CFD: Perspectives of a Commodity Chemical Company

Glenn Price & Eric Clavelle NOVA Chemicals Research & Technology Centre NOVA Chemicals Corporation Calgary, Canada

CFD in Chemical Reaction Engineering IV June 19-24, 2005 Barga, Italy

NOVA Chemicals

- NOVA Chemicals is a focused commodity chemical company
- Main businesses: Olefins/Polyolefins
- Produce billions of pounds of ethylene (6.4) & polyethylene (3.4) each year

G	lobal	I	North America					
•	Dow	 Dow 		Polyothylono Canacity				
•	ExxonMobil	•	 Equistar ExxonMobil Chevron Phillips Shell 	(Global	North America		
•	Shell			 Dow ExxonMobil SABIC 	 Dow 			
•	Equistar	ar			ExxonMobil SABIC	•	ExxonMobil Fouistar	
#12	NOVA Chemicals	#6	NOVA Chemicals		 Sinopecl 	•	Chevron Phillips	
					 Equistar 	#5	NOVA Chemicals	
				#13	NOVA Chemicals	•	Formosa	

This is NOVA Chemicals

Ethylene Capacity

NOVA Chemicals

- NOVA Chemicals is a focused commodity chemical company
- Main businesses: Styrene/Polystyrene
- Produce billions of pounds of styrene (2.6) & polystyrene (3.6) each year

	Blobal	North America			
G • • • #6	Shell Dow BASF Lyondell ATOFINA NOVA Chemicals	 Worth America #1 NOVA Chemicals Chevron Phillips Lyondell Sterling Dow ATOFINA/Gen Elec 	Polystyren Global • Dow • BASF • ATOFINA	rene Capacity North America • Dow • ATOFINA #3 NOVA Chemicals	
			 #4 NOVA Chemicals • Chi Mei • Chevron Phillips 	 BASF Chevron Phillips Resirene 	

This is NOVA Chemicals

Styrene Capacity

Manufacturing Sites

- 4000+ employees worldwide
- 18 plants in the United States, Canada, France, the Netherlands, and the United Kingdom

This is NOVA Chemicals

Research & Technology

- Commodity chemicals is a technology intensive industry
 - Need to develop new technology to remain competitive
 - e.g. Emerald catalyst, Advanced SCLAIRTECH[™], anti-coking tubes for ethylene furnaces (ANK[®])

Polyethylene – End Products

Linear Low-Density Polyethylene (LLDPE)

e.g., ice bags, shrink wrap, stretch film

Polyethylene Resins

SURPASS[®], SCLAIR[®], NOVAPOL[®]

Low-Density Polyethylene (LDPE)

e.g., grocery bags, squeezable bottles, cable insulation

<u>High-Density Polyethylene (HDPE)</u> e.g., industrial drums, children's toys, pressure pipe

Very Low-Density Polyethylene (VLDPE)

e.g., "boil-in" packaging for rice, soup and pasta products

Styrenic Polymers – End Products

Solid and crystal polystyrene e.g., CD cases, food containers

DYLITE[®] expandable polystyrene

e.g., cups, containers

ARCEL[®] resin

e.g., moldable protective packaging

DYLARK® resin

e.g., automobile panels, consoles

NAS[®] resin and ZYLAR[®] resin

e.g., consumer products, medical supplies, office furniture

Olefin/Polyolefin Technology

Olefin Technology

- Cracking furnace
- Heat exchangers/chillers
- Compression
- Distillation/separation
- Extrusion
- Flaring

Polyethylene Technology

- Gas Phase
- SCLAIR[®]
- Advanced SCLAIRTECH™
- LDPE

Olefin/Polyolefin Technology

Olefin Technology

- Cracking furnaces
- Heat exchangers/chillers
- Compression
- Distillation/separation
- Extrusion
- Flaring

Polyethylene Technology

- Gas Phase
- SCLAIR[®]
- Advanced SCLAIRTECH™
- LDPE

CFD at NOVA Chemicals: A Look Back

- CFD was first used in 1988
- Single-phase flows on very coarse, 2-D meshes (~5k cells)
 - e.g. transient, pulsating flow of a gas through an orifice plate

