

Microwave Applications: Electromagnetic and Thermal Modeling in FEMLAB

Monterey

January 7, 2005 IMMG 7th Seminar Computer Modeling and Microwave Power Industry

> Magnus Olsson, PhD David Kan, PhD COMSOL, Inc.

COMSOL

- Spin-off from The Royal Institute of Technology, KTH, Sweden, 1986
- Delivering modeling solutions for problems based on partial differential equations (PDEs)
- Developed the PDE Toolbox in 1995
- Developers of FEMLAB[®], interfaces with MATLAB[®] (1998-present)
- Offices in USA, UK, Germany, France, Nordic countries
- Distributor network covering the rest of the world

What is FEMLAB?

• A tool that makes it possible to express the laws of physics, using the language of mathematics, and get these translated into a numerical code

Philosophy and the Development of FEMLAB

- Usability to allow you to concentrate on the problem and not on the software
- Flexibility to maximize the family of problems that you can formulate in FEMLAB
- **Extensibility** to allow you, as an advanced user, to implement your own code in FEMLAB and to change the built-in code
- *Platform Independence* choose between Windows, Linux, HP-UX, Sun Solaris, or Mac OSX, and several 64-bit platforms

Who uses FEMLAB?

- NPS Electrical Engineering
- UC X
 - $X \in \{LA, SB, SD, D, SF, SC, R, I\}$
- Caltech, University of Washington, Stanford
- UNLV, CU Boulder, UU
- MIT, Harvard, Princeton, ...
- Y NL
 - $\hspace{0.1in} Y \hspace{0.1in} \epsilon \hspace{0.1in} \{ B,LA,LL,LB,PN,S \}$
- NASA research centers
- NIST, NREL, USGS, SWRI
- NIH
- ARL, AFRL, NRL

- Northrop-Grumman, Raytheon
- Boeing, Lockheed-Martin
- Applied Materials, Agilent
- GE, 3M, Motorola
- MedRad, Medtronic, St. Jude Medical
- Merck, Roche
- Procter and Gamble, Gillette
- Energizer, Eveready
- Hewlett-Packard, Microsoft, Intel
- Nissan, Sony, Toshiba
- ABB, Volkswagen, GlaxoSmithKline
- PARC, Osram-Sylvania

How is FEMLAB Used?

- Teaching
 - Course work (e.g., transport phenomena, electromagnetics, heat transfer, MEMS analysis)
 - Thesis research
- Research
 - Product designers (prototyping and what-if analysis)
 - Experimentalists (design, computational complements)
 - Theoreticians (insight into physics or equations)
 - Computational scientists (algorithm design)

Current press and news

New book featuring FEMLAB

TECH BRIER

- Elements of Chemical Reaction Engineering, by H. Scott Fogler
- Articles
 - "Smoothing out the wrinkles", from *Desktop Engineering* featuring Thermage, Inc.
 - "Software tunes up microwave weapon", from *Machine Design* featuring SARA, Inc.

Press releases

- FEMLAB 3.1 released
- COMSOL News, Issue no. 1
- FEMLAB Multiphysics Viewer released
- Benchmark of FEMLAB vs.
 Ansys and Fluent
- Mac OS 10.3 platform added
- Site licenses purchased at Stanford and Chalmers
- For more see www.comsol.com

