/24/2007 680 23.5  
1 9/24/2007 680 23.2  
1 9/24/2007 680 18.6  
1 9/24/2007 680 22.5  
1 9/24/2007 680 23.4  
1 9/24/2007 680 22.3  
1 9/24/2007 680 21.7  

     
2 9/25/2007 680 23.2 22.81 
2 9/25/2007 680 23.8 1.13 
2 9/25/2007 680 23.6 0.38 
2 9/25/2007 680 23.3  
2 9/25/2007 680 22.2  
2 9/25/2007 680 23.9  
2 9/25/2007 680 21.9  
2 9/25/2007 680 20.4  
2 9/25/2007 680 23  
2 9/25/2007 680   

     
3 9/27/2007 720 24.7 25.56 
3 9/27/2007 720 27.4 1.51 
3 9/27/2007 720 26.5 0.48 
3 9/27/2007 720 24.4  
3 9/27/2007 720 28  
3 9/27/2007 720 26.4  
3 9/27/2007 720 23.1  
3 9/27/2007 720 24.9  
3 9/27/2007 720 24.5  
3 9/27/2007 720 25.7  

     
4 10/1/2007 700 22.5 21.95 
4 10/1/2007 700 22.7 1.70 
4 10/1/2007 700 21.4 0.54 
4 10/1/2007 700 24.1  
4 10/1/2007 700 21.2  
4 10/1/2007 700 22.8  
4 10/1/2007 700 23.1  
4 10/1/2007 700 21.5  
4 10/1/2007 700 17.8  
4 10/1/2007 700 22.4  
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5 10/1/2007 740 26.7 27.99 
5 10/1/2007 740 29 1.04 
5 10/1/2007 740 27.5 0.33 
5 10/1/2007 740 28  
5 10/1/2007 740 28.4  
5 10/1/2007 740 28  
5 10/1/2007 740 28.6  
5 10/1/2007 740 27.2  
5 10/1/2007 740 29.9  
5 10/1/2007 740 26.6  

     
6 10/2/2007 700 20 22.53 
6 10/2/2007 700 21.6 1.08 
6 10/2/2007 700 23.5 0.34 
6 10/2/2007 700 22.2  
6 10/2/2007 700 22.7  
6 10/2/2007 700 22.9  
6 10/2/2007 700 23.4  
6 10/2/2007 700 23.5  
6 10/2/2007 700 22.4  
6 10/2/2007 700 23.1  

     
7 10/2/2007 740 26.7 28.09 
7 10/2/2007 740 27.5 1.03 
7 10/2/2007 740 29 0.33 
7 10/2/2007 740 28.3  
7 10/2/2007 740 28  
7 10/2/2007 740 26.7  
7 10/2/2007 740 28.7  
7 10/2/2007 740 29  
7 10/2/2007 740 29.7  
7 10/2/2007 740 27.3  

     
8 10/2/2007 760 28.1 30.52 
8 10/2/2007 760 27.7 1.53 
8 10/2/2007 760 30.5 0.48 
8 10/2/2007 760 31.4  
8 10/2/2007 760 31.1  
8 10/2/2007 760 31.7  
8 10/2/2007 760 32.2  
8 10/2/2007 760 31.8  
8 10/2/2007 760 30.1  
8 10/2/2007 760 30.6  

     
9 10/11/2007 700 18.8 22.49 
9 10/11/2007 700 24.5 1.86 
9 10/11/2007 700 22.4 0.59 
9 10/11/2007 700 23  
9 10/11/2007 700 22.3  
9 10/11/2007 700 23.8  
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9 10/11/2007 700 20.6  
9 10/11/2007 700 21.2  
9 10/11/2007 700 23.6  
9 10/11/2007 700 24.7  

     
10 10/11/2007 680 19.6 19.72 
10 10/11/2007 680 20.3 0.75 
10 10/11/2007 680 19.4 0.24 
10 10/11/2007 680 20.2  
10 10/11/2007 680 20.5  
10 10/11/2007 680 18.6  
10 10/11/2007 680 18.6  
10 10/11/2007 680 20.8  
10 10/11/2007 680 19.7  
10 10/11/2007 680 19.5  

     
11 11/2/2007 720 25.7 25.41 
11 11/2/2007 720 24.55 0.67 
11 11/2/2007 720 26.6 0.21 
11 11/2/2007 720 25.8  
11 11/2/2007 720 25.2  
11 11/2/2007 720 24.7  
11 11/2/2007 720 25.5  
11 11/2/2007 720 25.9  
11 11/2/2007 720 25.6  
11 11/2/2007 720 24.5  

     
12 11/2/2007 760 30.3 30.11 
12 11/2/2007 760 30.1 0.92 
12 11/2/2007 760 28.2 0.29 
12 11/2/2007 760 29.3  
12 11/2/2007 760 29.5  
12 11/2/2007 760 30.7  
12 11/2/2007 760 31.2  
12 11/2/2007 760 30.7  
12 11/2/2007 760 31.1  
12 11/2/2007 760 30  

 
Phase II master.xls 
 
(degassing) 

no degassing 1-
25   

no degas 1-
24  

no degas 1-
28  

degas 
high.a 

degas 
high.b 

degas 
high.c 

   22.8  22.6  22.9 21 27.3 
23.2   23.3  22.4  20.4 24.6 24.3 
26.1   22.3  23.7  20.1 23.4 21.5 
24.2   24.1  23.8  20.6 26.2 23.6 
33.4   22.8  22.7  23.5 24 23.7 
25.5   22.7  23.3  22.3 26 22.3 
23.7   21.3  24.7  22.4 23.6 23.2 
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24.8   22.2  23.7  21.4 24.2 22.9 
27.4   24.3  24.6  22.9 23.7 23.5 
26.6   23.7  23.1  22 25.9 22.5 

26   24.9    22.5 24.5 23.6 
   21.3    25.4 22.8 23.5 
   23.6    24.1 21.6 23 
   23.4    24.8 22.1 23.8 
   23.8     25.7 23.9 
          
          

26.09   23.10  23.46  22.52 23.95 23.51 
2.89   1.04  0.79  1.59 1.61 1.27 
0.91   0.27  0.25  0.42 0.42 0.33 