- Part-time user running Phoenics (CHAM) on a Sun 4/330 Unix workstation (33 MHz, 72 MB)
 - Fastest PC at the time was an Intel 486DX (25 MHz, 640 kB)

Computing Power

Computing Power

(This is NOVA Chemicals

CFD at NOVA Chemicals: 2005

- CFD is now generally accepted as a useful engineering tool:
 - Provide plant support by troubleshooting unit operations
 - Design new equipment and evaluate vendor designs
 - Consider different operating scenarios
 - Root-cause failure analysis
 - Address safety concerns
 - Understanding reactor scale-up
- Multiple users using Fluent v6.2 on a large, parallel Linux cluster of lowcost CPUs (PC based)
 - Balance of long-term and short-term simulations
- Apply CFD using commercial CFD packages rather than developing our own code and new algorithms

This is NOVA Chemicals

- User subroutines to add custom models when necessary

CFD Applications

Long-Term Technology Development

- ◆ Reactors for Advanced SCLAIRTECH[™] Technology
- Commercial, gas phase reactors

Plant Support - Improved Unit Operability

• Liquid distributor in a large gasoline fractionation tower

Plant Support - Safety

• Flare burn-back event

Advanced SCLAIRTECH[™] Technology

- Advanced SCLAIRTECH[™] Technology is an evolution of the classic SCLAIRTECH[™] solution polyethylene process
 - Extensive product and process development on pilot plant facility
 - World's largest commercial solution polyethylene plant at Joffre

Process characteristics

- Dual reactors
- Very short residence time
- Intermediate pressures
- Operating temp. 140 to 300°C
- High ethylene conversion
- 1-Octene comonomer
- 0.905 to 0.965 resin density
- 0.3 to 150 resin melt index
- Narrow to bimodal MW distribution

This is NOVA Chemicals

Why Model with CFD?

- Scale-Up
 - Need to scale-up process methods and product results across three orders of magnitude in reactor volume (bench -> pilot -> commercial)
- Potential to improve existing products and eventually aid in the development of new products
 - Identify source(s) of undesirable product characteristics such as grease or high MW tails
 - Manipulate mixing to adjust MW distribution & co-monomer incorporation
- Design & diagnostics
 - Role in design of new reactors and modification to existing reactors
 - Provide data for mechanical design: impeller forces, shaft torque, temperature distributions, etc.

The Challenges

- Complex kinetics
 - Co-polymerization with fast multi-step reactions in laminar and turbulent flow conditions
 - Require many rate constants and mechanisms
 - Need to predict product molecular weight distribution & co-monomer incorporation
- Solution physical properties
 - Reactors operate at high temperature and pressure close to critical point of the solvent & co-monomer
 - Solution viscosity:
 - Several orders of magnitude change in viscosity from monomer feed stream to bulk reactor solution
 - Non-Newtonian solution viscosity strongly dependent on polymer molecular weight

This is NOVA Chemicals

- Complex geometry
 - Multiple complex proprietary impellers; large diameter ratio
 - Multiple monomer & catalyst feed nozzles, nozzle from 1st reactor to 2nd.

Example Reactor

CFD Model – Complex Kinetics

- Detailed kinetic mechanisms for co-polymerization
 - Bench scale and pilot scale experiments to determine rate constants (temperature dependent) for both single-site and multi-site (Ziegler-Natta) catalysts
 - Validation via predicted molecular weight distributions, conversion predictions, etc

CFD Model – Complex Kinetics

Method of moments

- Allows prediction of catalyst, monomer & co-monomer concentrations
- Track high enough order moments to allow prediction of number-averaged (Mn) and weight-averaged (Mw) molecular weight
- Allows prediction of co-monomer incorporation

CFD Model – Physical Properties

- PC-SAFT Equation of State
 - Reasonably accurate prediction of phase envelope, pure component densities and mixture densities for polymeric systems
 - Validated in collaboration with the University of Dortmund, Rice University and University of Calgary
 - Most properties represented as polynomial fits to data to reduce computational expense

This is NOVA Chemicals

CFD Model – Physical Properties

- Viscosity
 - Solvent and pure component viscosities as a function of temperature and pressure from the University of Mainz
 - Solution viscosity determined using Multi-Pass Rheometer (MPR), which provide viscosity measurements at reactor conditions
 - Viscosity fit to a Carreau-Yasuda model wherein the coefficients are a function of polymer molecular weight (Mw and Mn)