Multiphysics Modeling

🔀 Adobe Acrobat Standard - [Google Search_multiphysics.pdf]						
T File Edit View Document Tools Advanced Window Help						
📔 🚰 Open 😤 🗐 Save 🚔 Print 🍳 Email 🏢 Search 🛛 📆 Create PDF 🗸 👇 Review & Comment 👻 🔒 Secure 👻 🖉 Sign 👻						
🖑 🕅 Select Text 🔹 🎑 🔹 📄 📄 🗁 109% 🔹 🐵 📑 🛟 🛟 📑 How To? 🔹						
Google Search: multiphysics						
Web Images Groups News Froogle more »						
Bearch Preferences						
Web Results 1 - 10 of about 15,200 for multiphysics. (0.28 seconds)						
COMSOL : FEMLAB - Multiphysics Modeling	Sponsored Links					
Press release FEMLAB Brings Advanced Multiphysics Modeling, Cross- Platform Capabilities to the Macintosh. REGISTER for Training! www.comsol.com/ - 22k - Oct 6, 2004 - <u>Cached</u> - <u>Similar pages</u>	CoventorWare MEMS Design Integrated MEMS software tools 2D/3D Layout, Analyze, Extract www.coventor.com					
Order your Free FEMLAB Multiphysics Viewer Here!	Nastran FEA Software See 90-sec demo, case studies, tutorials, prices. Get trial copy.					
and postprocess FEMLAB 3 models on any computer running	www.NENastran.com					
Windows, Linux, or Macintosh systems www.comsol.com/viewer/ - 34k - Oct 7, 2004 - <u>Cached</u> - <u>Similar pages</u>						
[More results from www.comsol.com]						
ANSYS Multiphysics						
ANSYS Multiphysics M 8.1 In the past, obtaining all of the simulation capabilities needed for complex and						

What is Multiphysics Modeling?

- Similar system of PDEs is valid for a large number of physical phenomena
- Describing a single physical system often requires the combination of multiple such phenomena, coupled or not

Current flows in a structure Structure heats up Structure expands

= Decoupled Multiphysics

Multiphysics Examples

A MEMS device deforms due to thermal strains when a potential is applied to it

A fuel cell produces power due to chemical reactions

Argon flows due to natural convection in a light bulb as the filament heat it up

FEMLAB Overview

- FEMLAB's Core Capabilities
 - Numerical solutions to physics models based on differential equations
 - Coupled equations/physics (Multiphysics)
- FEMLAB Modules
 - Predefined equations and an extensive library of models covering specific fields
- FEMLAB Compatibilities
 - MATLAB, Simulink, Control Systems Toolbox
 - Solidworks
 - CAD import (DXF, IGES, STL)
 - Image import (MRI, jpeg, tiff, etc.)

FEMLAB Features

- Geometry
 - Integrated CAD tools
 - External geometry files import
 - Live connection to SolidWorks (3.1)

Meshing

Automatic mesher for triangle and tetrahedron element

Support for Quad/Brick/Prism (3.1)

Structured meshes (3.1)

FEMLAB Features

Solvers

- Direct and iterative solvers
- Stationary linear/nonlinear; transient; eigenvalue and parametric analysis
- Adaptive mesh
- Direct and sequential coupling
- New geometric multigrid preconditioner (3.1)

Postprocessing

- Plot any expression of results as a slice, contour, subdomain, isosurface, deformed plot...
- Plot cross-sections
- Evaluate line, surface, volume integrals
- Export results as an ASCII file
- Make movies of your solutions
- Fully integrated with MATLAB for further analysis

64-bit FEMLAB 3.1

- Supported platforms
 - HP-UX/PA-RISC
 - Solaris/UltraSparc
 - Linux/AMD64/EM64T
 - Linux/Itanium
- Electromagnetic waves reflected by a metallic corner cube
- 31 times larger than before...
 - 7.1 M degrees of freedom (before 113 K)
 - 9.5 GB memory
 - 1 hour 13 minutes solution time
 - New GMG solver used

Additional FEMLAB 3.1 Features

• Record a solution procedure (scripting)

2. Thermal

1. Fluid

lver Manager	Solver Manager
Initial Value Solve For Output Script	Initial Value Solve For Output Script Solve for variables:
Geom1 (2D) Convection and Conduction (cc) Language script	Geom1 (2D) Compressible Navier-Stokes (ns) Convection and Conduction (cc) Generated :
Solver Manager	
<pre>Solve using a script fem.sol=femnlin(fem, 'solcomp',('u','p' 'outcomp',('u','T' 'mcase'.0);</pre>	,'v'}, ,'p','v'},
<pre>fem0=fem; fem.sol=femlin(fem, 'init',fem0.sol, . 'solcomp',('T'), . 'outcomp',('u','T' 'mcase',0); fun0_femu</pre>	 ,'p','V'},
Automatically add commands when solving	Add Current Solver Settings
Solve	OK Cancel Apply

