

FIDELITY Non-Uniform & Conformal FDTD EM Simulator

Jian-X. Zheng, President Zeland Software, Inc. e-mail: jian@zeland.com http://www.zeland.com

History of Zeland Software, Inc.

- Founded in 1992 for high frequency EM simulation and optimization.
- The 1st product IE3D EM Simulation and Optimization Package introduced in 1993.
- The 2nd product FIDELITY Full-3D FDTD EM Simulator introduced in 1997.
- Both packages, especially the IE3D, are widely used in industrial organizations, government labs and universities for R&D.

Electromagnetic Simulators

- IE3D EM Simulation and Optimization Package:
 - Moment method (F-domain) solving current distribution.
 - True 3D simulator focused on planar and 3D circuits and antennas (MMIC, RFIC, LTCC, PCB, packaging, wire antenna, patch antennas).
- FIDELITY Time Domain Full 3D EM Simulator
 - Non-uniform and conformal FDTD (T-domain) for 3D field distribution.
 - For 3D dielectric and waveguide problems (microwave components, horn antennas, antennas next to lossy dielectrics, microwave heating).

*more information on www.zeland.com

FIDELITY EM Simulator

- Non-uniform & conformal FDTD engine.
- Modeling dielectric discontinuities problems.
- Modeling waveguide structures
- Modeling 3D & planar antenna structures.
- Modeling connectors
- EMC & EMI
- Bio-medical applications or EM effects on human body
- Microwave food processing

FDTD Easy for Large Structures

- No matrix inversion.
- Solution process is a time-marching process.
- Meaningful time signals.
- Fourier-Transform for wide range frequency response.
- More on special features for FIDELITY.

Automatic Non-Uniform Meshing

 Non-uniform meshing makes it much more flexible on flexible on modeling small features of a structure.

Optional Conformal Meshing

Conformal FDTD allows users to model curved structures more precisely.

Object Oriented Geometry Modeling

- A structure is described as a set of objects.
- Each object is described by actual geometry parameters independent of grids. Geometry dimensions can be edited anytime later.
- Automatic Boolean operations.

Importing objects from ACIS.

Objects	Description	Comment	
🗹 🎇 Rectangular Cylinder	C=(5000, 0, 175), S=(10000, 10000,	Substrate	
🗹 🐑 TwoD Line	&Z: at 300, S=(0.,0.), E=(5000.,0.), W	Printed Strip	
🗹 🐑 Rectangular Cylinder	C=(0, 0, 25), S=(50000, 10000, 50), (•	Ground Plane	
🗹 🐑 Rectangular Cylinder	C=(7500, 0, 1050), S=(5000, 10000,	Outer Conductor	
🗹 🖄 Wire	R=1000, 2 Vertcies, D=3, 0=Inc	Tube	
🗹 🆄 Wire	R=307, 2 Vertcies, D=1, O=Inc	Inner Conductor	
🗹 🐑 Rectangular Cylinder	C=(4750, 0, 750), S=(500, 400, 900),	Interconnect	
🗹 🐑 Microstrip Port	P(1), &X:, V&Z:, C=(2000,0,300), W=	MS Port	
🗹 🆄 Coaxial Port	P(2), -&X:, C=(7000,0,1050), R1=307,	Coax Port	
🖾 🐑 Blank			Y

Formula Based Geometry Modeling

Tuning of geometry made simple.

Distantia T.							0	
Dielectric Ty	pe No. I(m): , cmt=					<u> </u>	Uveriapping	Inclusive
Optim Var	Value	Raw Va	alue	For	mula	Comment		Show Order
<	0		0			Location X		
(0		0	0		Location Y		
Ζ	0		0	0		Location Z		
N	49.96666667	49.96	6666667	Ha	lf_Lambda	Width		
-	24.98333333	24.98	24.98333333		0.5	Height		
٨/T	4.996666667	4.996	4.996666667		×H	Wall Thickness	:	
-	74.95	7	74.95		5*Lambda	Length		
Rules for Opt	im Variables] 🐖 [Tuning Var	Value	Low	High	¥
			\mathbf{x}	v1	0.000000	-1.000000	1.000000	· · · · · · · · · · · · · · · · · · ·
			+					
			_ _					
Global Var	Value	Rav	w Value		Formula	Com	ment	
anobar yar	3		3		3+v1			-
0	ambda 99.93333333 99.		99.93333333 299.8/f0		299.8/f0			
0 _ambda	10.0000007	4	9.966666	67	0.5°Lambda			
0 .ambda Half_Lambda	49.96666667							
0 Lambda Half_Lambda	49.96666667							

Each dimension of an object is a local variable. It can be a function of tuning variables, global variables shared by different objects, and local variables of the same object. You can apply rules to limit the range of a local variable and its relationship with other variables.

