SOME MULTISCALE, MULTIPHYSICS PHENOMENA IN MULTIPHASE REACTORS

Magnetoviscosity & Artificial Gravity

Faïçal Larachi

Department of Chemical Engineering

Université Laval – Québec – Canada

*Currently with Total S.A. – Lyon – France

Computational Fluid Dynamics in Chemical Reaction Engineering IV

Gas-Liquid Flows, Liquid-Liquid Flows – Barga Italy; June 19-24 2005

Outline

- Magnetic fluids & Magnetoviscosity

Ferrofluids

Backgrounds on Magnetostatics

Local Cauchy problem for ferrofluids

(Porous media) volume-averaging theorems & upscaling

Closures

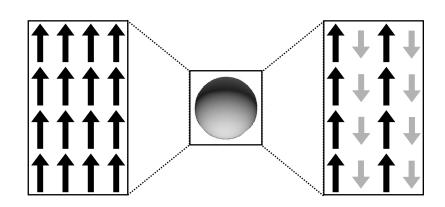
Simulation: Mitigation of wall bypass fraction

- Non-magnetic fluids & Artificial gravity

Ground-based artificial gravisensing (Grad. magnetic field)
Gas-liquid flows in porous media (e.g., Mars gravity)
Liquid holdup, wetting efficiency, pressure drop
Analysis using simplified modeling

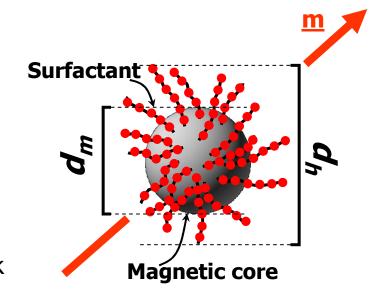
What is a ferrofluid (FF)?

- Single-domain superparamagnetic nanoparticles (*ca.* $10^4 \mu_{B}$ * d_m ≈ 10 nm)
- Dipole-dipole interactions (long-range orientational correlation)
- Permanent magnetic dipole, m
- Stabilized ferro(i)colloidal suspension (≤ 7% v/v, magnetic basis)

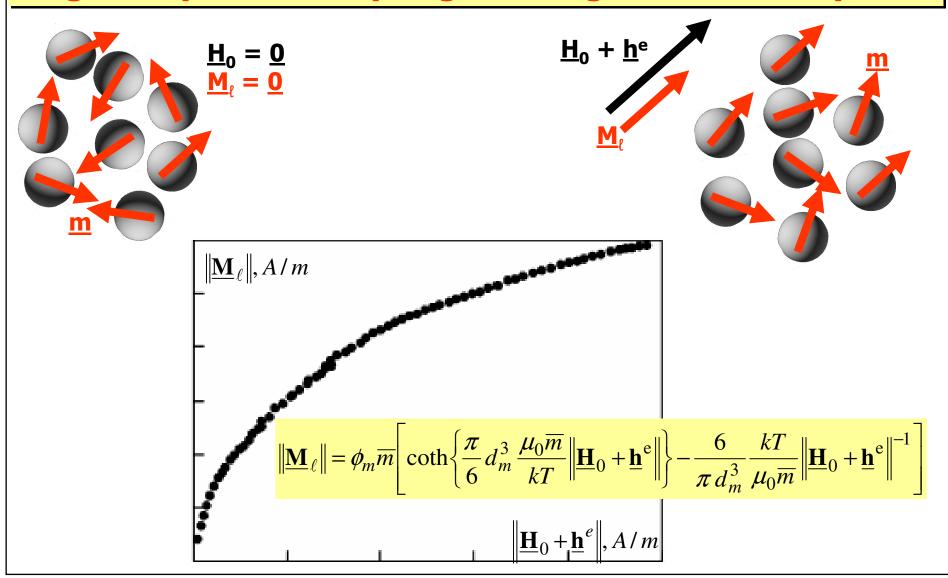


Parallel spin network (ferromagnetism, Fe)

Antiparallel spin network (ferrimagnetism, Fe_3O_4 , γ - Fe_2O_3 , Fe_3S_4)

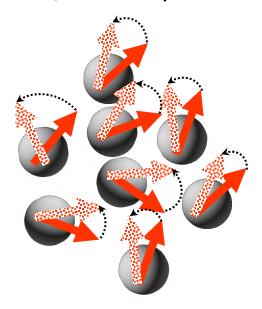


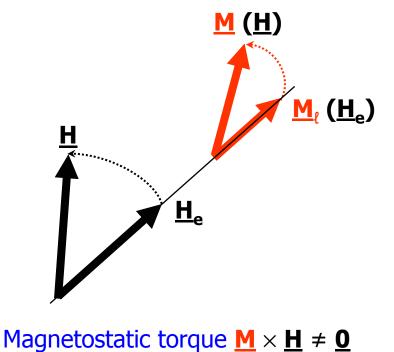
Magnetohydrostatics (Langevin magnetization law)



Magnetization relaxation (Shliomis equation)

Magnetic field &/or velocity field change

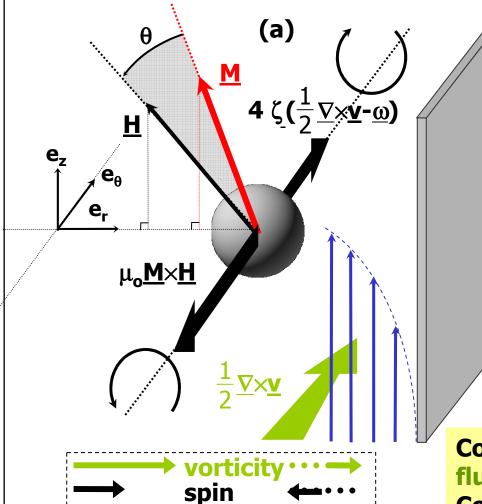




- Brownian relaxation
- Néel relaxation

$$\frac{\partial}{\partial t} \mathbf{\underline{M}} + \underline{\nabla} \cdot \underline{\mathbf{M}} \otimes \underline{\mathbf{v}} = \underline{\boldsymbol{\omega}} \times \underline{\mathbf{M}} - \tau^{-1} \Big(\underline{\mathbf{M}} (\underline{\mathbf{H}}) - \underline{\mathbf{M}}_{\ell} \Big(\underline{\mathbf{H}}^{e} \Big) \Big)$$

What is Magnetoviscosity?



Internal angular momentum balance

- Magnetostatic torque $\mu_0 \ \underline{\mathbf{M}} \times \underline{\mathbf{H}}$
- Mechanical torque:

vorticity-spin asynchrony $4\zeta (\frac{1}{2} \nabla \times \underline{\mathbf{v}} - \underline{\omega})$

- ζ = vortex viscosity

Corotative:

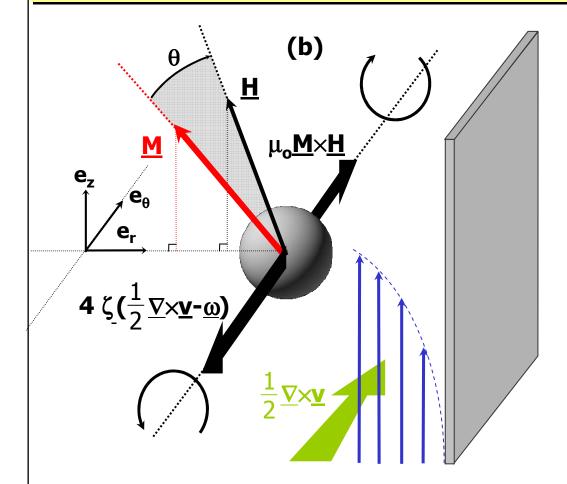
fluid vorticity faster than particle spin

Contrarotative:

whatever

Magnetoviscothickening

What is magnetoviscosity?



vorticity -> spin
Magnetoviscothinning

Corotative:

particle spin faster than fluid vorticity

Cauchy stress tensor for (polar) ferrofluids

Symmetric pressure/viscous stress tensor

$$\underline{\underline{\mathbf{T}}} = -p\underline{\underline{\mathbf{I}}} + \eta \underbrace{\nabla \underline{\mathbf{v}} + {}^{t}} \underbrace{\nabla \underline{\mathbf{v}}} + \lambda (\nabla \cdot \underline{\mathbf{v}}) \underline{\underline{\mathbf{I}}} + 2\zeta \underline{\underline{\mathbf{E}}} \cdot \left(\frac{1}{2} \nabla \times \underline{\mathbf{v}} - \underline{\boldsymbol{\omega}}\right)$$

Antisymmetric spin/vorticity tensor

Conversion of external angular momentum into internal angular momentum (antisymmetric stress tensor)

$$-\underline{\underline{\mathbf{E}}} : \underline{\underline{\mathbf{T}}} = -\underline{\underline{\underline{\mathbf{E}}}} : \left(-p\underline{\underline{\mathbf{I}}} + \eta (\underline{\underline{\nabla}}\underline{\underline{\mathbf{v}}} + {}^{t}\underline{\underline{\nabla}}\underline{\underline{\mathbf{v}}}) + \lambda (\underline{\nabla} \cdot \underline{\underline{\mathbf{v}}})\underline{\underline{\mathbf{I}}} \right) - 2\zeta\underline{\underline{\mathbf{E}}} : \left(\underline{\underline{\underline{\mathbf{E}}}} \cdot \left(\frac{1}{2}\underline{\underline{\nabla}} \times \underline{\underline{\mathbf{v}}} - \underline{\underline{\omega}} \right) \right)$$

$$= 4\zeta \left(\frac{1}{2}\underline{\underline{\nabla}} \times \underline{\underline{\mathbf{v}}} - \underline{\underline{\omega}} \right)$$

(Asynchrony) mechanical torque

 ${\bf E}\;$ Unit antisymmetric orientation triadic

Magnetic stress tensor & Kelvin body force density

Magnetic stress tensor

$$\underline{\underline{\hat{\mathbf{M}}}} = \left(-\frac{\mu_0}{2} \left[\left(\underline{\mathbf{H}}_0 + \underline{\mathbf{h}} \right) \cdot \left(\underline{\mathbf{H}}_0 + \underline{\mathbf{h}} \right) \right] \underline{\underline{\mathbf{I}}} + \mu_0 \left(\underline{\mathbf{H}}_0 + \underline{\mathbf{h}} \right) \otimes \left(\underline{\mathbf{H}}_0 + \underline{\mathbf{h}} + \underline{\mathbf{M}} \right) \right)$$

Neglect:

- Magnetostriction of nanoparticles (incompressibility)
- Interparticle dipole-dipole

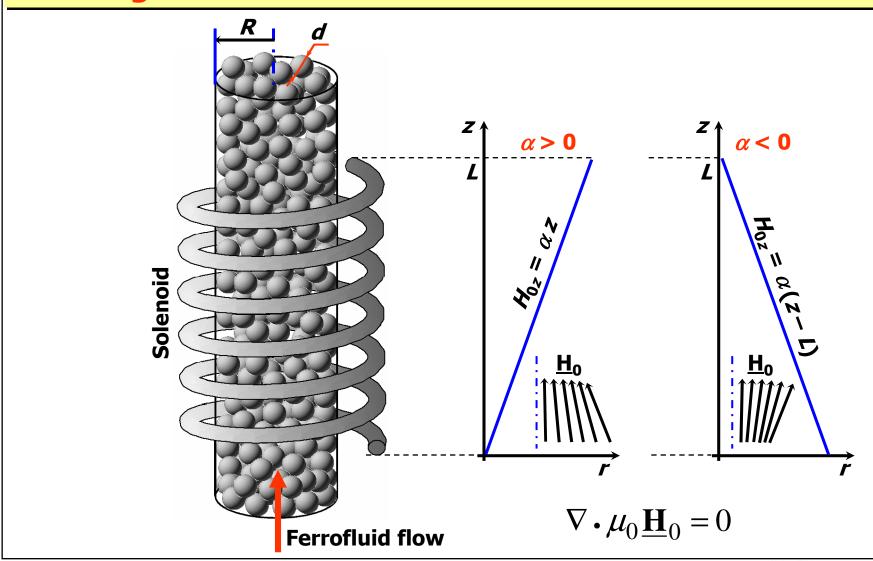
Kelvin (magnetic) body force density

$$\underline{\nabla} \cdot \underline{\hat{\mathbf{M}}} = \underline{\mathbf{F}}_{Kelvin} = \mu_0 \underline{\underline{\nabla}} (\underline{\mathbf{H}}_0 + \underline{\mathbf{h}}) \cdot \underline{\mathbf{M}}$$

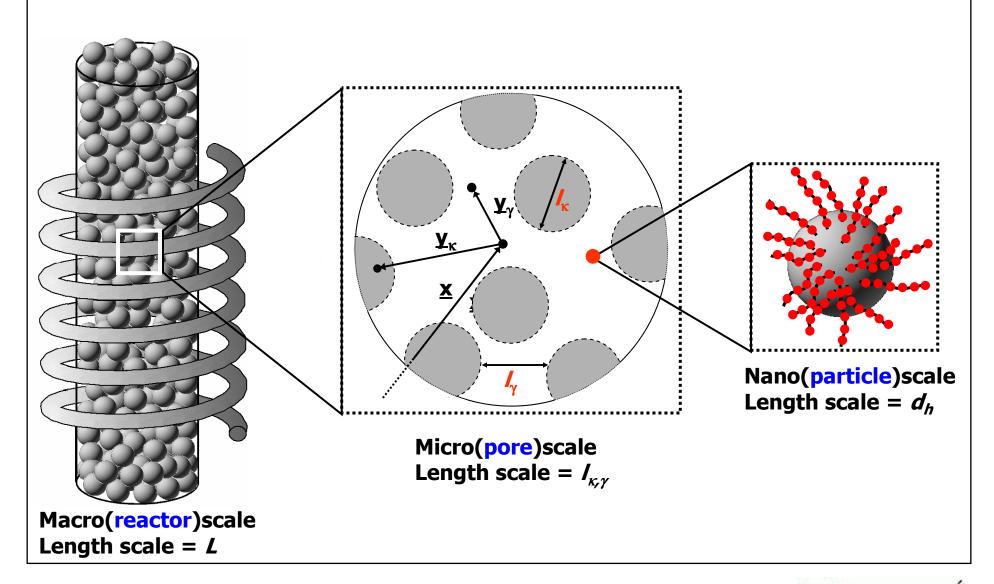
Kelvin force due to inhomogeneous magnetic field ≠ Lorentz force MHD (in)homogeneous magnetic field

$$\underline{\mathbf{F}}_{Lorentz} = \mu_0 \underline{\mathbf{j}} \times (\underline{\mathbf{H}}_0 + \underline{\mathbf{h}})$$

Ferrofluid flow through packed bed in linear-gradient d.c. magnetic field

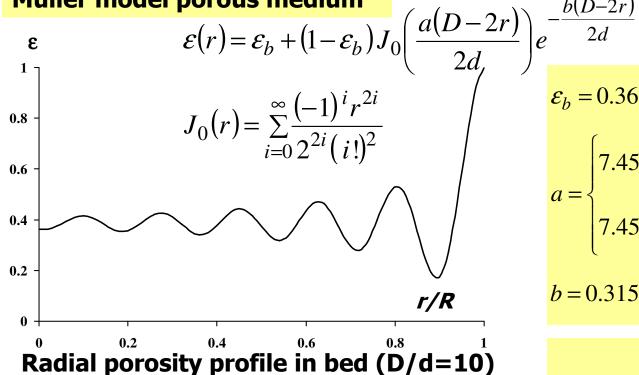


Multiple length scales: Ferrofluid flow in porous media



Is magnetoviscosity of help to cope with wall maldistribution in packed beds for low column/particle diameter ratio?

