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The fascination of multiphase flow



GOVERNING EQUATIONS: NAVIER-STOKES
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Notice new term with surface tension σ .
Both fluids are considered incompressible

0 .∇⋅ =u



GOVERNING EQUATIONS: NAVIER-STOKES

Incompressibility is chosen because

- Most applications involve low Ma number flow
- Even at Ma = 0.3 compressibility effects are not 
the most important issue (e.g. in atomization
problems)
- Simulation of compressible flows is technically
much more difficult.



GOVERNING EQUATIONS: JUMP CONDITIONS

Another way to formulate the equations is to introduce
jump conditions

[ ]X Is the jump of X beween fluids 1 and 2. 

[ ] 1 2X X X= −

Jump conditions:

[ ] 0=ua) velocity

( )2p µ σ σ+ ⋅ = + ∇⎡ ⎤⎣ ⎦1 D n nb) Momentum flux:



GOVERNING EQUATIONS: KINEMATICS

The interface S follows the flow. Its normal velocity is

.SV = ⋅u n

Another useful formulation involves the characteristic
function χ.

0t χ χ∂ + ⋅∇ =u

This equation inspires both VOF and level-set methods

If χ =1 in phase 1 and χ =0 in phase 2: VOF  , if  
χ = distance, Level Set. VOF and level set share a lot of 
characteristics.



DEFINITION OF THE VOF METHOD

True interface

Cij = Volume of « fluid » in cell ij



THE SIMPLEST VOF METHOD

Let χ =1 in phase 1 and χ =0 in phase 2. Then solve

0t χ χ∂ + ⋅∇ =u

using standard hyperbolic equations methods (e.g. TVD, 
FCT, ENO, Artificially compressible). 

References: JADIM code (Toulouse), Issa and Ubbink. 

Advantage: easy to program. Problems: interface thickens
in time, lack of accuracy



POSSIBLE GRIDS

regular general, unstructured

VOF methods are not limited to regular grids, although treatment is much
simpler and more accurate on regular grids. 



RECONSTRUCTION

Standard VOF methods proceed in two steps: reconstruction
and propagation. 

(a) is a « first order », Simple Line Interface Construction, (SLIC). 
Its accuracy is similar to that obtained on unstructured grids.
(b) is a « second order » Piecewise Linear Interface Construction (PLIC) 



RECONSTRUCTION

The « VOF bag problem » (after Markus Meier).
All that is known is how much mass there is in each cell. 
In case (a) the interface is easier to reconstruct than in case (b)



RECONSTRUCTION

Steps in reconstruction: 
1. Determination of n.

• Parker and Young (P.-.Y.) or « finite difference » method. 
• Puckett and Pilliod or ELVIRA least-squares method.
• Scardovelli ’s linear fit method. 

2. Position the interface once n is found and Cij given.  



DETERMINATION OF N: P.-Y. METHOD

Finite difference method: corner values
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Finite difference method: cell center values
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DETERMINATION OF N: P.-Y. METHOD

Finite differences fail to obtain n exactly for a straight line
in some cases such as the straight line below. 



DETERMINATION OF N: ELVIRA

ELVIRA is interesting because it is the first truly second-
order method: it approximates straight lines exactly. 

It works by a least-squares fit to the interface normal



RECONSTRUCTION

Three cases exist for an interface in a 2D cell. Once interface
orientation n is found , the interface position may be found. 
The equation of the interface is m. x = α .



RECONSTRUCTION

(patented ?) 



PROPAGATION

First manipulate the continuous form of the equations
1
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Naive method



Naive method

n
xφGeometrical definition of the discrete flux

This is the « Eulerian » method. (as opposed to « Lagrangian »)



Naive method

Problems:

•There is no propagation into the diagonal cell: the method
fails trivially for a uniform velocity field and straight 
interface. 

•There is no guarantee that after the two steps the result is
bracketed between 0 and 1  ( 0 < C < 1) . Without this, 
when C >1, one has to resort to arbitrary removal of mass. 



ALTERNATING DIRECTIONS METHOD

The new method alternates directions. Here, 
first x-propagation the y-propagation



ALTERNATING DIRECTIONS  METHOD
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Does not preserve 0 < C < 1.  



Kothe/Rider propagation method

1) Eulerian Implicit step
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Leads to better mass conservation Does not preserve 0 < C < 1.  



