CONCERTO

Temperature Rise Due to Microwave Heating, Including Effects of Load Rotation

Dr. Cris Emson (Vector Fields, Inc., USA) and Pawel Kopyt (Warsaw University of Technology, Poland)

Vector Fields

Engineering Consultancy Specializing in Electromagnetic Computation

Founded at Oxford, England in 1984 by former employees of the Rutherford Appleton Laboratory

Software Packages ...

OPERA-2d

- 2d static and time varying field analysi
- 2d stress and thermal analysis

• OPERA-3d

- TOSCA : 3d static analysis
- ELEKTRA : 3d time varying field analysis
- CARMEN : 3d rotating machine analysis
- SCALA : 3d space charge analysis

• CONCERTO

• 2d & 3d Microwave analysis

What is CONCERTO?

- CONCERTO is software specifically for RF and microwave design
- CONCERTO uses state of the art techniques, in conjunction with validated methods
- CONCERTO is intuitive to use, with a sophisticated Geometric Modeler
- CONCERTO provides designers with design information they require

CONCERTO Environment

Antenna Placement and RCS using CLASP

FDTD Method

FDTD method of Yee

- This is well proven, robust and accurate
- Lossy, anisotropic media _ / including dispersive, gyrotropic

- Singularity correction near conductor edges/corners
 - especially for thin sheets, thin wires etc.

IMMG: Computer Modeling & Microwave Power Industry January 2005

Time Domain

- A time pulse is used for input sources
 - by Fourier Transform, the frequency response is obtained

CTOR FIELDS

Time Domain Reflectometry

A strip-line structure terminated with a narrow grounded strip

Time-domain electric (above) and magnetic (below) fields revealing location and kind of the discontinuity

Why choose FDTD?

- Finite Elements are also very effective, but:
 leads to large matrices

 - frequency response requires multiple solutions
- Integral Methods for open air problems:
 - deals with free space well
 - less suited for complex geometres

when using Conforming Elements **Finite Differences are only effective**

OR FIEI

Conforming Elements

- For curved and inclined geometries
 - Vivaldi antenna

Conforming Elements

- Cells can contain more than one material type
 - Small cells are not required to represent the geometry

CONCERTO Will Model Curved and Inclined Boundaries

CONCERTO Will Model Curved and Inclined Boundaries

Refining the FD Grid

- Mesh refinement
 - mesh density is controlled globally, or per cell
 - Expert Mesher can be used to set defaults
- Mesh position
 - grid can be forced to coincide with geometry
- Singularity correction
 - metal edges may have singularity correction if they coincide with grid edge

CONCERTO Geometric Modeler

Model 1 16(4) 99 213 125 Global coordinate system

Boolean operations allow primitives to be combined

Time variation can be selected, or user defined

	None
	- Excitation of mode to
	At centre of sur
	X 10
	Effective permittivity (
10 0 to 10	Mode Template
	🔲 Use default wav
	- Definition of wavef
	Waveform Pulse2
40	f1 10
y y y	f2 11
· · · · · · · · · · · · · · · · · · ·	Duration 3
× m	File name
	Amplitude 1
	Delay (ns) 0
40 40 40 40	Use default waveform Puls f1 10 f2 11 Duration 3 File name Amplitude 1 Delay (ns) 0

60

Modify waveguide port	?	×
Surface: Port1 Label: R_TE Reference plane Use default distance from port Dista	10_Ey Owner: System	
Symmetry None XY plane Y	Z plane 🔿 ZX plane 🔿 Both	٦.
Excitation of mode template At centre of surface Polarisation X 10 Y 5 Effective permittivity 0.43827801328949	Ey Z 0	
Mode Template Drive function		_
Waveform Pulse2 f1 10 f2 11 Duration 3 File name	Delta Sinusoid Pulse1 Pulse2 Gauss Step Ramp User	
ОК	Quit	

IMMG: Computer Modeling & Microwave Power Industry January 2005

Mils Inch Maximum 12 Phase shift 0 Mesh control Mesh size Automatic mesh control Fixed mesh size control Isotropic mesh size 0.832756827777 Anisotropic Max. mesh cell ratio 3 Y Size 0.832756827777		
Mesh control Fixed mesh size control Image: Mesh size Automatic mesh control Image: Automatic Minimum 30 Image:		
Mesh size Automatic mesh control Fixed mesh size control Image: Automatic Minimum 30 Isotropic mesh size 0.83 Isotropic Limit factor 3 Anisotropic Max. mesh cell ratio 3		
O Isotropic Limit factor 3 XSize 0.832756827777 O Anisotropic Max. mesh cell ratio 3 Y Size 0.832756827777	extensio mash size control	
Anisotropic Max. mesh cell ratio 3 Y Size 0.832756827777	_ 0 02275602777770	
	ve 0 83275682777778	
Z Size 0.832756827777	78	
Default material External air boundaries		
O Air	sorbing	
Offset (mesh cells) 0 OPML OPE	9C	
OK Quit		

