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Abstract – Layered structures with both negative and positive values of the coefficient of the cubic 

susceptibility of the nonlinear medium are investigated. The considered layers have different 

properties. Nonlinear layers with a negative value of the cubic susceptibility show decanalizing 

properties, whereas layers with a positive value of the cubic susceptibility show canalizing properties. 

The investigations were restricted to the third-harmonic generation. This paper presents the results of 

the numerical analysis characterizing the scattering and generation properties of the considered 

structures, taking into account the effect of weak fields at multiple frequencies. 
 

 

Introduction  
 

In the frequency domain, the resonant scattering and generation properties of nonlinear 

structures are determined by the proximity of the excitation frequencies of the nonlinear 

structures to the complex eigen-frequencies of the corresponding homogeneous linear 

spectral problems with the induced nonlinear dielectric permeability of the medium. The 

analytical continuation of these linear problems into the region of complex values of the 

frequency parameter allowed us to switch to the analysis of spectral problems [1]-[4]. We 

obtained a variety of numerical results that describe valuable properties of the nonlinear 

permittivity of the layers as well as their scattering and generation characteristics. By 

introducing a variable that describes the ratio of the Q-factor of eigen-oscillations at the 

excitation and generation frequencies, we show the following. For both canalizing and 

decanalizing nonlinear layers, an increase of the generated energy in the higher harmonics is 

accompanied by a monotonic decrease of the relative Q-factor of the eigen-oscillations. 

 

Technique  

 

The problem of resonant scattering and generation of harmonic oscillations by a nonlinear, 

nonmagnetic, isotropic, linearly E-polarized  Τ0,0,xEE ,  Tzy HH ,,0H , cubically 

polarizable     Τ0,0,
NLNL

xPP , layered dielectric structure is investigated in a self-

consistent formulation (see Fig. 1). The time dependency has the form  tinexp , 

,2,1n  

The variables tzyx ,,,  denote dimensionless spatial-temporal coordinates such that the 

thickness of the layer is equal to 4 ;  ncnn 2  are dimensionless frequencies; 

n  denote the lengths of the incident waves; c   is the dimensionless circular frequency 

and c  is a dimensionless parameter, the absolute value of which is equal to the velocity of 

light within the medium containing the layer, 0Im c . 

The incidence of a packet of plane waves onto the layer at the angles 

 3

1
2:,




nnnn      and   with   respect   to   the   amplitudes    3

1

incinc,
nnn ba     at  the 
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Fig. 1. The nonlinear layered dielectric structure. 

 

 

frequencies  3

1nn  is considered, where the excitation field consists of a strong field at the 

frequency   (generating a field at the triple frequency) and of weak fields at the frequencies 

2  and 3  (influencing on the process of generation of the third harmonic). 

In such a situation, taking into account Kleinman‘s rule (i.e. the equality of all the 

susceptibility tensor components  3

xxxx  at the multiple frequencies [5]), the problem under 

consideration can be described by a system of nonlinear boundary value problems [1]-[3]  
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together with the following generalized boundary conditions:  
 

(C1)      yiznUzynE nx   exp;,; , the quasi-homogeneity condition w.r.t. y ,  

(С2)   nn  or   n , the condition of phase synchronism of waves [2], 

(С3)  zyn ,;tg E  and  zyn ,;tg H  are continuous at the boundary layers n , 

(С4)        



 2,2exp,;
scat/gen

scat/gen

scat/gen 













 zzyi
b

a
zynE nn

n

n

x  , for 0Im  n  

and 0Re  n , the radiation condition w.r.t. the scattered and generated fields. 
 

Here: 
22222 zy   , 

k

n  – Kronecker’s symbol,  zyn ,;tg E  and 

 zyn ,;tg H  – the tangential components of the intensity vectors of the full electromagnetic 

fields E  and H ,   22
  nn n   and    nn n sin  – the transverse and longitudinal 

propagation constants of the nonlinear structure,       2,and;2,1 NLL  zz nn , 
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    zxx

1L 41   ,      zz xxxx

33   – the function of cubic susceptibility of the nonlinear 

medium,  1

xx  and  3

xxxx  – components of the susceptibility tensors of the nonlinear medium. 

The sought complex Fourier amplitudes of the total scattered and generated fields in the 

problem (1), (C1)-(C4) at the multiple frequencies  3

1nn  can be represented in the form  
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Taking into consideration (2), the nonlinear system (1), (С1)-(С4) is equivalent to a 

system (see [1-3]) of nonlinear boundary-value problems of Sturm-Liouville type  
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and also to a system of one-dimensional nonlinear integral equations w.r.t. the unknown 

functions     2,2; 2  LnU ,  
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Here       2exp; incinc

 ziaznU nn ,       2exp; incinc
 zibznU nn , 3,2,1n .  