AREA PRESERVING MAPPING

Lagrangian explicit + eulerian implicit is an area-preserving
linear mapping of the plane! 

x ax b
y cy d

→ +
→ +

where the Jacobian of the transformation is J = ac = 1. 



AREA PRESERVING MAPPING

The first transform maps the top red rectangle on the bottom
red rectangle. The velocities of the edges are node
velocities. 



AREA PRESERVING MAPPING

Lagrangian explicit propagation
transforms the central square 
into the red rectangle. The
original figure is stretched like
Arnold ’s cat, but its area is
preserved. Moreover, the
volume fraction remains 0 < C 
<1 since all steps are now
geometrical transformations, 
and all areas may be computed
explicitly. 



Defects of VOF methods: 

-- flotsam and jetsam (1960)
-- wisps (1990)
-- no defect (2003)



Zalesak ’s test after ten solid body rotations. 100 x 100 grid
(a) ELVIRA (solid) and linear fit (dashed)  reconstructions
(b) quadratic (solid) and quadratic with continuity (dashed).
Rotation is divergence-free, so all propagation methods give similar
results. 

(a) (b)

TESTS



TESTS

Kothe and Rider’s spiralling, stretching and reversing flow. 
Stream function: 

2 2sin ( )sin ( ) cos tx y
T
ππ π ⎛ ⎞Ψ = ⎜ ⎟

⎝ ⎠



Naive propagation method
New method with
various recontructions

New developments: hybrid methods: VOF + LS,
markers + VOF, LS + markers.

See wisps



QuickTime™ et un
décompresseur Cinepak

sont requis pour visionner cette image.

Method by Aulisa, Manservisi, Scardovelli (markers+VOF)



SURFACE TENSION

Treatment of surface tension by Continuous Surface Force
(« CSF » method, Brackbill, Kothe and Zemach JCP 1993)

h h
S Cσκ δ σκ≈ ∇n

Many methods for κ . Simplest:

h
h

h
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κ
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SURFACE TENSION

It is necessary to smooth the C function

Filtered C functionRaw C function



SURFACE TENSION

Elementary smoothing:

( )1, 1, , 1 , 1
1 1
2 8ij ij i j i j i j i jC C C C C C+ − + −= + + + +%

Kernel smoothing:

( ) ( ) ( )C C K dε= −∫x y x y y%



SURFACE TENSION

Typical kernel

42

2( ) ( ) 1 rK r Aε ε
ε

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
for r < ε

The constant A is chosen to normalize the discrete
approximation. 



SURFACE TENSION

Discrete Kernel
implementation

( )ij ij lm lm
lm

C K x x Cε= −∑%



SURFACE TENSION

Verification of 
Laplace’s law for 
a static bubble : 

R ∆P / σ = 1  .



SURFACE TENSION

Spurious currents around a 
static bubble.

Leads to difficulties when there is both a large density ratio 
and a large surface tension as it is the case for air-water interfaces



SURFACE TENSION

The spurious current problem arises because of the discontinuity of p. 
Similar problems arise because of the discontinuity of ρg (when a free 
surface with gravity is not aligned with the grid), and also because of 
the discontinuity of µD.

Cut cell methods attempt better approximation of the various
balances inside the cell. 

This requires the accurate knowledge of the position of B and E, 
which may be done by abandoning VOF and reverting to marker 
particles.



SURFACE TENSION

markers chain : advect each marker. 



SURFACE TENSION

An elementary way to 
distribute the surface tension
force on the grid (Tryggvason’s 
method)



CUT CELL/MARKER METHODS

Another point of view involves looking at the momentum balance:

0
C F

cap
A D

F p dl p dl⋅ + − =∫ ∫x

Exact balance equations:

1 2 /p p Rσ− =

But if 1i ip p −= on figure then the discrete balance equation is not satisfied:

1 0cap i iF p p −⋅ + − ≠x



CUT CELL/MARKER METHODS

Cut cell methods try to improve the approximation of the momentum
balance:

1, 1, 1 , , 1

C F

cap cap i j i j i j i j
A D

F p dl p dl F p AB p BC p DE p EF− − + +⋅ + − ≈ ⋅ + + + +∫ ∫x x



CUT CELL/MARKER METHODS vs Level Set/VOF 

Advantages:

• great accuracy
• control when reconnection occurs

Drawbacks

• complex to code in 3D (use computational geometry?).
• no automatic reconnection
• no exact mass conservation. 



