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Abstract –  Nonlinear dielectrics with controllable permittivity are the subject of intense studies and have 

begun to find broad applications in device technology and electronics. We develop a model of resonance 

scattering and generation of waves on an isotropic, nonmagnetic, nonlinear, layered dielectric structure 

excited by a packet of plane waves in the resonance frequency range in a self-consistent formulation. 

Various effects caused by the nonlinearity of the structure are investigated using analytical and numerical 

techniques. 
 

Introduction  
 

The elaboration of mathematical models of wave propagation in nonlinear media is a key issue in 

multiphysics modeling of microwave processing of materials. We investigate scattering and 

generation of waves for an isotropic, nonmagnetic, nonlinear, layered dielectric structure in the 

resonance frequency range excited by a packet of plane waves [1–3]. Here, both the radio [4] and 

optical [5] frequency ranges are of interest. Our mathematical model reduces to a system of 

nonlinear boundary value problems (BVPs) of the Sturm-Liouville type or, equivalently, to a 

system of nonlinear Fredholm integral equations (IEs). Here, for the first time, the solution to 

BVPs is obtained rigorously in a self-consistent formulation and without using approximations of 

the given field, slowly varying amplitudes etc. [4, 5]. The analytical continuation of the complex 

frequency region allows us to turn to the analysis of spectral problems and to reveal various 

resonance phenomena related to the nonlinearity of the structure. We present and discuss results 

of calculations of the scattered field, taking into account the third harmonic generated by the 

nonlinear layer. We show that the portion of total energy generated in the third harmonic may 

reach up to 36%, which significantly exceeds the known results [5].  
 

Technique  
 

Consider layered nonlinear media in the region 2:R,, 3Τ
zzyxr , 0  (cf. Fig. 1). 

 
Fig. 1. Nonlinear dielectric layered structure 

It is assumed that the vector of polarization moment P  can be expanded as follows:  
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where 1 , 2 , 3  are the media susceptibility tensors. In the case of isotropic media, the 

quadratic term disappears. It is convenient to split P  into its linear and nonlinear parts 
NL1NLL : PEPPP . Similarly, with 14I  and ED

L , the electric 

displacement field can be decomposed as  
NLL 4 PDD .                                                       (1) 

Furthermore, if the media under consideration are non-magnetic, isotropic, and transversely 

inhomogeneous with respect to z , i.e. I
L  with a scalar, possibly complex-valued function 

zLL ; if the wave is linearly E-polarized, i.e.  
Τ

0,0,xEE , 
Τ

,,0 zy HHH ,                                         (2) 

and if the electric field E  is homogeneous with respect to the coordinate x , i.e. 
Τ

0,0,,;, zytEtr xE , then Maxwell’s equations together with (1) reduce to  

0
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2

2
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L
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PEE
tctc

,                                              (3) 

where 22222 zy . A stationary electromagnetic wave with oscillation frequency 

0  propagating in a nonlinear dielectric structure gives rise to a field containing all frequency 

harmonics. Therefore, representing NL,PE  via Fourier series ( NL,PEF ) , 

Z

exp,
2

1
,

s

tsist rFrF , 

we obtain from (3) an infinite system of coupled equations with respect to the Fourier 

amplitudes. In the case of a three-component E-polarized electromagnetic field (cf. (2)) this 

system reduces to a system of scalar equations with respect to xE : 
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We assume that the main contribution to the nonlinearity is introduced by the term s,NL
rP  

(cf. [1–3]), and we take only the lowest-order terms in the Taylor series expansion of the non-

linear part 
ΤNLNL 0,0,,, sPs x rrP  of the polarization vector in the vicinity of the zero 

value of the electric field intensity. In this case, the only non-trivial component of the 

polarization vector is determined by the susceptibility tensor 3 , and we have that  
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where the symbol  means that higher-order terms are neglected. 
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 If we study nonlinear effects involving the waves at the first three frequency components 

of xE  only, it is possible to restrict the system (4), (5) to three equations. Using Kleinman’s rule 

(i.e., equating all coefficients 3

xxxx  at multiple frequencies, [5]), we obtain the system  
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,3,,2,,,,,,
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where 
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with zz xxxx

33 , and nm  is the Kronecker delta. In addition, the following conditions are 

met:  

(C1) yiznUzynE nx exp;,; , (the quasi-homogeneity condition with respect to y ), 

(С2) nn , (the condition of phase synchronism of waves), 

(С3) zyn ,;tgE  and zyn ,;tgH  are continuous at the boundary layers n ,  

(С4) 2,2exp,;
scat

scat

scat zzyi
b

a
zynE nn

n

n

x  , (the radiation condition). 

Where nn n sin  and 
22

nn n , with 0Re n  and 0Im n . Obviously 

(C2) yields n . Condition (C4) provides [6] physically consistent behavior of the energy 

scattering characteristics and guarantees absence of waves coming from infinity ( z ). The 

desired solution is of the form ( 3,2,1n ): 

.2,2exp
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zzyib
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      (8) 

Substituting this representation into (6) results in a system of semilinear BVPs of the 

Sturm–Liouville type [1–3], 3,2,1n :  
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By elementary calculations, from (C3) we obtain the boundary conditions for (9) ( 3,2,1n ): 

.22;2;,02;2; inc

nnnn ainU
dz

d
nUinU

dz

d
nUi    (10) 

Problem (6), (C1)–(C4) can also be reduced to finding solutions of one-dimensional 

nonlinear IEs (cf. [1–3], [6]) with respect to 2,2; 2LnU , 3,2,1n : 
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Here 2exp; incinc ziaznU nn . Application of suitable quadrature rules to (11) 

leads to a system of complex-valued nonlinear algebraic equations  

,3,2,1,,,,, inc

23332132 nnnnnn UUUCUUCUUUUBI    (12) 

where we use a discrete set 
N

llz
1
 of nodes such that 2......2 21 Nl zzzz . 

