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Introduction
MOCVD (Metal-Organic Chemical Vapor Deposition) Vertical Rotating Disc 
Reactors (RDR) are widely used for the large-scale production of GaN-
based semiconductor devices such as blue and green light-emitting diodes 
(LED), ultra violet LED, solid-state lasers, heterojunction bipolar transistors.

In RDRs rotation of the wafer carrier results in an effective averaging of the 
deposition rate distribution and this is a key mechanism providing growth of 
epitaxial layers with highly uniform properties.
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Introduction

Alkyls (TMG, TMIn..)

Hydrides (NH3)

Shroud 
flow (N2,H2)

The necessity to utilize a 
number of different 
precursors for nitride 
deposition, many of which 
actively react with each 
other in the gas phase, 
presents significant 
challenges for the reactor 
development, particularly 
the reactant injection 
elements. 

Proper design of such components is practically impossible without detailed flow 
modeling based on CFD that addresses optimization of both reactor components 
and process parameters and is based on an ability to predict GaN/InGaN growth 
rate and uniformity under different process conditions.
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Geometry and Process Parameters in the
Veeco MOCVD TurboDisc Reactors

Inlet Gases 
(Reactants)

Alkyls (Ga(CH3)3, In(CH3)3..)

Hydrides (NH3)

Shroud flow (N2,H2)

Outlet Outlet

Heated Substrate

ω

Water-
cooled walls

ts = 500 – 1100oC

ω = 0 – 1500 rpm

Total Flow Rate:
Q = 5 – 250 slm

Reactor Pressure:
P = 50 – 1000 Torr

Diameter
d = 75 – 450 mm

Spindle

tw = 25 – 75oC

Solid Products:
GaN, InGaN, 
AlGaN …
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Surface chemical processes during GaN growth

Substrate

NH3
MMGa GaN2 H2 CH4

Rate-limiting processes
• Low temperatures (400-600 ºC): group-III adsorption site 

blocking by methyl radicals
• Intermediate temperatures (600-1050 ºC): transport of 

group-III species to the growth surface
• High temperatures (above 1050 ºC): gallium desorption
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Flow Dynamics in Rotating Disc MOCVD Reactors

Rotating Disc MOCVD Reactors involve complex flow dynamics driven 
by interactions between buoyancy forces, wafer carrier rotation and 
forced convection. 

There is considerable interest in 
understanding and controlling 
reactor gas flow dynamics as the 
flow regimes in the process 
reactor are largely responsible for 
compositional and thickness non-
uniformity.

Gas flows smoothly over the substrate 
without any recirculations above the 
wafer carrier

Vortex forms near the reactor wall 
close to the upper disc surface 

Thermal recirculation – density difference between 
the disk and the incoming gas stream overcomes 
the stabilizing influence of the viscous forces



TurboDisc Operations

Flow Patterns in the Rotating Disc Reactors

Computer Generated Flow Patterns 
in Rotating Disc System

Computer Generated Flow Patterns Computer Generated Flow Patterns 
in Rotating Disc Systemin Rotating Disc System

Smoke Flow Patterns
in Rotating Disc System

Smoke Flow PatternsSmoke Flow Patterns
in Rotating Disc Systemin Rotating Disc System

Data Courtesy of Sandia National LaboratoriesData Courtesy of Data Courtesy of SandiaSandia National LaboratoriesNational Laboratories
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CFD Modeling at Veeco TurboDisc Operations

Reactor and process development guided by CFD

Feasibility, evaluation of design concepts

Equipment design optimization

Process optimization

Customer support

Commercial  CFD solver  FLUENT by Fluent Inc.
flow dynamics, heat  and  mass transport of  precursors and reaction products, 
chemical reactions.
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Solid Works Example – D125GaN Reactor

model mesh

Solid Works (Computer Aided Design Software) models are 
used for the grid generation by direct import to CFD code
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Screen provides 
flow uniformity

All geometrical 
details are resolved

Alkyls Hydrides

Grid ~ 750,000 
control volumes
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CFD – DOE Optimization of the Injector Plate
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Simplified model – streamlines and growth rate

Superposition technique (L.Kadinski et 
al., Jounal of Crystal Growth 261, 
2004., 175-181)

Objective:Objective:

Find the optimal sizes and positions of 
the alkyl zones (parameters A and B) 
that provide the best growth rate 
deposition uniformity on the wafer in a 
wide range of process conditions

Inner alkyl 
injector

Outer alkyl 
injector
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CFD – DOE Optimization of the Injector Plate
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An optimal geometrical position of the alkyls zones is found 
for different process conditions which correspond to GaN
based LED process development
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Detailed numerical grid of P75 VEECO Reactor and 
of Flow Flange

Based on the optimized injector 
plate a new modification of P75 
TurboDisc Reactor has been 
designed

