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Introduction

@ MOCVD (Metal-Organic Chemical Vapor Deposition) Vertical Rotating Disc
Reactors (RDR) are widely used for the large-scale production of GaN-
based semiconductor devices such as blue and green light-emitting diodes
(LED), ultra violet LED, solid-state lasers, heterojunction bipolar transistors.

@ In RDRs rotation of the wafer carrier results in an effective averaging of the
deposition rate distribution and this is a key mechanism providing growth of
epitaxial layers with highly uniform properties.
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Introduction

@ The necessity to utilize a
number of different
precursors for nitride
deposition, many of which
actively react with each
other in the gas phase,
presents significant
challenges for the reactor
development, particularly
the reactant injection
elements.
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@ Proper design of such components is practically impossible without detailed flow
modeling based on CFD that addresses optimization of both reactor components
and process parameters and is based on an ability to predict GaN/InGaN growth
rate and uniformity under different process conditions.
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Geometry and Process Parameters in the

Veeco MOCVD TurboDisc Reactors

(Reactants) Hydrides (NH,) Q=5-250sIm

Alkyls (Ga(CH3),, In(CH3),..)
Inlet Gases Total Flow Rate:
Shroud flow (N,,H,)

Reactor Pressure: Water-
P =50 — 1000 Torr cooled walls
| t, = 25— 75°C
_ NSNS Solid Products:
Diameter "/ - \ GaN, InGaN,
d=75-450 mm J | AlGaN ...

Heated Substrate
t. = 500 — 1100°C

P> o

® =0 - 1500 rpm
Spindle
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Surface chemical processes during GaN growth

B NH; N, cH, MMGa
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Substrate

Rate-limiting processes

e Low temperatures (400-600 °C): group-IIl adsorption site
blocking by methyl radicals

¢ Intermediate temperatures (600-1050 °C): transport of
group-lll species to the growth surface

e High temperatures (above 1050 °C): gallium desorption
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Flow Dynamics in Rotating Disc MOCVD Reactors

e Rotating Disc MOCVD Reactors involve complex flow dynamics driven
by interactions between buoyancy forces, wafer carrier rotation and
forced convection.

@ There is considerable interest in
Plug flow understanding and controlling
reactor gas flow dynamics as the
flow regimes in the process
reactor are largely responsible for

Gas flows smoothly over the substrate compositional and thickness non-
without any recirculations above the uniformity_
wafer carrier
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Rotation - induced flow Buoyancy -;Qduced flow

Vortex forms near the reactor wall Thermal recirculation — density difference between
close to the upper disc surface the disk and the incoming gas stream overcomes
the stabilizing influence of the viscous forces
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Flow Patterns in the Rotating Disc Reactors

Computer Generated Flow Patterns Smoke Flow Patterns
in Rotating Disc System in Rotating Disc System

Data Courtesy of Sandia National Lahoratories
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CFD Modeling at Veeco TurboDisc Operations

Reactor and process development guided by CFD

>

Feasibility, evaluation of design concepts __

e
—

Equipment design optimization

Process optimization

Customer support

Commercial CFD solver FLUENT by Fluent Inc.
flow dynamics, heat and mass transport of precursors and reaction products,
chemical reactions.
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Solid Works Example — D125GaN Reactor

model

Solid Works (Computer Aided Design Software) models are
used for the grid generation by direct import to CFD code
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Screen provides
flow uniformity

Grid ~ 750,000
control volumes

All geometrical
details are resolved

Lt
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CFD — DOE Optimization of the Injector Plate

Objective:

Find the optimal sizes and positions of
the alkyl zones (parameters A and B)
that provide the best growth rate
deposition uniformity on the wafer in a
ANRL wide range of process conditions
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CFD — DOE Optimization of the Injector Plate

Surface Plotof Avs B
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——B =0inch
—=—B=0.25inch
—— B =0.375inch

)]
|

0 0.1 0.2 0.3 0.4 0.5 0.6
A (in)

An optimal geometrical position of the alkyls zones is found
for different process conditions which correspond to GaN
based LED process development
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Detailed numerical grid of P75 VEECO Reactor and

of Flow Flange

Grid: 500,000 control volumes
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Based on the optimized injector
plate a new modification of P75
TurboDisc Reactor has been
designed
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Flow Visualization in the P75 Reactor
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Flow Optimization in the Reactor

Velocity matched conditions Momentum matched conditions
between alkyl and hydride zones Velocity profiles  between alkyl and hydride zones

Y

‘*( | : S

: . Temperature profiles
Recirgulationareas - P P y

X Y

(. P




Flow Optimization in the Reactor

3 _
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Impulse matched conditions provide flow with no recirculation
and the best growth rate uniformity in P75 reactor
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Experimental Verification - Effect of Pressure

