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Population Balances

• Number density function (NDF)

particle surface area time

spatial locationparticle volume (mass)

CFD provides a description of the dependence of 
n(v,a) on x

For multiphase flows, the NDF will include the phase 
velocities (as in kinetic theory)
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Population Balances

• Moments of number density function

Solving for moments in CFD makes the problem 
tractable due to smaller number of scalars

Multi-fluid model solves for moments from kinetic theory

Choice of k and l depends on what can be measured
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Population Balances
• Physical processes leading to size changes

– Nucleation J(x,t) produces new particles, coupled to local 
solubility, and properties of continuous phase

– Growth G(x,t) mass transfer to surface of existing 
particles, coupled to local properties of continuous phase

– Restructuring particle surface/volume and fractal 
dimension changes due to shear and/or physio-chemical 
processes

– Aggregation/Agglomeration particle-particle interactions, 
coupled to local shear rate, fluid/particle properties

– Breakage system dependent, but usually coupled to local 
shear rate, fluid/particle properties

CFD provides a description of the local conditions



CFD in CRE IV: Barga, Italy June 19-24, 2005 6

Population Balances
• What can we compare to in-situ experiments?

Sub-micron particles small-angle static light scattering

Larger particles optical methods

CFD model should predict measurable quantities accurately 

zero-angle intensity

radius of gyration 1.8 < df <3

length

projected fractal dimension
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Coupling with CFD

• Do particles follow the flow?
Stokes number

Particle diameter

Kinematic viscosity

If St > 0.14, particle velocities must be found from a 
separate momentum equation in the CFD simulation
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Coupling with CFD

• Do PBE timescales overlap with flow timescales ?

Residence time

Recirculation time

Local mixing timescale

Kolmogorov timescale

CFD simulations w/o PBE can be used to determine 
timescales for a particular piece of equipment
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Population Balance Equation

• Typical NDF Transport Equation (small Stokes)

Advection

Diffusion

Nucleation + Growth

} Aggregation

Breakage
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Population Balance Equation

• Aggregation Kernel

Brownian

Shear-induced

Sub-micron aggregates: Brownian >> Shear-induced

Breakage and restructuring determine fractal dimension df

In granular flow, particle-particle collisions must be added
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Population Balance Equation

• Breakage Kernels

exponential

power law

Breakage due to fluid shear only ==> additional term 
due to collisions in gas-solid flows 

Parameters determined empirically and depend on 
chemical/physical properties of aggregates
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Population Balance Equation

• Daughter Distribution

binary

Equal sized: f = ½                     Erosion: f << 1
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Direct Solvers

• Sectional or Class Methods
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Direct Solvers

• Difficulties encountered when coupled with CFD
– n(v; x, t) represented by N scalars ni(x,t) where 25<N<120
– Depending on kernels, initial conditions, etc., source terms 

for these scalars can be stiff
– If particles are large (measured by Stokes number), 

multiphase models with N momentum equations required
– Extension to multi-variate distributions scales like ND –

accounting for “morphology” changes will be intractable

Need methods that accurately predict 
experimentally observable moments, but at low 

computational cost
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Quadrature Methods

• Quadrature Method of Moments (QMOM)

weights abscissas

kth moment of CSD:
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Quadrature Methods

• Product-Difference algorithm (univariate CSD)

Inverse problem solved on the fly in CFD simulation
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Quadrature Methods

• Transport 2N moments in CFD simulation

Advection

Diffusion

Nucleation + Growth

Aggregation

Breakage
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Quadrature Methods
• Comparison with direct method
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Quadrature Methods
• Multi-variate extension is straightforward

weights abscissas

(k,l)th moment of CSD:

But inverse problem cannot be solved on the fly!
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Quadrature Methods
• Direct Quadrature Method of Moments (DQMOM)

Weights

Volume

Area

Source terms found from linear system on the fly
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Polydisperse Gas-Solid Flow
• DQMOM with size and momentum of solid phase

Number

Mass

Momentum

Source terms for mass and momentum can be 
found from kinetic theory for gas-solid flows

Reduces to two-fluid model when α =1
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Overview of MFIX

Gas-solid multi-fluid model

Momentum
equations

Mass & energy 
equations

Chemical species 
equations

Population 
balance equations

Kinetic 
theory

Mass & heat 
transfer models

Detailed 
chemistry

Aggregation, 
breakage and growth

ISAT DQMOM
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MFIX Governing Equations (I)
• Mass balances

• Momentum balances
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MFIX Governing Equations (II)
• Thermal energy balances

• Chemical species balances
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Polydisperse Solids Model

• Population balance equation for solid phase

L, us Force acting to 
accelerate particles
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Aggregation, 
breakage and 
chemical reaction

Joint size & 
velocity distribution 
function



CFD in CRE IV: Barga, Italy June 19-24, 2005 28

Direct Quadrature Method of Moments
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Modifications to MFIX

• Relation between volume fractions and weights:

3
s vk Lα α αε ω= kv: volumetric shape factor

• Transport equations for volume fractions and lengths:
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DQMOM Source Terms
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Aggregation and Breakage
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Aggregation and Breakage Kernels
• Aggregation and breakage kernels are obtained from kinetic 

theory
Number of collisions:

Aggregation kernel:

Breakage kernel:

Efficiencies (ψa  and ψb) depend on temperature, particle size, 
etc.
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Aggregation 
dominant
average size 
Increases,
FB defluidizes

Breakage 
dominant
average size 
decreases,
FB expands

PSD Effect on Fluidization

No 
aggregation 
and breakage
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Volume-Average Mean Diameter
Case 1
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Volume-Average Normalized Moments
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Extension to Energy/Species Balances

• Thermal energy balance
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Two Open Problems

1. How to extend DQMOM to systems with unknown fluxes 
at boundaries in phase space?

Model problem: pure evaporation

How can we estimate it?

Estimate flux in DQMOM variables, test with exact solutions:
Define vectors: Define “cross product”:

Linear constraint:
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Simple case with monotone flux (N = 2):
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Harder case with multimode flux (N = 2):
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Harder case with N = 3:
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Two Open Problems
2. What is “best” choice of moments for multivariate 

DQMOM?

Model problem: homogeneous aggregation

Aggregation

Aggregation + sintering

Moments (mass k=1, l=0; area k=0, l=1)
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• Choice of moments affects the condition of matrix

A

D
E

B

F

C

All choices yield nearly same weights and abscissas
Choose moments with lowest condition number?
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Another example: Williams’ Spray Equation
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Coefficients depend on choice of 5N moments:

Condition number of A depends on choice of k, l, m, p

In general, A matrix will become singular if 1 < l + m + p

Choose l, m, p = (0,1) and vary k to yield 5N distinct moments

Number: (k, l, m, p) = 0

Mass: k =1, (l, m, p) = 0

X-Mom: k =1, l = 1  Y-Mom: k = 1, m = 1  Z-Mom: k = 1, p = 1

Is there a general method for choosing moments?
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