The solution of the problem (1), (С1)-(С4), represented in (2), can be obtained from (3) 

or (4) using the formulas   scat/geninc2;  nn aanU  ,   scat/geninc2;  nn bbnU  , 3,2,1n . 

According to [2-3], the application of suitable quadrature rules to the system (4) leads to 

a system of complex-valued nonlinear algebraic equations of the second kind  
 

       incinc

23332132 ,,,,   nnnnnn UUUUCUUCUUUUBI  , 3,2,1n    (5) 
 

where      N

ll

N

lln znUnU
11

;


 U  – the vectors of the unknown approximate values 

of the solution,    2......2: 11


 Nl

N

ll zzzz  – a discrete set on interpolation 

nodes, 
N

mllm 1,}{  I  – the identity matrix,   32 ,, UUUBn  – nonlinear matrices, 

  32 ,UUC ,   23 ,UUC  – the vectors of the right-hand sides determined by the choice of 

the quadrature rule and    N

llnnn zia
1

incinc

2exp


 U ,    N

llnnn zib
1

incinc
2exp


 U  

– the vectors induced by the incident wave packets. A solution of (6) can be found iteratively 

by the help of a block Jacobi method, where at each step a system of linearized algebraic 

equations is solved. 

The analytic continuation of the linearized nonlinear problems into the region of 

complex values of the frequency parameter allows us to switch to the analysis of spectral 

problems [1-4]. The problem of finding the eigen-frequencies n  and the eigen-fields 
n

U  

reads as follows:  
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                                              (a)                                                                                   (b) 
 

Fig. 2. Relative part of energy generated in the third harmonic for 01.0  (a) and for 01.0  (b). 
 

 

    
                                         (a)                                                                                           (b) 
 

Fig. 3. Curves at 00  (a) and 060  (b): 1  375.0inc  , 2  incgen 33   ; 

3.1    L
1Re  , 3.2    L

1Im , 4.1    L
3Re  , 4.2    L

3Im  for 0 ; 5.1    NL
1Re  , 

5.2    NL
1Im , 6.1  

  NL

3
Re  , 6.2    NL

3Im  for 01.0  (a) and for 01.0  (b). 
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                 (6) 

 

where  nnn Η , at inc  , 3,2,1n , n  are the sets of eigen-frequencies and 

nΗ  denote two-sheeted Riemann surfaces (see [2-3]).  

 

Results  

 

Consider a decanalizing (   0z ) and a canalizing (   0z ) nonlinear dielectric structure 

with the parameters    16L z ,   01.0z , 5.0 . The excitation of the nonlinear layer 

takes place from above by only one strong top electromagnetic field at the basic frequency, 

i.e.,  0,0,0 inc

3

inc

2

inc   aaa ,  0,0,0 inc

3

inc

2

inc   bbb  and 375.0inc  . 

We define by 
2

scat/gen
2

scat/gen

 nnn baW   the total energy of the scattered and generated 

fields  at  the  frequencies  n   and  consider  the  quantity   WW3   which characterizes the 
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                                              (a)                                                                                     (b) 
 

Fig. 4. The relative Q-factor, curves 13  
31  QQ at 375.0inc  ,  NL

nn   , 3,1n  for 00 , 

01.0  (a) and for 060 , 01.0  (b). 

 

 

portion of energy generated in the third harmonic in comparison to the energy scattered in the 

first harmonic, see Fig. 2. 

Denote by     nnn
Q  Im2Re  the Q-factor of the eigen-oscillations of the 

spectral problem (6) at the eigen-frequencies  nnn Η , see [2], [4] and Fig. 3. In the 

numerical experiments, the parameter 
3113  QQQ   of the relative Q-factor of the eigen-

oscillations is of particular interest, see Fig. 4. For an increasing amplitude of the exciting 

field, an increase of the generated energy in the higher harmonics is accompanied by a 

monotonic decrease of the relative Q-factor of the eigen-oscillations, see Figs. 3 and 4. 

 

Conclusion  

 

This paper presents the results of numerical computations characterizing the scattering and 

generation properties of the considered structures. They demonstrate the possibility of 

controlling the scattering and generating properties of a nonlinear structure by means of the 

intensities of the excitation fields. They also indicate the possibility of designing a frequency 

multiplier and other electrodynamic devices containing nonlinear dielectrics with controllable 

permittivity.  
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