CFD Model – Complex Geometry

- Both reactors have complex proprietary impellers and multiple catalyst and feed nozzles
- Due to the large impeller to tank diameter ratio there is strong impellerbaffle interaction
 - Sliding mesh necessary to capture this effect accurately
 - Requires small time-steps relative to reactor hold-up times
 - Results in extreme computational requirements
- For these reasons the mesh is a fully hexahedral to minimize cell count for a given accuracy
 - Mixing experiments are extremely important to have confidence in the simulations

CFD Model – Validation

- Validation through various means
 - Cold flow experiments:
 - Velocity distributions (LDV)
 - Circulation measurements (LDV)
 - Blend time (PLIF)
 - Torque
 - Bench and pilot plant and commercial reactor data
 - Reactor exit temperatures
 - Monomer and co-monomer conversion
 - Co-monomer incorporation
 - Molecular weight distribution

CFD Model – Typical Results

CFD Model – Typical Results

Branches per 1000 Carbons (related inversely to density)

Gas Phase Technology

- Gas phase reactors are widely utilized for polyolefin production
 - Gas-solid fluidized bed reactor process operating at relatively low pressure & temperature.
- NOVA Chemicals has two commercial gas phase assets
 - LLDPE plant at Joffre (~1300 Mlbs/yr)
 - HDPE plant at Moore (~500 Mlbs/yr)
- CFD is a promising tool to improve our understanding of these complex reactors
 - A reliable (validated) CFD model of these reactors could lead improved unit operability
 - Improved ability to commercialize new catalysts

Commercial Gas Phase Reactor

This is NOVA Chemicals

The Challenges

- Comprehensive CFD model is certainly feasible, Fan et al. (2003)
 - Granular, multi-fluid Eulerian model with multiple solid phases
 - DQMOM to track the population balance
 - Inter-phase mass & heat transfer with a polymerization kinetics
- CFD models for <u>isothermal</u> gas-solid flows are still under development and require further validation
 - Rely on granular, multi-fluid (continuum) models, which have additional assumptions
 - Most work to-date has focused on ideal particles using 2-D simulations
 - Gas-solid hydrodynamics in commercial reactors; Gobin et al. (2003)

Validation

- Limited means to validate model on commercial reactors
 - Mean (wall tap) pressure drop measurements along the length of the bed are readily available on commercial reactors
 - Need to validate on more than just mean ΔP along the bed
- Rigorous validation involves comparing CFD results with non-intrusive measurements of the bed hydrodynamics
- Grid refinement is also important
 - Might get lucky and match exp. results using a single mesh
 - It is important to understand what happens on finer meshes
 - Limitations in computing power have hindered efforts in the past

University Collaboration

- Dr. Apostolos Kantzas and his imaging group at the University of Calgary have developed several non-intrusive measurement techniques
 - High-frequency pressure fluctuation data
 - High-speed CAT scans
 - X-ray fluoroscopy and image processing
 - Radioactive particle tracking
- These techniques have been applied on bubbling fluidized beds in smalldiameter, low pressure air columns and results have been compared with CFD models (MFIX & Fluent)
 - Hulme (2003) compared bubble properties from 2-D CFD simulations (FLUENT) with the x-ray fluoroscopy experiments & image processing
 - Chandrasekaran (2004) repeated this with MFIX and also compared pressure fluctuation data (power spectra and auto-correlation)
 - Have worked with a variety of particles, e.g. glass beads, polyethylene
 - Achieved fairly good agreement using relatively coarse 2-D meshes but discrepancies appear using finer meshes (AIChE 2004)

Experimental Setup

Solid particles

Type: Glass beads Size: 150-250 microns Density: 2480 kg/m³

<u>Gas</u>

Type: Low-pressure air Velocity: 18.6 cm/s (2x U_{mf})

Column dimensions

I.D.: 10 cm Bed height: 40 cm

Non-dimensional parameters

Re_{column}: 1230 Re_p: 2.5 Ar: 721

d_p*: 9.0, u*: 0.28 (bubbling)

