
Annals of Operations Research manuscript No.
(will be inserted by the editor)

Recovering All Generalized Order-Preserving Submatrices:
New Exact Formulations and Algorithms

Andrew C. Trapp · Chao Li · Patrick Flaherty

Received: date / Accepted: date

Abstract Cluster analysis of gene expression data is a popular and successful way of
elucidating underlying biological processes. Typically, cluster analysis methods seek
to group genes that are differentially expressed across experimental conditions. How-
ever, real biological processes often involve only a subset of genes and are activated
in only a subset of environmental or temporal conditions. To address this limitation,
Ben-Dor et al. (2003) developed an approach to identify order-preserving submatrices
(OPSMs) in which the expression levels of included genes induce the sample linear
ordering of experiments. In addition to gene expression analysis, OPSMs have appli-
cation to recommender systems and target marketing. While the problem of finding
the largest OPSM is N P-hard, there have been significant advances in both ex-
act and approximate algorithms in recent years. Building upon these developments,
we provide two exact mathematical programming formulations that generalize the
OPSM formulation by allowing for the reverse linear ordering, known as the gen-
eralized OPSM pattern, or GOPSM. Our formulations incorporate a constraint that
provides a margin of safety against detecting spurious GOPSMs. Finally, we provide
two novel algorithms that iteratively solve mathematical programming formulations
to global optimality to recover, for any given level of significance, all GOPSMs from
a given data matrix. We demonstrate the computational performance and accuracy
of our algorithms on real gene expression data sets showing the capability of our
developments.

Andrew C. Trapp
Foisie School of Business, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01609, USA
Tel.: +1-508-831-4935
E-mail: atrapp@wpi.edu

Chao Li
Department of Computer Science, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA
01609, USA

Patrick Flaherty
Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003, USA

2 Andrew C. Trapp et al.

Keywords Order-Preserving Submatrix · Integer Programming · Data Mining ·
Biclustering

1 Introduction and Background

Given a data matrix A= (ai j)m×n, the order-preserving submatrix (OPSM) problem is
to identify a progression of features (rows) across a subset of experiments (columns)
represented as a “hidden” submatrix within A. In an OPSM the expression levels of
all included rows induce a linear ordering across all included columns. The origins
of the OPSM problem are in DNA microarray data analysis, where a coherent ten-
dency in multiple features (here, genes) across a number of participating experiments
may be indicators of the presence of disease [1]. The decision version of the OPSM
problem is N P-Complete [1].

Traditional two-dimensional clustering algorithms attempt to group in a single
dimension (i.e., features or experiments) across the entirety of the other dimension.
In contrast, the OPSM problem is a type of biclustering problem, which allows for a
strict subset of features to be related to a strict subset of experiments. All features in
a submatrix have the same coherent tendency (i.e., “up” and “down” pattern) across
all included experiments, potentially highlighting regulatory mechanisms that appear
in subsets of both features and experiments. For further information on biclustering,
we refer to [15] and [2].

A simple example of a data matrix together with a corresponding embedded
order-preserving submatrix is illustrated in Figure 1. On the left, the entries in rows
1, 3, 4 exhibit an {“up”, “up”, “up”, “down”} pattern across columns 1, 2, 4, and
5. Alternatively, by permuting columns 3 and 5, it can be seen on the right that an
OPSM exists with three rows exhibiting progressively increasing values across the
four included columns.

Fig. 1 Example of an OPSM (right) found in a data matrix A (left) by simple column permutation.

Recovering All Generalized Order-Preserving Submatrices 3

1.1 Some Variations to the OPSM Problem

The OPSM problem has been considered from a variety of perspectives. The original
work of Ben-Dor et al. acknowledges that the explicit definition of the OPSM pat-
tern can be somewhat overly restrictive due to the lack of both neatness in biological
patterns as well as accuracy in DNA microarray observations [1]. This has led to gen-
eralizations that consider approximate order-preserving submatrices [6, 19] as well
as OPSMs using fractional and probabilistic support [4, 7, 18].