          
17.09   14.10  14.46  13.52 14.95 14.51 

 
degas 
high.d  

degas 
low.a 

degas 
low.b 

degas 
low.c 

degas 
low.d 

24.2  24 25.5 26.1 23.6 
23.7  24.5 24.5 22 27.6 
27.2  22.6 23.7 25.5 23 
26.6  23.7 24 24.3 19.4 
25.4  22.6 25.9 21.9 24.2 
25.3  26.1 23.4 26.4 25.1 
26.5  22.5 23.2 26.7 25.1 
25.7  24.5 24.4 21 24.3 
25.3  24.3 25.9 23.2 25.6 
25.7  24.3 25.6 24.6 23.7 

26      
25.6      
26.6      
24.5      

      
      
      

25.59  23.91 24.61 24.17 24.16 
0.98  1.12 1.04 2.05 2.11 
0.26  0.35 0.33 0.65 0.67 

      
16.59  14.91 15.61 15.17 15.16 

 
 
(grain refinement) 

plain 1-
29  1.a 1.b 1.c no xtra 1-31 1.d 1.e 

21.4  21.2 23.3 20.6 20.5  24.6 20.9 
23  23.3 21.9 21 22.1  22.1 22.8 
22  22.6 20.8 22.8 19.6  25.4 21.4 

21.7  23.4 23.4 22.3 20.6  23.5 23 
22.6  22.8 22.5 20.3 22.9  24.3 21 
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22.7  23.7 21.6 22.4 22.3  24.5 21.5 
22.4  22.4 22.4 22.6 21.6  23.4 21.7 
23.4  21.7 23.5 23 21.6  22.3 23.8 
23.6  23.1 22.1 22.7 21.7  22.9 22.5 
21.3  23.3 22.8 23.4 20.5  22 21.7 

         
         
         
         
         
         

22.41  22.75 22.43 22.11 21.34  23.50 22.03 
0.80  0.80 0.86 1.08 1.01  1.18 0.95 
0.25  0.25 0.27 0.34 0.32  0.37 0.30 

         
13.41  13.75 13.43 13.11 12.34  14.50 13.03 

         
         
         

22.41  22.16     22.36  
         
0.253618  0.17     0.15  
         

13.41  13.16     13.36  
         
         
 grams added       
base 0 13.41 0.253618      
1x 27.35 13.1575 0.16602      
2x 150.03 13.364 0.150909      
3x 284.45 13.0075 0.303048      

 
1.f 1.g no xtra 2-04 1.h 1.i 1.j 1.k  

22.1 21.3 21.3  23.6 21.6 22 24.3  
21.7 23.4 20.7  21.3 23.7 21.8 21.2  
22.3 21 20.8  21.8 22 23.1 22.4  
23.2 20.8 22.7  20.4 22.7 22.6 20.7  
22.6 22 22.4  23.7 22.8 21.9 21.2  

22 22.3 21.3  21.4 21.6 20.6 22.6  
22 23.1 23.6  21.9 22.5 22.2 12  

21.3 22.1 22.1  23.3 22.6 20.5 23.7  
23.4 22 23  21.9 20.4 23.2 22.6  
21.7 22.3 22.4  23.4 22.4 23.5 23.2  

         
         
         
         
         
         

22.23 22.03 22.03  22.27 22.23 22.14 21.39  
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0.67 0.84 0.97  1.15 0.89 1.02 3.49  
0.21 0.26 0.31  0.36 0.28 0.32 1.10  

         
13.23 13.03 13.03  13.27 13.23 13.14   

         
         
         
    22.01     
         
    0.30     
         
    13.01     
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         
         

 
(Si variations) 

2/6/2008 
base 

2/7/08 
base 

3-19 
base 

3-20 
base 

3-26 
base  ++ Si.A ++ Si.B ++ Si.C 

23.5 19.4 19.3 23.2 17.2  26.1 25.2 24.6 
21.7 21.3 18.9 22.2 19.4  23.1 22.4 22.5 
22.8 20.5 21.3 22.1 19.7  23.9 22.3 22.4 
21.6 21.7 20.7 21.5 20.6  23.5 24 23.3 
24.3 21.1 20.4 22.4 21.3  22.7 23.9 23.5 
22.3 25.5 20.4 20.5 21.4  24.5 22.6 24.2 
22.7 21.5 21 21.3 21.7  22.6 22.3 22.7 
21.9 21.4 21.1 23.9 21.5  23.3 23.1 24.2 
22.9 21.7 19.3 22 20.7  24 23.3 24.3 
21.6 20.4 22.5 20.3 20.4  24.2 22.5 21 
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22.53 21.45 20.49 21.94 20.39  23.79 23.16 23.27 
0.89 1.59 1.09 1.11 1.36  1.03 0.96 1.13 
0.28 0.50 0.35 0.35 0.43  0.32 0.30 0.36 

         
13.53 12.45 11.49 12.94 11.39  14.79 14.16 14.27 

 
+ Si.D + Si.E + Si.F  -- Si.A -- Si.B -- Si.C 

21.3 22.4 22.3  22.7 20.3 24 
21.6 20.5 22.2  19.7 18.2 20.9 
21.3 22.3 23.1  20.1 19.5 20.3 
22.6 21 22.3  21.2 19.5 21.3 
20.5 21.4 21.5  20.9 20.4 20.2 
22.3 23.2 21.3  20.8 20.7 17.8 

21 21.5 21.6  19.3 20.9 19.7 
21.7 20.6 19.3  20.2 19.6 19.3 
22.4 23.1 24.5  20.5 20.5 22.7 
21.5 21.4 20.9  19.9 19.7 20 

       
       
       
       
       
       

21.62 21.74 21.90  20.53 19.93 20.62 
0.66 0.97 1.37  0.96 0.80 1.75 
0.21 0.31 0.43  0.30 0.25 0.55 

       
12.62 12.74 12.90  11.53 10.93 11.62 

 
- Si.E - Si.F - Si.G 

19.9 20.8 20.7 
20.4 20.1 22.9 
19.8 19.9 19.5 
22.1 20.7 20.4 
20.4 19.8 19.6 
15.9 20.7 18.7 
20.8 21.6 20.8 
19.3 19.1 20.3 
18.4 19.8 20.7 
20.3 20.1 20.5 

   
   
   
   
   
   

19.73 20.26 20.41 
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1.65 0.70 1.10 
0.52 0.22 0.35 

   
10.73 11.26 11.41 

   
 

6-18 very high si 6-18 very high si 6-18 very high si 
700 C  700 C  730 C  
      

34.2  36.7  37.3  
27.8  36.8  26.2  
36.3  36.4  42.8  
39.7  36  40.8  
36.2  34.6  42.8  
39.9  32.3  37.4  
36.6  33.5  38.7  
36.6  33.3  40.7  
35.5  33.6  42.5  
35.7  34.8    