VISCOSITY AND DENSITY

Viscosity and density jumps are treated by averaging in 
mixed cells of volume fraction 0<C<1. The arithmetic
mean is

1 2(1 )C Cµ µ µ= + −

The harmonic mean is

1 2

1 1C C
µ µ µ

−
= +

Which mean is better depends on flow geometry



VALIDATION OF VOF/MARKER METHODS

Comparison of analytical and numerical solutions for
capillary waves, box size 64 x 64 VOF method.



VALIDATION

Mode 2 oscillation of a bubble (marker cut-cell method)



VALIDATION

Reconnection (VOF, by Denis Gueyffier) 



VALIDATION

Experiment by 
Peregrine. 

Simulation: VOF 
method, D. Gueyffier



VALIDATION

Right: rising bubble in oil, 
experiment.

Left: Simulation using the
VOF method



VALIDATION

Code/linear theory 
comparison

Better to use 
harmonic mean of 
viscosity in mixed 
cells (green curve)

Kelvin-Helmholtz instability



WHAT CAN THIS BE USED FOR ? 

• Atomization
• Droplet impact
• Cavitation bubbles
• Bursting bubbles



ATOMIZATION

Coflowing jet atomization. Standard representation. 



ATOMIZATION

Lasheras, Hopfinger,Villermaux, Raynal, Cartellier
…, (San Diego, Grenoble and  Marseille)



ATOMISATION

Droplet deformation in a 2D shear layer. 



Diesel
engine 
(no coaxial
gas flow)

Entry
and exit
conditions. 

Vinj = 300 m.s-1

rinj = 0.1 mm
ρgaz = 20 kg.m-3

2 x 8 mm 
(1024 x 4096)



Laminar flow
upstream

With upstream
“turbulence”





ATOMISATION

Parameters: 
• 512 x 1024 grid
• = 20 kg / m3

• =   2 kg  / m3

• UG = 100  m/s
• M = 2.5

r L

r G

• R = 400 microns
• µL = 0.002 kg/m/s
• µG = 0.0001 kg/m/s
• UL = 20 m/s
• σ = 0.030 kg/s2

Co-flowing atomizer



ATOMISATION



Same with turbulent 
entry (Enrique Lopes-
Pages) 



Droplets’ distribution function in coaxial jets

Laminar Turbulent

dN

( )md 610−

dN

( )md 610−



1283 simulations 

3D VOF code, 
space periodic
simulation. Diesel
engine  conditions.



A rare event:
Breakup after sheet
puncturing

Show movie



- 256x128x128 (2x1x1 mm) (16 procs 16x128x128 - 1 week)
- injection : 200 m/s
- t step : 0.25 ns
- density ratio diesel/air : 8.5



3D
(Anthony

Leboissetier)



Conclusions

Comparaison with linear theory validates the code. 

• The turbulence level on entry is important.
• Droplet sizes are exponentially distributed. 
• A 2D mechanism for filament formation was found.
• Still debate on the 3D mechanism



Forecast

Present simulations in spatial 2D are resolved up to               
512 x 2048. An equivalent resolution in 3D requires
512 x 512 x 2048 simulations. One can perform 128 x 128 x 
256 on a  16-proc. PIII cluster. An additional factor of about 
128 in CPU is necessary. 

-It is likely that the 3D problem will be sufficiently resolved
circa 2010.

-This forecast was published in 2001 (Scardovelli and SZ) and
at the same time it was predicted that the droplet splashing
problem would be solved in 2005 … well let us see.



DROPLET IMPACT

D
Simulation setup

Liquid U

gas

Same liquid h



DROPLET IMPACT

Early-forming jets are thin.

Perhaps an explanation to the prompt splash: (droplets break early on 
rough surfaces) phenomenon ? 



Navier-Stokes equations, two phases.

Both liquid and gas are simulated.

Example: 2 mm glycerine droplet at 6m/s

Liquid and gas are incompressible.





DROPLET IMPACT

Pressure field



DROPLET IMPACT

Axisymmetric. 

Low Re Case

Re=100
We=8000

QuickTime™ et un
décompresseur Codec YUV420

sont requis pour visionner cette image.



High Re Case

Re=1000
We=8000QuickTime™ et un

décompresseur Codec YUV420
sont requis pour visionner cette image.



DROPLET IMPACT

What happens in 3D ? 

Look from above



Why are perturbations amplified ? 