Other works focus on finding long OPSMs (many columns) with few features.
These so-called “twig clusters” may be missed by alternative methods, but have def-
inite biological significance, as pathways/processes exist that require as little as two
genes to act in concert across many conditions [8–10].

Another variation is the GOPSM pattern, a generalization of the original OPSM
pattern, first introduced in [8]. The GOPSM pattern extends the OPSM pattern, which
locates subsets of rows and columns obeying the same linear ordering, to allow for
the exact reverse linear ordering pattern to be included among the order-preserving
rows. The GOPSM framework enables the inclusion of both positively and nega-
tively correlated features among selected columns, thereby generalizing the OPSM
problem.

The GOPSM pattern is more applicable to biological gene expression data than
the OPSM pattern because genes are both activated and deactivated in response to
stimulus or in varying environmental conditions. For example, the response of S.
cerevisiae (yeast) to salt stress induces the upregulation of cell stress response genes
and the simultaneous downregulation of protein synthesis and RNA processing genes
[3]. In cancer, the simultaneous activation of oncogenes and repression of tumor-
suppressor genes can lead to more aggressive clinical phenotypes.

An exemplary GOPSM pattern can be seen in Figure 2 for the same data matrix
A as in Figure 1. We build upon the GOPSM pattern in this work.

Fig. 2 Example of a GOPSM (right) found in a data matrix A (left) by simple column permutation.

4 Andrew C. Trapp et al.

1.2 Recent Methodological Developments to Solving the OPSM Problem

Accompanying extensions to the base OPSM problem has been significant method-
ological progress. Subsequent to the original method proposed by Ben-Dor et al. for
finding OPSMs [1], which is essentially a greedy heuristic, various other heuristic
approaches have appeared [4, 6–10, 18, 19].

Less frequently, solution approaches to the OPSM problem have been developed
that provide guarantees on solution quality. These prefer the exactness of solution
at, possibly, the expense of computational runtime. Approximation algorithms have
been discussed for the OPSM problem [11]; the authors consider a minimization vari-
ant which attempts to remove the least number of rows and columns to ensure that
the remaining submatrix satisfies the order-preserving criteria. Trapp and Prokopyev
propose and implement the first exact approaches to find a globally maximal OPSM
using mixed-integer programming techniques in an integrated algorithmic frame-
work [17]; subsequently, Humrich et al. discuss a number of enhancements that sub-
stantially improve tractability [12].

Notably absent from the aforementioned exact studies are explicit discussions to
ensure that recovered OPSMs are biologically significant. Moreover, as is customary
with optimization routines, these methods return one optimal solution, i.e., the single
largest OPSM in A (or possibly per fixed number of columns). On the other hand, it
may be of great interest to recover multiple submatrices, so long as they are distinct
and meaningful.

1.3 Contributions

We now highlight our contributions. First, we implement as a basis for subsequent
extension an exact minimization-based formulation from [11] that attacks the com-
plementary problem of removing the fewest number of rows and columns. The prob-
lem is formulated as a binary integer program that, for any fixed number of columns
and column ordering, minimizes the number of rows to be excluded to ensure the
resultant submatrix is order-preserving. Similar to [17] and [12], the formulation can
be embedded within an algorithmic framework that ensures recovering a globally
optimal OPSM over all rows and columns.

Second, we expand upon existing exact formulations for solving the OPSM prob-
lem [11, 12, 17] by demonstrating how to incorporate the aforementioned GOPSM
pattern [8]. We extend both maximization-based [12, 17] and minimization-based [11]
OPSM optimization formulations to accommodate the GOPSM pattern. Moreover,
these GOPSM extensions can be maintained, or omitted, without affecting the valid-
ity of the two subsequent contributions, thereby providing modeling flexibility.

Third, we explicitly guard against the possibility of finding false correlations
in recovered GOPSMs [see, e.g., 1] for both the maximization- and minimization-
variant formulations of the GOPSM problem. Briefly, to satisfy a specified level of
significance, there exists a corresponding minimum size (expressed via the number
of rows and columns) to which a GOPSM pattern must adhere. Such restrictions can

Recovering All Generalized Order-Preserving Submatrices 5

be represented explicitly using constraints in the mathematical formulations, thereby
ensuring, for arbitrarily strict criteria, that recovered GOPSMs are of sufficient size.

