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Motivation and goals

* Organic actives are often dispersed in polymer structures forming
nano-spheres and nano-capsules

« The main advantages of these particulate systems are:
* Possibility of release of actives insoluble in water
e Controlled drug-delivery
» Passive and active targeting
* Increased lifetime in bloodstream

* The polymer usually has to be hydrophilic, flexible and non-1onic
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Motivation and goals

* Very often block co-polymers are used: poly(MePEGCA-co-HDCA)

poly (methoxypolyethyleneglycole cyanoacrylate — co — hexadecyl
cyanoacrylate)

« HDCA chains (hydrophobic) are inserted in the organic active core

 PEG chains (hydrophylic) are oriented towards the water phase,
forming a flexible protective layer that reduces the absorption of

lasmatic proteins
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Preparation

e Nano-particles are produced by precipitation (solvent
displacement)

organic compound
+

polymer @ water
+ / +
hydrophilic solvent i\ stabilizer
spontaneous particle formation :@

. organic solvent
polymer in “evaporation

acetone

(acetone:water = 1:2) suspension
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Effect of mixing

Mixing controls nucleation, molecular growth (and aggregation)
rates and therefore controls the particle size distribution

Mixing (and cohesion forces) control the mass ratio of organic
active/polymer 1n each particle

Generally speaking good product quality 1s obtained with very
high mixing rates
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Aim of this work

Design, optimization and scale-up of a continuous process to
produce significant amounts of particles with a certain size range
(=200 nm) and with a specific active-to-polymer ratio

CFD 1s used to simulate the precipitation process and its
interaction with turbulent mixing

Reactor configuration: confined impinging jet reactor (CIJR)

Reacting systems:
e parallel reaction scheme

e  barium sulphate precipitation

Real system: acetone-PEG-doxorubicine + water
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Confined Impinging Jet Reactor

The flow regimes in the reactor are characterized
by the jet Reynolds number

In this work we investigated 300<Re<3000 for
d=1mm/D=4.76 mm

Flow field simulations were run with LES and
RANS approaches in Fluent 6.1.22

Different three dimensional unstructured grids were tested in
order to find a grid independent solution

LES: =~ 500,000 cells for the full geometry
RANS: = 100,000 cells (with finer resolution near the walls)
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Large Eddy Simulation

* Fluent: box filter with bandwidth A equal to the cell size

oU; ,oUU,; _ o'Us _10p 07
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J

* The residual stresses are closed by using the Smagorinsky

model
S filtered Strain rate
T, =—2

v, =(C,AYS €. =0.08-0.10}-0.12

« Next steps: implementation of a dynamic SGS model

e Cluster: 6 Xeon bi-processors 2400 (MHz)

S0

al

;@?DI
53 "'-‘PI
B ®

o %-;.

ﬁfﬁ“ Computational Fluid Dynamics in Chemical Reaction Engineering Conference
%““ﬁ‘?’fy 19-24 June 2005, Barga, Italy

T
\ _,:.._..,g%
i} Eb e
)




Large Eddy Simulation

Laminar inlet conditions (parabolic profile)

Instantaneous velocity magnitude for Re= 704 and Re=2696
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Large Eddy Simulation

* Velocity magnitude for Re=3000
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RANS

« Different turbulence models have been tested: k-, RNG £-¢,
relizable k-¢, k-, RSM

« Different near wall treatments have been tested: standard wall
function, non-equilibrium wall function, enhanced wall treatment

* Results show that RSM with enhanced wall treatment gives the
best agreement with time-averaged LES velocities

« Further analysis needs experimental data or DNS data (Alfredo
Soldati, University of Udine)
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Step 1: Parallel chemical reaction

In order to test mixing efficiency in the confined impinging jet
reactor a parallel reaction has been used

A+B—>R A+C — S+(4)

The system can be described with mixture fraction and progress
reaction variables

P
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Step 1: Parallel chemical reaction