DROPLET IMPACT

Γ

Standing in elevator
accelerated up
Feel « normal » gravity down
Stable

Γ

Standing in elevator
Accelerated down
Feel atttracted to roof
Effective gravity up: Unstable

Conclusion: Interface unstable when acceleration from light to heavy. 





DROPLET IMPACT

Select a numerically « nice » case:

Not too viscous (no splashing)
Not too large Re (too unstable)

A glycerine , 4 mm droplet falling at 2 m/s

256² Simulation ( 128 grid points/diameter )

Repeat at 128² : same result



Re = 450 , 
We = 533, 
D/e = 4, 

last frame
Ut/D = 1,81 

QuickTime™ et un
décompresseur Cinepak

sont requis pour visionner cette image.



DROPLET IMPACT

Low
resolution

Re = 450 , 
We = 533, 
D/e = 4, 

QuickTime™ et un
décompresseur Cinepak

sont requis pour visionner cette image.



High resolution Low resolution



DROPLET IMPACT



DROPLET IMPACT

3D case, large resolution

2563 Simulation ( 128 grid points/diameter )

Relatively small-amplitude initial azimuthal undulation

Notice reversal of curvature

Show 3D movie





DROPLET IMPACT

Linear rate of growth in time (D. Gueyffier & SZ 1998, D. 
Gueyffier 2000)



DROPLET IMPACT

Relatively larger-amplitude initial azimuthal undulation

Notice 

-lift-up of fingers

-no adaptation of wavelength

Show 3D movie



Thinner layer (D/h = 8) and larger horizontal extent
(L_x/D = 4)

QuickTime™ et un
décompresseur Cinepak

sont requis pour visionner cette image.



DROPLET IMPACT

The thinner layer creates a thinner corolla which now breaks ! Show 3D movie



DROPLET IMPACT

There is less uplift by the wind, so the corolla
and the fingers are definitely drooping down.





Conclusion: 2005 is not finished !



CAVITATION BUBBLES

Bubbles tend to collapse asymetrically
- near walls
- in bubble clouds (see recent sonofusion controversy)

Collapsing bubble Image bubble



Collapsing bubbles form jets. 

Lauterborn ’s experiment:



Use control points to extrapolate velocity field: 



Free axisymmetric oscillations of a bubble:



Comparison
experiment/simul
ation



There is less energy in the real system after rebound:



Breaking bubbles

McIntyre

Simulation
(L. Duchemin)





-- The marker method allows very accurate solutions 
of the free surface problem with viscosity. 

- A critical ratio of distance to compression exists for jet
formation near a wall. Surface tension effects remain to 
be added. 

- Simulations of Bubble breaking phenomena show good
agreement with experiment. A regime of high-speed, thin
jets is found. 



LATTICE BOLTZMANN METHOD

Lattice Boltzmann Method (LBM) 
Populations are averages, real numbers between 0 and 1. 

N1(x + ci ,t +1) - N1 (x, t) = N2 (x, t)N4 (x, t) - N1(x,t)N3(x,t )

With three other equations for N2,3 and 4



LATTICE BOLTZMANN METHOD

In general, the lattice Boltzmann populations obey the equation:

( , 1) ( , ) ( ( , ))i i i iN c t N t t+ + − = Ωx x N x

( ( , ))i i tΩ = Ω N x is a complex collision operator. Where

Equations remain complex. A simpler method is obtained when 
The right-hand side (the collision operator) is linearized



LATTICE BOLTZMANN METHOD

Advantages of the LBM

• Simple formulation
• Easy parallelisation
• Automatic phase separation
• Automatic reconnection
• Exact mass and momentum conservation



LATTICE BOLTZMANN METHOD

Applications of the LBM: 

• Multiphase flow in porous media (Rothman, Adler). 
• Bubbly flow (e.g work of Sundaresan, collaboration with 
Tryggvason).
• A commercial code  (Powerflow of EXA corporation) exists using an 
extension of the LBM, mostly marketed to the automotive industry. 



LATTICE BOLTZMANN METHOD

How to separate phases in a particle method? 

•Introduce repulsive forces between A and B particles, or 
attractive forces between A and A particles.

Models by 

Rothman and Keller  1988
Chen et al. 1989



LATTICE BOLTZMANN METHOD

Equations satisfied by the lattice Boltzmann method
found by Chapman-Enskog expansion:

Mass conservation leads to : 

( ) 0t ρ ρ∂ + ∇ ⋅ =u

(The LBM is compressible !)