Fourth, and perhaps most important, we provide two new and complementary al-
gorithms that repeatedly solve the maximization- and minimization-variant formula-
tions to global optimality to recover, for any given level of significance, all GOPSMs
from a given data matrix. We believe this to be a particularly meaningful contribu-
tion due to the potential practical implications. For example, in the context of DNA
microarray data analysis, there is value in recovering all GOPSMs that satisfy mini-
mum size criteria; each may indicate distinct sets of genes that are closely coregulated
across many experiments, likely revealing unique and previously undiscovered path-
ways or processes. The fact that any arbitrary strictness can be used to guard against
spurious correlation makes the approach especially powerful.

The remainder of this paper is organized as follows. In Section 2 we discuss
maximization- and minimization-based formulations to find the largest OPSM for a
fixed number of columns and column ordering, and demonstrate how to extend these
models to incorporate the GOPSM pattern. In Section 3 we outline how to go beyond
state-of-the-art exact methods of recovering a single optimal submatrix, introduce ex-
plicit constraints that ensure minimum meaningful size thresholds of any recovered
submatrix, and provide two new algorithmic frameworks that can identify all cor-
responding GOPSMs for a given data matrix A. Section 4 covers the computational
testing of our proposed methodologies on real biological data. We discuss our compu-
tational results in Section 5, and conclude by summarizing our findings in Section 6.

2 Mathematical Formulations

To motivate our discussion, we provide a formal definition of the specific biclustering
task that the OPSM problem addresses.

2.1 Formal Definition

The OPSM problem is to identify p rows and ` columns from a data set A = (ai j)m×n
in which there exists a permutation of the selected columns such that in every sup-
porting row the values corresponding to included columns are strictly increasing [1].
More formally, let F0 be a set of row indices { f1, f2, . . . , fp}. Then there exists
a permutation of a subset of column indices S0 = {s1,s2, . . . ,s`} such that for all
i = 1, . . . , p and j = 1, . . . , `−1 we have that

a fi,s j < a fi,s j+1 . (1)

The corresponding submatrix (F0,S0) ∈ Np×` is order-preserving.

2.2 Existing Exact Formulations and Algorithmic Frameworks

The n! possible permutations of columns, even for small values of n, rapidly becomes
prohibitive for exhaustive consideration. One of the key insights in solving the OPSM

6 Andrew C. Trapp et al.

problem is that the matter of importance is really only over the m column permuta-
tions for which at least one of the rows is ordered in increasing fashion. Thus, the n!
permutations can be reduced considerably to no more than m orderings, namely just
the specific orderings that coincide with those induced from permuting the columns
so that the entries of a given row are in increasing order. The exact approach of [17]
proposed a mathematical program to find the largest order-preserving submatrix in
data matrix A for a fixed column ordering according to specific row h, and coupled
it with an algorithmic framework to search over all necessary column orderings to
recover a largest OPSM based on submatrix area.

In [12] the authors demonstrate a significant simplification in the variable scope
and dimension, introducing a mathematical programming formulation that contains
only n binary column variables and m continuous row variables. In addition to it-
erating over O(m) rows, the simplification of [12] does come with the additional
algorithmic expense of iterating over O(n) column levels – in fact, a total of n− 2,
because OPSMs ought to include more than 2 columns to be considered as a legiti-
mate pattern. Nevertheless, the substantial computational savings from their reduced
formulation appear to largely offset this modest algorithmic expense.

As first discussed in [17] and later in [12], all of the mathematical programming
formulations included in the present work propose to find OPSMs (or GOPSMs) for
a fixed number of columns γ , where the columns have been permuted so that, for a
particular row h ∈ {1, . . . ,m}, the entries appear in increasing order. It can be seen
from (1) that at least 2 columns are required for a pattern to exist across columns.
Because of the somewhat pathological case of γ = 2, where each row has an equal
probability of being in an OPSM for the two included columns, we require γ ≥ 3.