Müller model porous medium



Wall bypass fraction

$$e 2d$$

$$\varepsilon_b = 0.365 + 0.22 \frac{d}{D}$$

$$a = \begin{cases} 7.45 - 3.15 \frac{d}{D} & \frac{D}{d} \in [2.02 - 13.0] \\ 7.45 - 11.25 \frac{d}{D} & \frac{D}{d} \ge 13.0 \end{cases}$$

$$b = 0.315 - 0.725 \frac{d}{D}$$

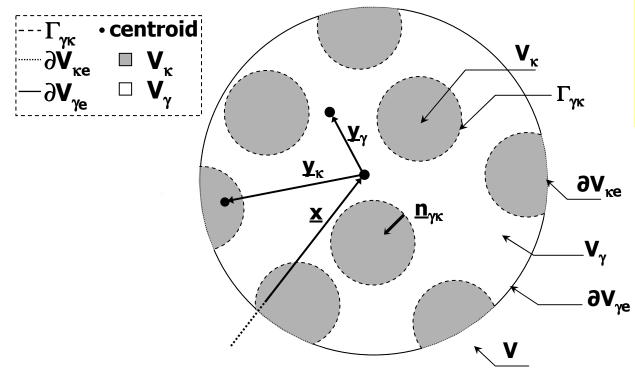
$$BP_{w} = \frac{\int r \varepsilon(r) v_{z}(r) dr}{\int r U_{0} dr}$$

$$D/2 \int r U_{0} dr$$

$$D/2 - d/2$$

Microscale Cauchy problem (pore scale)

Details of averaging volume V



$$V = V_{\gamma} \cup V_{\kappa} \cup \Gamma_{\gamma\kappa}$$

$$\Gamma_{\gamma\kappa} = (\overline{V}_{\gamma}/V_{\gamma})/\partial V_{\gamma e}$$

$$\partial V = \partial V_{\gamma e} \cup \partial V_{\kappa e}$$

Phase indicator function

$$\boldsymbol{\xi}_{\gamma}(\underline{\mathbf{r}}) = \begin{cases} 1 & \text{if } \underline{\mathbf{r}} \in V_{\gamma} \cup \Gamma_{\gamma\kappa} \\ 0 & \text{otherwise} \end{cases}$$

Microscale Cauchy problem (pore scale model)

Continuity

$$\nabla \cdot \xi_{\gamma} \underline{\mathbf{v}} = 0$$

Linear momentum

$$\frac{\partial}{\partial t} \xi_{\gamma} \rho \underline{\mathbf{v}} + \underline{\nabla} \cdot \xi_{\gamma} \rho \underline{\mathbf{v}} \otimes \underline{\mathbf{v}} = \underline{\nabla} \cdot \xi_{\gamma} \underline{\underline{\mathbf{T}}} + \underline{\nabla} \cdot \xi_{\gamma} \underline{\underline{\hat{\mathbf{M}}}} + \xi_{\gamma} \rho \underline{\mathbf{g}}$$

Internal angular momentum (spin)

$$\frac{\partial}{\partial t} \xi_{\gamma} \rho I \underline{\mathbf{\omega}} + \underline{\nabla} \cdot \xi_{\gamma} \rho I \underline{\mathbf{\omega}} \otimes \underline{\mathbf{v}} = \underline{\nabla} \cdot \xi_{\gamma} \underline{\mathbf{C}} - \underline{\underline{\mathbf{E}}} : \xi_{\gamma} \underline{\underline{\mathbf{T}}} + \xi_{\gamma} \underline{\mathbf{G}}$$

Magnetization relaxation

$$\frac{\partial}{\partial t} \xi_{\gamma} \underline{\mathbf{M}} + \underline{\nabla} \cdot \xi_{\gamma} \underline{\mathbf{M}} \otimes \underline{\mathbf{v}} = \xi_{\gamma} \underline{\mathbf{\omega}} \times \underline{\mathbf{M}} - \tau^{-1} \xi_{\gamma} \Big(\underline{\mathbf{M}} (\underline{\mathbf{H}}) - \underline{\mathbf{M}}_{\ell} \Big(\underline{\mathbf{H}}^{\mathrm{e}}\Big)\Big)$$

Maxwell flux law

$$\nabla \cdot \xi_{\gamma} \mu_0 (\underline{\mathbf{H}} + \underline{\mathbf{M}}) = 0$$

$$\nabla \cdot \xi_{\kappa} \mu_0 (1 + \chi_{\kappa}) \underline{\mathbf{H}} = 0$$

$$\nabla \cdot \mu_0 \underline{\mathbf{H}}_0 = 0$$

Ampère-Maxwell law

$$\underline{\nabla} \times \boldsymbol{\xi}_{\gamma} (\underline{\mathbf{H}}_{0} + \underline{\mathbf{h}}) = \underline{\mathbf{0}}$$

$$\underline{\nabla} \times \boldsymbol{\xi}_{\kappa} (\underline{\mathbf{H}}_{0} + \underline{\mathbf{h}}) = \underline{\mathbf{0}}$$

$$\nabla \times \underline{\mathbf{H}}_0 = \underline{\mathbf{0}}$$

Slipless no-penetration on $\Gamma_{\gamma\kappa}$

$$\underline{\mathbf{n}}_{\gamma\kappa} \cdot \underline{\mathbf{v}} = 0$$
 $\underline{\mathbf{n}}_{\gamma\kappa} \times \underline{\mathbf{v}} = \underline{\mathbf{0}}$

Spin equation extension onto $\Gamma_{\gamma\kappa}$

Magnetization relax. extension onto $\Gamma_{\gamma\kappa}$

Continuity induced field tangent components on $\Gamma_{\gamma\kappa}$

$$\lim_{\kappa} \underline{\mathbf{h}} \times \underline{\mathbf{n}}_{\gamma\kappa} - \lim_{\gamma} \underline{\mathbf{h}} \times \underline{\mathbf{n}}_{\gamma\kappa} = \underline{\mathbf{h}}^{\kappa} \times \underline{\mathbf{n}}_{\gamma\kappa} - \underline{\mathbf{h}}^{\gamma} \times \underline{\mathbf{n}}_{\gamma\kappa} = \underline{\mathbf{0}}$$

Discontinuity induced field normal components on $\Gamma_{\gamma\kappa}$

$$\lim\nolimits_{\mathsf{K}}\underline{\mathbf{h}}\boldsymbol{\cdot}\underline{\mathbf{n}}_{\gamma\mathsf{K}}-\lim\nolimits_{\gamma}\underline{\mathbf{h}}\boldsymbol{\cdot}\underline{\mathbf{n}}_{\gamma\mathsf{K}}=\underline{\mathbf{h}}^{\mathsf{K}}\boldsymbol{\cdot}\underline{\mathbf{n}}_{\gamma\mathsf{K}}-\underline{\mathbf{h}}^{\gamma}\boldsymbol{\cdot}\underline{\mathbf{n}}_{\gamma\mathsf{K}}=\underline{\mathbf{M}}\boldsymbol{\cdot}\underline{\mathbf{n}}_{\gamma\mathsf{K}}$$

Microscale Cauchy problem (constitutive equations)

Cauchy stress tensor

$$\xi_{\gamma} \underline{\mathbf{T}} = \xi_{\gamma} \left(-p \underline{\mathbf{I}} + \eta \left(\underline{\nabla} \underline{\mathbf{v}} + {}^{t} \underline{\nabla} \underline{\mathbf{v}} \right) + \lambda \left(\nabla \cdot \underline{\mathbf{v}} \right) \underline{\mathbf{I}} + \zeta \underline{\mathbf{E}} \cdot \left(\underline{\nabla} \times \underline{\mathbf{v}} - 2\underline{\boldsymbol{\omega}} \right) \right)$$

Magnetic stress tensor

$$\xi_{\gamma} \underline{\underline{\hat{\mathbf{M}}}} = \xi_{\gamma} \left(-\frac{\mu_0}{2} \left[(\underline{\mathbf{H}}_0 + \underline{\mathbf{h}}) \cdot (\underline{\mathbf{H}}_0 + \underline{\mathbf{h}}) \right] \underline{\underline{\mathbf{I}}} + \mu_0 (\underline{\mathbf{H}}_0 + \underline{\mathbf{h}}) \otimes (\underline{\mathbf{H}}_0 + \underline{\mathbf{h}} + \underline{\mathbf{M}}) \right)$$

Couple stress dyadic (short-range diffusive exchange of angular momentum)

$$\boldsymbol{\xi}_{\gamma} \underline{\mathbf{C}} = \boldsymbol{\xi}_{\gamma} \left(\boldsymbol{\eta}' \left(\underline{\nabla} \underline{\boldsymbol{\omega}} + {}^{t} \underline{\nabla} \underline{\boldsymbol{\omega}} \right) + \boldsymbol{\lambda}' \nabla \cdot \underline{\boldsymbol{\omega}} \underline{\mathbf{I}} \right)$$

Body couple density (magnetic torque)

$$\boldsymbol{\xi}_{\gamma} \, \underline{\mathbf{G}} = \boldsymbol{\xi}_{\gamma} \, \boldsymbol{\mu}_{0} \, \underline{\mathbf{M}} \times \left(\underline{\mathbf{H}}_{0} + \underline{\mathbf{h}} \right)$$

Langevin law

$$\xi_{\gamma} \underline{\mathbf{M}}_{\ell} = \xi_{\gamma} \phi_{m} \overline{m} \left[\coth \left\{ \frac{\pi}{6} d_{m}^{3} \frac{\mu_{0} \overline{m}}{kT} \right\| \underline{\mathbf{H}}_{0} + \underline{\mathbf{h}}^{e} \right] - \frac{6}{\pi d_{m}^{3}} \frac{kT}{\mu_{0} \overline{m}} \left\| \underline{\mathbf{H}}_{0} + \underline{\mathbf{h}}^{e} \right\|^{-1} \right] \underline{\underline{\mathbf{H}}_{0} + \underline{\mathbf{h}}^{e}} \left\| \underline{\underline{\mathbf{H}}_{0} + \underline{\mathbf{h}}^{e}} \right\|$$

Volume Averaging

 ϕ bounded piecewise continuous scalar/vector/tensor field (of $\underline{x} + \underline{y}$) in \overline{V}

Superficial average

$$\left\langle \xi_{\gamma} \varphi \Big|_{\underline{\mathbf{x}} + \underline{\mathbf{y}}} \right\rangle \Big|_{\mathbf{x}} = \frac{1}{|\mathbf{V}|} \int_{\mathbf{V}} \xi_{\gamma} \varphi \Big|_{\underline{\mathbf{x}} + \underline{\mathbf{y}}} d\tau = \frac{1}{|\mathbf{V}|} \int_{\mathbf{V}_{\gamma}} \varphi \Big|_{\underline{\mathbf{x}} + \underline{\mathbf{y}}} d\tau$$

Intrinsic average

$$\left\langle \xi_{\gamma} \varphi \Big|_{\underline{\mathbf{x}} + \underline{\mathbf{y}}} \right\rangle_{\gamma} \bigg|_{\mathbf{x}} = \frac{1}{\left| \mathbf{V}_{\gamma} \right|} \int_{\mathbf{V}_{\gamma}} \xi_{\gamma} \varphi \Big|_{\underline{\mathbf{x}} + \underline{\mathbf{y}}} d\tau = \frac{1}{\left| \mathbf{V}_{\gamma} \right|} \int_{\mathbf{V}_{\gamma}} \varphi \Big|_{\underline{\mathbf{x}} + \underline{\mathbf{y}}} d\tau$$

Local volume fraction

$$\left\langle \xi_{\gamma} \Big|_{\underline{\mathbf{x}} + \underline{\mathbf{y}}} \right\rangle \Big|_{\mathbf{x}} = \frac{1}{|\mathbf{V}|} \int_{\mathbf{V}} \xi_{\gamma} \Big|_{\underline{\mathbf{x}} + \underline{\mathbf{y}}} d\tau = \frac{|\mathbf{V}_{\gamma}|}{|\mathbf{V}|} = \varepsilon_{\gamma}$$

Gray (1975) spatial decomposition

$$\left. \left. \xi_{\gamma} \varphi \right|_{\underline{\mathbf{x}}+\mathbf{y}} = \xi_{\gamma} \left\langle \varphi \right\rangle_{\gamma} \right|_{\mathbf{x}} + \xi_{\gamma} \widetilde{\varphi} \right|_{\mathbf{y}}$$

Scale separation between pore level microscale (realm of \underline{y}) and porous medium macroscocpic scale (realm of \underline{x}): / << L

Volume Averaging Theorem & Corollaries

Spatial derivative

$$\left\langle \underline{\nabla} \, \xi_{\gamma} \, \boldsymbol{\varphi} \Big|_{\underline{\mathbf{X}}^{+}\underline{\mathbf{y}}} \right\rangle \Big|_{\underline{\mathbf{X}}} = \underline{\nabla} \left\langle \xi_{\gamma} \boldsymbol{\varphi} \right\rangle \Big|_{\underline{\mathbf{X}}} + \frac{1}{|\mathbf{V}|} \int_{\Gamma_{\gamma\kappa}} \boldsymbol{\varphi} \Big|_{\underline{\mathbf{X}}^{+}\underline{\mathbf{y}}} \underline{\mathbf{n}}_{\gamma\kappa} d\boldsymbol{\sigma}$$