LATTICE BOLTZMANN METHOD

Momentum conservation leads to : 

( )( ) ( ) ,t S Spρ ρ σκδ σ δ ρ∂ + ∇ ⋅ ⊗ = −∇ + ∇ ⋅ + + ∇ +u u u S n g

...j i
ij

i j

u uS
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ρ ρµ
ρ

⎛ ⎞∂ ∂
= + +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

Where

Compare to the exact (compressible) equation:

( )2
j i
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u uS
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µ µ δ
⎛ ⎞∂ ∂

= + + ∇ ⋅⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
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LATTICE BOLTZMANN METHOD

The jump conditions are not satisfied: true jump conditions (2D, constant σ)

[ ] 0=ua) velocity

( )2p µ σ+ ⋅ =⎡ ⎤⎣ ⎦1 D n nb) Momentum flux:

LBM jump conditions

[ ] 0⋅ =u na) Normal velocity

[ ] 0ρ ⋅ =u tb) Tangential velocity

( )p σ+ ⋅ =⎡ ⎤⎣ ⎦1 S n nc) Momentum flux:



LATTICE BOLTZMANN METHOD

Double Poiseuille flow (Irina Ginzburg and Pierre Adler, unpublished)
shows that ρu is continuous, not u. 



LATTICE BOLTZMANN METHOD

As a result the LBM is valid/useful only in special cases

-Re = 0
-Equal density
-Free surface

Examples: bubbles, flow in porous media.



Two-phase LBM : Flow in Porous Media

Drainage

Stanford
Rock Physics &
Borehole Geophysics

QuickTime™ et un
décompresseur Vidéo 1 Microsoft

sont requis pour visionner cette image.

Simulation, Youngseuk Keehm



Two-phase LBM : Flow in Porous Media

ibition

Stanford
Rock Physics &
Borehole Geophysics

QuickTime™ et un
décompresseur Vidéo 1 Microsoft

sont requis pour visionner cette image.



THE END !



LATTICE BOLTZMANN METHOD

LATTICE GAS CELLULAR AUTOMATA:HISTORY

•Kinetic theory models
•Statistical Physics Models
•Cellular Automata
•Hexagonal FHP gas
•Lattice Boltzmann Method
•Fixed point arithmetic Lattice Boltzmann Methods



LATTICE BOLTZMANN METHOD

Simplest lattice-gas cellular automaton model: the HPP

4 particles per node
One in each directions. 

Particles collide and jump from cell to cell.
Momentum and particle number are conserved.



Hexagonal Frisch-Hasslacher-
Pomeau (FHP) model:

6 particle velocities, 1 or 0 
particle in each state.

Collision rules ensure conservation of 
mass and momentum and lead to 
large
scale equations ressembling
Navier-Stokes. 



Model later extended to :

•3 Dimensions
•Two phase flow (two liquids 
and liquid-gas) 
•Models with thermal effects.
•Thermal convection
•Viscoelastic effects. 



Difficulties: 

•Considerable noise affects the results. Vorticity is most 
noisy, and interface positions fluctuate enormously
•The lack of Galilean invariance is difficult to fix. A 
fundamental problem of all « Cellular automata » type 
approaches to modelling is the absence of Noether-like 
theorems (equivalence between conservation laws and 
invariance under transforms). 
•Other problems: compressibility effects, boundary 
conditions.



Two-phase LBM : Capillary Pressure
FLOW IN POROUS MEDIA

Non-
wetting

Wetting 
phase

Chatzis & Dullien (1985)
Stanford
Rock Physics &
Borehole Geophysics

1

2

3

4

lab experiment by Chatzis and Dullien (1985).



Two-phase LBM : Capillary Pressure

- Drainage-type Snap-off (Simulation)           

Solid 
phase

Oil

Pore with 
water

Stanford
Rock Physics &
Borehole Geophysics

Simulation by Youngseuk Keehm , SRB



Snapshots from two-phase flow sim.
Fontainebleau sandstones 
Porosity 22%                            Porosity 16%

Stanford
Rock Physics &
Borehole Geophysics



Capillary effect on two-phase flow

Stanford
Rock Physics &
Borehole Geophysics

Low Pressure Gradient              High Pressure Gradient



Capillary effect on two-phase flow

Stanford
Rock Physics &
Borehole Geophysics

Low Pressure Gradient              High Pressure Gradient


	
	