N

ll

N

lln znUnU
11

;:U , 
N

llnnn zia
1

incinc 2expU , 
N

mlml 1,}{I  is the 

identity matrix, 32 ,, UUUBn , 32 ,UUC  and 23 ,UUC  are the matrices and the 

right-hand side vector, respectively, generated by the quadrature method. A solution of (12) can 

be found iteratively, where at each step a system of linearized algebraic equations is solved.  

The analytic continuation of these linearized nonlinear problems into the region of 

complex values of the frequency parameter allows us to switch to the analysis of spectral 

problems [3]. Then we obtain in a similar manner a set of independent systems of linear 

algebraic equations depending nonlinearly on the spectral parameter: 0UBI
nnn , 

where nnn Η , at inc, 3,2,1n , n  are the sets of eigenfrequencies and nΗ  

denotes two-sheet Riemann surfaces (see [3]). The spectral problem of finding eigenfrequencies 

n  and eigenfields 
n

U reduces to the following equations ( 3,2,1n ): 

;

,0det

0UBI

BI

nnn

nnnnf
  

.Η;inc

nnn

              (13) 

 

Results  

 

Consider excitation of the nonlinear structure by a strong electromagnetic field at the basic 

frequency only, i.e. with 0,0,0 inc

3

inc

2

inc aaa . In this case, the number of equations in the 

systems in (6) can be reduced to two by deleting the second equations and setting 02,rxE . 

Also, the permittivity (7) of the nonlinear layer simplifies, because here 0;2 zU . Thus, we 

investigate problem (6), (7) at 3,1n  and 0;2 zU , as in [2, 3], and consider a nonlinear 

dielectric structure with the parameters 16L z , 01.0z , and 5.0 ; the excitation 

frequency is 375.0 . 

Let 
2

scat
2

scat

nnn baW  denote the total energy of the scattered field at frequency n , 

3,1n . Consequently, W  is the total energy scattered at frequency  and 3W  is the total 

energy generated at frequency 3 . The ratio WW3  characterizes the relative part of the 
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energy generated in the third harmonic at the value inca ; see Fig. 2(a). In particular, 

0.35583 WW  for 14inca  and 066 ; i.e., 3W  generated in the third harmonic 

constitutes 35.58%  of the energy W  (see [3]). The function Im  in Figs. 2(b) (curve 5) and 

3(b) characterizes energy losses in the nonlinear layer (w.r.t. excitation frequency ) spent on 

generation of electromagnetic field of the third harmonic (at frequency 3 ); Re  is shown in 

Fig. 3(a). Note that at the frequency 3  the permittivity 3  is real; see Fig. 2(b) (curves 6, 7). 

Scattering and generation properties of the nonlinear structure are described by means of the 

reflection and transmission/generation coefficients 
22

incscat

nn aaR , 
22

incscat

nn abT ; see 

Fig. 4(a), problem (12). Here we present results corresponding to the case of energy channeling 

[3], cf. the curve 1 where 0R  at 
060 . The results of calculations are validated 

numerically with the help of the energy balance equation 133 TRTR . Solutions (13) 

are shown in Fig. 4(b). Comparing Figs. 4 (a) and (b) we see that a local maximum in generated 

energy at the tripled frequency (curves 3 – 3R , 4 – 3T , 5 – WW3 ) corresponds to 

characteristic behavior of the curve 2.5  – 
NL

1Im  in a vicinity of its local minimum. 

               
                                               (a)                                                                                        (b) 
 

Fig. 2. (a) WW3  for: 1 – 1inca , 2  – 93.9inca , 3  – 14inca , 4  – 19inca ;  

(b) Curves at 14inca  and 
066 : 1 – 

L
, 2  – zU ; , 3  – zU ;3 , 4  – Re ,  

5  – Im , 6  – 3Re , 7  – 0Im 3 . 

                 
                                               (a)                                                                                        (b) 
 

Fig. 3. The nonlinear permittivity at 
060 : (а) za ,Re inc

; (b) za ,Im inc
. 
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                                               (a)                                                                                        (b) 
 

Fig. 4. The curves at 
060 : (a) 1 – R , 2  – T , 3  – 3R , 4 – 3T , 5 – WW3 ; (b) 1 – 

inc
, 

2  – 
incgen 3 , the curves for 0 : 1.3  – 

L

1Re , 2.3  – 
L

1Im , 1.4  – 
L

3Re , 2.4  –

L

3Im ; and for 01.0 : 1.5  – 
NL

1Re , 2.5  – 
NL

1Im , 1.6  – 
NL

3Re , 2.6  – 
NL

3Im . 

 

 

Conclusion  

 

Based on a model that utilizes analytical continuation of the complex frequency region, we have 

discovered resonance phenomena related to medium nonlinearity involving the waves at the first 

three frequency components. In numerical experiments we have reached intensities of the 

excitation field such that the relative portion of total energy generated in the third harmonic is up 

to 36%, which exceeds the known data [5] by a factor of about 3.6. The results indicate the 

possibility of designing a frequency multiplier and nonlinear dielectrics with controllable 

permittivity. The transformation of the frequency and angular spectra, and the rapid control of 

amplitude and phase of the waves form the basis of a broad class of technical systems [7]. 
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