Corollaries

$$\left\langle \underline{\underline{\nabla}} \, \xi_{\gamma} \, \underline{\boldsymbol{\phi}} \Big|_{\underline{\mathbf{x}} + \underline{\mathbf{y}}} \right\rangle \Big|_{\mathbf{x}} = \underline{\underline{\nabla}} \left\langle \xi_{\gamma} \, \underline{\boldsymbol{\phi}} \right\rangle \Big|_{\underline{\mathbf{x}}} + \frac{1}{|\mathbf{V}|} \int_{\Gamma_{\gamma\kappa}} \underline{\boldsymbol{\phi}} \Big|_{\underline{\mathbf{x}} + \underline{\mathbf{y}}} \otimes \underline{\mathbf{n}}_{\gamma\kappa} d\boldsymbol{\sigma}$$

$$\left\langle \nabla \cdot \boldsymbol{\xi}_{\gamma} \, \underline{\boldsymbol{\phi}} \Big|_{\underline{\mathbf{X}} + \underline{\mathbf{y}}} \right\rangle \Big|_{\mathbf{X}} = \nabla \cdot \left\langle \boldsymbol{\xi}_{\gamma} \, \underline{\boldsymbol{\phi}} \right\rangle \Big|_{\underline{\mathbf{X}}} + \frac{1}{\left| \mathbf{V} \right|} \int_{\Gamma_{\gamma \kappa}} \underline{\boldsymbol{\phi}} \Big|_{\underline{\mathbf{X}} + \underline{\mathbf{y}}} \cdot \underline{\mathbf{n}}_{\gamma \kappa} d\boldsymbol{\sigma}$$

$$\left\langle \underline{\nabla} \cdot \boldsymbol{\xi}_{\gamma} \, \underline{\boldsymbol{\varphi}} \bigg|_{\underline{\mathbf{x}} + \underline{\mathbf{y}}} \right\rangle \bigg|_{\mathbf{x}} = \underline{\nabla} \cdot \left\langle \boldsymbol{\xi}_{\gamma} \, \underline{\boldsymbol{\varphi}} \right\rangle \bigg|_{\underline{\mathbf{x}}} + \frac{1}{|\mathbf{V}|} \int_{\Gamma_{\gamma\kappa}} \underline{\boldsymbol{\varphi}} \bigg|_{\underline{\mathbf{x}} + \underline{\mathbf{y}}} \cdot \underline{\mathbf{n}}_{\gamma\kappa} d\boldsymbol{\sigma}$$

$$\left\langle \underline{\nabla} \times \boldsymbol{\xi}_{\gamma} \, \underline{\boldsymbol{\phi}} \Big|_{\underline{\mathbf{x}} + \underline{\mathbf{y}}} \right\rangle \Big|_{\underline{\mathbf{x}}} = \underline{\nabla} \times \left\langle \boldsymbol{\xi}_{\gamma} \, \underline{\boldsymbol{\phi}} \right\rangle \Big|_{\underline{\mathbf{x}}} + \frac{1}{|\mathbf{V}|} \int_{\Gamma_{\gamma\kappa}} \underline{\mathbf{n}}_{\gamma\kappa} \times \underline{\boldsymbol{\phi}} \Big|_{\underline{\mathbf{x}} + \underline{\mathbf{y}}} d\boldsymbol{\sigma}$$

General derivative-integral interchange theorem

$$\left| \left\langle \frac{\partial}{\partial t} \, \xi_{\gamma} \varphi \right\rangle \right|_{\underline{\mathbf{x}}} = \frac{\partial}{\partial t} \left\langle \xi_{\gamma} \varphi \right\rangle \Big|_{\underline{\mathbf{x}}}$$

Upscaling (General Macroscopic FF Model)

Continuity

$$\nabla \cdot \boldsymbol{\varepsilon}_{\gamma} \left\langle \underline{\mathbf{v}} \right\rangle_{\gamma} = 0$$

Linear momentum

$$\rho \frac{\partial}{\partial t} \varepsilon_{\gamma} \langle \underline{\mathbf{v}} \rangle_{\gamma} + \rho \varepsilon_{\gamma} \underline{\underline{\nabla}} \langle \underline{\mathbf{v}} \rangle_{\gamma} \cdot \langle \underline{\mathbf{v}} \rangle_{\gamma} + \rho \underline{\varepsilon}_{\gamma} \langle \underline{\mathbf{v}} \otimes \underline{\mathbf{v}} \rangle_{\gamma} + \rho \underline{\varepsilon}_{\gamma} \langle \underline{\mathbf{v}} \otimes \underline{\mathbf{v}} \rangle_{\gamma} = -\varepsilon_{\gamma} \underline{\nabla} \langle \rho \rangle_{\gamma} + \varepsilon_{\gamma} \rho \underline{\mathbf{g}} + (\eta + \zeta) \varepsilon_{\gamma} \left(\underline{\underline{\mathbf{v}}} \langle \underline{\mathbf{v}} \rangle_{\gamma} + \underline{\underline{\nabla}} \langle \underline{\mathbf{v}} \rangle_{\gamma} \cdot \frac{\underline{\nabla} \varepsilon_{\gamma}}{\varepsilon_{\gamma}} + \frac{\Delta \varepsilon_{\gamma}}{\varepsilon_{\gamma}} \langle \underline{\mathbf{v}} \rangle_{\gamma} \right) + \frac{1}{|\nabla|} \int_{\Gamma_{\gamma\kappa}} \left\{ - \underline{\rho} \underline{\mathbf{I}} + (\eta + \zeta) \underline{\underline{\nabla}} (\underline{\xi}_{\gamma} \underline{\underline{\mathbf{v}}}) \right\} \cdot \underline{\mathbf{n}}_{\gamma\kappa} d\sigma + 2\zeta \varepsilon_{\gamma} \underline{\nabla} \times \langle \underline{\mathbf{o}} \rangle_{\gamma} + \varepsilon_{\gamma} \underline{\underline{\nabla}} (\underline{\mathbf{H}}_{0} + \langle \underline{\mathbf{h}} \rangle_{\gamma}) \cdot \langle \underline{\mathbf{M}} \rangle_{\gamma} \\ + 2\zeta \frac{1}{|\nabla|} \int_{\Gamma_{\gamma\kappa}} \underline{\mathbf{n}}_{\gamma\kappa} \times \underline{\underline{\omega}} d\sigma + \left(\frac{1}{|\nabla|} \int_{\Gamma_{\gamma\kappa}} (\underline{\underline{\mathbf{H}}}_{0} + \underline{\underline{\mathbf{h}}}^{\gamma}) \otimes \underline{\mathbf{n}}_{\gamma\kappa} d\sigma \right) \cdot \langle \underline{\mathbf{M}} \rangle_{\gamma} + \varepsilon_{\gamma} \langle \underline{\underline{\nabla}} (\underline{\xi}_{\gamma} \underline{\underline{\mathbf{H}}}_{0} + \underline{\xi}_{\gamma} \underline{\underline{\mathbf{h}}}) \cdot (\underline{\underline{\mathbf{M}}}) \rangle_{\gamma}$$

Internal angular momentum (spin)

$$\rho I \frac{\partial}{\partial t} \varepsilon_{\gamma} \langle \underline{\mathbf{\omega}} \rangle_{\gamma} + \rho I \varepsilon_{\gamma} \underline{\nabla} \langle \underline{\mathbf{\omega}} \rangle_{\gamma} \cdot \langle \underline{\mathbf{v}} \rangle_{\gamma} + \rho I \underline{\nabla} \cdot \varepsilon_{\gamma} \langle \underline{\widetilde{\mathbf{\omega}}} \otimes \underline{\widetilde{\mathbf{v}}} \rangle_{\gamma} = 2 \zeta \varepsilon_{\gamma} \left(\underline{\nabla} \times \langle \underline{\mathbf{v}} \rangle_{\gamma} + \frac{\underline{\nabla} \varepsilon_{\gamma}}{\varepsilon_{\gamma}} \times \langle \underline{\mathbf{v}} \rangle_{\gamma} - 2 \langle \underline{\mathbf{\omega}} \rangle_{\gamma} \right) + \mu_{0} \varepsilon_{\gamma} \langle \underline{\mathbf{M}} \rangle_{\gamma} \times \left(\underline{\mathbf{H}}_{0} + \langle \underline{\mathbf{h}} \rangle_{\gamma} \right) + \mu_{0} \varepsilon_{\gamma} \langle \underline{\mathbf{M}} \rangle_{\gamma} \times \left(\underline{\mathbf{H}}_{0} + \langle \underline{\mathbf{h}} \rangle_{\gamma} \right) + \mu_{0} \varepsilon_{\gamma} \langle \underline{\mathbf{M}} \rangle_{\gamma} \times \left(\underline{\mathbf{M}}_{0} + \langle \underline{\mathbf{h}} \rangle_{\gamma} \right) + \mu_{0} \varepsilon_{\gamma} \langle \underline{\mathbf{M}} \rangle_{\gamma} \times \left(\underline{\mathbf{M}}_{0} + \langle \underline{\mathbf{h}} \rangle_{\gamma} \right) + \mu_{0} \varepsilon_{\gamma} \langle \underline{\mathbf{M}} \rangle_{\gamma} \times \left(\underline{\mathbf{M}}_{0} + \langle \underline{\mathbf{h}} \rangle_{\gamma} \right) + \mu_{0} \varepsilon_{\gamma} \langle \underline{\mathbf{M}} \rangle_{\gamma} \times \left(\underline{\mathbf{M}}_{0} + \langle \underline{\mathbf{H}}_{0} + \langle \underline{\mathbf{H}}_{0} \rangle_{\gamma} \times \langle \underline{\mathbf{M}}_{0} \rangle_{\gamma} \times \left(\underline{\mathbf{M}}_{0} + \langle \underline{\mathbf{M}}_{0} \rangle_{\gamma} \times \langle \underline{\mathbf{M}}_{0} \rangle_{\gamma} \times \langle \underline{\mathbf{M}}_{0} \rangle_{\gamma} \times \langle \underline{\mathbf{M}}_{0} \rangle_{\gamma} \times \left(\underline{\mathbf{M}}_{0} + \langle \underline{\mathbf{M}}_{0} \rangle_{\gamma} \times \langle$$

Upscaling (General Macroscopic FF Model), Cont'd

Magnetization relaxation

$$\frac{\partial}{\partial t} \varepsilon_{\gamma} \langle \underline{\mathbf{M}} \rangle_{\gamma} + \underline{\underline{\nabla}} \varepsilon_{\gamma} \langle \underline{\mathbf{M}} \rangle_{\gamma} \cdot \langle \underline{\mathbf{v}} \rangle_{\gamma} + \varepsilon_{\gamma} \langle \underline{\mathbf{M}} \rangle_{\nu} (\nabla \cdot \langle \underline{\mathbf{v}} \rangle_{\nu}) + \underline{\nabla} \cdot \varepsilon_{\gamma} \langle \underline{\widetilde{\mathbf{M}}} \otimes \underline{\widetilde{\mathbf{v}}} \rangle_{\gamma} = \varepsilon_{\gamma} \langle \underline{\mathbf{\omega}} \rangle_{\gamma} \times \langle \underline{\mathbf{M}} \rangle_{\gamma} + \varepsilon_{\gamma} \langle \underline{\widetilde{\mathbf{\omega}}} \times \underline{\widetilde{\mathbf{M}}} \rangle_{\gamma} - \tau^{-1} \varepsilon_{\gamma} (\langle \underline{\mathbf{M}} \rangle_{\gamma} - \langle \underline{\mathbf{M}}_{\ell} \rangle_{\gamma})$$

Maxwell flux law

$$\nabla \cdot \left(\varepsilon_{\gamma} \left\langle \underline{\mathbf{h}} \right\rangle_{\gamma} + \varepsilon_{\gamma} \left\langle \underline{\mathbf{M}} \right\rangle_{\gamma} + \varepsilon_{\kappa} \left\langle \underline{\mathbf{h}} \right\rangle_{\kappa} \right) = 0$$

$$\mathcal{E}_{\kappa} \nabla \cdot \langle \underline{\mathbf{h}} \rangle_{\kappa} - \frac{1}{|\mathbf{V}|} \int_{\Gamma_{\gamma\kappa}} \underline{\widetilde{\mathbf{h}}}^{\kappa} \cdot \underline{\mathbf{n}}_{\gamma\kappa} d\sigma = 0$$

Ampère-Maxwell law

$$\underline{\nabla} \times \left(\mathcal{E}_{\gamma} \left\langle \underline{\mathbf{h}} \right\rangle_{\gamma} + \mathcal{E}_{\kappa} \left\langle \underline{\mathbf{h}} \right\rangle_{\kappa} \right) = \underline{\mathbf{0}}$$

$$\boldsymbol{\varepsilon}_{\kappa} \nabla \times \langle \underline{\mathbf{h}} \rangle_{\kappa} - \frac{1}{|\mathbf{V}|} \int_{\Gamma_{\gamma\kappa}} \underline{\tilde{\mathbf{h}}}^{\kappa} \times \underline{\mathbf{n}}_{\gamma\kappa} d\boldsymbol{\sigma} = \underline{\mathbf{0}}$$

Volume conservation

$$\varepsilon_{\gamma} + \varepsilon_{\kappa} = 1$$

Closure Problem

15 closure equations to be set

Drag force closure (Ergun equation)

$$\frac{1}{\left|\mathbf{V}\right|} \int_{\Gamma_{\gamma\kappa}} \left\{ -\tilde{p} \mathbf{\underline{I}} + (\eta + \zeta) \underline{\underline{\nabla}} \left(\xi_{\gamma} \, \underline{\tilde{\mathbf{v}}}\right) \right\} \cdot \underline{\mathbf{n}}_{\gamma\kappa} d\sigma = -\left(\frac{150(\eta + \zeta)}{d^{2}} \left(\frac{1 - \varepsilon_{\gamma}}{\varepsilon_{\gamma}} \right)^{2} + \frac{1.75\rho}{d} \frac{1 - \varepsilon_{\gamma}}{\varepsilon_{\gamma}} \left\| \langle \underline{\mathbf{v}} \rangle_{\gamma} \right\| \right) \varepsilon_{\gamma} \langle \underline{\mathbf{v}} \rangle_{\gamma}$$