      
      
      
      

35.85  34.80  38.80  
3.34  1.61  5.20  
1.06  0.51  1.73  

      
26.85  25.80  29.80  

 
(Constant superheat) 

6-25 baseline  +Si one +Si two  -Si one - Si two 
23.3  21.4 25.7  21.7 20.1 
23.7  22.7 21.6  17.5 20.9 
22.1  20.2 23.1  22.1 22 

22  22.8 23.8  20.6 21.7 
20.7  22.6 22.6  20.5 24.6 
20.8  23.3 27.7  20.8 21.7 
23.3  24.3 23  21.4 21.3 

22  24.2 21.5  21.6 21.3 
21.5  20.3 22.5  22.2 21.7 

22  22.7 21.4  21 23.6 
21.2       
22.7       
22.3       
22.5       

22       
       

22.14  22.45 23.29  20.94 21.89 
0.88  1.42 2.01  1.35 1.30 
0.23  0.45 0.64  0.43 0.41 
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(pure aluminum) 
 

eye chin  eye chin 
44.2 51.3  46.8 52.8 
43.4 48.7  45.7 52.1 
47.7 53  45.4 50.4 
45.5 51.4  45.6 50.9 
48.5 55.3  46.5 52.4 
44.7 50.8  45.7 51.3 
45.6 52.8  40.3 43.5 
45.7 50.9  44.6 49.6 
46.4 52.2  45.7 51.2 

   46 51.2 
     
     
     
     
     
     

45.74 51.82  45.23 50.54 
1.62 1.83  1.83 2.65 
0.54 0.61  0.58 0.84 

     
36.74 42.82  36.23 41.54 

     
     
eye chin    

44.2 51.3    
43.4 48.7    
47.7 53    
45.5 51.4    
48.5 55.3    
44.7 50.8    
45.6 52.8    
45.7 50.9    
46.4 52.2    
46.8 52.8    
45.7 52.1    
45.4 50.4    
45.6 50.9    
46.5 52.4    
45.7 51.3    
40.3 43.5    
44.6 49.6    
45.7 51.2    

46 51.2    
     

45.47 51.15    
1.71 2.33    
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0.39 0.53    
     

36.47 42.15    
     

 
 
(Strontium addition) 
 

2-11 
base 

2-
11base 
b 

2-12 
base  str.1a str.1b str.1c  str.2.a 

20 18.5 17  19 19.8 20.5  19.5 
20.1 23.2 21.3  19.7 19.7 18.5  19.7 
20.5 21.1 21.5  19.7 19.6 19.6  20.4 
18.2 22.3 22.9  17.7 21.3 20.2  18.5 
19.7 20.6 20.1  19.9 21.2 20.9  22 
18.5 20.4 20.7  19.4 19.7 18.7  21.9 
20.7 19.4 23.4  20.4 19.4 17.8  20.4 
19.4 20.1 19.9  15.4 17.9 19.9  20.3 
19.6 22.7 16.4  18.6 20 20.4  21.6 
20.8 21.8 22.1  19.5 23.5 20.7  20.6 

         
         
         
         
         
         

19.75 21.01 20.53  18.93 20.21 19.72  20.49 
0.87 1.50 2.31  1.45 1.49 1.05  1.11 
0.28 0.47 0.73  0.46 0.47 0.33  0.35 

         
10.75 12.01 11.53  9.93 11.21 10.72  11.49 

 
str.2b str.2c 

21.6 19.4 
21.1 20.6 
21.2 19.8 
20.7 20.4 
22.6 20.5 
20.8 20.3 
20.3 20.6 
19.5 21.7 

20 21.1 
21.4 20.7 
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20.92 20.51 
0.88 0.63 
0.28 0.20 

  
11.92 11.51 

 
6/11 
base 6/11 b base 

high 
Sr.1 high Sr.2 high Sr.3 

16.8 21.3  22.2 19.3 23.7 
21.9 21.3  21.8 19.5 19 
22.7 22.2  19.4 19.4 18.7 
21.3 19.8  19.8 19.6 18.8 
21.6 19.8  20.1 19.8 19.2 
20.9 19.6  18.9 20.7 19.3 
20.6 18.7  19.2 19.7 20.2 

22 21.4  18.6 20 19.5 
20.7 18.7  19 19.8 19.4 
22.4 20.2  19.4 18.7 19 

      
      
      
      
      
      

21.09 20.30  19.84 19.65 19.68 
1.66 1.20  1.22 0.51 1.47 
0.53 0.38  0.39 0.16 0.47 

      
12.09 11.30  10.84 10.65 10.68 

      
      

20.70   19.72   
      

0.33   0.20   
      

11.70   10.72   
 
(Fe & Mn) 
 

3-28 
base 

4-4 
base  

low 
Fe.A 

low 
Fe.B  

high 
Fe.A 

high 
Fe.B 

high 
Fe.C 

19.7 18.8  22.7 18.7  23.4 22 18.7 
19.5 20  22.8 20.4  19.3 19.4 19.5 
20.6 19.1  20 23.7  21.5 15 20 
19.7 19.7  21.6 21.3  22.7 20.3 20.8 

19 19.4  21.2 22  21.2 20 20.7 
21.8 18.3  21.5 23.1  21.5 20.3 21 
20.6 18.7  19.8 20.4  18.5 19.5 20.5 
19.4 19.5  21 20.5  19.2 20.2 20.6 
20.2 17.2  20.1 20.7  17.5 20.5 21.1 
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22.1 19.3  20.4 20.7  18.8 20.1 17.7 
         
         
         
         
         
         

20.26 19.00  21.11 21.15  20.36 19.73 20.06 
1.03 0.81  1.07 1.45  1.96 1.81 1.11 
0.33 0.26  0.34 0.46  0.62 0.57 0.35 

         
11.26 10.00  12.11 12.15  11.36 10.73 11.06 

 
low 
Mn.A 

low 
Mn.B low Mn.C  

high 
Mn.A 

high 
Mn.B  

high 
Fe+Mn.A 

high 
Fe+Mn.B 

18.9 18 16.3  18.9 16.5  20 20.9 
17 18.7 21.6  16.2 16.5  20.4 19.8 

18.3 19.3 18.4  17.7 19.1  20.5 22.6 
19.5 20 19  19.5 18.8  21.5 18.9 
19.6 19.3 21.4  19.4 19.5  21 21.7 
19.4 18.9 15.9  19.4 18.6  18.6 20.6 
18.3 18.8 20.3  18.3 19.9  21.9 21.1 
16.4 18.5 22.8  17.9 19.6  21.3 19.6 
20.1 20.3 19  20.2 19.3  21.8 20.7 

