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Objectives

» Explore the possibility of using the
lattice Boltzmann method to simulate
drop breakup and coalescence.

o Compare the simulation results with
existing experimental or theoretical
results

» Galin a better understanding of the basic
physics assoclated with changes In
Interface topology.



Dimensionless groups

Gd :
Ca =" capillary number
O
2
Re = Gd Reynolds number
U
2
We = 4P Weber number




Characteristics of system

d < equivalent spherical diameter
oo drop viscosity

v * continuous phase kinematic
viscosity

O e« Interfacial tension
L, * density of drop



Breakup in shear flows

In low Reynolds number laminar flows:

e Critical capillary number depends strongly on the
VISCOSIty ratio

e Different breakup modes for different viscosity ratios

e |If the flow field was suddenly turned off, a highly
deformed drop can break.

o Little experimental work available for large Reynolds
number laminar shear flows.
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Variation of critical Ca with viscosity ratio for simple shear flow.
Rallison (1984)



Breakup in turbulent flows

e \Weber number should be based on

the mean square velocity difference
across the drop.

* The critical Weber number should be
Independent of Reynolds number

Hinze (1955)



Coalescence in [aminar shear flows

* No drop inertia, all results for Re << I.
* Coalescence for Ca < Ca,.

*  Typically Ca, << 1.

* (Ca, decreases with drop size.

* Ca, depends on vis cosity ratio.

* Ca, decreases with impact parameter.



Experimental results

Critical Ca versus Drop Size Speculation:
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Lattice Boltzmann Method

3D-15 velocity lattice



BGK Formulation
f(x+e t+1)=f(Xt)+2(X 1)

Collision step: £ (xt+1)=fi(X.t)+2(Xt)
Streaming step:  f(X+e, t+1)=[f(Xt+1)

‘Qi _ _fi(X,t)—fieq(X,t)

T




Ouxford Methiod

fai(x—l_eO'iAx’t+At)_fo'i(x’t):_L[fo'i(x’t) f (X t)]

T
A
/
Goi Xte A t+At)=g (X, 1)=——[8g,(X,t)=gri(X,1)]
T
g
feq _A +Blaeazaua+c u +Dlaeaza Gzﬂ o ﬂ+G0'aﬂ oixa Gzﬂ

eq __
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F:_‘-[g(p2 +§¢)4 +§(V¢)2 +nTlnnjdV
p=Ap+Bp’ —xVp
A 3B K
Py = [pT iEi4hivede Kcovzco—g(w)z}% +x(0,0)(0,49)
If we choose A=-B,the bulk equilibrium solutions are:

Pe=ps=1 p==I

Interfacial thickness £ = |—

B ? /2
: + oo B
Surface tension o =x[ (_a(Pj dé = {&f }




Stmple shear flow

e The criterion for breakup Is
generally expressed in terms of
a critical capillary number

Ca

u=>0

v=G0x

u Gd

C
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Turbulent Flow

* \Weber number should be based on
the mean square velocity difference
across the bubble for homogeneous
turbulence; the critical Weber
numbers for breakup should be
Independent of Reynolds number.

p<du’>d, _ 2pd u'

O O

We




Frame 001 | 03 Nov2004 | & plot

Re, ~ 60

We~ 20



Shear-induced coalescence

* Because of shear, drops have different
velocities and collide.

- Surface tension causes coalescence.

» Shear causes the drop to reorient.

-t



LBM simulation

Frame 001 \ 14 Aug 2004 | c plot| c plot| c plot| ¢ plot| c plot| c plot| c plot| c plot| c plot| ¢ plot | c plot| ¢ plot| c plof
Drop coalescence
140
120

100

Ca=0.113 m
Re=2.115

40

20

150




Sc=100 @

LBM Cox (1969) solution
Re=2.1, £=28,000 Re=0, t=40,000




Velocity field

Frame 001 | 12 Aug2004 | ¢ plot| ¢ plot| c plot| ¢ plot| ¢ plot| ¢ plot| ¢ plot | ¢ plot| ¢ plot| ¢ plot| ¢ plot| ¢ plot| ¢ plot
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Self coalescence of
diffusive interfaces

The drops coalesce because their interfaces overlap.



Conclusions

The Oxford method is capable of simulating drop breakup and
coalescence in laminar and turbulent flows.

The results for drop deformation in laminar shear flow agree well
with published results for small and moderate deformations. For
breakup, it is important that bulbs form at the ends of a drop; this
IS true only for sufficiently large drops The result for breakup
after zeroing the velocity field is consistent with experiments.

In turbulent flow, drops with large Weber numbers broke down
Into smaller and smaller drops. This is consistent with Hinze’s
theory.

During coalescence, two impinging jets prevent mixing of a
dissolved chemical. The subsequent mixing agreed with particle
tracking simulations using an exact solution for the flow field in a
spherical drop.
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