Shear(η')/bulk(λ') spin viscosity =0*

$$\eta' \underline{\nabla} \cdot \left(\frac{1}{|\mathbf{V}|} \int_{\Gamma_{\gamma\kappa}} \underline{\widetilde{\mathbf{\omega}}} \otimes \underline{\mathbf{n}}_{\gamma\kappa} d\sigma \right) = 0$$

$$\frac{\eta'}{|\mathbf{V}|} \int_{\Gamma_{\gamma\kappa}} \left(\underline{\nabla} \xi_{\gamma} \underline{\widetilde{\mathbf{\omega}}} \right) \cdot \underline{\mathbf{n}}_{\gamma\kappa} d\sigma = 0$$

$$(\eta' + \lambda') \underline{\nabla} \left(\frac{1}{|\mathbf{V}|} \int_{\Gamma_{\gamma\kappa}} \underline{\widetilde{\mathbf{\omega}}} \cdot \underline{\mathbf{n}}_{\gamma\kappa} d\sigma \right) = 0$$

$$\frac{(\eta' + \lambda')}{|\mathbf{V}|} \int_{\Gamma} \left(\nabla \cdot \xi_{\gamma} \underline{\widetilde{\mathbf{\omega}}} \right) \underline{\mathbf{n}}_{\gamma\kappa} d\sigma = 0$$

Closure Problem

Simplified mean field estimation theory:

- $-\mu_{\kappa}$ / μ_{γ} < 5 : negligble intergrain contact points
- Linear magnetic material behavior (linear Langevin limit)

$$\xi_{\gamma} \mathbf{\underline{M}}_{\ell} = \xi_{\gamma} \chi_{0} (\mathbf{\underline{H}}_{0} + \mathbf{\underline{h}}^{e})$$

- Effective medium magnetic permeability $<\mu>$ of FF/porous medium composite*

$$\langle \mu(r) \rangle = \mu_{\gamma} \left(1 + 2(1 - \varepsilon(r)) \frac{\mu_{\kappa} - \mu_{\gamma}}{\mu_{\kappa} + 2\mu_{\gamma}} \right) \left(1 - (1 - \varepsilon(r)) \frac{\mu_{\kappa} - \mu_{\gamma}}{\mu_{\kappa} + 2\mu_{\gamma}} \right)^{-1}$$

- Intrinsic volume-average demagnetizing and granular induced magnetic fields

$$\Xi = \chi_0 (3 + 2\chi_0)^{-1}$$
$$\langle \underline{\mathbf{h}} \rangle_{\kappa} = (1 + \Xi) \langle \underline{\mathbf{h}} \rangle_{\gamma}$$

- Eight closure terms need to be closed:

$$\frac{\rho \nabla \cdot \varepsilon_{\gamma} \langle \underline{\tilde{\mathbf{v}}} \otimes \underline{\tilde{\mathbf{v}}} \rangle_{\gamma}}{\rho I \nabla \cdot \varepsilon_{\gamma} \langle \underline{\tilde{\mathbf{w}}} \otimes \underline{\tilde{\mathbf{v}}} \rangle_{\gamma}}, \quad 2\zeta \frac{1}{|\nabla|} \int_{\Gamma_{\gamma\kappa}} \underline{\mathbf{n}}_{\gamma\kappa} \times \underline{\tilde{\mathbf{w}}} d\sigma, \quad \left(\frac{1}{|\nabla|} \int_{\Gamma_{\gamma\kappa}} \left(\underline{\tilde{\mathbf{H}}}_{0} + \underline{\tilde{\mathbf{h}}}^{\gamma} \right) \otimes \underline{\mathbf{n}}_{\gamma\kappa} d\sigma \right) \cdot \langle \underline{\mathbf{M}} \rangle_{\gamma}, \quad \varepsilon_{\gamma} \langle \underline{\underline{\tilde{\mathbf{v}}}} \langle \underline{\tilde{\mathbf{H}}}_{0} + \xi_{\gamma} \underline{\tilde{\mathbf{h}}} \right) \cdot \langle \underline{\underline{\mathbf{M}}} \rangle_{\gamma}$$

$$\rho I \nabla \cdot \varepsilon_{\gamma} \langle \underline{\tilde{\mathbf{w}}} \otimes \underline{\tilde{\mathbf{v}}} \rangle_{\gamma}, \quad \mu_{0} \varepsilon_{\gamma} \langle \underline{\tilde{\mathbf{M}}} \times \left(\underline{\tilde{\mathbf{H}}}_{0} + \underline{\tilde{\mathbf{h}}} \right) \rangle_{\gamma}, \quad \nabla \cdot \varepsilon_{\gamma} \langle \underline{\tilde{\mathbf{M}}} \otimes \underline{\tilde{\mathbf{v}}} \rangle_{\gamma}, \quad \varepsilon_{\gamma} \langle \underline{\tilde{\mathbf{w}}} \times \underline{\tilde{\mathbf{M}}} \rangle_{\gamma}$$

Post facto justification for hydrodynamic/magnetostatics decoupling

$$\left\| \underline{\mathbf{H}}_{0} \right\| >> \left\| \underline{\mathbf{h}} \right\|$$

$$\left\| \underline{\nabla} \ \underline{\mathbf{H}}_{0} \cdot \underline{\mathbf{M}} \right\| >> \left\| \underline{\nabla} \ \underline{\mathbf{h}} \cdot \underline{\mathbf{M}} \right\|$$

Induced magnetic field and induced magnetic force neglected w/r to corresponding applied fields

$$\begin{split} &|H_{0z}| >> |h_z| \\ &|H_{0r}| >> |h_r| \\ &|m_z H_{0r} - m_r H_{0z}| >> |m_z h_r - m_r h_z| \end{split}$$

$$\left| m_r \frac{dH_{0r}}{dr} \right| >> \left| m_r \frac{\partial h_r}{\partial r} + m_z \frac{\partial h_r}{\partial z} \right|$$

$$\left| m_z \frac{dH_{0z}}{dz} \right| >> \left| m_z \frac{\partial h_z}{\partial z} + m_r \frac{\partial h_z}{\partial r} \right|$$

Steady-state 0-order axisymmetric volume-average FF model Decoupled HYDRODYNAMIC Submodel

Continuity

$$\int_{0}^{D/2} \varepsilon v_z r dr = \frac{U_0 D^2}{8}$$

Linear momentum (radial)

$$\rho \left(v_r \frac{\partial v_r}{\partial r} + v_z \frac{\partial v_r}{\partial z} \right) = \left(\eta + \zeta \right) \left(\frac{\partial^2 v_r}{\partial r^2} + \frac{1}{r} \frac{\partial v_r}{\partial r} - \frac{v_r}{r^2} + \frac{\partial^2 v_r}{\partial z^2} + \frac{v_r}{\varepsilon} \left(\frac{d^2 \varepsilon}{dr^2} + \frac{1}{r} \frac{d\varepsilon}{dr} \right) + \frac{1}{\varepsilon} \frac{d\varepsilon}{dr} \frac{\partial v_r}{\partial r} \right)$$

$$-2\zeta \frac{\partial \omega_\theta}{\partial z} + \frac{\mu_0}{\varepsilon} \left(m_r \left(\frac{dH_{0r}}{dr} + \frac{\partial h_r}{\partial r} \right) + m_z \frac{\partial h_r}{\partial z} \right) - \frac{v_r}{d} \frac{1 - \varepsilon}{\varepsilon} \left(150 \frac{\eta + \zeta}{d^2} \frac{1 - \varepsilon}{\varepsilon} + 1.75 \frac{\rho}{d} \sqrt{v_r^2 + v_z^2} \right)$$

Linear momentum (axial)

$$\rho \left(v_r \frac{\partial v_z}{\partial r} + v_z \frac{\partial v_z}{\partial z} \right) = \left(\eta + \zeta \right) \left(\frac{\partial^2 v_z}{\partial r^2} + \frac{1}{r} \frac{\partial v_z}{\partial r} + \frac{\partial^2 v_z}{\partial z^2} + \frac{v_z}{\varepsilon} \left(\frac{d^2 \varepsilon}{dr^2} + \frac{1}{r} \frac{d\varepsilon}{dr} \right) + \frac{1}{\varepsilon} \frac{d\varepsilon}{dr} \frac{\partial v_z}{\partial r} \right) + 2\zeta \left(\frac{\partial \omega_\theta}{\partial r} + \frac{\omega_\theta}{r} \right) + \frac{\mu_0}{\varepsilon} \left(m_z \left(\frac{dH_{0z}}{dz} + \frac{\partial h_z}{\partial z} \right) + m_r \frac{\partial h_z}{\partial r} \right) - \frac{v_z}{d} \frac{1 - \varepsilon}{\varepsilon} \left(150 \frac{\eta + \zeta}{d^2} \frac{1 - \varepsilon}{\varepsilon} + 1.75 \frac{\rho}{d} \sqrt{v_r^2 + v_z^2} \right) - \frac{dp}{dz} - \rho g$$

Decoupled HYDRODYNAMIC Submodel, Cont'd

Linear momentum (azimuthal)

$$v_{\theta} = 0$$

Internal angular momentum (radial)

$$\omega_r = 0$$

Internal angular momentum (axial)

$$\omega_z = 0$$

Internal angular momentum (azimuthal)

$$\rho I \left(v_r \frac{\partial \omega_{\theta}}{\partial r} + v_z \frac{\partial \omega_{\theta}}{\partial z} \right) = 2\zeta \left(\frac{\partial v_r}{\partial z} - \frac{\partial v_z}{\partial r} - \frac{v_z}{\varepsilon} \frac{d\varepsilon}{dr} - 2\omega_{\theta} \right) + \frac{\mu_0}{\varepsilon} \left(m_z (H_{0r} + h_{\kappa}) - m_r (H_{0z} + h_{\kappa}) \right)$$

Magnetization relaxation (radial)

$$v_r \frac{\partial m_r}{\partial r} + v_z \frac{\partial m_r}{\partial z} + m_r \left(\frac{v_r}{r} + \frac{\partial v_r}{\partial r} + \frac{\partial v_z}{\partial z} \right) = -\omega_z m_\theta - \tau^{-1} \left(m_r - \varepsilon m_{\ell r} \right)$$

Magnetization relaxation (axial)

$$v_r \frac{\partial m_z}{\partial r} + v_z \frac{\partial m_z}{\partial z} + m_z \left(\frac{v_r}{r} + \frac{\partial v_r}{\partial r} + \frac{\partial v_z}{\partial z} \right) = -\omega_\theta m_r - \tau^{-1} \left(m_z - \varepsilon m_{\ell z} \right)$$

Magnetization relaxation (azimuthal)

$$m_{\theta} = 0$$

Steady-state 0-order axisymmetric volume-average FF model Decoupled MAGNETOSTATIC submodel

Maxwell flux law, FF demagnetizing field, h_r

$$\frac{m_r}{r} + \frac{\partial m_r}{\partial r} + \frac{\partial m_z}{\partial z} = -\varepsilon \left(\frac{h_r}{r} + \frac{\partial h_r}{\partial r} + \frac{\partial h_z}{\partial z} \right) + \varepsilon \left(H_{0r} + h_r \right) \frac{d\varepsilon}{dr}$$
$$- (1 - \varepsilon) \left(\varepsilon \left(\frac{H_{0r}}{r} + \frac{\partial H_{0r}}{\partial r} + \frac{\partial H_{0z}}{\partial z} \right) + (\varepsilon + 1) \left(\frac{h_r}{r} + \frac{\partial h_r}{\partial r} + \frac{\partial h_z}{\partial z} \right) \right)$$

Ampère-Maxwell law (azimuthal), hz

$$(1 + \Xi (1 - \varepsilon)) \left(\frac{\partial h_r}{\partial z} - \frac{\partial h_z}{\partial r} \right) + \Xi (H_{0z} + h_z) \frac{d\varepsilon}{dr} = 0$$

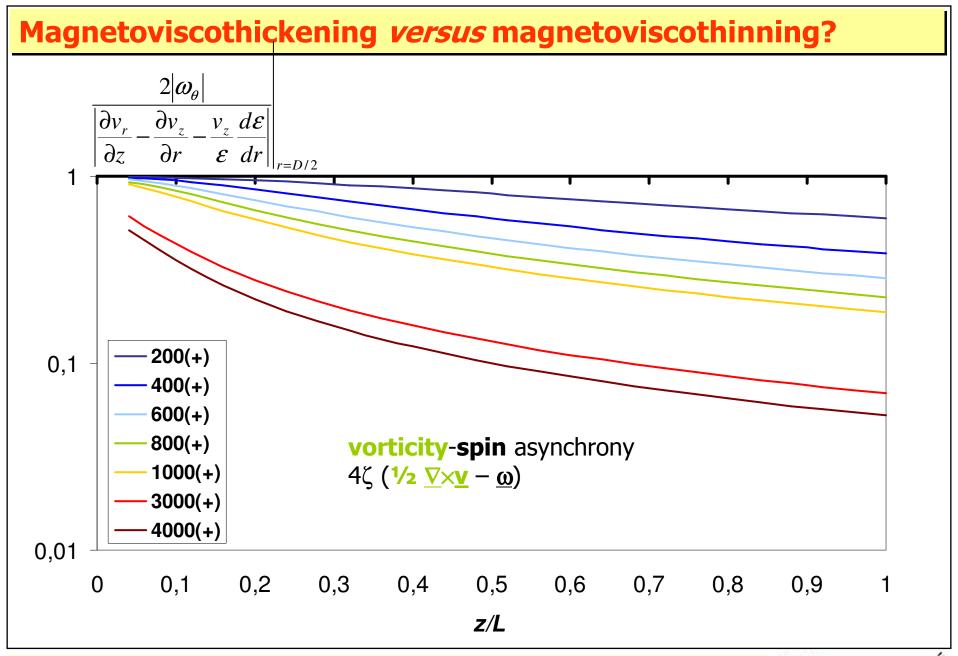
Azimuthal FF demagnetizing field, h_{θ}

$$h_{\theta} = 0$$

Boundary conditions

$$\frac{d}{dz} \frac{dp}{dz}(L) = 0 \qquad \frac{d^2}{dz} \frac{dp}{dz}(0) = 0 \qquad \text{Pressure field (continuity)}$$