Grid: 500,000 control volumes
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Flow Visualization in the P75 Reactor
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Flow Optimization in the Reactor
Velocity matched conditions 

between alkyl and hydride zones Velocity profiles

Temperature profiles

Momentum matched conditions 
between alkyl and hydride zones

Recirculation areas
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Flow Optimization in the Reactor

Impulse matched conditions provide flow with no recirculation 
and the best growth rate uniformity in P75 reactor
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Experimental Verification - Effect of Pressure
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For superposition, a set of 
independent runs (a number of runs is 
equal to the number of alkyls zones) 
are conducted wherein each run, the 
alkyls flow into the reactor only in a 
single zone. All of the other zones 
contain push gas. Each run gives an 
individual growth rate/composition 
“response” for the zones
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Excellent qualitative and solid 
quantitative agreement 
between the modeling results 
and experiments is observed
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CFD Model for high capacity multi-wafer reactors

Temperature ProfilesGrid Streamlines

Temperature 
profile

Velocity 
profile
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Comparison with the Experimental Data

Good qualitative and 
quantitative agreement 
between the modeling results 
and experiments is observed
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Model Verification

Developed CFD model helped us to identify the potential problems for 
the flow flange design of the reactor

Deposition on the cold plate (black area on the photograph) corresponds to the area 
where model predicts the recirculation pattern (white area on the modeling figure)
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Flow Flange Optimization Based on CFD Modeling

Old Flow Flange Redesigned Flow Flange



TurboDisc Operations

Flow Stability Mapping Approach in “P –ω“ (Pressure –
Rotation Rate) Diagram
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“P-Q-ω “ (Pressure-Flow-Rotation) Flow Stability Diagram
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Flow Stability Map and Relative Growth Rate

GaN process conditions:
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Criteria for the onset of buoyancy-induced flow
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By decreasing the temperature gradient 
between the wafer carrier and the inlet, we also 

reduce the tendency for natural convection 
(lower Gr), and hence, higher operating 

pressures can be utilized for the same rotation 
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Higher inlet temperature has two effects on flow 
stability: (1) decreases the temperature gradient 
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suppresses buoyancy-induced recirculation; (2)  

increases the through-flow velocity, which 
suppresses the rotation-induced recirculation.
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Conclusions

Based on modeling results and DOE optimization, an optimal 
geometrical position of the alkyls zones is found for different 
reactor sizes, which provides the best growth rate deposition 
uniformity on the wafer within a wide range of process 
conditions.
A new modifications of TurboDisc reactors has been designed 
based on the optimized injector plate.
Detailed 3D reactor modeling from direct CAD geometry 
import into CFD is used to find optimal process parameters for 
III-Nitrides materials growth. 
Excellent qualitative and solid quantitative agreement 
between the modeling results and experiments is observed.
Modeling drastically reduced the process development time to 
a few runs and resulted in significant improvement of growth 
uniformity ( δ < 1%) and alkyl efficiency.
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Conclusions

Quantitative flow stability maps have been developed based on 
extensive 2D and 3D flow modeling for the entire domain of 
possible process parameters. 
It has been shown that all typical flow regime regions that can be 
encountered in a rotating disc reactor can be presented in a 
single P-ω diagram, which also transparently captures the effects 
of all other process parameters.
New dimensionless criteria have been proposed (based on 
Grashof, Reynolds and rotational Reynolds numbers) for defining 
a boundary between stable and unstable flow regimes. 
The obtained stability criteria have both fundamental and 
practical significance, and allow one to predict the process 
window that is free of both thermal and rotation induced 
recirculation, without performing additional numerical modeling or 
costly experiments. 


	Veeco Instruments - TurboDisc Operations
	Introduction
	Introduction
	Geometry and Process Parameters in the Veeco MOCVD TurboDisc Reactors
	
	Surface chemical processes during GaN growth
	Flow Dynamics in Rotating Disc MOCVD Reactors
	Flow Patterns in the Rotating Disc Reactors
	CFD Modeling at Veeco TurboDisc Operations
	Solid Works Example – D125GaN Reactor
	CFD – DOE Optimization of the Injector Plate
	CFD – DOE Optimization of the Injector Plate
	Detailed numerical grid of P75 VEECO Reactor and of Flow Flange
	Flow Visualization in the P75 Reactor
	Flow Optimization in the Reactor
	Flow Optimization in the Reactor
	Experimental Verification - Effect of Pressure
	CFD Model for high capacity multi-wafer reactors
	Comparison with the Experimental Data
	Model Verification
	Flow Flange Optimization Based on CFD Modeling
	Flow Stability Mapping Approach in “P –w“ (Pressure – Rotation Rate) Diagram
	“P-Q-w “ (Pressure-Flow-Rotation) Flow Stability Diagram
	Flow Stability Map and Relative Growth Rate
	Criteria for the onset of buoyancy-induced flow
	Conclusions
	Conclusions

