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The paper discusses further developments of a new modeling-based technique for determining the 
dielectric properties of materials. Complex permittivity is found with an artificial neural network 
optimization procedure designed to match the results of 3D FDTD computation and measurement of 
complex S-parameters. Numerical testing demonstrates that the computational part of the method 
provides the error less than 1% for very wide ranges of dielectric constant and the loss factor. The 
suggested inverse neural model is capable of efficiently generalizing the training data and reconstructing 
complex permittivity even when experimental and modeling data are numerically somewhat inconsistent. 
Special modeling tests validate the technique and confirm a reasonable accuracy in determining the 
complex permittivity of several liquids at 915 MHz.  
 
Introduction 
 
Knowledge of complex permittivity (ε = ε� – iε�) of materials involved in an application is 
critical for creating an adequate model and thus for successful system design. The lack of data 
regarding dielectric constant ε� and the loss factor ε� of realistic materials to be processed in 
microwave applicators motivates further development of robust practical techniques of 
determining complex permittivity. Since ε� and ε� are calculated given the data on some 
measurable characteristics, then more difficult tasks may be assigned to a simulator while the 
experimental part is reduced to an elementary measurement. This approach has been taken in the 
techniques using the finite element method [1]-[4], the finite-difference time-domain (FDTD) 
method [5], and finite integration technique [6] for modeling of the entire experimental fixtures. 

Further exploring this trend, we have recently developed an innovative method of 
permittivity reconstruction in which the measured and modeled data are matched by an 
optimization-type procedure [7], [8]. An artificial neural network (ANN) controls 3D FDTD 
computation of S-parameters of a cavity containing a sample under test, is trained by data from 
these computations, reads the results of measurements of S-parameters, and outputs the 
reconstructed ε� and ε�. The method works with an arbitrary cavity containing an arbitrarily 
shaped material sample. In this contribution we describe the outcome of further practice-oriented 
development of this technique and demonstrate its capabilities of restoring ε� and ε� in situations 
where the computed and measured data are numerically inconsistent with each other.  
 
Experimental Setup 
 
In contrast to the resonator-type system employed in the ANN-assisted techniques [2], [7], [8], 
the experimental component of the present method is realized with a transmission-line fixture 
(Fig. 1) and is set for measuring the magnitude and phase of the reflection and transmission 
 

_________________ 
 

*) The full version of this paper is to appear in Journal of Microwave Power and Electromagnetic Energy, vol. 41, 2007.  
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Fig. 1.   The WR975-based two-port fixture (a) and the Teflon container for liquids to be tested (b). 
 
coefficients (|S11|, ∠∠∠∠S11, |S21|, ∠∠∠∠S21) at the frequency of interest f0. A two-port approach allows us 
working with a set of S-parameters at one frequency.  

A tested sample is placed inside the fixture. The described experimental setup is particularly 
convenient for working with liquids or soft substances which are put in a Teflon container (Fig. 
1, b). The waveguide fixture standing on a narrow wall is used in order to arrange for the air-
sample media interface parallel to the direction of the electric field and thus to make the fixture’s 
parameters not sensitive to an occasional uncertainty in the interface’s location.  

 
Network Operations 
 

The radial basis function (RBF) inverse network used in this technique is shown in Fig. 2. For 
network training and testing, we use information generated in the modeling stage of the method; 
the latter is powered by the 3D FDTD method. The input layer receives the values of ε′ and ε″ 
for which four S-parameters associated with the output layer are computed. Two training 
techniques, namely backpropagation and the second-order gradient-based algorithm are 
implemented with the use of the gradient method (iterations from 1 to 200) and the Levenberg-
Marquardt method (iterations beyond 200). When the network is sufficiently trained, it is 
supplied with the values of measured complex S-parameters and determines ε′ and ε� of the 
sample. Further details of the network operations are given in [8]. 
 
Numerical Tests and Computational Procedure  
 

Since electromagnetic characteristics of the fixture strongly depend on the complex permittivity 
of the material in it, it is not feasible to employ the FDTD model with the same parameters for 
the entire complex permittivity plane. We work with a special two-step procedure allowing us to 
roughly estimate the position of the unknown (ε�, ε�)-point and then focus on the neighborhood 
of this position in order to find its exact location.  
 