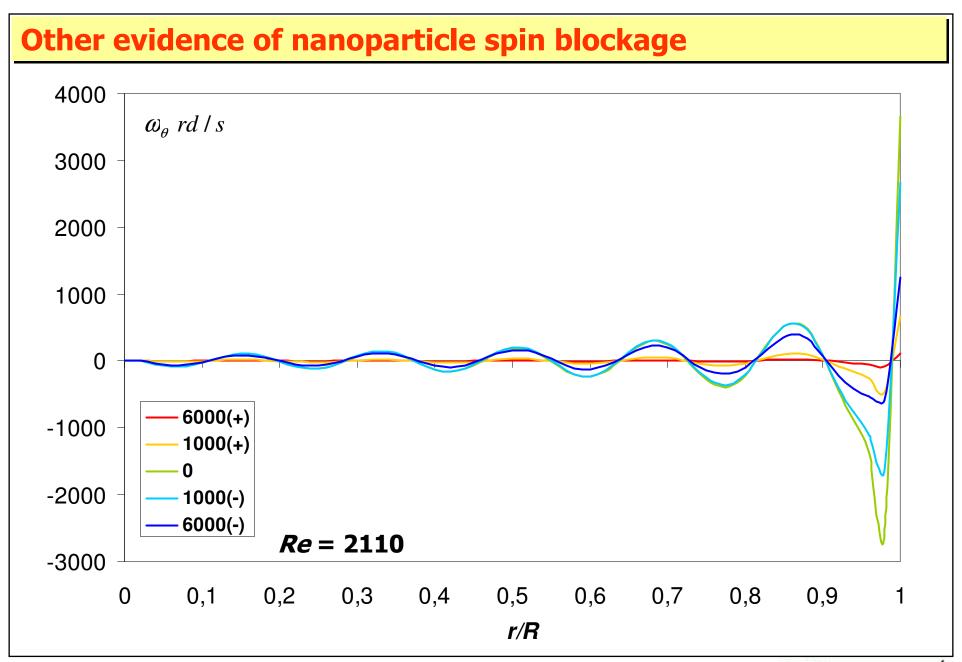
$$v_r(r,0) = 0 \quad r \in [0;D/2] \qquad \frac{\partial v_r}{\partial z}(r,L) = 0 \quad r \in [0;D/2] \qquad v_r(0,z) = 0 \quad z \in]0;L[\qquad v_r(D/2,z) = 0 \quad z \in]0;L[\qquad v_r(D/2,z) = 0 \quad z \in]0;L[\qquad v_z(r,0) = U_o \quad r \in [0;D/2] \qquad \partial v_z(r,L) = 0 \quad r \in [0;D/2] \qquad v_z(D/2,z) = 0 \quad z \in]0;L[\qquad v_z(D/2,z) = 0 \quad v_z(D/2,z$$



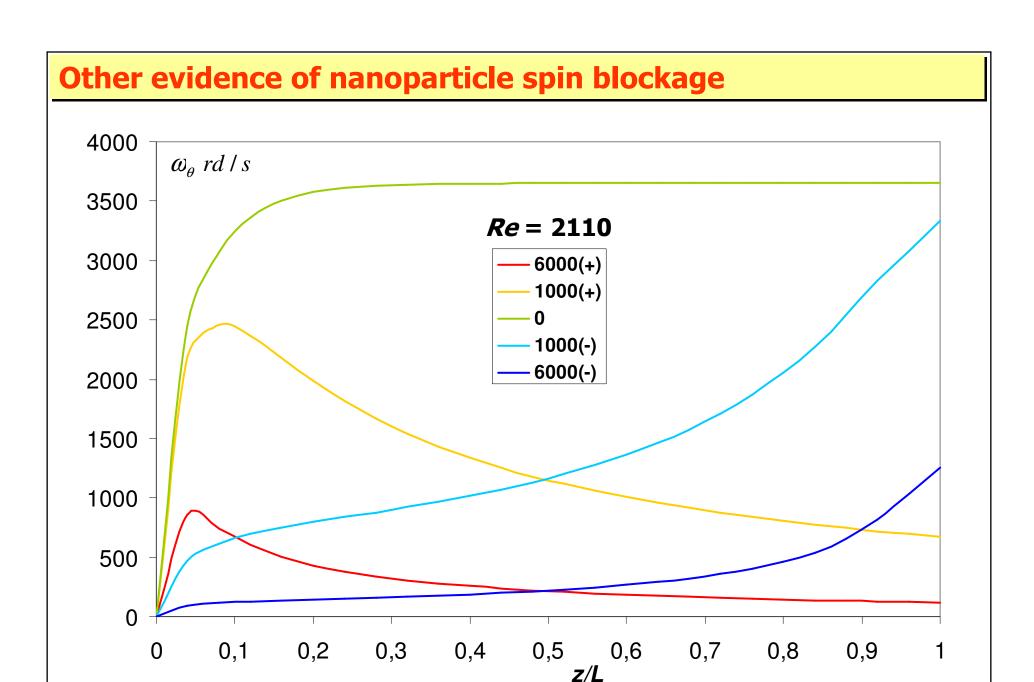
Ratio of spin density to FF vorticity axial profile @ wall

Magnetoviscothickening versus magnetoviscothinning? $2|\omega_{\theta}|$ $|\partial v_{r_{-}}|$ $\partial v_z - \underline{v_z} \, d\varepsilon$ ∂z 0,1 200(-) 400(-) 600(-) 800(-) 3000(-) 4000(-) 5000(-) 0,01 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0 8,0 0,9

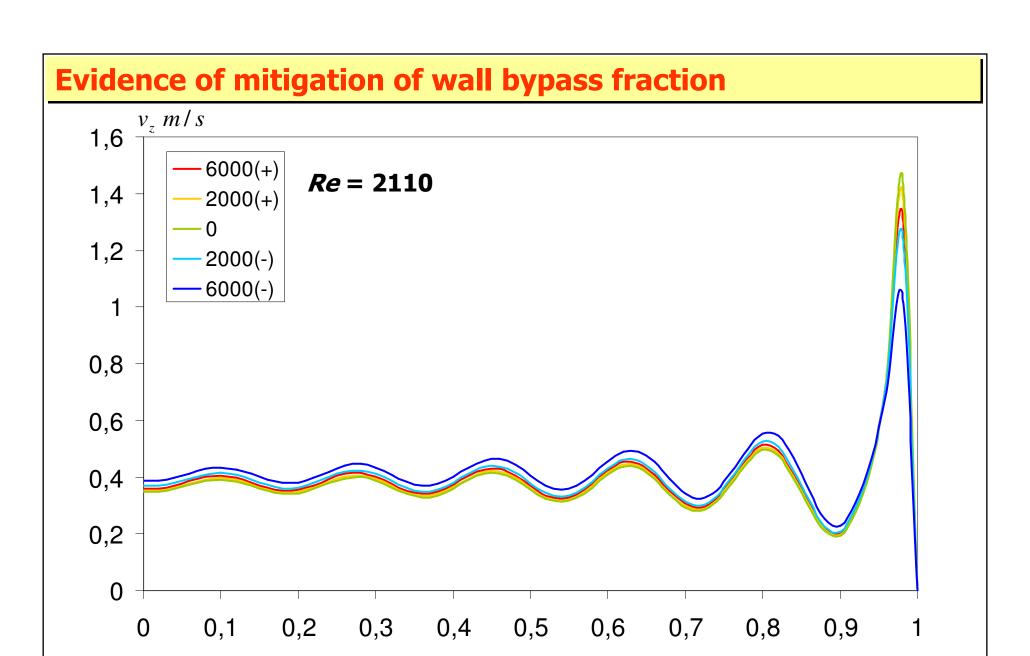
Ratio of spin density to FF vorticity axial profile @ wall



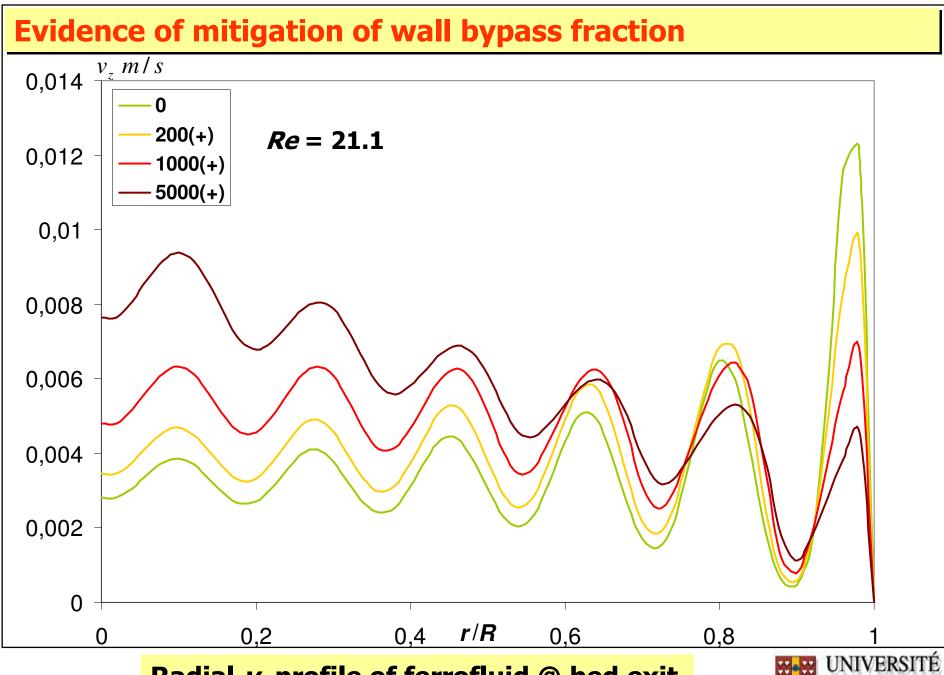
Spin density radial profile @ bed exit

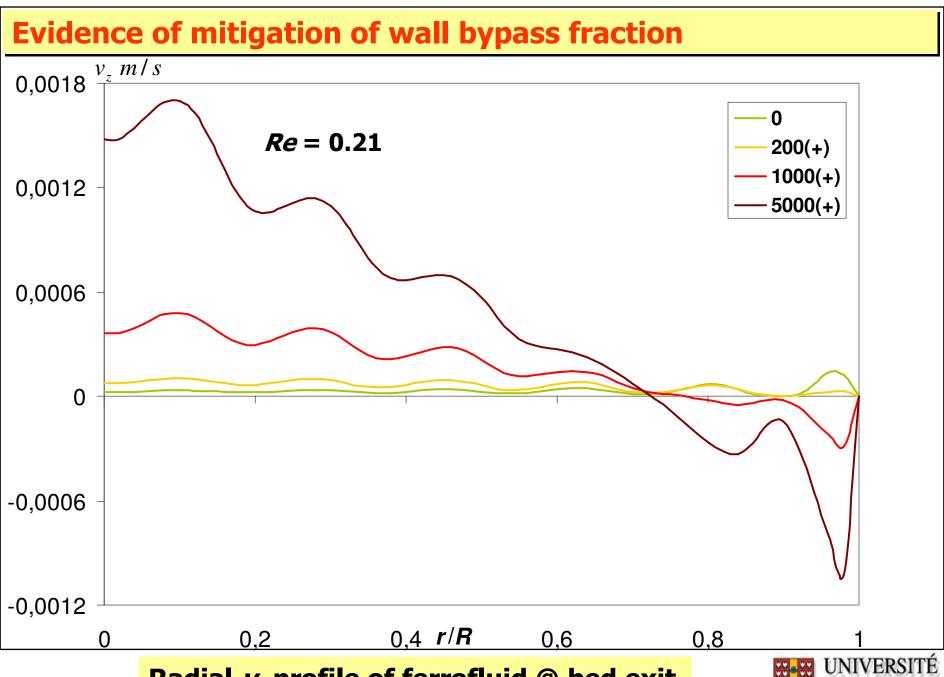


Spin density axial profile @ wall

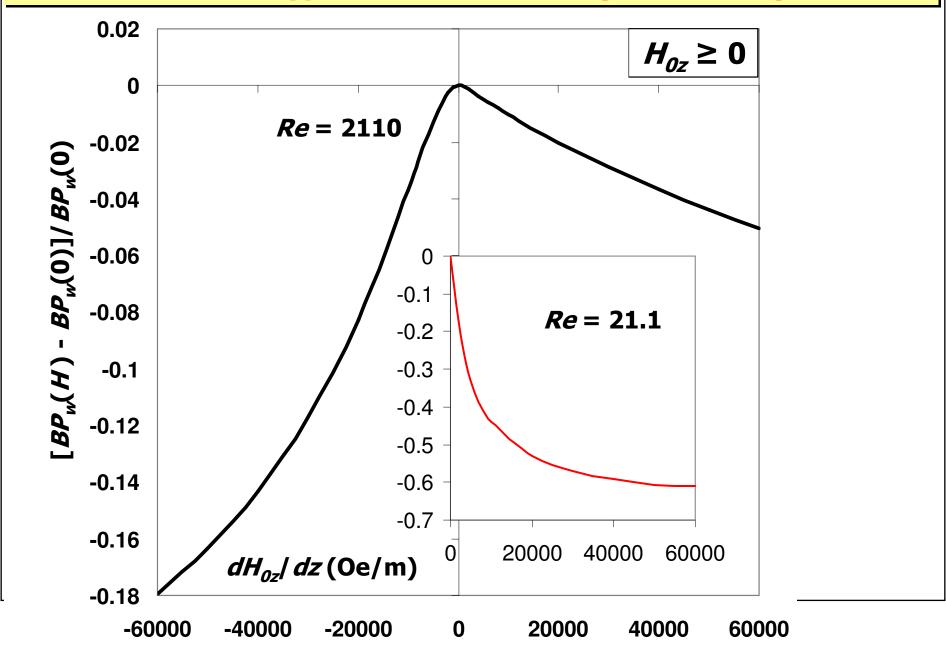


r/R





Radial v_z profile of ferrofluid @ bed exit



Evolution of pressure gradient vs. magnetic field gradient 0.6 -1 Re = 21.10.5 **Hypergravity** -2 [-dP/dz(H)+dP/dz(0)]/(-dP/dz(0))-3 0.4 -4 0.3 -5 -6 0.2 -7 Re = 2110-8 0.1 0 20000 40000 60000 0 **Hypogravity** -0.1 -0.2

0

 dH_{0z}/dz (Oe/m)