97 Outer Injector Inner Injector  Outer Injector

For superposition, a set of
g : wafer

independent runs (a number of runs is
O Inner, Experiment
— iner Model equal to the number of alkyls zones)
+ | o outer,Experiment|  gre conducted wherein each run, the
——Outer, Model . .
alkyls flow into the reactor only in a
single zone. All of the other zones
contain push gas. Each run gives an
individual growth rate/composition
“response” for the zones
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Excellent qualitative and solid
guantitative agreement

between the modeling results
and experiments is observed
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CFD Model for high capacity multi-wafer reactors
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Comparison with the Experimental Data

Good gualitative and
guantitative agreement

between the modeling results
and experiments is observed

GaN Growth Conditions ;.
P=200Torr Qy,=15slm &= — e o
® = 1500 rpm  Q,, =80sIm
t;=1050°C  Quuz=40sim | *
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Model Verification

Developed CFD model helped us to identify the potential problems for
the flow flange design of the reactor
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Deposition on the cold plate (black area on the photograph) corresponds to the area
where model predicts the recirculation pattern (white area on the modeling figure)
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Flow Flange Optimization Based on CFD Modeling

Old Flow Flange Redesigned Flow Flange
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Flow Stability Mapping Approach in “P —o* (Pressure —

Rotation Rate) Diagram

Rotation - induced flow
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“P-Q-w“ (Pressure-Flow-Rotation) Flow Stability Diagram
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Flow Stability Map and Relative Growth Rate

Q. _,.

N, NH,

GaN process conditions: | Qu =140sIm; =2;t,=1070°C; t, =50 °C

For the case of an infinitely large disc under mass transfer limited growth conditions the growth rate is inversely
proportional to the boundary layer thickness and primarily depends on rotation rate and operating pressure.

500 B T T T T T 1-2
450 | 1
i | | | -1
400 f---------of oo SRR S WU bommooo oo
350 | | | 2
= : | | +o08 S
(@] 3 I |
300 R s Bt S e e i s R R Fom—mmm—1 <
T 1 | S
o 250 : : 106 (5
5 L | | O
5 20| | \ | 2
8 L . | | | | C_U
o i Rapid decrease of | | | +t04 g
150 T | ! | | D:
: the growth rate | | |
100 ¥ 1 1 1 ‘ 1 00
; | | —e— Flow Stability Boundary '
£5() - S S RS .
i | | —=— Relative Growth Rate
ob s : : : 0
0 200 400 600 800 1000 1200 1400 1600
Rotation Rate (o), rpm

TurboDisc Operations Veeco



Criteria for the onset of buoyancy-induced flow

Oty _g; g, t,=t,=50°C

QNz , QNH3

Q. =140slIm;

By decreasing the temperature gradient
between the wafer carrier and the inlet, we also
reduce the tendency for natural convection
(lower Gr), and hence, higher operating
pressures can be utilized for the same rotation
rate in the buoyancy induced region.

Q. _,. O
QN2 QNH3

Qo =140 sIm; =2;1t =1070°C

Higher inlet temperature has two effects on flow
stability: (1) decreases the temperature gradient
between the wafer carrier and the inlet which
suppresses buoyancy-induced recirculation; (2)
increases the through-flow velocity, which
suppresses the rotation-induced recirculation.
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Conclusions

¢ Based on modeling results and DOE optimization, an optimal
geometrical position of the alkyls zones is found for different
reactor sizes, which provides the best growth rate deposition
uniformity on the wafer within a wide range of process
conditions.

¢« A new modifications of TurboDisc reactors has been designed
based on the optimized injector plate.

¢ Detailed 3D reactor modeling from direct CAD geometry
Import into CFD is used to find optimal process parameters for
[[I-Nitrides materials growth.

¢ Excellent qualitative and solid quantitative agreement
between the modeling results and experiments is observed.

¢ Modeling drastically reduced the process development time to
a few runs and resulted in significant improvement of growth
uniformity ( 6 < 1%) and alkyl efficiency.
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Conclusions

v

Quantitative flow stability maps have been developed based on
extensive 2D and 3D flow modeling for the entire domain of
possible process parameters.

It has been shown that all typical flow regime regions that can be
encountered in a rotating disc reactor can be presented in a
single P-w diagram, which also transparently captures the effects
of all other process parameters.

New dimensionless criteria have been proposed (based on
Grashof, Reynolds and rotational Reynolds numbers) for defining
a boundary between stable and unstable flow regimes.

The obtained stability criteria have both fundamental and
practical significance, and allow one to predict the process
window that is free of both thermal and rotation induced
recirculation, without performing additional numerical modeling or
costly experiments.
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