CONCERTO Editor shows different windows for drawing and viewing

horn1	horn1h	horn1hr	horn1hra	horn1i	horncor
				4	
Rectangular waveguide horn (vertical)	Rectangular waveguide horn, horizontal in air	Rectangular waveguide horn, horizontal in air	Rectangular wg. horn, horizontal in air with user-defined ridges	Rectangular wg. horn with triangular dielectric inserts (vertical)	Rectangular corrugated horn (vertical)
horng1	hornha	hornhar	hornhara	hornhb	hornhc
Rectangular wide-band	Rectangular	Rectangular wavegui	Rectangular wavegui	Rectangular	Circular waveguide
horn with user-defined ridges BP	waveguide horn, horizontal in metal	de horn, horizontal in metal with ridge	de horn, horizontal in metal with user-defined	waveguide horn, horizontal in metal (BP)	horn, horizontal in metal (BP)
hornhca	hornher	hornhcra	hornyca	hornvcar	hornycara
Circular horn antenna,	Circular waveguide	Circular waveguide hor	Circular horn antenna,	Circular horn antenna	Circ. horn antenna with
nonzontai in air (6P)	metal (BP) with ridges	P) with user-defined rid	vertical in alf	air	vertical in air (BP)

User Defined Objects

CTOR FIELDS

Library of many objects, all parameterized and ready to use

Data Input

- Modeler
 - Powerful means of model creation
 - Import CAD files
 - Parameterization
- Editor
 - Predefined library of objects
 - Already parameterized
 - Couples directly to built in Optimizer

CONCERTO Simulator

File Run View Test Configure Tools Window Setup Help

3D display of fields

S-Parameter Calculations are Dynamic

IMMG: Computer Modeling & Microwave Power Industry January 2005

IMMG: Computer Modeling & Microwave Power Industry January 2005

CONCERTO Prony for High-Q Systems

to remove oscillations in Frequency Domain

IMMG: Computer Modeling & Microwave Power Industry January 2005

Pyramidal Horn Antenna

×

Design & measurements: Prof.B.Stec, Technical Military Academy, Poland Simulations: QWED

IMMG: Computer Modeling & Microwave Power Industry January 2005

3D Far-Field Radiation Patterns

Cylindrical Patch Antenna

IMMG: Computer Modeling & Microwave Power Industry January 2005

Introducing CONCERTO-2d

IMMG: Computer Modeling & Microwave Power Industry January 2005

IMMG: Computer Modeling & Microwave Power Industry January 2005

Benchmark

IMMG: Computer Modeling & Microwave Power Industry January 2005

IMMG: Computer Modeling & Microwave Power Industry January 2005

IMMG: Computer Modeling & Microwave Power Industry January 2005

IMMG: Computer Modeling & Microwave Power Industry January 2005

IMMG: Computer Modeling & Microwave Power Industry January 2005

IMMG: Computer Modeling & Microwave Power Industry January 2005

Results for Benchmark

IMMG: Computer Modeling & Microwave Power Industry January 2005

Envelope of Ez on zx mid-plane through load

IMMG: Computer Modeling & Microwave Power Industry January 2005

Envelope of Ez on xy plane 10mm above bottom of oven

Envelope of Ez on xy plane 52.5mm (centre of load)

Power Density on xy plane 52.5mm (centre of load)

IMMG: Computer Modeling & Microwave Power Industry January 2005

Power Density on mid vertical plane

Microwave Heating

Basic Heat Module

- Includes effect of Adiabatic Heating
 - No temperature diffusion
 - Simple update of temperature from heat sources
 - Simple update of material properties from T
- Iterative Process
 - Continually run EM / Temperature rise
 - Update T every few seconds as heat generated

BHM module operation

IMMG: Computer Modeling & Microwave Power Industry January 2005

Temperature rise during heating (BHM)

IMMG: Computer Modeling & Microwave Power Industry January 2005

IMMG: Computer Modeling & Microwave Power Industry January 2005

VF VECTOR FIELDS

Microwave Heating Simulation

Microwave Problem

- Universal EM solver (CONCERTO):
 - Electromagnetical fields simulation
 - ✓ Temperature-induced changes of the media E-M properties – BHM module

Interface -

Heat Transfer Problem

- Heat Transfer Solver:
 - Heat transfer effect
 - Mass transport effect
 - Radiation
 - Temperature-induced changes of the media thermal properties

Two approaches to Heat Transfer Simulation

CTOR FIELDS

Commercial CFD package – Fluent

- Fluent universal CFD tool capable of modeling range of problems:
 - Heat transfer in solids
 - Support for porous media
 - Support for media with phase change
 - Mass transfer
 - Laminar and turbulent flow
 - Radiation
 - Range of boundary conditions

Fluent

- Fluent why this package?
 - Import of meshes from text files
 - Support for User Defined Routines
 - Initialization of fields from external files
 - Initialization of media properties
 - Initialization of boundary conditions
 - Dump of results to text files
 - Batch mode operation

As a result the whole process can be run directly from CONCERTO!