20 20.5 19  19.5 20.5  19.4 18.4 
19.9 21.1   19.4 19.4  21.5 21.5 
18.7 19.4   19.6 19.8  21.4 20.5 
19.8 20.4   20.3 21  21.2 21.2 

    19.3 20.7  21.6  
    20.1 20.1    
         

18.92 19.48 19.37  19.05 19.29  20.86 20.58 
1.16 0.92 2.22  1.10 1.31  0.97 1.16 
0.32 0.25 0.70  0.28 0.34  0.26 0.32 

         
9.92 10.48 10.37  10.05 10.29  11.86 11.58 

 
(oxides) 
 

4/11 
base  

oxide lv 
1.A  

oxide lv 
2.a 

oxide lv 
2.B 

oxide lv 
2.C  

oxide lv 
3.A 

18.1  20.2  20.4 15.8 19.8  18.2 
18.7  19.7  19.4 15 20.4  18.5 
20.8  18  20.3 20 18.6  19.7 
16.4  19  19.1 14.5 20.2  18.7 
19.6  20.3  19.7 19.8 19.7  19.8 
20.1  19.7  19.4 20.1 17.2  20 
20.7  21.3  20.8 20.5 18.3  19.6 
21.1  19.5  20.4 20.5 20.4  19.2 

  21.4  19.3 20 16.5  19.3 
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  20.8  20.7 18.7 20.1  20 
         
         
         
         
         
         

19.44  19.99  19.95 18.49 19.12  19.30 
1.61  1.05  0.63 2.41 1.40  0.64 
0.57  0.33  0.20 0.76 0.44  0.20 

         
10.44  10.99 -9.00 10.95 9.49 10.12 -9.00 10.30 

 
oxide lv 
3.B 

oxide lv 
3.C 

19.4 20.1 
18.5 20.5 
18.9 20.5 
20.2 21.6 
20.5 19.3 
19.5 24 
19.6 20.6 
17.1 18.4 

19 18.8 
19.3 18.4 

  
  
  
  
  
  

19.20 20.22 
0.94 1.70 
0.30 0.54 

  
10.20 11.22 

 
6/12 
base   

borax lv 
1.a borax lv 1.b 

borax lv 
2.a 

borax lv 
2.b 

20.7 22.1  20.6 20.3  20.8 21.7 
20.8 21.4  19.5 21  18.7 19.9 
20.6 18.5  21.1 20.7  20.2 17.4 
20.4 19.8  20.4 21.3  21.1 12.9 
21.5 21.5  20.7 20.5  19.7 19.6 
20.2 20.3  19.6 20.2  21 19.4 
19.7 20.7  21.2 18.3  20.3 19.5 

20 22.7  20.8 21.1  19.7 17.8 
21.3 19.4  17.6 20.1  21 20 
19.7 21  20.5 21.2  21.5 20.5 
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20.49 20.74  20.20 20.47  20.40 18.87 
0.62 1.28  1.07 0.88  0.85 2.43 
0.19 0.40  0.34 0.28  0.27 0.77 

        
11.49 11.74  11.20 11.47  11.40 9.87 

        
        

20.62   20.34   19.64  
        

0.22   0.22   0.43  
        

11.62   11.34   10.64  
 

borax lv 
3.a 

borax lv 
3.b 

18.3 19.4 
20.7 17.6 

14 21.4 
12 22.4 

15.7 19.6 
11 20.2 

19.4 15.4 
20.9 15.9 
19.3 19.4 
18.5 20.8 

  
  
  
  
  
  

16.98 19.21 
3.58 2.28 
1.13 0.72 

  
7.98 10.21 

  
  

18.10  
  

0.70  
  

9.10  
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Appendix B 
 

Consortium Survey and Results 
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SURVEY RESULTS – FOR ACRC CONSORTIUM MEMBER’S USE 

ONLY 

One of the chief advantages of the ACRC casting consortium is its 

ability to retain applicability to industry through close communication 

with our consortium members. In that vein, a survey was prepared to 
assist with the project titled: Characterization of Alloy Castability - 

Fluidity. 

We appreciate your taking the time to answer our questionnaire with 
regards to the use of fluidity testing at your workplace. As promised, 
these are the results of the anonymous survey. 

 

Over half of the ACRC members replied, which when one considers that not all 

member companies are alloy producers or foundries was a very good response. 

 

Q1: Do you do fluidity testing at your company? 

 

One in three of those who responded to the survey report that they do some 

kind of fluidity testing at their company, at an attached research unit, or have 

such work done at an external lab. Subsequent replies suggest that not all 

respondents think about fluidity testing the same way. 

 

Q2: If yes on #1, what sort of testing do you do? 

Q3: If yes on #1, how frequently is fluidity testing done? 

 

Sand spiral testing appears to be the most common diagnostic technique in use, 

with just under half of those who conduct fluidity testing using sand spirals. 

Horizontal vacuum testing and step molds are also used. 
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Responses to the third question indicate that fluidity testing is most often 

performed in response to a specific problem, during alloy or process 

development. 

 

One respondent pointed out that Prefil by ABB Bomen is in use at their foundry 

twice per shift per line. Rather than indicating this is a rare practice, it instead 

reflects the perception of what is and is not a test of fluidity. 

 

One respondent indicated there was monthly fluidity testing, although the 

technique in place was unclear from their other responses. As this was the least 

frequent printed option, this may indicate intermittent use for process/alloy 

development as discussed above. 

 

Q4: If you do not do any fluidity testing, are there other tests you carry 

out to characterize the melt’s ability to fill a given cavity?   Please 

explain whether these are experimental or computational (simulation) 

tests. 

 

Of those who provided more detailed replies, many made use of fill analysis 

software. Half indicated they used Magma, while others failed to indicate which 

program they used or indicated Procast. Interestingly, some of those who 

indicated they conducted fluidity testing indicated they used these tools as well. 

One group indicated this was the only form of fluidity testing they performed. 

Obviously, there is some ambiguity where fluidity begins and ‘castability’ testing/ 

analysis/ modeling end. 

