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Population Balances

 Number density function (NDF)

particle surface area time
| |
n(v,a; z,t)

[

particle volume (mass) spatial location

CFD provides a description of the dependence of
n(v,a) on X

For multiphase flows, the NDF will include the phase
velocities (as in kinetic theory)
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Population Balances

« Moments of number density function

my(x,t) :/O /O vYa'n(v,a; x,t)dvda

T

Choice of k and | depends on what can be measured

Solving for moments in CFD makes the problem
tractable due to smaller number of scalars

Multi-fluid model solves for moments from kinetic theory
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Population Balances

* Physical processes leading to size changes

— Nucleation =» J(x,t) produces new particles, coupled to local
solubility, and properties of continuous phase

— Growth = G(x,t) mass transfer to surface of existing
particles, coupled to local properties of continuous phase

— Restructuring =» particle surface/volume and fractal
dimension changes due to shear and/or physio-chemical
processes

— Aggregation/Agglomeration =»particle-particle interactions,
coupled to local shear rate, fluid/particle properties

— Breakage =»system dependent, but usually coupled to local
shear rate, fluid/particle properties

CFD provides a description of the local conditions
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Population Balances

 What can we compare to in-situ experiments?
Sub-micron particles =» small-angle static light scattering

I(0) = 01@ zero-angle intensity

mi
1/2 _ _
(Rg) = Co (mQ(de)/df) radius of gyration 1.8 < d; <3
mp

Larger particles =» optical methods
7% B a | n(L), L =2/A/m length
X, o’ | e
M | » - " W Dy =2In(P)/In(A)

s Sk - " o projected fractal dimension

CFD model should predict measurable quantities accurately
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Coupling with CFD

e Do particles follow the flow?

Stokes number _ |
Particle diameter

|
o, _ Particle response time _ vopdy
~ flow reponse time  12psvy

1

Kinematic viscosity

If St > 0.14, particle velocities must be found from a

separate momentum equation in the CFD simulation
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Coupling with CFD
Do PBE timescales overlap with flow timescales ?

Residence time T — V/q
Recirculation ime T OX DT/(N]D]) or DT/Uj
Local mixing timescale tu — k/<€>

Kolmogorov timescale typ = (]// <€> ) 1/2

CFD simulations w/o PBE can be used to determine
timescales for a particular piece of equipment
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Outline

2. Population Balances in CFD
— Population Balance Equation
— Direct Solvers
— Quadrature Methods
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Population Balance Equation

 Typical NDF Transport Equation (small Stokes)

9, 9,
—n—l- Advection
s, on
D . .
8:177,( To z) Diffusion

+ J(v) — % (G(v)n) Nucleation + Growth
1 rv

+ 5/0 B(v O—O s,s)n(v — s)n(s)ds
— n(v)/o B(v,s)n(s)ds

+ /UOO b(v|s)a(s)n(s)ds — a(v)n(v) Breakage

} Aggregation
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Population Balance Equation
e Aggregation Kernel

2KgT
B(v,s) = £
3uW

+ ya(v, s)vp (vl/df + sl/df)3 Shear-induced

(vl/df + sl/df> (fu_l/df + s_l/df) Brownian

Sub-micron aggregates: Brownian >> Shear-induced

Breakage and restructuring determine fractal dimension d;

In granular flow, particle-particle collisions must be added
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Population Balance Equation
e Breakage Kernels

B
(’YB/df) exponential

a(v) =cyexp | —
’yQva

a(v) = c1y*? (val/df)c3 power law

Breakage due to fluid shear only ==> additional term
due to collisions in gas-solid flows

Parameters determined empirically and depend on
chemical/physical properties of aggregates
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Population Balance Equation

« Daughter Distribution
b(vls) =6 (v— fs)4+d(v—(1—f)s) binary

Equal sized: f =1 Erosion: f<< 1
_ 1014
= _
£ 10 f=0.5
A R W f=0.1
S 10°
é 104 T T f:OOl
I A VA A W (R — =0.001

Y 100 10 10 10 10 10
m(i) / m(1)
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Direct Solvers

e Sectional or Class Methods

102; /,’/77-
10't f L+ Finer grid
[ E 17
= Finer grid x| /’/
2 o’ 10} 5"
e
I ,//
V4
10° : ' : ' : 10° . . .
0 10 20 30 0 10 20 30
Time/ min Time/ min
Accurate predictions for higher-order moments
require finer grid (range: 25-120 bins)
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Direct Solvers

 Difficulties encountered when coupled with CFD
— n(v; x, t) represented by N scalars n,(x,t) where 25<N<120

— Depending on kernels, initial conditions, etc., source terms
for these scalars can be stiff

— If particles are large (measured by Stokes number),
multiphase models with N momentum equations required