 
 

Fig. 2.   The RBF network employed in the method. 
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Fig. 3.  12 domains for identification of anticipated location of the sought point on the ε-plane (a) and the 
structure of the primary DB (b) used in the described tests (b); (�) and (×) denote training and testing 

points respectively. 
 

At the first stage, the entire domain of physically possible complex permittivity values is 
associated with a relatively sparse lattice of the points of the primary database (DB); we work 
with its structure shown in Fig. 3. Here, the employed FDTD model is built with the cells whose 
size within the sample is determined by the largest value of its dielectric constant – in the 
example of Fig. 3, by ε� ~ 85. The DB size is intentionally small, so with the ANN operations 
described above, we first determine the domain in which the reconstructed (ε�, ε�)-point is 
located. At the second stage, we form the secondary DB surrounding the expected position of the 
sought point; in the FDTD model, the smallest cell size becomes larger as it is conditioned now 
by the largest value of ε� in the secondary DB. This approach substantially reduces the 
computational cost of our method.  

The computational component of our technique is implemented as a MATLAB code designed 
as two separate pieces of software: Database Maker (DM) and Permittivity Reconstructor (PR); 
their MATLAB-based graphical user interfaces are shown in Fig. 4. Data for training and testing 
is generated by a model built with the use of the 3D conformal FDTD simulator QuickWave-3D 
(QW-3D) [9] which precisely reproduces the geometry of the fixture. The model contains, 
depending on the dielectric constant of the sample, from 60,000 to 265,000 cells and uses 6 to 25 
MB of RAM respectively.  

DM governing operations of QW-3D is given the name of the related model, the number of 
FDTD time- steps required to reach steady state, and the parameters of the required DB. DM 
makes a DB and structures it as a single *.mat file. PR controls all the network operations: it 
reads the DM’s *.mat file, trains the network with the required accuracy and informs the users on 
testing results (accuracy of training, elapsed time, etc.). Finally, the user enters the measured 
values of S-parameters in the respective boxes, and PR determines the ε� and ε� of the sample.  

Numerical testing of the network performance has shown that the computational method 
implemented in this technique is robust and highly accurate. For example, using the DBs of 36 
on the complex permittivity plane, dielectric constant and the loss factor are reconstructed with 
errors less than 1% on most of this ε-plane (Fig. 6).  

 
Results of Reconstruction and Their Validation  
 

Table 1 contains the values of complex permittivity reconstructed with the presented technique 
for four sample liquids in the rectangular (70×70×50 mm) Teflon block with a cylindrical cutout  
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(a)             (b) 

 

Fig. 4.   General views of the DM (a) and PR windows (b). 
 

 

  
(a)             (b) 

 

Fig. 6.  Accuracy of reconstruction of dielectric constant (a) and the loss factor (b) – numerical tests with 
36-point databases on the ε-plane. 

 

(radius 25 mm, height 40 mm). The primary DB (130 points) was generated once for all samples 
in accordance with the lattice shown in Fig. 3. For DA and EGW, the secondary DBs (both 63 
points) were built around the boundary of domains I and IV (Fig. 7, a) and around domain VII 
(Fig. 7, b) respectively. Quality of network training by the 63 point secondary DBs is illustrated 
by Fig. 8: the network demonstrates excellent learning with relatively small data sets in the 
secondary DBs.  

To validate the obtained results, we run the FDTD model with the reconstructed values of ε� 
and ε�, but for an alternative geometry – the Teflon cup is half-full of liquid. The real and 
imaginary parts of S-parameters corresponding to this case are measured and compared with the 
modeling results (see Table 2). The fact that they differ by no more than 0.005, suggests that our 
method reconstructs complex permittivity with accuracy sufficient for CAD purposes.  

The described neural network procedure demonstrates a high level of generalization which is 
illustrated here by some details in reconstructions of ε� and ε� for DA. When the experimental 
values of Re(S11), …, Im(S21) are placed on the S11- and S21-planes of a secondary DB, they 
represent the point on which the actual (ε�, ε�)-pair is mapped from the complex permittivity 
plane. The fact that the output of our numerical reconstruction is an approximation of the actual 
value (and thus the approximated point appears at different positions in the S11- and S21-planes) is 
illustrated by Fig. 9. However, the generalization abilities of the suggested inverse RBF ANN 
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Fig. 7.  12 domains of the secondary DBs used in the tests for EGW (a) and DA (b). 
 