 

One group indicated they made use of differential scanning calorimetry to 

determine the solidification range of their alloy. 
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One group indicated they did not conduct fluidity testing as they had never 
had problems. Others indicated they did not do such testing because they 
worked with known alloys or customer specified compositions. Presumably, 
this indicates agreement with those who view fluidity as a diagnostic tool for 
alloy/process development as opposed to a regular test to insure process 
stability. 
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Appendix C 
 

Castability Measures for Diecasting Alloys: 
Fluidity, Hot Tearing, and Die Soldering 
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CASTABILITY MEASURES FOR DIECASTING ALLOYS: FLUIDITY,  

HOT TEARING, AND DIE SOLDERING 
 

B. Dewhirst, S. Li, P. Hogan, D. Apelian 
 

Metal Processing Institute 
WPI, 100 Institute Road 

Worcester, MA 01609 USA 
 

 
 
ABSTRACT 
 
Tautologically, castability is a critical requirement in any casting process. 
Traditionally, castability in sand and permanent mold applications is thought to 
depend heavily on fluidity and hot tearing. Given capital investments in dies, die 
soldering is a critical parameter to consider for diecasting. We discuss 
quantitative and robust methods to insure repeatable metal casting for diecasting 
applications by investigating these three areas. Weight reduction initiatives call 
for progressively thinner sections, which in turn are dependent on reliable 
fluidity. Quantitative investigation of hot tearing is revealing how stress develops 
and yields as alloys solidify, and this has implications on part distortion even 
when pressure-casting methodologies preclude hot tearing failures. 
Understanding the underlying mechanism of die soldering presents opportunities 
to develop methods to avoid costly downtime and extend die life. Through an 
understanding of castability parameters, greater control over the diecasting 
process can be achieved. 
 
 
Keywords: Castability, Die Soldering, Fluidity, Hot Tearing, Part Distortion, 
Residual Stress 
 
 
INTRODUCTION 
 
Over the years, castability has been addressed through various angles and 
perspectives. However no matter what has been accomplished, it is fair to state 
that at the present there is not a single method that the community can point to 
as a means of defining an alloy’s castability in terms of measurable quantitative 
parameters. It is critical that means for controlling the casting process be 
developed. Without robust measures, one will not be able to control the casting 
process. It is the latter that is the motivating force behind this project. Hopefully, 
the investigative techniques being developed in this research will become 
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standardized so that an accepted lexicon and methodology is practiced 
throughout the casting community.  
 
This paper will focus on three parallel lines of research with applicability to light 
metals diecasting: Fluidity, Hot tearing (as it relates to stresses developing within 
solidifying metals as a function of chemistry and microstructure), and die 
soldering. Each of these three areas of research has the potential to positively 
benefit the HPDC industry, either directly or as an accompanying benefit to 
research conducted for other purposes. Vacuum fluidity testing allows for the 
evaluation of various alloys and process modifications in a laboratory setting 
under rapid solidification conditions, but suffers from a poor reputation and, as a 
consequence, has principally been used for qualitative experimentation. Hot 
tearing, a consequence of stresses developing during feeding until the casting 
tears itself apart, is not found in alloys used in HPDC, but the investigative 
techniques being applied to understand hot tearing are providing a window into 
how these stresses develop. Die soldering is important because, in improperly 
designed castings, soldering can be a significant problem that can severely 
inhibit productivity. 
 
 
FLUIDITY 
 
Fluidity is a material’s ability to flow into and fill a given cavity, as measured by 
the dimensions of that cavity under specified experimental conditions, and 
fluidity is heavily dependent on heat flow during solidification. 
 
Investigations into the impact of foundry variables such as mold coatings, 
alloying additions, head pressure, and especially superheat have been 
investigated and correlated with mechanisms. For sand and permanent mold 
castings, it is abundantly clear that increasing solidification range results in 
decreasing fluidity (all other factors being equal). Specific investigations are 
often alloy or metal/mold/coating specific in scope, but very subtle influences of 
minor variations in alloy purity can be detected. There is some question as to 
whether these trends transfer over to die casting, and that question will be the 
focus of our discussion. 
 
Thanks in large part to the work of Ragone in developing his vacuum testing apparatus, 
which Flemings et al. built upon, fluidity has seen great advances since Ragone’s 1956 
doctoral thesis [1-6]. Over a period of 8 years, Flemings and collaborators produced the 
fluidity equations and solidification mechanisms which are at work in linear castings 
during standard fluidity tests. 
  

Ragone demonstrated that the influence of viscosity or a change in viscosity on (casting) 
fluidity was minimal, and while the equations he presented did include a viscosity term, 
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subsequent formulations correctly dropped it as insignificant as compared with other 
sources of experimental error [1]. 
 

The fluidity equation from Flemings [3], for metal with some superheat ΔT and a mold 
which conducts heat rapidly is given below as Equations 1 and 2. 
 

       (1) 

   evaluated at Tm                  (2) 

Where: 
Lf   final length, fluidity 
a  channel radius 
k   critical solid concentration 
c’   specific heat of liquid metal 
To   ambient environmental temperature (room temperature) 
ΔT   superheat 
ρ'    density of metal 
Vo   velocity of metal flow 
H   heat of fusion of metal 
h  heat transfer coefficient at mold-metal interface 

   the time average melt temp in the fluidity test  
Tm  metal melting temperature 
T’  temperature of superheated metal entering flow channel 
λ  critical solid concentration required to stop flow in ‘mushy’ alloys 
 

Flemings reports that the critical solid concentration is between 0.2 and 0.3 fraction solid, 
and Campbell gives 0.5-0.6 using slightly different criteria [4,7,8]. This is the fraction 
solid where, as will be discussed under flow stoppage mechanisms, the flow is choked 
off. Attempts to tie this choking off to dendrite coherency by Dahle, as explored by 
Backerud, were inconclusive. He did not find an unambiguous impact of dendrite 
coherency measurements on fluidity [9-11]. The specific fraction solid at which this takes 
place varies with alloy composition and solidifying phase morphology. This critical 
fraction solid is likely to be higher for die casting due to the increased pressure involved, 
but the extent of increase is likely to depend on alloy-specific morphology characteristics. 
Much work on the relevant solid fractions where flow is possible has been carried out in 
the area of SSM, both in terms of alloy rheology and thermodynamics, and this may have 
much to contribute in understanding how this factor changes according to the specific 
casting and alloy conditions [12]. 
 