— Extension to multi-variate distributions scales like NP —
accounting for “morphology” changes will be intractable

Need methods that accurately predict
experimentally observable moments, but at low
computational cost
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Quadrature Methods

 Quadrature Method of Moments (QMOM)

weights abscissas

N
n(v, z,t) ~ Z wnd (v — vp)
n=1

k" moment of CSD: ¢
N
my. = wnv,ﬁ
n=1
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Quadrature Methods

* Product-Difference algorithm (univariate CSD)

{m07 mi,m2,ms,maq,ms, e, m7}

{wla wop, w3, wq, v1, V2, V3, ’04}

Inverse problem solved on the fly in CFD simulation
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Quadrature Methods

e Transport 2N moments in CFD simulation

@mk | (9
U = '
o 8.:1:@-( M) Advection
i DTamk Diffusion

+ .+ > kvf_lGiw@- Nucleation + Growth
0
1
+ 5 Z Z {(vi + Uj)k — vf — vﬂ Bijwiw;  Aggregation
1]

> a
7

pik) _

v

w; Breakage
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Quadrature Methods

o Comparison with direct method

G 107 .
12} g 1 I~ R
_ ; 107 % » hb%c)o
o gl = 10 »
< 7 g . ]\ \
= S ol -
= Bl o Fixed pivot © U '
< . QVOMN=2 5 Rt N i,
. —— QVOMN=3 ks o, K
3t QVIOMN =4 S |
- —— QMOMN=5 >
0 15 30 45 60 T IET 16% 1 100 1° 10
time, min m(i) / m(1)

Using 2N = 8 scalars, QMOM reproduces the
grid-independent moments of the direct method
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Quadrature Methods

« Multi-variate extension is straightforward
weights abscissas

L\

N
n(v,a;, z,t) ~ Z wnd(v — vn)d(a — an)

n=—1
(k,Nth moment of CSD: ¢
N
— k
mir| — WnUpanp
n=—1

But inverse problem cannot be solved on the fly!
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Quadrature Methods
* Direct Quadrature Method of Moments (DQMOM)

Own | 0 o0 Own, .
. — D |
5 8:1;2-( iWn) 3%( T&Bi> Fan  Weights
OwnUn, 0 0 Ownvn
o | o, (Uiwnvn) = 8—:132 <DT oz, ) - Qn Volume
aw'na/n a a 3wnan
It | oz, (Uywnan) = oz, (DT oz, ) Faon  Area

Source terms found from linear system on the fly

N N
S (1-k)pkan+ Y keE (coar, + caany) = Ry,
n=1 n=1

(Z5n = CyUn =+ CaOn
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Polydisperse Gas-Solid Flow

« DQMOM with size and momentum of solid phase

o
gijta I \va (ana) = Number
O pwav
pa? =+ V: (Uapwava) = pba Mass
O U
pw(gt;a Q I \va (p'an'UaUaUOé) = pCq Momentum

Source terms for mass and momentum can be
found from kinetic theory for gas-solid flows

Reduces to two-fluid model when « =1
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Outline

3. Implementation for Gas-Solid Flow
— Overview of MFIX
— Polydisperse Solids Model
— Application of DQMOM
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Overview of MFIX

Gas-solid multi-fluid model

/

Momentum Mass & energy Chemical species Population
equations equations equations balance equations
l l IISAT l DQMOM
Kinetic Mass & heat Detailed Aggregation,
theory transfer models chemistry breakage and growth
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MFIX Governing Equations (1)

e Mass balances

Mass
transfer
5 from gas to
_(gsapsa)+v'(gsapsausa) :ZMgan SOIid
ot n=1 phases

e Momentum balances

Interaction
g: Gas phase Stress tensor with gas and Body force
sa. Solid phases a=1, N other solid
phases
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MFIX Governing Equations (1)

balances

e Thermal enero
_AH +Hwall(

wall

Heat lost
to walls

Conductive Heat transfer Heat of
heat flux between phases reaction

 Chemical species balances

g(gsapsa XSan) +V- (gsapsa Xsan sa)

Reactions Mass transfer

g: Gas phase
sa: Solid phases a=1, N
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Polydisperse Solids Model

« Population balance equation for solid phase

‘ I L, U Force acting to

accelerate particles

on(L,u,; x,t : : |
%+V[usn(L,us,x,t)}+Vus [Fn(L,ug;x,t) ]=S(L,ug;xt)
Joint size & Aggregation,
velocity distribution breakage and
function chemical reaction
[OWA STATE UNIVERSITY

CFD in CRE IV: Barga, Italy June 19-24, 2005 27 OF SCIENCE AND TECHNOLOGY



Direct Quadrature Method of Moments

on(L,u,; x,t)