 

  
 (a)      (b) 

 

Fig. 8.   ANN responses (×) to the testing points (�) for EGW (a) and DA (b). 
 
 

 
(a)     (b) 

 

Fig. 9.  12 domains of the secondary DBs of the ε-plane mapped to the S11- (a) and S21- (b) planes for DA 
samples; (�) and (�) denote measured and reconstructed points respectively. 

 
 

Table 1.  Reconstructed Complex Permittivity of Tested Liquids at 915 MHz 
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Table 2.  Validation of the Results in Table 1 – Scenario with Half a Sample 
 

 
 

allow it to successfully process numerically dispersed measured data and reconstruct the values 
of dielectric constant and the loss factor. This is an important advantage that favorably 
distinguish our approach from the one based on the standard error backpropagation MLP 
network [2] and makes the entire procedure flexible and robust.  
 
Conclusions 
 

It has been demonstrated that the novel neural-network-based FDTD-backed technique of 
complex permittivity reconstruction is capable of efficiently determining the dielectric constant 
and the loss factor of diverse materials placed in a transmission-line-type cavity. The 
experimental part is reduced to measuring the reflection and transmission coefficients of the 
systems. The technique is frequency- and cavity-independent, applicable to the samples and 
fixtures of arbitrary configuration. For materials which can take some predefined form, the 
computational cost of the method is very insignificant. Since the underlying full-wave modeling 
technique easily handles the arbitrary sample/fixture geometry and since the ANN technology is 
capable of robust generalizing the measured data and adjusting to the physical characteristics of 
the cavity, our method is a convenient and efficient technique of complex permittivity 
reconstruction well suited to practical applications. 
 
References 
 

[1] R. Coccioli, G. Pelosi, and S. Selleri, Characterization of dielectric materials with the finite-element 
method, IEEE Trans. Microwave Theory Tech., vol. 47, no 10, pp. 1106-1112, 1999. 

[2] R. Olmi, G. Pelosi, C. Riminesi and M. Tedesco, A neural network approach to real-time dielectric 
characterization of materials, Microwave Opt. Tech. Let., vol. 35, no 6, pp. 463-465, 2002. 

[3] K.P. Thakur and W.S. Holmes, An inverse technique to evaluate permittivity of material in a cavity, 
IEEE Trans. Microwave Theory Tech., vol. 49, no 10, pp. 1129-1132, 2001. 

[4] M. Santra and K.U. Limaye, Estimation of complex permittivity of arbitrary shape and size dielectric 
samples using cavity measurement technique at microwave frequencies, IEEE Trans. Microwave 
Theory Tech., vol. 53, no 2, pp. 718-722, 2005.  

[5] B. Wäppling-Raaholt, and P.O. Risman, Permittivity determination of inhomogeneous foods by 
measurement and automated retro-modeling with a degenerate mode cavity. Proc. 9th Conf. 
Microwave and HF Heating, Loughborough, U.K., Sept. 2003, pp. 181-184.  

[6] M.E. Requena-Pérez, A. Albero-Ortiz, J. Monzó-Cabrera, and A. Díaz-Morcillo, Combined use of 
genetic algorithm and gradient descent optimization methods for accurate inverse permittivity 
measurement, IEEE Trans. Microwave Theory Tech., vol. 54, no 2, pp. 615-624, 2006. 

[7] E.E. Eves, P. Kopyt and V.V. Yakovlev, Determination of complex permittivity with neural networks 
and FDTD modeling, Microwave Opt. Tech. Let. vol. 40, no 3, pp. 183-188, 2004.  

[8] V.V. Yakovlev, E.K. Murphy and E.E. Eves, Neural networks for FDTD-backed permittivity 
reconstruction, COMPEL, vol. 24, no 1, pp. 291-304. 2005.  

[9] QuickWave-3DTM, 1996-2006, QWED Sp. z o. o., ul. Piêkna 64a m 11, 00-672 Warsaw, Poland, http: 
//www.qwed.com.pl/. 


