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INTRODUCTION
We are working on:
• Parallel fully automatic hp-adaptive finite element 2D and 3D 

codes
• The code automatically produces a sequence of optimal meshes 

with global exponential  convergence rate
• Currently, we have running 2D version of the code for the Laplace

equation
• All stages of the code are fully parallel
• The code will be soon extended to solve 3D Helmholtz and time 

harmonic Maxwell equations
The work is driven by 3 Challenging Applications:
• Simulation of EM waves in the human head
• Calculation of the Radar Cross-sections (3D scattering problems)
• Simulation of Logging While Drilling EM measuring devices



ORTHOTROPIC HEAT EQUATION

• 5 materials, some orthotropic some not

•requires anisotropic refinements

• large O(105) jumps in material data 
generate singularities



COARSE MESH, FINE MESH 
AND OPTIMAL MESH

Initial mesh = coarse mesh 
for the 1st step
of the iteration

Fine mesh Optimal mesh



COARSE MESH, FINE MESH 
AND OPTIMAL MESH

Fine mesh Optimal mesh
Optimal mesh = coarse mesh 

for the 2nd step
of the iteration



PARALLEL DATA STRUCTURES



PARALLEL DATA STRUCTURES 

• Identical copies                     
of global geometry             
are stored on each process

• Each process generates 
initial mesh elements     
in only a portion            
of the global geometry

• Refinements trees      
are grown vertically         
from the initial mesh    
on each process



DATA MIGRATION

• Load balancing performed by ZOLTAN library 
• ZOLTAN provides 6 different 
domain decomposition algorithms



DATA MIGRATION

•Initial mesh elements together with 
refinements trees migrate through subdomains



PARALLEL DIRECT SOLVER



PARALLEL FRONTAL SOLVER
WITH FAKE ELEMENTS

Both the coarse and fine mesh problems
are solved using the parallel frontal solver 
• Frontal solver = extension of the Gaussian 

elimination
• Assembling + Elimination performed together

on the frontal submatrix of the global matrix
Domain decomposition approach



PARALLEL FRONTAL SOLVER
WITH FAKE ELEMENTS

Global matrix



PARALLEL FRONTAL SOLVER
WITH FAKE ELEMENTS

Distribution of the global matrix into 
processors



1. Run the forward elimination stage 
with fake elements 
over each subdomain

PARALLEL FRONTAL SOLVER
WITH FAKE ELEMENTS



PARALLEL FRONTAL SOLVER
WITH FAKE ELEMENTS

After the forward elimination with fake elements, 
frontal matrices contains 

contributions to the interface problem



PARALLEL FRONTAL SOLVER
WITH FAKE ELEMENTS

2. Formulate the interface problem



PARALLEL FRONTAL SOLVER
WITH FAKE ELEMENTS

3. Solve the interface problem

4. Broadcast the solution together with upper triangular form 
of the interface problem matrix



PARALLEL FRONTAL SOLVER
WITH FAKE ELEMENTS

The backward substitution can be finally run 
in parallel, over each subdomain



PARALLEL MESH REFINEMENTS
AND

MESH RECONCILIATION



PARALLEL MESH REFINEMENTS 

The mesh refinements algorithm is running on each subdomain
separately

1-irregularity rule is enforced 
The rule is telling that edge of given element can be broken only once, 

without breaking neighboring elements
Nodes situated on the global interface are treated at the same way       

as internal nodes
After parallel mesh refinements it is necessary to run          

the mesh reconciliation algorithm



PARALLEL MESH REFINEMENTS 
EXAMPLE

Constrained nodes

Fine mesh



PARALLEL MESH REFINEMENTS 
EXAMPLE

Constrained nodes

Fine mesh



PARALLEL MESH REFINEMENTS 
EXAMPLE

Constrained nodes

Optimal mesh



PARALLEL MESH REFINEMENTS 
EXAMPLE

Constrained nodes

Optimal mesh



The first is not refined, the second one is refined

Two adjacent elements from neighboring subdomains

Create constrained node on the interface edge
(in order to have the same number of degrees of freedom)

PARALLEL MESH RECONCILIATION
ADJACENCY CASE



Both refined

Two adjacent elements from neighboring subdomains

Create constrained nodes on the interface edges

Exchange constrained nodes data between subdomains

PARALLEL MESH RECONCILIATION
ADJACENCY CASE



Two adjacent elements from neighboring subdomains

Remove interface constrained nodes situated at the same 
place on both subdomains

PARALLEL MESH RECONCILIATION
ADJACENCY CASE



The first one is not refined, the second one is refined

Two adjacent elements from neighboring subdomains

PARALLEL MESH RECONCILIATION
ADJACENCY CASE



Two adjacent elements from neighboring subdomains

Second one is refined once again

PARALLEL MESH RECONCILIATION
ADJACENCY CASE



Two adjacent elements from neighboring subdomains

Remove constrained node

Create constrained node

PARALLEL MESH RECONCILIATION
ADJACENCY CASE



Two adjacent elements from neighboring subdomains

Exchange refinement trees between subdomains

Break the element

PARALLEL MESH RECONCILIATION
ADJACENCY CASE



We can summarize our algorithm in the following stages
1. Parallel mesh refinements
2. Exchange information about interface edge refinement 

trees, constrained nodes and orders of approximation 
along the interface

3. Mesh reconciliation
The repetition of stages 2 and 3 may be required if some of 

the interface edges were modified during the last 
iteration.