2.2.1 Exact Formulation for the OPSM Problem via Maximization

We next introduce and discuss a formulation that bears resemblance to that of (4) and
(5) in [12]. Consider permuting the columns of data matrix A to ensure the entries of
a given row h are in increasing order, thereby forming Âh = (âh

i j)m×n. With respect

to Âh, define the index set Ih
jk =

{
i : âh

i, j > âh
i,k

}
, so that Ih

jk contains the indices of all
rows which exhibit a decreasing order across each column pair (j,k), j < k when the
columns are permuted according to row h. Then for a fixed number of columns γ , the
following formulation will recover a largest OPSM contained in Âh that has exactly
γ columns:

maximize z =
m

∑
i=1

xi (2a)

subject to
n

∑
j=1

y j = γ, (2b)

∑
i∈Ih

jk

xi + |Ih
jk| y j + |Ih

jk| yk ≤ 2 |Ih
jk|, ∀ j,k : j < k (2c)

x ∈ [0,1]m, y ∈ {0,1}n. (2d)

Recovering All Generalized Order-Preserving Submatrices 7

Objective (2a) maximizes the number of rows in any OPSM corresponding to Âh,
cardinality constraint (2b) ensures that exactly γ out of n columns are chosen, while
constraint set (2c) forbids decreasing patterns across included rows and columns.

Formulation (2a)–(2d) differs from that of [12] primarily in the technical update to
clear the denominators in the constraint set of [12] that corresponds to our constraint
set (2c) above. While on the surface this appears to be a minor modification, its signif-
icance is twofold: it improves the numerical stability of the formulation by eliminat-
ing representations of fractional coefficients and avoiding roundoff error, and more-
over, in the extreme case where Ih

jk = /0, it ensures the constraints are well-formed.
The optimal objective function value in (2a) is z?, indicating the maximum num-

ber of rows included in an OPSM corresponding to Âh containing exactly γ columns;
thus the overall size (area) of the recovered OPSM will be z? · γ . For a given γ and
h, we refer to formulation (2a)–(2d) as MAXOPSMh

γ . To identify a globally maxi-
mal OPSM in A, one could solve MAXOPSMh

γ over all values of h = 1, . . . ,m and
γ = 3, . . . ,n, retaining an OPSM with the largest value of z? · γ .

2.2.2 Exact Formulation for the OPSM Problem via Minimization

The work of [11] introduces a complementary viewpoint of the OPSM problem, that
is, that of excluding the fewest number of rows and columns to obtain an order-
preserving submatrix. They introduce a minimization-based mathematical program-
ming formulation that resembles a set covering problem. The authors do not directly
implement the optimization model, but rather design and analyze approximation al-
gorithms to find approximate solutions to the OPSM problem.

We next introduce, and subsequently build upon, the original formulation pre-
sented in [11]. The formulation finds a largest OPSM in Âh, indicated by binary vari-
ables r and c that represent whether a particular row or column is excluded, taking a
value of 1 if so, and 0 otherwise.

minimize n
m

∑
i=1

ri +m
n

∑
j=1

c j−
m

∑
i=1

n

∑
j=1

ric j (3)

subject to ri + c j + ck ≥ 1, ∀ i, ∀ j < k and ai j ≥ aik, (4)
r ∈ {0,1}m, c ∈ {0,1}n. (5)

Objective function (3) has nonlinearities due to mn bilinear terms ric j. In a man-
ner similar to MAXOPSMh

γ we can introduce linearity into the objective by fixing the
number of columns to γ (here, to be excluded); this requires an additional cardinality
constraint and considerations over all (practical) fixed levels of γ:

minimize n
m

∑
i=1

ri− γ

m

∑
i=1

ri +mγ. (6)

Objective (6) can be further simplified by eliminating constants and combining
(and dropping) coefficients, as shown below in (7a). We can also use the index set
Ih

jk in the same manner as MAXOPSMh
γ to represent an equivalent set of constraints

to (4) that enforces the OPSM pattern restriction. Specifically, (7c) forbids increasing