*Feature to be available in next version.

Multiple Visualization Views

Meshing Optimization

- No need to worry about the meshing at the time of geometry entry.
- The Meshing Optimizer automatically creates a gradually changing non-uniform grids to best fit the boundaries of objects.
- Critical grids can be controlled manually.

*Semi-automatic meshing optimization is available in current version and full optimization will be available in next version.

Time Signal Convergence Acceleration

 Localized ports are used to accelerate the time signal settling down. It yields results of same accuracy in much less time.

Absorbing Boundary Conditions & PML

 PML opens the door for FDTD to accurately simulate radiation problems (antennas and scattering)

Multiple-Domain FDTD Engine

Make it easy for efficient multiple CPU simulation.

Near Field Visualization

 Near field distribution carries much information.

 FIDELITY allows near field display on each slice.

Poynting Vector Visualization

• E, H and Poynting vector display

Field Animation

 Animation shows you how the power is distributing into your system. It will let you understand more what is going on inside your structure.

 Near field and far field evaluation and visualization

S-Parameter Display and Simulation

Radiation Patterns and RCS

- Radiation and RCS are very important for antenna designers.
- The bundled PATTERNVIEW allows users to display and process calculated radiation patterns.

SAR Calculation and Display

- SAR (Specific Absorbing Rate) is the measure of EM effects to human body. It is very important for wireless applications and microwave power industry.
- FIDELITY offers 3D and Cartesian display of SAR, power and frequency domain near field visualization.

Frequency Domain Near Field Display

3D Near Field

2D Near Field

Display of SAR

3D SAR Display

Cartesian Display

Simulation Example

Electromagnetic processes in microwave oven: A potato modeled as a sphere of εr=65, σ=2.726 s/m. Cylindrical shelf with er=2.55.

3D Detail View on FIDELITY

3D Wire Frame Display

3D Meshed View on FIDELITY

Input waveform: sine modulated with Gaussian

S-Parameters vs. Frequency

Total E-Field on X Center Cut

Unit: (V/	m)
	10000
	9500
	9000
	8500 9000
	7500
	7000
	6500
	6000
	5500
	5000
	4500
	4000
	3500
	2500
	2000
	1500
	1000
	500
	0
No.0: P= Freq=2.4	:1000 (W) 15 (GHz)

Total E-Field on Y Center Cut

Total E-Field on Z = 9 mm Cut

Total E-Field on Z = 54 mm Cut

Total E-Field on Z = 170 mm Cut

Total E-Field on Different Cuts

Ez-Field on X Center Cut

Ez-Field on Y Center Cut

Ez-Field on Z = 9 *mm Cut*

Ez-Field on Z = 54 mm *Cut*

Ez-Field on Z = 170 mm Cut

Unit: (V/m)	
10000	
9500	
9000	
8500	
8000	
7500	
7000	
6500	
6000	
5500	
5000	
4500	
4000	
3500	
3000	
2500	
2000	
1500	
1000	
500	
No.0: P=1000 (W) Freq=2.45 (GHz)	

Ez-Field on Different Cuts

SAR on X Center Cut

SAR on Y Center Cut

SAR on Z = 54 mm Cut

Summary on the Example

- Ez field is the dominant field.
- The potato reduces the field in and around it and the field is disturbed greatly.
- The skin absorbs much energy.
- The center has some focus point and it also absorbs much energy.
- Simulation data: 40 MB RAM, 63 minutes on Pentium 4, 2.8 GHz for the s-parameter frequency response and the SAR calculation.

Summary on FIDELITY Simulator

- Non-uniform and conformal FDTD for precise and flexible modeling of complicated structures.
- Menu-driven GUI with powerful object oriented editing capability.
- Automatic meshing optimization.
- S-parameters, Time-domain near field, frequency domain near field and SAR visualization and processing.
- Suitable for general purpose applications including microwave power applications.

Discussion is welcomed (jian@zeland.com)