+V-{ un(Lugxt) [+V, | Fn(Lugxt) |=S(Lugxb)

l Integrate out solid velocity

on(L; x,t)

~ +V-[<uS L) n(L; x,t)] =S(L; x,t)

)

Y [s(L-L)a, -5'(L-L,)(b, —L,a,)]=S(Lxt)

a=1

IOWA STATE UNIVERSITY

CFD in CRE IV: Barga, Italy June 19-24, 2005 28 OF SCIENCE AND TECHNOLOGY



Modifications to MFIX

* Relation between volume fractions and weights:

K,: volumetric shape factor
V o 0[

e Transport equations for volume fractions and lengths:

a(‘S‘SO:pSOz) 4+ V (8

ot SaIOSaUSa) = 3kvp3a L2 b -~ Zkvp5a

8(880{ LapSa)

at +V.(88a LapSauSa) — 4kVpSC¥ Lzba _3kVpSQ’ Liaa
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DQMOM Source Terms

1 1 0 0
0 0 1 1

2 -2 2L, 2L
—218 —218 312 3

Matrix A relates moments to weights and lengths
Source term x Is obtained by forcing moments to be exact
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Aggregation and Breakage

‘ Death due

Birth due to tO _
aggregaticn | —— -~/ ——~ aggregation

Sk(x,t) = Br (% t) = Dk (%,t) + Be (%,t) = D (X, 1)

B (x.1) :% [ X[ Bl A+ ) n(u; x dud 2
Dr(xt) = jo“” L“n(L; x,t) jo“” B(L, AN x,t)dAdL
Death due Be(xt)=[ L[ a(Ab(L| An(:x dAdL

to
breakage Dr(x,t) = _[:o L“a(L)n(L; x, t)dL

Birth due to
breakage 1 Apply DQMOM

N

_Zzwle LI IBU +ZCI) _iwil—ikai

i=1 j=1
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Aggregation and Breakage Kernels

» Aggregation and breakage kernels are obtained from kinetic
theory

Number of collisions: .

6. mi+mj}2 2

—(V-u
2mm, 3( )

3 4

Nij =T0,0;0;Y; | —

Aggregation kernel:

Breakage kernel:

Efficiencies (v, and y,) depend on temperature, particle size,
etc.
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PSD Effect on Fluidization

Breakage Aggregation

dominant dominant

average size average size

decreases, Increases,

FB expands l FB defluidizes l

I A\ VVA STATE Ul N1V LIN\OVD11 17
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d,,v™

Volume-Average Mean Diameter

450 —
o Case 1l
400 F ) .9 ,320; a=0
Y Case 2
350 | o2
¢80 Case 2
300 ¢ ©
250 =B B _R =il B C _N-N=k=hkn
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Volume-Average Normalized Moments

1.2

Normalized moments

0 9

Time (s)

N = 2 filled symbols
N = 3 empty symbols
N =4 lines
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Normalized moments

2.6
22 """":T‘_t"‘ rrrrr s
L v 3
. Ry i1
v Y
v?
18 1
; ;..,4""“"‘11-.*‘o;.-uqo_+¢.._.,._£‘,,.o.
14 | ] o8008 m,
........ L u AL RN = "- o
2, 2
1 o E=hel =
iy
g 5 10 15

\

m, (x,t) = j n(L;xt)L'dl~ > a, L

35

0 a=1
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Extension to Energy/Species Balances

 Thermal energy balance

T
gSaIOSanSa (a - +Ug, .VTSO() — —V'an + Hga —AH

Sa

ot
3 3
rkp2C ¢~k pLC T a

a >~ ps sa-a

Vo

Changes due to aggregation and breakage

Multi-variate DOMOM
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Outline
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Two Open Problems

1. How to extend DQMOM to systems with unknown fluxes
at boundaries in phase space?

Model problem: pure evaporation

on On dmy, @
— = — » —— = —0 — kmy,_
It v At k,C k—1

How can we estimate 1t?

Estimate flux in DQMOM variables, test with exact solutions:

Define vectors: Define “cross product”. € — X X X
Lo = wOévOé/mO Linear constraint: Z cCa = 0O
X = dx/dt [OWA STATE UNIVERSITY
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Simple case with monotone flux (N = 2):

L™ I T I T I T I T
r — exact flux
— flux with DQMOM
0.8
0.6
4
: L
=
0.4+
0.2+
O 1 | 1 | 1 | 1 | 1
0 0.2 0.4 ) 0.6 0.8
time
0.7 T T T T | T
1 s exact
06 +  exact

abscisses

DQMOM
— DQMOM

0.7

0.6

o
n

moments

*

-

*

— ml with DQMOM

— m3 with DQMOM

exact m(
exact ml
exact m2
exact m3
m0 with DQMOM

m2 with DQMOM

time

0.8 T | T T T T
+  exact
| * exact
0.7 DOQMOM
— DQMOM
0.6 )
22} L
—
=
005
Q
= L
0'4'L """"" LI e
0.3
0.2 I | I | I | I | I
0 0.2 0.4 0.6 0.8