Past work in the field has focused on maximizing fluidity, however we believe 
that decreasing the variations in fluidity is as important as determining under 
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which conditions fluidity is maximized. There are two main aspects to variation in 
fluidity:  

⇒ One is the standard deviation of test methods used in the lab to 
determine fluidity. 

⇒ The other is the range over which fluidity values will vary in a real casting 
environment where alloy chemistry, temperature controls, etc. vary within 
some range.  

 
Given the high part numbers involved in die casting, questions of repeatability 
are especially important. Thin sections are desirable for a variety of reasons, and 
can be achieved with increased mean fluidity, but if that increase is coming at 
the expense of increased fluidity variation, this will have the undesirable effect of 
increasing scrap rates. Often, the factors which can be adjusted to improve 
fluidity have other impacts on the casting process, and so a careful tradeoff must 
be achieved between insuring there is enough fluidity (and a margin of safety) 
without causing deleterious side-effects. Greater fluidity is often achieved by 
increasing melt superheat, but as will be discussed below, this has negative 
implications for die soldering. Mold coatings can decrease the heat transfer 
coefficient, and thus increase fluidity, but this may have a small negative impact 
on cycle time. While minor alloy additions often have little impact on fluidity, the 
secondary alloy components (specifically, their heat of fusion and morphology) 
do contribute to fluidity. 
 
Our work to improve the laboratory testing of vacuum fluidity measurements is 
largely focused on improving the repeatability of measurements by controlling 
the various experimental parameters. After a controlled volume of melt is 
collected, a thermocouple is inserted into it. When the metal cools to a pre-set 
temperature, it is elevated such that the end of a borosilicate tube is immersed 
in the melt, and vacuum is applied. The measurement of that length is then 
made before the pyrex tube is removed from the experimental setup, as the 
rapid fracturing of the glass and other factors otherwise make it difficult to 
determine the ‘zero point.’ Through repeated measurements under controlled 
experimental conditions we are establishing the reliability of the test.  
 
A continuing trend in all of engineering, including metal casting, is the application 
of modeling software to problems of interest. These codes, in the case of casting 
intended to predict filling, hot spots, etc. are no more reliable than the data upon 
which they are built. It is hoped that increased precision of fluidity testing will 
have a positive impact on these modeling codes by allowing direct comparison of 
simple geometries in both simulation and the laboratory. Since these codes do 
not include direct fluidity calculations, accurate experimental tests of fluidity 
would seem to be a good independent check. 
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HOT TEARING AND INTERNAL STRAIN 
 
Though hot tearing is a casting phenomenon that occurs in sand castings and 
processes where the solidification rate is slower than in die-castings, the 
mechanism of stress distribution during solidification is appropriate for discussion 
in high integrity castings.  This is more so than ever now that we can measure 
and quantify stresses during solidification.  Material behavior during solidification 
is what matters.  
 
Campbell [7] defines a hot tear as a uniaxial tensile failure, which results in 
cracks on the surface or inside the casting. Alloys having a wide freezing range 
have a higher tendency to hot tear. Variables that influence hot tearing include 
alloy composition and processing variables [13,14]. 
   
Hot tearing susceptibility of alloys is greatly influenced by solidification behavior 
of molten metal in the mushy zone.  Solidification can be divided into four stages 
[15]:  (i) Mass feeding where the liquid and solid are free to move; (ii) 
Interdendrtic feeding when the dendrites begin to contact each other, and a 
coherent solid network; (iii) Interdendritic separation. With increasing fraction 
solid, the liquid network becomes fragmented. If liquid feeding is not adequate, 
a cavity may form. As thermal contraction occurs, strains are developed and if 
the strain imposed on the network is greater than a critical value, a hot tear will 
form and propagate.  Lastly, in stage (iv), Interdendritic bridging or solid feeding 
occurs.  Simply stated, hot tearing occurs if the solidification shrinkage and 
thermal deformation of the solid cannot be compensated by liquid flow.  
 
Measuring the development of strains and the evolution of hot tearing during 
solidification is not trivial.  The Metal Processing Institute is a member of the 
Light Metals Alliance, and we have teamed up with our alliance partner CANMET 
to address hot tearing in aluminum alloys. The constrained bar mold used in this 
study was developed at CANMET Materials Technology Laboratory (MTL) and 
designed to measure load and temperature during solidification. Figure 1 shows 
one of the mold plates and testing setup. The mold is made of cast iron and 
coated with insulating mold wash.  The test piece has two arms.  One test arm 
(12.5mm) is constrained at one end with heavy section (22.5mm) to keep the 
bar from contraction, so the tension will be developed and hence cracking could 
be induced during solidification. The other arm is for load and temperature 
measurement with one end connected to a load cell.  This opened end of the 
mold is closed with a graphite cylinder block which can move freely in horizontal 
direction. The block is connected to the solidifying material on inner side with a 
screw and on external side with a load cell. Two K-type thermocouples are used 
for the temperature measurement. One is positioned at the riser end and the 
other at the end of the bar as shown in Figure 1.  After pouring the melt into 
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the mold, the temperature and load were recorded with a computer data 
acquisition system. 
 

 
 
Figure 1: Cast Iron Mold designed to detect the onset of the hot tearing 

 Commercial cast alloy 713 and 518 were evaluated; the 
former is known to be sensitive to hot tearing, and the 
latter has good resistance to hot tearing. The pouring 
temperature was set at 60˚C above the melting point of 
the alloy during this effort. The mold temperature was 
maintained around 200˚C. 

 
Figures 2 and 3 show the measured temperatures and load recorded during 
casting as a function of time for alloy 713 and 518 respectively. The load 
represents the tension force developed in the casting during solidification. The 
cooling curve T1 was recorded with thermocouple tip positioned at the riser end 
and T2 with thermocouple tip at the end of the bar as shown in Figure 1. A 
rapid rise in temperature (both curves) was observed immediately after pouring 
and the temperature started falling shortly. It’s noticed that negative loads 
(compressive forces) were developed shortly after pouring for the tests, probably 
due to the pressure head of the melt [16]. When the rod begins to solidify but 
cannot contract freely, the tension force increases. Figure 2(b) and 3(b) are 
derivatives of load vs. time curve to determine onset of hot tearing. An obvious 
change in the rate suggests that cracking might occur there.  

Thermocouple 1 

Load 
Cell 

Screw Graphite 
Block 

Thermocouple 2 
21 
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Figure 2:  (a) Temperature-load-time curves of alloy 
713;  
(b) Derivative of Load vs. time curve. 