40000

20000

-0.3

-0.4

-60000

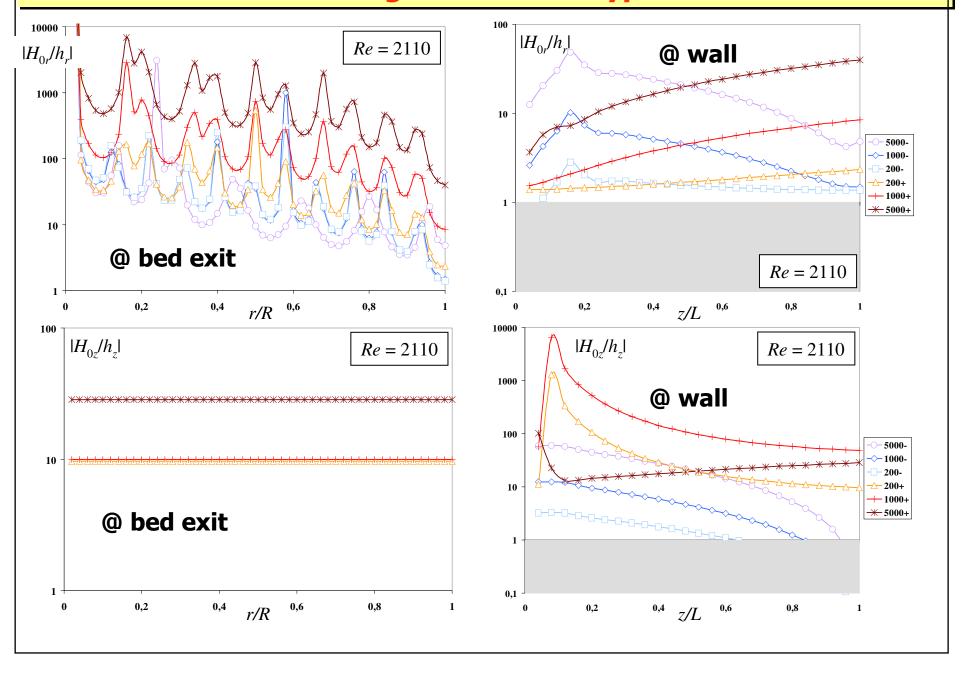
 $H_{0z} \geq 0$

-40000

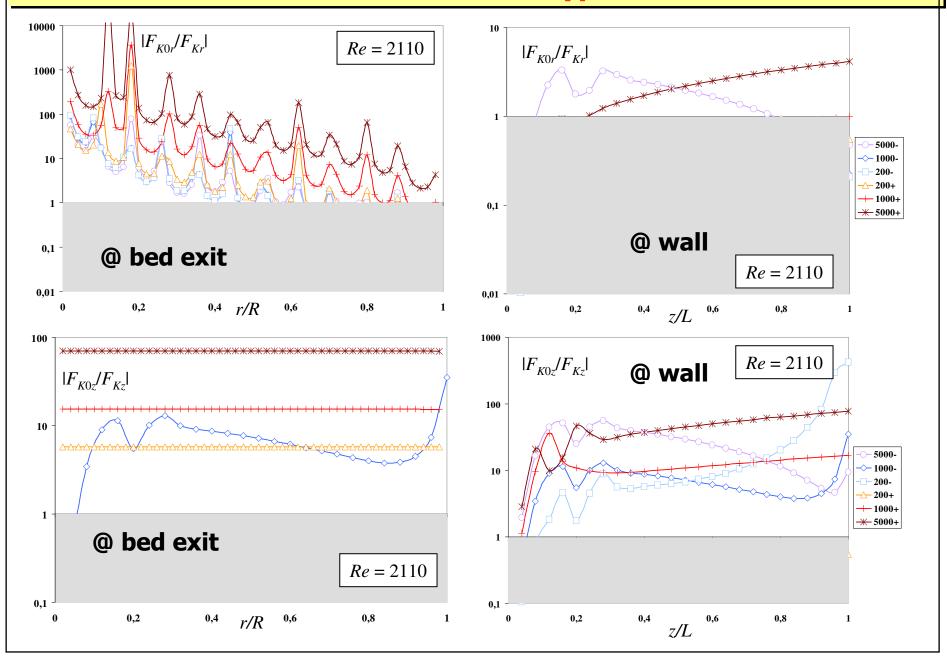
-20000

60000

Induced vs. external magnetic fields: Hypothesis validation



Induced vs. external Kelvin forces: Hypothesis validation



Induced magnetic field & magnetization field h_r A/m h_z A/m 300 200 1000 100 z/Lz/L m_r A/m m_z A/m -200 10000 -400 -8000 6000 -600--1000 · z/LRe = 2110z/Lr/R

200 Oe (+)

Ferrofluids, Conclusion

- Volume-average framework of FF flow in porous media using gradient magnetic fields
- Magnetostatic/hydrodynamic decoupling (negligible induced fields and their gradients) possible for positive high magnetic field gradient
- Magnetoviscothickening prevailing mechanism
- Substantial improvement of wall bypass achieved
- Pressure drop increases/decreases depending on whether hypergravity/hypogravity prevails in bed
- Possible chemical engineering applications in situations where low bed/particle diameter ratio unavoidable
- Experimental validation

Non-magnetic fluid applications

- -Evaluate ground-based artificial gravisensing of multiphase reactors using gradient magnetic fields
- -Propose rational framework commuting magnetic effects into artificial gravity effects: hydrodynamics of non-magnetic para/diamagnetic fluids (weakly or nonelectrically conducting)

Case study - Magnet-Bore Fitted Miniature Trickle Bed

- Measure two-phase pressure drop, liquid holdup & wetting efficiency; B∇B ON & OFF: air/water; air/aqueous MnCl₂ (Mars-gravity: g = 3.73 m/s²)
- Propose 0-order volume-average formulation including $\overrightarrow{F_m}$
- Data analysis with slit model

BACKGROUND

Magnetization Kelvin body force density

$$\underline{\mathbf{F}}_{Kelvin} = \mu_0 \underline{\underline{\nabla}} (\underline{\mathbf{H}} + \underline{\mathbf{h}}) \cdot \underline{\mathbf{M}}$$

Para $(\chi>0)$ /diamagnetic $(\chi<0)$ materials: $1+\chi\approx 1$

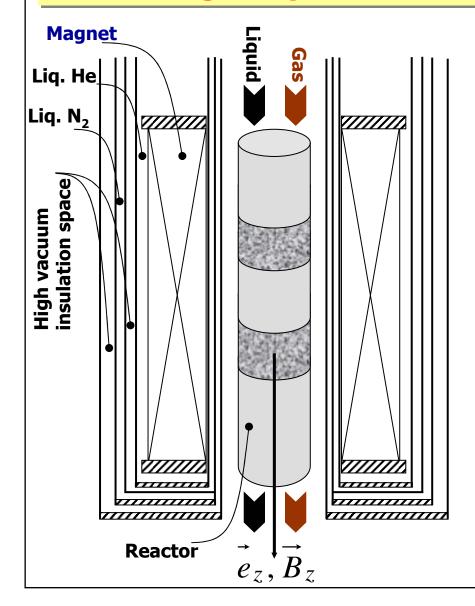
$$\underline{\mathbf{F}}_{\text{Kelvin}} = \frac{\chi}{\mu_0 (1 + \chi)^2} \underline{\underline{\nabla}} (\underline{\mathbf{B}} + \underline{\mathbf{b}}) \cdot (\underline{\mathbf{B}} + \underline{\mathbf{b}}) \approx \frac{\chi}{\mu_0} \underline{\underline{\nabla}} \underline{\mathbf{B}} \cdot \underline{\mathbf{B}}$$

(STRONG Inhomogeneous magnetic induction: SUPERCONDUCTING MAGNET)

Net body force along gravitational field direction

$$\vec{F}_z^{m \oplus g} = \left(\rho g + \frac{\chi}{\mu_o} B_z \frac{dB_z}{dz}\right) \vec{e}_z$$

Artificial gravity sustained in a superconducting magnet



$$\vec{F}_{\alpha z}^{m \oplus g} = \rho_{\alpha} \vec{g}_{\alpha} \vec{e}_{z}$$

Artificial gravity factor

$$\gamma_{\alpha} = \frac{\tilde{g}_{\alpha}}{g} = \left(1 + \frac{\chi_{\alpha}}{\rho_{\alpha}g\mu_{o}}B_{z}\frac{dB_{z}}{dz}\right)$$

Hypergravity

$$\begin{array}{ccc} \chi_{\alpha} > 0; & \nabla_{z} B_{z}^{2} > 0 \\ \chi_{\alpha} < 0; & \nabla_{z} B_{z}^{2} < 0 \end{array} \Rightarrow \gamma_{\alpha} > 1$$

Hypogravity

$$\chi_{\alpha} > 0; \quad \nabla_{z} B_{z}^{2} < 0 \Rightarrow 0 < \gamma_{\alpha} < 1$$
 $\chi_{\alpha} < 0; \quad \nabla_{z} B_{z}^{2} > 0$

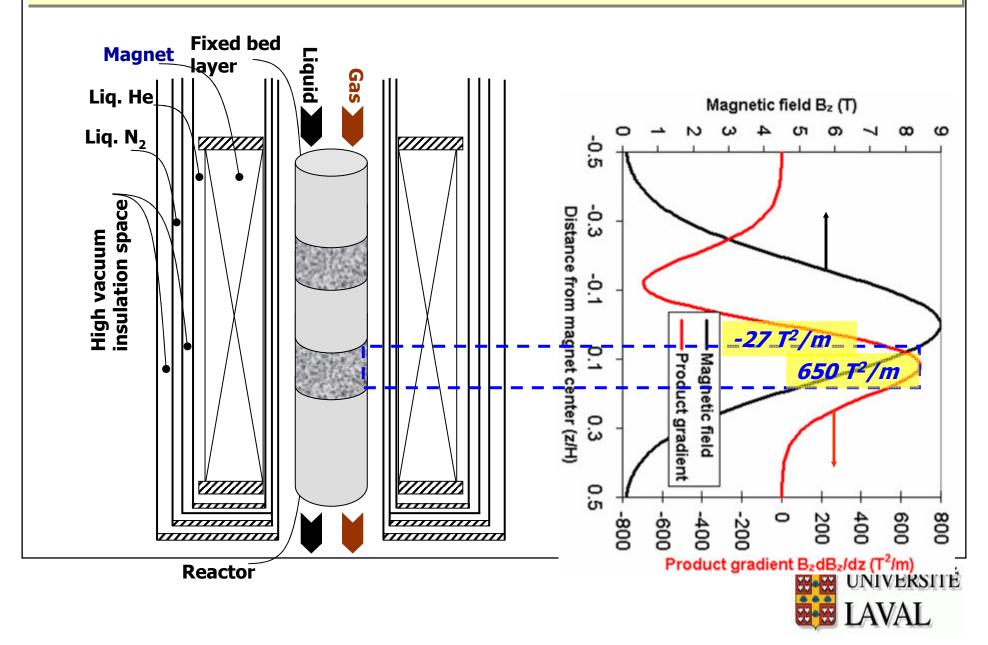
Mars gravity
 $\gamma_{\alpha} = 0.38$

Levitation
 $\gamma_{\alpha} = 0$

ULaval 9-T NbTi Superconducting Magnet Setup

Atmospheric magnet bore

Magnetic field & magnetic field gradient distributions in a 9 Tesla superconducting magnet (Trickle bed inside magnet bore)



ULaval 9-T NbTi Superconducting Magnet Setup

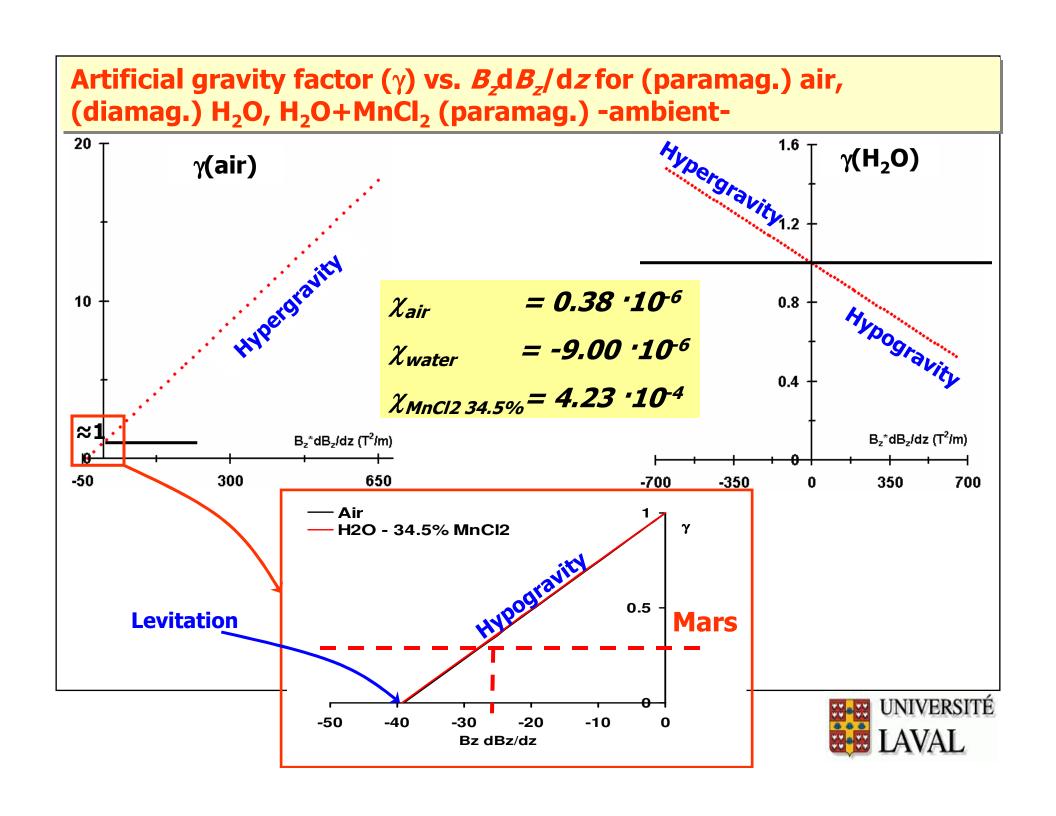
Peak magnetic flux density	9 T
Peak B _z dB _z /dz	±650 T ² /m
Length	30 cm
OD	15 cm
ID	5 cm
Free ID	2.5 cm