TOR FIEL

Fluent Project Preparation

*.hfe

*.sh3

1

Conversion

software

CONCERTO

FLUEN

Conversion

software

2

- 1. Fluent Project preparation
 - Mesh
 - Media definitions
 - Boundary conditions
 - Initial conditions
- 2. Call thermal solver
 - Heat Transfer simulation
 - Results dump
- 3. Result files reading
 - Conversion to CONCERTO data format

Mesh conversion

IMMG: Computer Modeling & Microwave Power Industry January 2005

Media, BC, and IC preparation

Conversion software

Microwave Problem

Lossy media properties defined in a text file (pmo-file) containing:

- medium permittivity (given as f(T))
- medium losses (given as f(T))
- thermal conductivity (Ka)
- specific heat (SpecHeat)
- density (Density)

<pre># DATA FROM -20 !Temperature ! # Data</pre>	°C to +80 °C. Inthalpy	, dH/dV in EPx	J/cmł N EPy	0 Speche EPz	at colum SIGx	n; rever SIGy	sedEnth/ SIGz	Temp column Ka	SpecHeat	Density	Î
20 40 60 80	0 13.9 27.8 11.7	4.17 4.57 4.78 4.73	4.17 4.57 4.78 4.73	4.17 4.57 4.78 4.73	0.211 0.184 0.177 0.177	0.211 0.184 0.177 0.177	0.211 0.184 0.177 0.177	0.00248 0.00248 0.00248 0.00248	2.785 2.785 2.785 2.785 2.785	0.545 0.545 0.545 0.545	
C:\Projekt	y\Rotal	4.50 2.0						* *****			
#Bread c # DATA R	lraft ROM -	r	Tem	n c	אונן ב	'n					
!Temperature				Ka				Spec:	Densit		
# Data											
20	0.00248						2.785			0.545	
40	0.00248					2.785			0.545		
60		0.00248				2.785		0.545			
80	0.00248					2.785			0.545		
100	00 0.00248						2.785			0.545	
104			0	.00	248			2.78	5	0	.545

Heat Transfer Problem

Conversion software role:

- Read the pmo files
- Establish kind of BC's based on pmo-files
- Prepare a media definition file for Fluent (*.BC)
- Include in the file the BC's data
- Prepare a script for Fluent (*.JOU) (needed to run Fluent in batch mode)

<pre>C:\Projekty\Rotation5\qw (rp ((materials ((bread solid (density (constant (specific-heat (con (thermal-conductivi)))</pre>	<pre>. 545.000000)) stant . 2785.000000)) ty (constant . 0.248000))</pre>
<pre>)) (bc (solid.1 solid (material . bread) (sources? . #f))) (bc (wall.1 wall m (thermal-bc . 1) (material . bread) (t (constant . 2 (q (constant . (th (constant . (tinf (constant .)))</pre>	C:\Projekty\Rotation5\qw\testoven.JOU /file/import/fidap/ "c:\projekty\rotation5\qw\test /define/user-defined/user-defined-memory 1 /define/user-defined/interpreted-function "c:\proj /define/user-defined/function-hooks "init_temperat /define/models/energy/ yes no no no no /define/materials/change-create aluminum testmat y /file/read-bc "c:\projekty\rotation5\qw\testoven.H /define/user-defined/execute-on-demand "read_ic_ds /define/models/solver/segregated yes /define/models/unsteady-1st-order yes /solve/monitors/residual/convergence-criteria 0.00

Heat transfer simulation

Temperature field read into CONCERTO

Heat Transfer Problem

Conversion software role:

- Run Fluent in batch mode •
- Wait for Fluent to finish
- Read output data
- Create data text file in CONCERTO format
- Quit

Temperature field solution (ready to be dumped into a text file)
Result of example simulation

- Domestic microwave oven
- Sample of bread
- Temperature of hot spot (approx. in the centre of the sample)

Comparison of the solution obtained with and without the heat transfer module

IMMG: Computer Modeling & Microwave Power Industry January 2005

VECTOR FIELDS

Two approaches to Heat Transfer Simulation

CTOR FIELDS

Including Load Rotation

BHM module with Load Rotation

• The load is set to rotate

- At regular time intervals, temperature rise computed
- Material properties
 updated
- Load is rotated (with temperature pattern)
- New EM analysis performed

CTOR FIELDS

BHM module with Load Rotation

Final State With and Without Rotation

Load Rotation

Stationary Load

IMMG: Computer Modeling & Microwave Power Industry January 2005

VECTOR FIELDS

Final State With and Without Rotation

Load Rotation

Stationary Load

In Summary

- FDTD Technique is tried and tested
 - Proven to be efficient and accurate
 - Conforming Elements are required to model complex boundaries accurately, efficiently
- Basic Heat Module computes temperatures
 - Assuming adiabatic heating
 - Can model change in material properties
- Couple to Fluent
 - Accurate thermal model with dissipation
- Include Load rotation

IMMG: Computer Modeling & Microwave Power Industry January 2005

VECTOR FIELDS