*  Micro-mixing 1s modeled with the DQMOM-IEM model

* Functional form of the Probability Density Function:

N
f&x.0)=3 p,(x.0)]¢ =&, (x.1)]
a=1
* ... where weights w_, and weighted abscissas w &, are calculated

by solving their corresponding transport equations and forcing
the moments of the PDF to be correctly predicted

e  With two nodes (N=2
( ) mo(x,t)=p1+p2 mz(x,t)=p1§12+p2§22

m, (Xat) = Dot Do, My (Xat) = 171513 + pzfz3
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Step 1: Parallel chemical reaction

Mixture fraction g :

B+C Mixture fraction variance
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Step 1: Parallel chemical reaction

« Comparison between DQMOM-IEM and beta-PDF for the
mixture fraction PDF
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Step 1: Parallel chemical reaction
Transport equations for weights and weighted abscissas
Py, NPy
ot < >6x Ox, {(

8(p1§1) p1§1
ot ’
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Step 1: Parallel chemical reaction

* The reacting system is described by transport equations for:

D DS DS, p1Yz,1 p2Y2,2

* ... and algebraic equations for: p,=1-p, Y] Y
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Step 1: Parallel chemical reaction

« Comparison with experimental data from Johnson &
Prud’homme (2003) for the CIJR

O Co=02
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Step 2: barium sulphate precipitation

» Different jet Reynolds numbers (80<Re<2500)
« Different reactant concentration (Ba™, SO,")

« Different reactant concentration ratio (Ba™/SO,")

Ba™ + S0, — BaSO,

Ba-l-—l-
e The reaction is very fast and

mixing sensitive

« Relevant phenomena involved:
nucleation, molecular growth and
aggregation
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Step 2: barium sulphate precipitation

Effect of Reynolds number Ba*:800 SO,~:100 mol/m?

dmean (nm)
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Step 2: barium sulphate precipitation

e The CFD model uses the DQMOM-IEM (N=2) for micromixing

* Standard kinetic expressions for nucleation and growth
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Step 2: barium sulphate precipitation

« The population balance equation is solved by using the QMOM
(for the two reacting environments)

e The Particle Size Distribution 1s computed through the moments
of the distribution (£=0,...,3)

+20 N
m, (x,t)= J. n(L;x,t)L'dL ~ Zwl.Lf
0 i=1

amk(x,t)+ 0 <<ui>mk(x,t))— 0 [F Gmk(x,t)]zokj(xjt)

ot Ox. ox. | " ox

l 1
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Step 2: barium sulphate precipitation

Re=2696 Cao=Cpo=100 mol/m?

Supersaturation Nucleation rate (1/m?s)
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Growth rate (m/s)
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Step 2: barium sulphate precipitation

Effect of the aggregation efficiency on the final mean particle size

* Crystallite size from X-ray measurements ~20-40 nm
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Step 3: acetone-PEG-doxorubicine/water

 Thermodynamics data concerning polymer and active solubility
« Bivariate population balance equation: DQMOM

e Validation by comparison with Monte Carlo simulations

t=0.260000

025 :

02— :

: r. ........................ __________________________________ __________________________________ = TT” (£.&, ) EEdE dE,

n_; seil V2| . . .. . . . .
a #né"—-‘-m“ Computational Fluid Dynamics in Chemical Reaction Engineering Conference
%““ﬁ@fy 19-24 June 2005, Barga, Italy




Step 3: acetone-PEG-doxorubicine/water

* Validation by comparison with Monte Carlo simulations
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Conclusions and next steps

»  The flow field in the confined impinging jet reactor has been
modeled with RANS and LES (further validation with DNS data)

»  Micromixing 1s taken into account with the DQMOM-IEM model
and validation 1s carried out by comparison with experimental data
from literature

»  The population balance 1s described with QMOM (monovariate)
and DQMOM (bivariate) resulting in a small number of additional
scalars (4-8)

»  Simulation of the real process will be carried out when
thermodynamic and kinetic expressions will be available
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