Artificial gravity

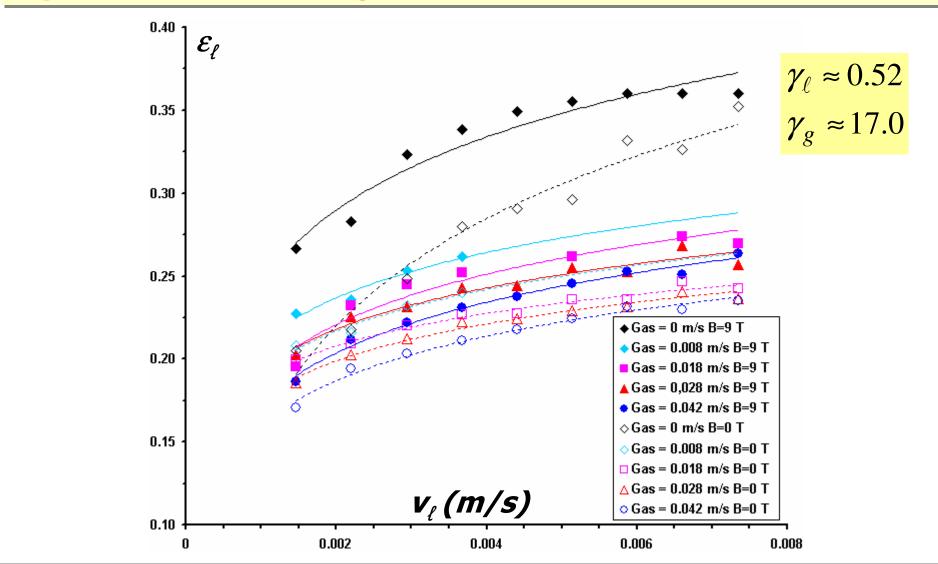
Mars gravity

Water superf. velocity Water susceptibility B _z dB _z /dz=+650 T²/m ⇒	$0-9 \text{ mm/s} -9.0 \ 10^{-6} \ (-) \ \gamma_{\ell} \approx 0.52$
Air superf. velocity Air susceptibility $B_z dB_z / dz = +650 \text{ T}^2/\text{m} \implies$	$0-50 \text{ mm/s}$ 0.38 10^{-6} (-) $\gamma_g \approx 17.0$
T & P Glass beads Bed Length ID	ambient 0.6 & 1 mm 40 mm 19 mm

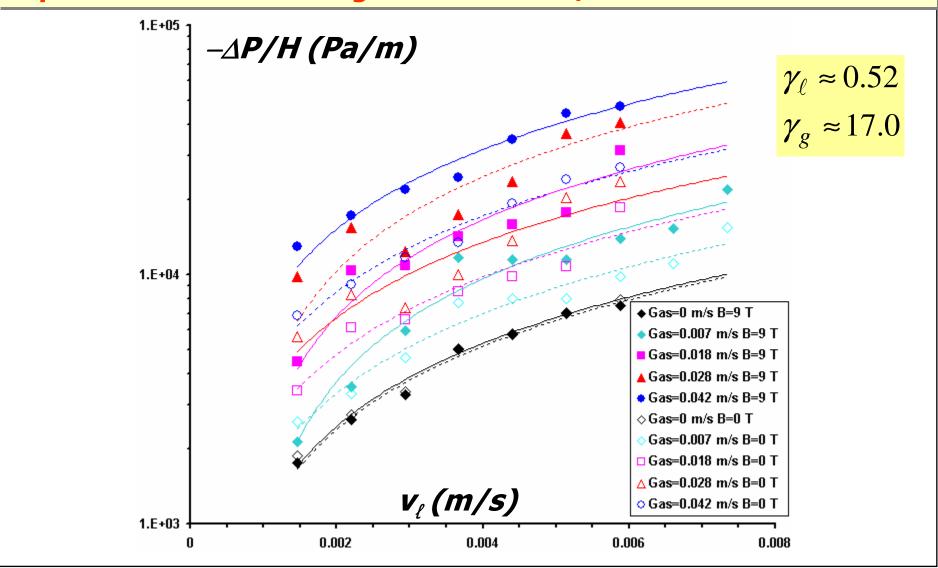
$MnCl_2$ 34.5% sol. superf. velocity 0 - 1mm/sMnCl₂ sol susceptibility 4.23 10⁻⁴ (-) $\Rightarrow \gamma_{\ell} \approx 0.38$ $B_z dB_z / dz = -27 T^2 / m$ Air superf. velocity 0-60 mm/sAir susceptibility 0.38 10⁻⁶ (-) $B_z dB_z / dz = -27 T^2 / m$ $\Rightarrow \gamma_{\rm g} \approx 0.38$ **T&P** ambient Glass beads 0.6 & 1 mm **Bed Length** ID 17 mm Viscosity/density 3 cp, 1347 kg/m³



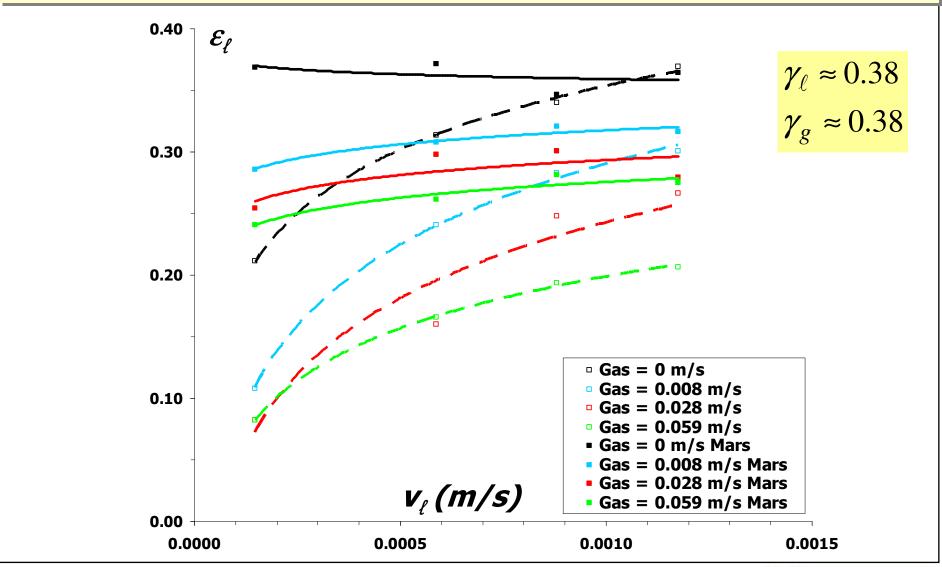
Effect of magnetic field on liquid holdup @ various liquid & gas superf. velocities — 1 mm glass beads — air/water



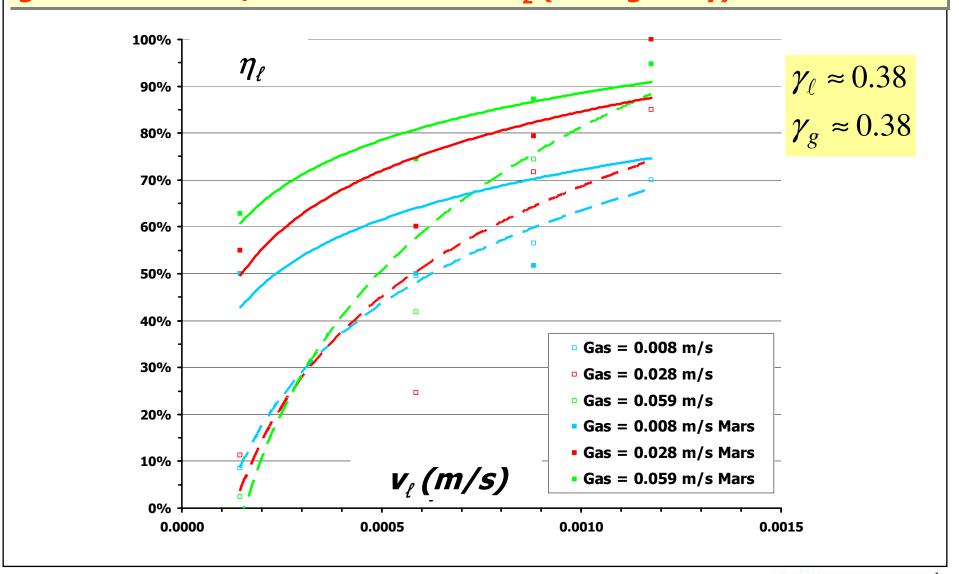
Effect of magnetic field on pressure drop @ various liquid & gas superf. velocities — 1 mm glass beads — air/water



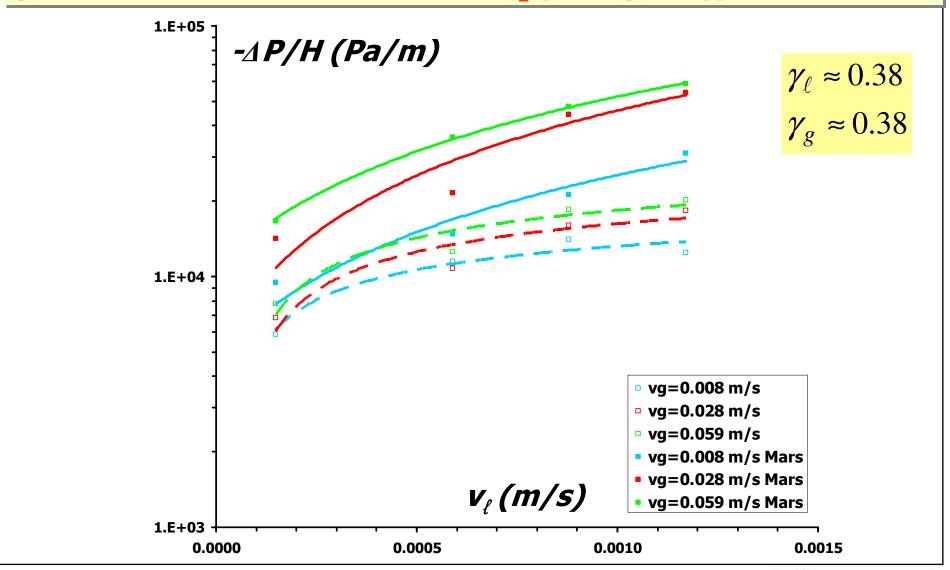
Liquid holdup @ various liquid & gas superf. velocities — 0.6 mm glass beads — air/water+34.5% MnCl₂ (Mars gravity)



Wetting efficiency @ various liquid & gas superf. velocities — 0.6 mm glass beads — air/water+34.5% MnCl₂ (Mars gravity)



Pressure drop @ various liquid & gas superf. velocities — 0.6 mm glass beads — air/water+34.5% MnCl₂ (Mars gravity)



LOCAL FLOW DESCRIPTION

$$\nabla \cdot \underline{\mathbf{v}}_k = 0$$
 In $\Omega_{\mathbf{k}}$ (k=g, ℓ)

Linear momentum
$$\frac{\partial}{\partial t} \rho_k \underline{\mathbf{v}}_k + \rho_k \nabla \cdot \underline{\mathbf{v}}_k \otimes \underline{\mathbf{v}}_k = \underline{\nabla} \cdot \underline{\mathbf{T}}_k + \rho_k \underline{\mathbf{g}} + \mu_o \underline{\underline{\nabla}} \underline{\mathbf{H}}_k \cdot \underline{\mathbf{M}}_k$$
 In Ω_k (k=g, ℓ)

$$\underline{\mathbf{B}}_k = \underline{\mathbf{B}} + \underline{\mathbf{b}}_k \qquad \underline{\mathbf{H}}_k = \underline{\mathbf{H}} + \underline{\mathbf{h}}_k$$

In
$$\Omega_k$$
 (k=g, ℓ ,s)

$$\underline{\mathbf{B}}_k = \mu_o \big(\underline{\mathbf{H}}_k + \underline{\mathbf{M}}_k\big)$$

In
$$\Omega_k$$
 (k=g, ℓ ,s)

$$\underline{\mathbf{M}}_k = \chi_k \underline{\mathbf{H}}_k$$

In
$$\Omega_k$$
 (k=g, ℓ_i s)

Ampère-Maxwell relation
$$\nabla \times \underline{\mathbf{H}}_k = \nabla \times \underline{\mathbf{h}}_k = \nabla \times \underline{\mathbf{H}} = \underline{\mathbf{0}}$$

In
$$\Omega_k$$
 (k=g, ℓ_l s)

Maxwell flux / Gauss law
$$\nabla \cdot \underline{\mathbf{B}}_k = \nabla \cdot \underline{\mathbf{b}}_k = \nabla \cdot \underline{\mathbf{B}} = 0 \implies \nabla \cdot \underline{\mathbf{h}}_k + \nabla \cdot \underline{\mathbf{M}}_k = 0$$
 In Ω_k (k=g, ℓ_k s)

$$\underline{\mathbf{v}}_g = \underline{\mathbf{0}} \quad \text{on } \Gamma_{\mathsf{gs}} \quad \underline{\mathbf{v}}_\ell = \underline{\mathbf{0}} \quad \text{on } \Gamma_{\ell\mathsf{s}} \quad \underline{\mathbf{v}}_\ell = \underline{\mathbf{v}}_g = \underline{\mathbf{v}}_i \text{ on } \Gamma_{\ell g}$$

Continuity of tangential B component @ interfaces $(\mathbf{B}_k - \mathbf{B}_i) \cdot \mathbf{n}_{ki} = 0$ on Γ_{ki}

$$(\mathbf{B}_k - \mathbf{B}_j) \cdot \mathbf{n}_{kj} = 0$$

Continuity of normal H component @ interfaces

$$(\underline{\mathbf{H}}_k - \underline{\mathbf{H}}_j) \times \underline{\mathbf{n}}_{kj} = \underline{\mathbf{0}}$$
 on $\Gamma_{\mathbf{k}\mathbf{j}}$