 
From Figure 2b, load began developing at proximately 9 seconds and the 
solidification temperature was around 617˚C (Figure 2a), then increased 
rapidly. It is shown that the rate changed abruptly to zero at 16.5 seconds, 
suggesting a severe tear occurred there. Hot tearing occurred at around 530˚C, 
corresponding to 94% solid, according to Pandat Scheil solidification calculation. 
 
The technique developed to measure hot tearing tendency is a valuable tool to 
differentiate between alloys and to use it to optimize alloys for high integrity 
castings. 

Load T1 

T2 

(a) 

(b) 

Crack at 530˚C 
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Figure 3:  (a) Temperature-load-time curves of alloy 
518;  

(b) Derivative of Load vs. time curve. 
 

Figure 3: shows the temperature-load-time curves of alloy 
518. The load started to develop at 10 seconds, and then 
increased smoothly with time. No abrupt change of rate 
was observed, suggesting no crack would occur during 
solidification. The difference between the load curves of 
alloy 713 and 518 reveals different hot tearing susceptibility 
between the two alloys. 

 
 
DIE SOLDERING 
 
Die soldering occurs when the cast aluminum alloy comes into contact with die 
steel. Due to the natural affinity of iron and aluminum, a reaction occurs at the 
surface which results in the formation of intermetallic phases. Over a series of 
shots, a significant amount of aluminum becomes stuck to these phases at the 
die surface, and the resulting cast part can begin to miss critical tolerances or to 
lose integrity. At this point, the die must be shut down and cleaned, which is an 

(b) 

(a) 
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expensive process when it occurs too frequently. It is estimated that 1 to 1.5% 
of variable overhead is directly attributed to die soldering in casting plants. 
 
With such a large economic effect on the casting process, it is clear why die 
soldering needs to be controlled. There are several ways in which this can be 
achieved. These can be broken down into three groups, which will be discussed 
further below: melt chemistry, process conditions and the die surface condition. 
 
The chemical composition of an alloy can have a dramatic effect on soldering 
behavior. The importance of alloy chemistry was shown at WPI’s Metals 
Processing Institute by Sumanth Shankar [17]. In his experiments, he dipped 
H13 steel pins in 380 alloy and rotated them to simulate the drag force 
experienced at the surface of the die during injection of the metal. After dipping, 
the thickness of the intermetallic layers that had formed on each sample was 
analyzed as a measure of soldering tendency. His results showed that small 
additions of Sr and Ti (0.004% and 0.125%, respectively) had a much greater 
effect on soldering tendency than the time of dipping (30 to 75 seconds) or the 
temperature of the melt (1150 to1250F). 
 
To further expand on this discovery, Shankar performed another set of 
experiments to test the effects of a much wider range of alloying elements. The 
main effects are shown in Figure . 

 
Figure 4: Main effects plot of the effect various alloying elements on die 
soldering. Iron, Manganese and Titanium show strong positive effects on 
reducing soldering, while Nickel promotes soldering [17]. 

 
Not surprisingly, iron had the greatest effect of any alloying element in the study 
on reducing die soldering. Iron has long been added to die casting alloys in order 
to reduce the die soldering tendency of alloys. It is well known that alloys with 
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insufficient iron content (<0.8-0.9%) will solder readily to the die under the right 
conditions. A look at the phase diagram in  
Figure  shows that the solubility of iron in aluminum with 10% silicon at typical 
casting temperatures is quite low, around 2-3%. At temperatures where the melt 
is likely to be in contact with the die, this solubility drops even lower. Therefore, 
even at low concentrations the presence of iron in the melt reduces the chemical 
potential gradient of iron from the steel to the melt significantly and slows the 
reactions that occur at the surface. 

 
 

Figure 5: Phase diagram of Aluminum-10% Silicon and low solubility of Fe . 
 
Of the other alloying elements, strontium also has the potential to help control 
die soldering, in addition to its common use as a eutectic modifier. In industrial 
trials a small strontium addition was shown to reduce die soldering by more than 
20%. The effect is not apparent in the main effects plot above because both of 
the levels selected were at or above the critical concentration. 
 
The mechanism behind this reduction has to do with the effect strontium has on 
the viscosity and surface tension of the alloy. As Figure  shows, the addition of 
strontium changes the apparent viscosity and subsequently the surface energy of 
the alloy. This causes a reduction in the ability of the alloy to wet the die surface 
and reduces the contact area and the reaction between the two.  



 126 

 
Figure 6: Change in viscosity of an Al-Si alloy with the addition of 230ppm Sr [18]. 

 
High temperatures and high melt velocity are process conditions which lead to 
soldering. Of the two, high temperature is the most important to avoid in order 
to prevent soldering. This can most effectively be done through careful design of 
the die. By configuring the part and optimizing the design of the die cooling 
system, the potential for soldering can be greatly reduced. It is very important to 
consider this during the design phase of a die because once a die is 
manufactured it is very difficult to reduce any hot spots. Other potential solutions 
include using additional spray in the high solder areas to reduce temperature or 
the use of inserts with high conduction coefficients 
 
Impingement velocity is important to control as well. The die surface should be 
coated with lubricants and is likely oxidized from prior treatment. A high 
impingement velocity can wash these protective coatings off of the die surface, 
exposing the die steel to the aluminum alloy and begin erosion of the die 
surface. Both of these effects will promote the beginning of die soldering. 
 
SSM processing can help to reduce both the temperature and velocities apparent 
in the casting system, and should help reduce die soldering [12]. 
 
Die coatings can be useful as a diffusion barrier between the steel in the die and 
the aluminum in the cast alloy. An effective coating must be able to withstand 
the harsh conditions at the surface of the die, however. Coatings which are 
sometimes used include CrN+W, CrN, (TiAl)N and CrC [19]. Additionally, surface 
treatments such as nitriding and nitro-carburizing can help to strengthen the 
surface and prevent erosion, which accelerates the soldering process by 
roughening the surface and creating local temperature excursions at the peaks of 
the die surface which solder very quickly. 
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Accurate modeling of the casting process during the design phase is very 
important to an effective control against die soldering. All of the previously 
mentioned controls require additional cost during the design and manufacturing 
of the die, and it must be understood how badly soldering will affect the process 
before the costs of any of those controls can be justified. 
 