Harder case with multimode flux (N = 2):

]_ T T T T T
[ — exact flux
— flux with DQMOM
0.8
0.6
w4
j L
=
0.4
0.2
0 | ! | ! | | !
0 0.2 0.4 ) 0.6 0.8
time
T T T T ‘ T
4 * exact
0.8 +  exact
— DQMOM
— DQMOM
0.6
172}
L
)
4
%’ 0.4
[an]
0.2
0

).2

Iy

-

0.2

2.1

5

+  exact mi
+  exact ml
exact m2
+  exact m3
m0 with DQMOM

— ml with DQMOM
m?2 with DQMOM
— m3 with DQMOM

time

T | T T T T
L + exact i
+ exact .e
| |— DQMOM .
*
— DQMOM . Ve .
- *reat * * * B
se e
* + a0t -
* —
-
] .
r |
-
*
* —
*
.
*
e, b
* -
.
v |
. v -
0..... '. . _
. .ooo.... N
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Harder case with N = 3;

]_ T T T T T T
— exact flux
— flux with DQMOM
0.8
0.6~ /\
5 |
g L
=
0.4
02l /\
0 | 1 | 1 | 1 1
0 0.2 0.4 ) 0.6 0.8
time
+  exact
0.8 +  exact
*  exact
i — DQMOM
— DQMOM
0.6L — DQMOM
W
[h}
vl - .
7] L hd
.G =
_‘é’ 0.4 e
< TN
0.2 .,
e - PN .... '..° L ... ..o
0 . | . | A : T :
0 0.2 0.4 0.6 0.8

0.2

.:
[
n

moments
e

*+  exact m0
*  exactml

exact m2
*  gxact m3
*  exact m4
exact m5
m0 with DQMOM
ml with DQMOM
m2 with DQMOM
m3 with DQMOM
m4 with DQMOM
m5 with DQMOM

time

L

exact
exact
exact
DQMOM




Two Open Problems

2. What is “best” choice of moments for multivariate
DOQMOM?

Model problem: homogeneous aggregation

dwn
- = an
dt |
dwnvn } Aggregation
bn

dt
dwnan } Aggregation + sintering
= Cn
dit
Kvkal> Moments (mass k=1, |1=0; area k=0, I=1)
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17

10

—
wn

[
o)

—
w

Condition number
[a—y
=

—
[

[—
o)
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Choice of moments affects the condition of matrix
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C': SetAd | SetB4 | SetC4 | SetD4 | SetE4 Set F4
o koLl k Tk 1 ko1 kT ko
, 110 o010 010 0,0 0 0 010 0
i " 2013 0 |13 0|13 1313 0 0 13114 0
’ 3023 0123 0|23 2323 0 0 2313 0
e g 411 0 1 0] 1 1 1 0] 0 1 1172 0
) B S143 0 (43 0 (43 43 43 0 0 43|11 0
[ A 6 (53 0 |53 0153 5353 00 5312 0
[ E D 7172 012 012 2.2 0 0 213 40
............ 8173 0 173 073 73 73 0 0 73|14 0
j A o1 0 1310 13[23 13,0 13173 010 1/4
. 1000 23] 0 1 1 23123 13 23 0|0 173
0 S 10 15 20 {1110 1|0 53143 1 043 131 010 172
time 1210 4310 73|53 432 1343 010 1

All choices yield nearly same weights and abscissas

Choose moments with lowest condition number?
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Another example: Williams’ Spray Equation

Orf +u-0xf + O(Rof)+0u-(Ff) =T

f(v,u;x,t) = volume, velocity number density function

Ry = evaporation rate
F = drag force
(=0 + Q+ = coalesence operator

Q™ =~ [ [ Blu—u|,0,v") f(0,0) f(v*,u") dv* du*

ot = [ [ BQuw -], 0 F0, ) f w) T do” du
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Coefficients depend on choice of 5N moments:

(vPul uBub)

Condition number of A depends on choice of k, I, m, p

In general, A matrix will become singularif 1 <l+m+p

Choose |, m, p =(0,1) and vary k to yield 5N distinct moments
Number: (k, I, m,p)=0

Mass: k=1, (I, m,p)=0

X-Mom: k=1,1=1 Y-Mom: k=1, m=1 Z-Mom: k=1,p=1

Is there a general method for choosing moments?
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