Zero-order 1-D Volume-average Formulation

Main assumptions

- Simple upscaling-homogenization
- z-unidirectional, steady-state
- Fully developed flow, fully wetted bed
- Magnetization self-induced magnetic fields ignored
- Moses effect ignored
- Lorentz force ignored (electrolyte solution)
- **STABLE LIQUID FILMS**

$$-\varepsilon_{g} \frac{dP}{dz} + \varepsilon_{g} \rho_{g} g + \frac{\varepsilon_{g} \chi_{g}}{\mu_{o}} B_{z} \frac{dB_{z}}{dz} - F_{g\ell} = 0$$

$$-\varepsilon_{\ell} \frac{dP}{dz} + \varepsilon_{\ell} \rho_{\ell} g + \frac{\varepsilon_{\ell} \chi_{\ell}}{\mu_{o}} B_{z} \frac{dB_{z}}{dz} + F_{g\ell} - F_{\ell s} = 0$$

$$\gamma_{g} = \left(1 + \frac{\chi_{g}}{\rho_{g} g \mu_{o}} B_{z} \frac{dB_{z}}{dz}\right) \implies -\varepsilon_{g} \frac{dP}{dz} + \varepsilon_{g} \rho_{g} \gamma_{g} g = F_{g\ell}$$

$$\gamma_{\ell} = \left(1 + \frac{\chi_{\ell}}{\rho_{\ell} g \mu_{o}} B_{z} \frac{dB_{z}}{dz}\right) \implies -\varepsilon_{\ell} \frac{dP}{dz} + \varepsilon_{\ell} \rho_{\ell} \gamma_{\ell} g = -F_{g\ell} + F_{\ell s}$$

Zero-order 1-D Volume-average Formulation

- Slit model drag closures **EXTENSION TO ARTIFICIAL GRAVITY CONDITIONS**

Holub, R. A., M. P. Duduković, P. A. Ramachandran, *Chem. Eng. Sci.*, 47, 2343 (1992)

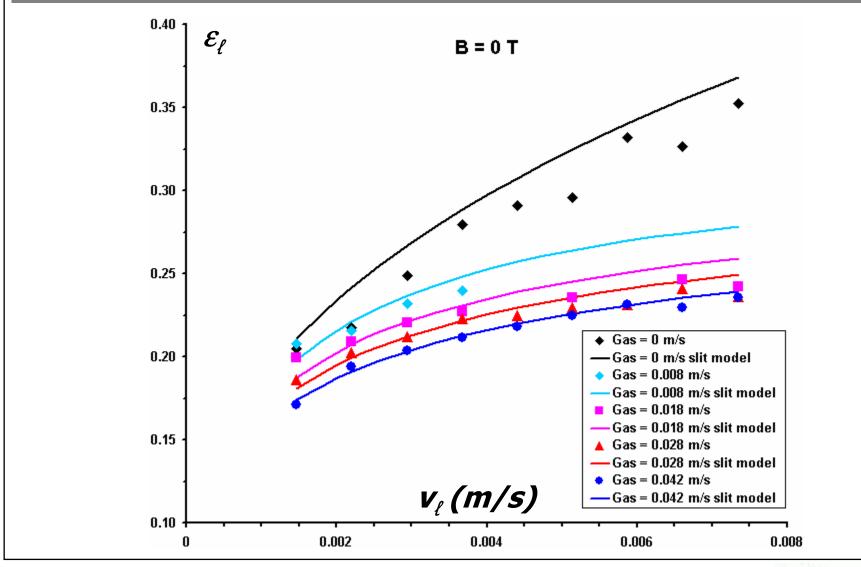
$$\Psi_{g} = -\frac{dP}{dz} \frac{1}{\rho_{g} \gamma_{g} g} + 1 = \left(\frac{\varepsilon}{\varepsilon_{g}}\right)^{3} \left(E_{1} \frac{R e_{g}}{G a_{g}} + E_{2} \frac{R e_{g}^{2}}{G a_{g}}\right)$$

$$\Psi_{\ell} = -\frac{dP}{dz} \frac{1}{\rho_{\ell} \gamma_{\ell} g} + 1 = \left(\frac{\varepsilon}{\varepsilon_{\ell}}\right)^{3} \left(E_{1} \frac{R e_{\ell}}{G a_{\ell}} + E_{2} \frac{R e_{\ell}^{2}}{G a_{\ell}}\right)$$

$$Ga_{g} = \frac{\rho_{g}^{2} \gamma_{g} gd_{p}^{3} \varepsilon^{3}}{\eta_{g}^{2} (I - \varepsilon)^{3}}$$

$$Ga_{\ell} = \frac{\rho_{\ell}^{2} \gamma_{\ell} gd_{p}^{3} \varepsilon^{3}}{\eta_{\ell}^{2} (I - \varepsilon)^{3}}$$

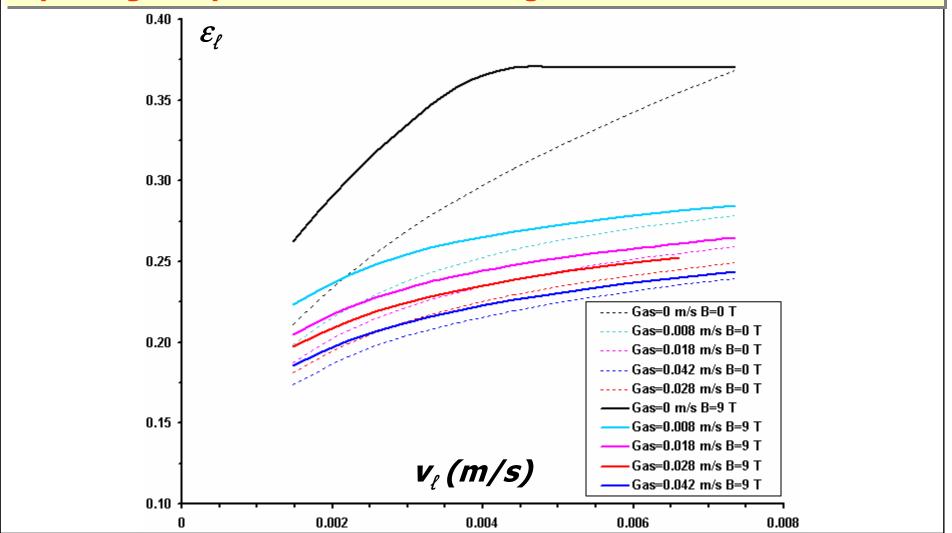
Comparison between Slit model & experimental holdup data — Magnetic field OFF — 1 mm glass beads



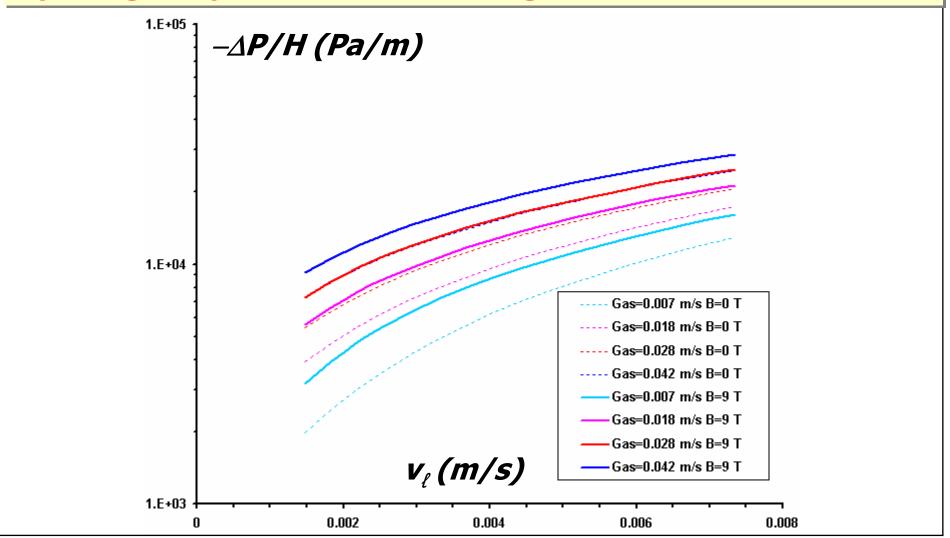
Comparison between Slit model & experimental pressure drop data - Magnetic field OFF - 1 mm glass beads



Trends predicted from slit model if magnetic field effect is commuted into artificial gravity effect. Liquid holdup @ various liquid & gas superf. velocities — 1 mm glass beads



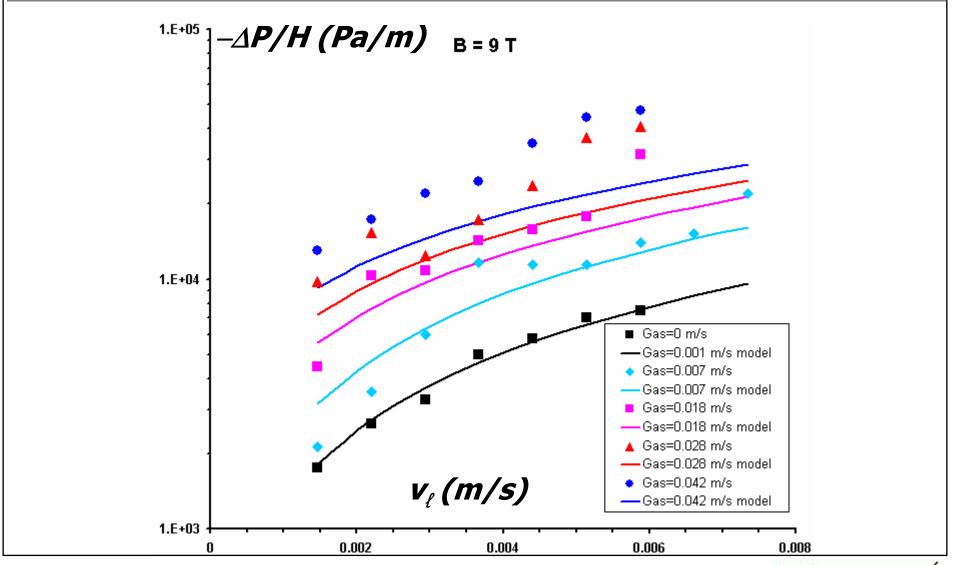
Trends predicted from slit model if magnetic field effect is commuted into artificial gravity effect. Pressure drop @ various liquid & gas superf. velocities — 1 mm glass beads



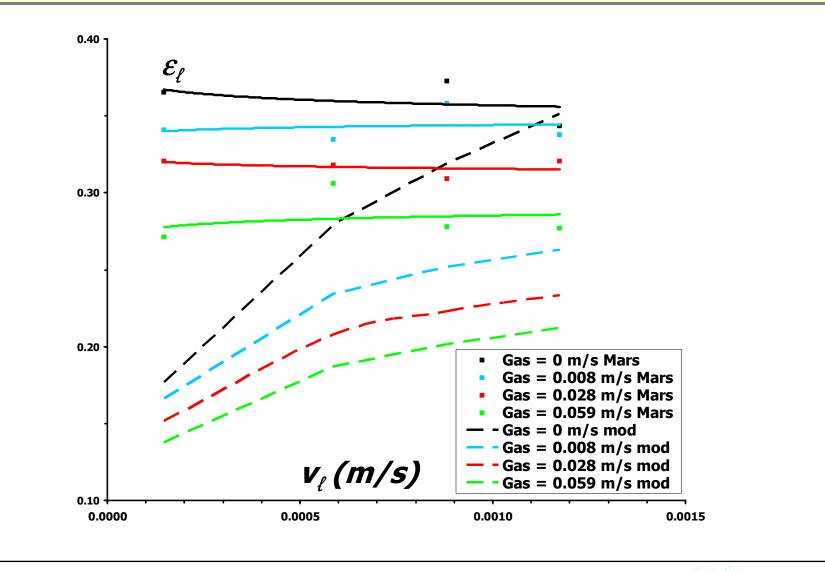
Comparison between Slit model & experimental holdup data — Magnetic field ON — 1 mm glass beads, air/water



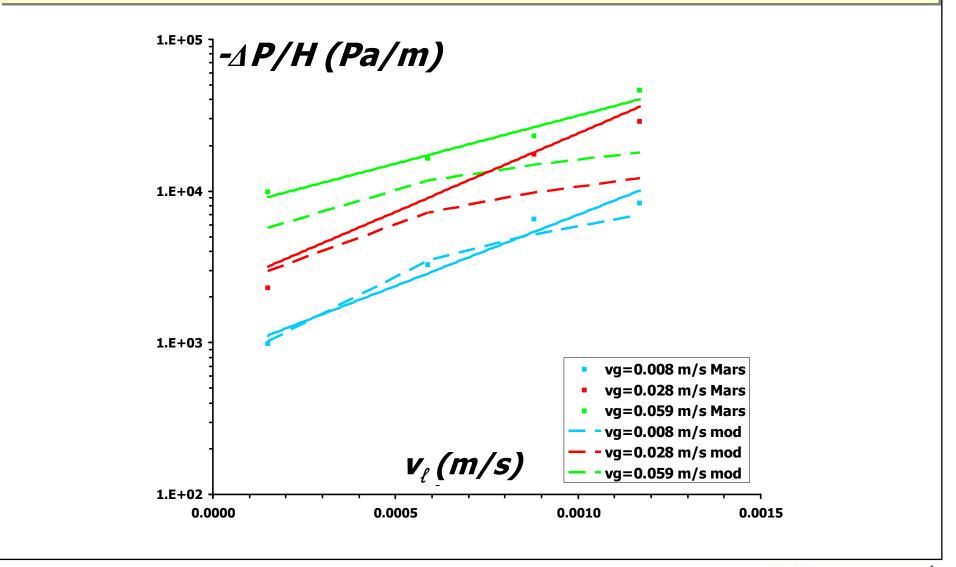
Comparison between Slit model & experimental pressure drop data - Magnetic field ON - 1 mm glass beads, air/water



Comparison between Slit model & experimental holdup data — Magnetic field ON — 1 mm glass beads (Mars gravity)



Comparison between Slit model & experimental pressure drop data - Magnetic field ON - 1 mm glass beads (Mars gravity)



Concluding remarks

- Ground-based artificial gravisensing of multiphase reactors using gradient magnetic fields seems reasonable
- Magnetic Kelvin body force commutable into artificial gravity body force (fluid mechanically speaking)
- Liquid hypogravity increases liquid holdup & afflicts film stability. Gas hypergravity promotes interfacial interactions/drags, pressure drop
- Mars gravity: pressure drop, liquid holdup, wetting efficiency increase w/r to g-Earth case
- Slit model describes satisfactorily artificial gravity INASMUCH as film flow assumption holds, interactions accounted for, or low gas superficial velocity