PARALLEL MESH REFINEMENTS
SUMMARY



PARALLEL MESH REFINEMENTS
SUMMARY



PARALLEL MESH REFINEMENTS
SUMMARY



PARALLEL MESH REFINEMENTS
SUMMARY



PARALLEL MESH REFINEMENTS
SUMMARY



COMMUNICATION STRATEGY



There are many points in our parallel fully automatic hp-adaptive 
algorithm, where communication between processors is required. 

These include:
a) data migration during load balancing
b) global denumeration of interface nodes
c) formulation of the wire frame problem
d) exchanging optimal refinement information over the interface
All of these points may be reduced to the problem of exchanging data 

between neighboring subdomains.

COMMUNICATION STRATEGY



Processor 2Processor 4

Processor 1

Processor 3

COMMUNICATION CYCLES

When data need to be exchanged between k processors,
the number of communication channels in direct communication scheme 

is large, equal to the number of edges in k-clique graph 



COMMUNICATION CYCLES

Processor 2Processor 4

Processor 1

Processor 3

data 1

data 2

data 3

data 4

data 4

data 1

data 2

data 3

In order to reduce the number of communication channels,  
data are sent using cyclic communication scheme 
(k-1 communication cycles in k-clique graph)



COMMUNICATION CYCLES

Processor 2Processor 4

Processor 1

Processor 3

data 4

data 1

data 2

data 3

data 3,4

data 1,4

data 1,2

data 2,3

In order to reduce the number of communication channels,  
data are sent using cyclic communication scheme 
(k-1 communication cycles in k-clique graph)



COMMUNICATION CYCLES

Processor 2Processor 4

Processor 1

Processor 3

data 3

data 4

data 1

data 2

data 1,3,4

data 1,2,4

data 1,2,3

data 2,3,4

In order to reduce the number of communication channels,  
data are sent using cyclic communication scheme 
(k-1 communication cycles in k-clique graph)



GRAPH REPRESENTATION 
OF FINITE ELEMENT MESH

Its graph representation G=(V,E)
Node = subdomain
Edge = adjacency

Computational domain
divided into

36 subdomains



OPTIMAL COMMUNICATION CYCLES

The idea is to find covering of the graph 
representing computational domain by 
optimal set of communication cycles,
where each processor in the cycle 
performs the following operations:

prepare(buffer)
do i=1,number of processors in the cycle
send(buffer, i+1 )
recv(buffer, i-1 )
process(buffer)

enddo



GRAPH COLORING ALGORITHM

The graph coloring algorithm creates layers around 
one selected node of the graph



GRAPH COLORING ALGORITHM



GRAPH COLORING ALGORITHM



GRAPH COLORING ALGORITHM

We define layers                    as compact sets 
of graph nodes colored by the same color



GRAPH COLORING ALGORITHM



SET OF OPTIMAL 
COMMUNICATION CYCLES



GRAPH COLORING ALGORITHM

The graph coloring algoritm can be ran recursively, 
over each communication cycle graph 

is the number of vertices in the j-th
communication cycle from i-th set of communication 
cycles.

Two new sets of communication cycles are created 
from each communication cycle.
This could be done unless the total communication 
cost will be optimal



SET OF OPTIMAL 
COMMUNICATION CYCLES



OPTIMAL COMMUNICATION CYCLES

The algorithm is the following
1. All communication cycles from the first set of communication 

cycles are performed. 
2. All communication cycles from the second set of communication 

cycles are performed. 
3. …
4. All communication cycles from the last set of communication 

cycles are performed
The algorithm allows us to reduce
• Number of communication channels
• Total communication time                                        

(since all communication cycles from one set of communication 
cycles can be performed at the same time)
(assuming there are enough interprocessor connections)



RESULTS



RESULTS
THE LAPLACE EQUATION OVER L-SHAPE DOMAIN

Optimal mesh obtained after parallel iterations over 3 subdomains.
Exponential convergence is obtained to the accuracy of 1 % relative error.



RESULTS
THE BATTERY PROBLEM

Optimal mesh obtained after parallel iterations over 15 subdomains
giving the accuracy of 0.1 % relative error.



RESULTS
THE BATTERY PROBLEM

The solution with the accuracy of 0.1% relative error.
Exponential convergence curve for the parallel execution (16 processors)



We have developed the parallel fully automatic hp-adaptive 2D code     
for the Laplace equation, where

• Load balancing is performed by ZOLTAN library
• Both coarse and fine mesh problems are solved by the parallel frontal 

solver
• Mesh is refined fully in parallel
Future work will include:
• Implementation of parallel version of 3D code
• Extending the code to be able to solve 3D Helmholtz and                

time-harmonic Maxwell equations
• Parallel version of two grid solver
• Challenging applications:

Simulation of EM waves in the human head
Calculation of the Radar Cross-sections (3D scattering problems)
Simulation of Logging While Drilling EM measuring devices

CONCLUSIONS


