

HFSS & ePhysics Features for the Simulation of Microwave Power Applications

Bogdan C. Ionescu

Brad Brim

Ansoft Corporation

HFSS Applications

The Ansoft Desktop

- HFSS is a "design environment" enabling an automated 3D EM-based design flow
 - design flow management with a familiar use model
 - parametric design database creation and editing
 - parametric data management and access

An HFSS Design Example

ANSOFT CORPORATION

01010101010101010101010

High Power HF Components

Pass band iris filter

110101010101

ANSOFT CORPORATION

Trend: Eliminate Boundaries

Model Order Reduction

Fast Frequency Sweep

٠

B. Anderson, J. E. Bracken, J. B. Manges, G. Peng and Z. J. Cendes, "Full-Wave analysis in SPICE via Model-Order Reduction", *IEEE Transactions on Microwave Theory and Techniques*, Vol. 52, No. 9, pp. 2314-2320, September 2004.

010101010101010 0101010101010 **ANSOFT** CORPORATION

Dynamic Link

0101010101010101010

ePhysics for Electromagnetic Applications

ePhysics [™] Functional Links

Thermal Transient Solution

Static Stress Solution (coupled with thermal transient)

IN: Geometry (already there, with origin in . sm3 from HFSS) Material properties (Young's modulus, Poisson's ratio, coefficient of thermal expansion) Sources (temperature distribution, other non-thermal sources) Boundary conditions (displacement) Solver setup (mesh, mapping)

010101010101010

OUT: (at user-selected time steps)

Displacement (vector) Traction (vector) Von Mises stress (vector) Executive parameters (max von Mises stress, max principal stress, etc.)

ANSOFT CORPORATION

3D Thermal Transient

010101010101

ANSOFT CORPORATION

Solution Process HFSS - Thermal

ANSOFT CORPORATION

Convection Mechanism on a Vertical Wall

Frequently Used Thermal Sources

Frequently Used Thermal Boundary Conditions

C Source (Boundary	Temperature y		Can be functional! (temperature – dependen
C Source (* Boundary	Heat Transfer		Can include radiation if nee
Thermal Flux Density = H*(TEMD T	EMP_A)	Watt/Celsius-	
Ambient temperature (TEMP_A) 2.	5	Celsius	
C Source (* Boundary	Convection _Radiat	ion 🛓	
q = C*(TEMP-TEMP_A)* TEMP-TEMP	_A **FEXP + F*B*(TE	MP**4-TEMP_R*	**4)
Convection coefficient (C)	12	₩/ C **AL	LPHA/ m**2
Ambient temperature (TEMP_A)	35	Celsius	5
Exponent (FEXP)	0		
Radiation emissivity (F)	0.9		
Radiation ref. temp. (TEMP_R)	35	Celsius	-
7010101	01010101010101010 010101010101010		CORPORATION

Ferrite Circulator Application -geometry-

Ferrite Circulator Application -materials-

Thermal Conductivity	4	W/ m-K	A
Mass Density	4500	kg/m** 3	
Specific Heat	750	J/kg-K	
Young's Modulus	1.19e+011	N/m**2	
Poisson's Ratio	0.2		
hermal Expansion Coef.	1E-005	1/к	

10101010101010

Silver

Ferrite

Thermal Conductivity	429	W∕m-K
Mass Density	1.05e+004	kg/m**3
Specific Heat	235	J/kg-K
Young's Modulus	7.7e+010	N/ m**2
Poisson's Ratio	0.37	
Thermal Expansion Coef.	1.89E-005	1/к

Note: specify zero thermal conductivity to exclude object from thermal simulation; zero Young's modulus to exclude it from stress simulation.

ANSOFT CORPORATION

Ferrite Circulator Application -stress boundary condition-

Ferrite Circulator Application -HFSS sources-

(Creating time dependent thermal loads)

Thermal Static Solution Setup

Thermal Transient & Stress Solution Setup

Ferrite Circulator Application -thermal results, field-

Ferrite Circulator Application -thermal results, exec param-

ANSOFT CORPORATION

Ferrite Circulator Application -stress results-

Ferrite Circulator Application -stress results-

Ferrite Circulator Application -what ifs!?... and whys?-

Ferrite Circulator Application -what ifs!?... and whys?-

Chebyshev Filter Application -model data-

0101010101010101

ANSOFT CORPORATION

Chebyshev Filter Application -materials-

Chebyshev Filter Application -boundary conditions-

Chebyshev Filter Application -results-

High Power HF Components

ANSOFT CORPORATION

101010101010101010101

High Power Handling HF (760 MHz) filters

Outer body temperature distribution

ANSOFT CORPORATION

760 MHz Filter, High Power Input (KW range)

Microtech Model

Very good match with experimental data!

Microtech Model

Procedure to calculate forced convection coefficient

ANSOFT CORPORATION

IC structure in HF incident field

The Benefits of HFSS & ePhysics

- HFSS provides an environment for 3D EM-based design flow automation
- Virtual Prototyping reduces engineering time, speeds time to market
- HFSS uniquely provides assured accuracy for a broad set of applications to complement the highest level of automation
- Evaluate thermal and stress consequences of electromagnetic fields with ePhysics