This is NOVA Chemicals

3-D CFD Simulations

- Long run-times even on 30 Intel P4 processors
 - Need to simulate ~30s to get stationary bubble statistics
- Similar bubbling behaviour as 2-D beds
- Bulk bed properties such as mean △P and bed expansion well predicted (within 3%) – an improvement over 2-D
- Question:
 - Which slice should we use for comparison with the x-ray fluoroscopy results?
 - Center slice is a logical choice but will miss bubbles out-of-plane

Numerical X-Ray Technique

 Compute attentuation of x-ray from slice-to-slice according to Beer-Lambert relationship

$$I = I_o \exp[-(\kappa_g \rho_g \varepsilon_g + \kappa_s \rho_s (1 - \varepsilon_g))\Delta x]$$

3-D Bubbling Fluidized Bed

3-D Bubbling Fluidized Bed Results

Commercial Reactor Hydrodynamics

Gasoline Fractionator Fouling Study

Background:

- Excessive fouling in the upper packed bed inside a gasoline fractionator at an ethylene plant
 - Packing must be cleaned or replaced during turnarounds
 - Poor separation efficiency
- Research program was initiated to experimentally study the fouling mechanism in the packed bed
- Questions were raised about the uniformity of the liquid flow distribution into the packed bed
 - Liquid maldistribution can lead to a loss of separation efficiency and promote fouling in low flow regions; Hoek *et al.* (1986), Bonilla (1993)

Objective(s):

 Perform simulations to evaluate effect of channel unlevelness on the liquid flow distribution into the upper bed

CFD Model

Approach:

- Transient, 3-D CFD simulations with Fluent v6.1
 - Eulerian Volume-Of-Fluid model
 - Interface capturing schemes
 - Interface reconstruction scheme (PLIC)
 - Different turbulence models were used
- Multi-block, structured mesh with >3M hexahedral cells
 - Limited mesh refinement

Model Results

Model Results

 Small degree of unlevelness (< 1°) can yield substantial maldistribution in liquid flow in a large diameter column

Normalized mass flow

This is NOVA Chemicals

Flare Burn Back Study

Background:

- Investigation of a flare burn back event that occurred during a power failure at night
 - Air-assisted flare
 - Lost blowers + dampers fail closed!

Objective(s):

- Use CFD to help us understand what happened
 - Is this a one-time event or is it repeatable?
- Evaluate possible solution(s) to avoid this in the future

Flare Burn Back Study

Approach:

- Transient, 3-D CFD simulations
 - Including large region around flare stack
- Non-premixed turbulent combustion
 - Mixture fraction model with β -pdf
 - Equilibrium chemistry
- Neglect radiation and heat transfer
 - Adiabatic system

Flare Burn Back Study

This is NOVA Chemicals

General Remarks

- CFD has come a long way over the past 15 years due to:
 - Tremendous increases in low-cost, computing power
 - Improved meshing algorithms and more accurate numerics
 - Advanced models, e.g. LES, multi-phase, combustion, chemical reactions in turbulent flows, moving mesh, population balance methods

This is NOVA Chemicals

- CFD is now an accepted, engineering tool in the chemical industry
 - Trouble-shooting plant problems
 - Designing new equipment and evaluating vendor designs
 - Understanding and improving unit operation

General Remarks

- Successful development of comprehensive CFD models requires:
 - Good understanding of the underlying process
 - Collaboration with experts across different fields, e.g. rheology, thermodynamics
 - Validation, validation, validation!!!
- Try to strike a balance between long-term technology development and plant support
- CFD is just a tool!
 - In industry, we need to be engineers first
 - Listen to the plant engineers and really try to understand their problem(s)
 - Decide on the best approach in consultation with the plant
 - Don't overpromise!

Acknowledgements

- Our colleague, Mohammad Shariati, who contributed significantly to this presentation
- Other colleagues in Fluid Dynamics, across Technology and engineers/operators at the plants, who put up with our seemingly endless requests for data
- University collaborators: Apostolos K., Ian H., Blake C. at the University of Calgary
- Support from various experts at FLUENT: Graham G., Sofiane B., Madhava S., Ahmad H., Lanre O., Wei Z.
- NOVA's Technology Leadership Paul C., Daryll H., Umesh K., Bill T., Andrzej K.
- Dedicated to the late Dr. Wojciech Studzinski for his extraordinary vision on possibilities that CFD could offer to this business