 
CONCLUSIONS 
 
Though these three alloy characteristics seem tangentially related, they are 
factors that influence castability. In order to control these castability indices, it is 
necessary to develop experimental methods until robust quantitative analysis is 
possible. Once quantitative data can be extracted, the improvement in our 
understanding will occur. In the case of die soldering, multiple possible avenues 
to reduce the problem have been identified. Even when the initial intention was 
to resolve problems occurring in sand and permanent mold castings, such as hot 
tearing, the information gleaned about how stresses develop in liquid metal has 
wider applicability. Though die casting usually assures good fluidity through the 
use of pressure, if fluidity (and the factors which influence its variation) are well 
understood, it is possible to operate within tighter processing windows.   
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 Appendix D 
 

Flemings Equation Derivations 
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The following derivation is based on that found in Flemings’ Solidification 

Processing, who in turn informs us that it is based on Ragone, Adams, and 

Taylor’s 1956 AFS Trans. article (dealing with spiral casting). He also makes 

reference to two more detailed papers (Niesse, Flemings, and Taylor; 1959 AFS 

Trans. and Fleming; 1964, Brit. Foundryman). 

 

 

Assumptions: Neglect Friction. Neglect Acceleration (v= constant).  

Initially, assume no superheat. Assume interface (heat transfer) controlled 

solidification. (h<< ks/S and h^2<< km pm cm/t) 

This means that Eqn. 1-19 applies (Fleming pg 13) 

tf = [(ps * H) / (h*( Tm  - To ))] * (V/A) 

Flemings now assumes there is no “separation of flow stream.” 

We further know that for a thin tube of circular cross section, (V/A) = a/2 

This gives us Eqn. 7-7 (Flemings 220) 

tf = [(ps * H* a) / (2* h*( Tm  - To ))]  

We’ve assumed no acceleration, i.e., that velocity is constant. This is equivalent 

to assuming no/constant head, as head pressure would introduce an 

acceleration. If velocity is constant, it is equal to the distance covered divided by 

the time it covers that distance. 

v=x/t… or v= Lf / tf 

(where Lf is the final length… i.e., the fluidity.) 
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We are assuming that the casting will reach its final length when the entry area 

has completely solidified. After the derivation, cases where this may not hold are 

discussed. 

Substituting, we get Eqn. 7-8 (Flemings 220) 

Lf = [(ps * H* a* v) / (2* h*( Tm  - To ))] 

Now, if we did have some superheat (ΔT), we can account for it by including it 

with the latent heat of fusion term as we have done in Flemings for previous 

interface (h) controlled problems. In doing so, we’re assuming that ps ~ pl 

This gives Eqn 7-9 (Flemings 220) 

Lf = (ps * a* v)*(H + c’ * ΔT) / (2* h*( Tm  - To )) 

Flemings draws a number of conclusions from this equation 

• there is a linear impact of superheat 

• Fluidity is sensitive to channel size 

• Fluidity is sensitive to the heat transfer coefficient 

• Fluidity depends on velocity in such a fashion that it should be 

proportionate to the square root of pressure. (His explanation is “because 

v= sqrt (2*g*h)” which doesn’t seem like it would hold for a more 

general case, but is fine when the pressure is due to a physical column of 

molten metal as with the spiral test. The two cases should be equivalent.) 

He goes on to state that this equation doesn’t consider two situations: 

• Surface tension/ surface films 

• Back pressure due to mold outgassing 
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He adds, surface tension matters most in thin sections, where the diameter is 

less than 1/10  (presumably he means 0.1”) 
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Appendix E 

 
Pumping Calculations 
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From White’s Fluid Mechanics: 
Glass tubing is considered “smooth” in terms of pipe roughness 
(drawn tubing is also very nearly ‘smooth’ (epsilon = 0.0015 mm)) 
 
Equations are given for pipe flow in this same section 
 

   or     

 

 

Where: 
p- density 
Vo- velocity 
L- “characteristic length” 
v- kinematic viscosity 
 
Estimation of the height a liquid of theta= 90 can be drawn up by a vacuum. 
P1 to 1atm (101,325 Pa) 
P2 to 0 atm (0 Pa, obviously this is an approximation) 
 
Mu=rho* v… = (900 kg/m3)*(0.0002 m2/s)= 0.18 (Kg/(m*s)) 
 
Z2= deltaZ- Z1 = Delta Z (if Z1 =0) 
 
HGL1= Z1 + P1/ (p*g) = 0+ 101,325/ (900*9.8) 
HGL2=Z2 + 0/p*g = Z2 
 
As long as HGL1 > HGL2, flow is up 
 
Z2 <= 101,325/ (900*9.8) =11.49 m 
 
(Height of a column of this oil with the above properties we can draw up. 
Calculation will differ for Aluminum, or any other fluid with different density etc.) 
 
But is velocity constant over much of this length? 
 
We can use a Moody chart to get the Re for a smooth-walled (glass, drawn 
metal) tube.  
 
Epsilon/d= 0/d  consult bottom of chart 
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Re= (as stated above)     

 
Assuming laminar flow: 

   (in m^3/s … volume per unit time) eqn 6.47 (White pg 

311) 
 

= average velocity (m/s) 

 
•  Full pipes are assumed, so Q is a constant, so (as long as the pipe isn’t taller 

than the above calculation allows) Q=constant-> velocity is constant  (by 
conservation of mass and incompressibility of our fluid). 

• This result holds (or should hold) for both vertical vacuumed and un-
vacuumed tubes, assuming fully developed flow. 

 
 
Estimate of needed pump size for given tube diameter: 
 
1st order estimate  potential energy change (will depend on tube diameter) 
 
(Pg 646 of White includes a discussion of pump theory.) 
 
A positive displacement pump (delta P versus Q is nearly constant) 
 
m*g*z= potential energy change (delta U) 
 
(p*v)*g*z= delta U 
(p*(π*r^2)z)g*z= delta U 
p*π*r^2*z^2*g= delta U 
 
z max can be found from earlier (preferably in terms of p, g, etc) 
 

 

 

 

Pi ~3, density of aluminum~ 3; g~10 
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Umax ~ r^2 (1E9)  (joules) 
 
If r=1 cm 
Umax ~= 100,000 (joules) ~=130 hp 
 
This is, of course, an approximate solution. Pump efficiency is not taken into 
account. As the tube diameter is decreased, the power requirements drop off 
sharply. 
 
For a 0.25 cm radius tube: 
Umax ~= 6,300 joules ~= 8 hp 
 
(Remember as well that the vacuum assembly includes a reservoir which has 
been pumped down to vacuum. While it only has a ½ hp pump, it can displace 
more aluminum in the short term as a result.) 
 

 
 