• Generate reports automatically

				I Nev	V	
Name	Expression	Value		- 2 -		
n	2000	2000		🗁 Open		
omega	n*2*pi/60	209.43951		🔛 Save		
troke	0.144	0.144		Source Act		
	stroke/2	0.072		Dave As		
onrod_length	0.26	0.26	6	🗃 Print		
ambda	r/conrod_length	0.276923	Ge	enerat	e Rep	ort
oistonacc	omega*omega*r*(1+lambda)	4032.872198				
)	130e5	1.3e7	M	odel P	roperti	es
n	SeS	5e5	Sa	a <u>v</u> e Mo	odel Im	iage
n	1e14	1e14	R/	eset M	Iodel	
. Geon umber of geon .1. Geom	netry ^{netries: 1} 1		Ē	xport		
. Geon	netry _{netries:} 1 1		Ē	xport		

FEMLAB Modules

Electromagnetics

- Electrostatics
- Magnetostatics
- Eddy currents
- Electromagnetic waves, with applications in photonics and microwaves

Structural Mechanics

- Solids, beams, plates, and shells
- Thermal stresses
- Large deformations
- Piezoelectric material

Chemical Engineering

- Incompressible Navier-Stokes
- Flow in porous media
- Non-Newtonian fluids
- Electrokinetic flow
- Maxwell diffusion
- Convection and conduction

COMSOL

New Modules in FEMLAB 3.1

Heat Transfer

- General Heat Transfer including radiation boundary conditions
- Highly conductive layer (shell)
- Bioheat equation
- Non-isothermal flow

MEMS

- Combination of Structural Mechanics, Fluid Dynamics
- Electromagnetics
- Model library
 - Actuator models
 - Sensor models
 - Microfluidics models

Earth Science

- Richard's equation
- Darcy's law
- Brinkman equations
- Saturated solute transport
- Variably saturated solute transport

Introductory Example

Titanium microresistor beam

- Combination of electrical, thermal and structural analysis in a single model
- Current flows in a microbeam, and generates heat
- Heat generation induces thermal stresses which deform the beam
- Steady-state solution

- Possible alterations
 - Temperature dependent coefficients
 - Several subdomains
 - Parametric study
 - Transient analysis
 - Much, much more!

Problem Definition

DC current

DC current balance for conductive media

Fixed potentials generate potential difference $\Delta V=.2V$

Heat Transfer

Thermal flux balance with the electric heating as source:

 $Q = \sigma |\nabla V|^{2}$ Convection: h(T-T_{amb}) $T = T_{0} = 323^{\circ} K$

Structural Analysis

Force balance with the thermally induced stress as volume load

Results

- Maximum temperature and displacement can be evaluated
- An optimization problem can easily be set up
- Model built from scratch in less than an hour!

Summary of the modeling process

- Draw Mode
- Boundary Mode
- Subdomain Mode
- Mesh Mode
- Solve!
- Post Mode

Learn more!

"Because of what I learned in today's FEMLAB course, I saved at least a month of work," Professor Carl Meinhart, UCSB

- FEMLAB Hands-on Modeling Courses
 - Training at several locations including Nev Vancouver, Austin, Denver, and San Jose
- Visit www.comsol.com/training
 - For more information, including courses and locations

Microwave Cancer Therapy

Introduction

- Cancer is treated by applying localized heating to the tumor tissue
- Microwave heating is applied by inserting a thin microwave antenna into the tumor
- Challenges associated with the selective heating of deep-seated tumors without damaging surrounding tissue are:
 - control of heating power and spatial distribution
 - design and placement of temperature sensors
- Computer simulation is an important tool
- The purpose of this model is to compute the radiation field and the specific absorption rate (SAR) in liver tissue for a thin coaxial slot antenna used in Microwave Cancer Therapy

Problem definition

2D Geometry and domain equations

FEMLAB

Multiphysics Modeling

Material Parameters

Relative permittivity				
inner dielectric of the coaxial cable	2.03			
catheter	2.60			
liver tissue	43.03			
Conductivity [S/m]				
liver tissue	1.69			

Boundary Conditions

• Metallic boundaries: $\mathbf{n} \times$

 $\mathbf{n} \times \mathbf{E} = \mathbf{0}$

• Symmetry axis:

• Feed (10 W):

• Mesh truncation:

$$\begin{cases} E_r = 0 \\ \frac{\partial E_z}{\partial r} = 0 \\ \begin{cases} \mathbf{n} \times \sqrt{\varepsilon_c} \mathbf{E} - \sqrt{\mu} H_{\varphi} = -2\sqrt{\mu} H_{\varphi 0} \\ H_{\varphi 0} = \frac{0.1012}{r} \\ \mathbf{n} \times \sqrt{\varepsilon_c} \mathbf{E} - \sqrt{\mu} H_{\varphi} = 0 \end{cases}$$

COMSOL

Microwave Heating

Notes

- SAR values are highest near the slot.
- The absolute microwave power inflow can be computed using boundary integration and evaluates to 9.94 W, i.e.
 <1% of the input power of 10 W is reflected.
- A natural extension of the model is to include a heat transfer analysis.

Thermal analysis

- Microwaves are heating the tissue
- The dominating heat loss is due to blood perfusion
- The purpose of modeling is to compute the temperature field near the microwave antenna

Domain Equations: Thermal analysis

Boundary Conditions: Thermal analysis

- •All boundaries: $\mathbf{n} \cdot k \nabla T = 0$
- •Input microwave power: 10 W

Temperature Distribution

Conclusions: Thermal analysis

- The temperature is highest near the slot
- For an input microwave power of 10 W, the calculated maximum temperature is about 100°C
- Including heat conduction effects in the antenna will decrease this value.

Microwave Oven with Face Absorbers

Model comments

- Uses two application modes
 - 3D EM waves
 - Thin conducting shells
- Face absorbers
 - Transition boundary condition with surface impedance is used on the faces
 - Heat source is an expression involving surface current density

3D EM Waves + Shell Heat Transfer

Slice: Electric field, norm Boundary: Temperature

Max: 329.39 Max: 447.5:

Microwave Heating of a Potato

3D Geometry

Model Notes

- To reduce problem size, only half of the geometry is modeled
- 3.2 M DOFs (real valued) and used about 4.5 GB peak memory
- Computer specs
 - 64 bit dual processor Itanium with 12 Gb RAM

Electric field, Ez(0): xz-plane

Slice: Electric field, z component

Min: -4.018e

Max: 3.25e4

Electric field, |Ez|: xz-plane Slice: abs(Ez) Max: 4.217e x10⁴ 4 feed 3.5 -3 -2.5 2 1.5 0.5

Min: 33.494

Electric field, E(0): xz-plane

Min: 157.43!

Electric field, |E|: xz-plane

Slice: Electric field, norm Max: 4.802e x10⁴ feed 4.5 4 -3.5 3 2.5 2 1.5 0.5

Min: 365.521

Electric field, Ez(0): yz-plane

Slice: Electric field, z component

Max: 3.263e

Electric field, |Ez|: yz-plane Slice: abs(Ez)

Max: 4.227e

Electric field, E(0): yz-plane

Electric field, |E|: yz-plane

Slice: Electric field, norm Max: 4.229e x10⁴ 4 3.5 3 -2.5 2 1.5 0.5

Min: 292.99

Electric field, Ez(0): xy-plane (z=10mm)

Electric field, |Ez|: xy-plane (z=10mm)

Electric field, E(0): xy-plane (z=10mm)

Electric field, |E|: xy-plane (z=10mm)

Electric field, Ez(0): xy-plane (z=57.5mm)

Electric field, |Ez|: xy-plane (z=57.5mm)

Electric field, E(0): xy-plane (z=57.5mm)

Electric field, |E|: xy-plane (z=57.5mm)

Dissipated power: xz-plane

Slice: Resistive heating, time average

Max: 2.346e7

Dissipated power: yz-plane

Slice: Resistive heating, time average

Max: 2.445e7

COMSOL

Dissipated power: xy-plane (z=57.5mm)

SAR: xz-plane

Slice: Qav_weh/1e3

SAR: yz-plane

SAR: xy-plane (z=57.5mm)

S11: 2.35-2.55 GHz (5 points)

S11_dB