8 Andrew C. Trapp et al.

patterns across included rows and columns. Moreover, we will show in Proposition 1
that the domain of the row variables r can be relaxed to continuous, i.e., r ∈ [0,1]m.
This gives our final minimization-based formulation for finding an OPSM in Âh:

minimize ζ =
m

∑
i=1

ri (7a)

subject to
n

∑
j=1

c j = γ, (7b)

∑
i∈Ih

jk

ri + |Ih
jk|c j + |Ih

jk|ck ≥ |Ih
jk|, ∀ j,k : j < k, (7c)

r ∈ [0,1]m, c ∈ {0,1}n. (7d)

Proposition 1 Any optimal solution (r?,c?) to formulation (7a)–(7d) has r? ∈{0,1}m.

Proof. Objective (7a) drives the values of the ri variables toward their lower bound
of 0; only constraint set (7c) potentially impedes this. Consider an optimal solution
(r?,c?) to formulation (7a)–(7d). For any column pair (j,k), j < k for which c?j = 1 or
c?k = 1, constraint set (7c) is trivially satisfied, and so does not restrict values of ri : i∈
Ih

jk. Suppose column pair (j,k), j < k has c?j = c?k = 0. This implies that ∑

i∈Ih
jk

r?i ≥ |Ih
jk|,

which can only occur precisely when r?i = 1 ∀ i ∈ Ih
jk. This shows that r? ∈ {0,1}m.

Fig. 3 I1
12 = {2,5} in darker shade, versus

H1
12 = {1,3,4} in lighter shade.

Formulation (7a)–(7d) features a linear
objective, but algorithmically must now be
solved over all m rows as well as n− 2
columns. The optimal objective function
value is ζ ?, indicating the minimum num-
ber of rows excluded from Âh that also ex-
cludes exactly γ columns; thus the overall
size (area) of a recovered maximum OPSM
will be (m− ζ ?) · (n− γ). In the ensuing
discussion, for a specific γ and h we refer
to (7a)–(7d) as MINOPSMh

γ .

2.3 Incorporating the Generalized OPSM Pattern (GOPSM)

We now extend the formal definition of the OPSM pattern from Section 2.1 to in-
corporate the GOPSM pattern [8]. We introduce G0 as a (possibly empty) set of q
additional, distinct row indices. Let G0 = {g1,g2, . . . ,gq} if G0 6= /0. Then there exists
a permutation of a subset of column indices S0 = {s1,s2, . . . ,s`} such that for all
i = 1, . . . , p, h = 1, . . . ,q, and j = 1, . . . , `−1

a fi,s j < a fi,s j+1 , and (8)

agh,s j > agh,s j+1 . (9)

Recovering All Generalized Order-Preserving Submatrices 9

First, note that F0∩G0 = /0. We term the corresponding submatrix (F0∪G0,S0)∈
N(p+q)×` as generalized order-preserving (GOPSM). Complementary to Ih

jk, let Hh
jk ={

i : âh
i, j < âh

i,k

}
, so that Hh

jk contains the indices of all rows exhibiting an increasing
order across each column pair (j,k), j < k. Thus for all column pairs (j,k), j < k,
Ih

jk∩Hh
jk = /0. We next extend MAXOPSMh

γ and MINOPSMh
γ to identify maximum-sized

GOPSMs in an arbitrary data matrix A. Figure 3 depicts I1
jk and H1

jk for j = 1,k = 2.

2.3.1 Exact Formulations for the GOPSM Problem via Maximization

To accommodate the GOPSM pattern, we introduce a new binary variable vector
v ∈ {0,1}m, where vi = 1 indicates that row i is chosen to be in decreasing order. The
following formulation will find the largest number of rows in a GOPSM according to
the permuted data matrix Âh:

maximize zG =
m

∑
i=1

(xi + vi) (10a)

subject to
n

∑
j=1

y j = γ, (10b)

∑
i∈Ih

jk

xi + |Ih
jk| y j + |Ih

jk| yk ≤ 2 |Ih
jk|, ∀ j,k : j < k, (10c)

∑
i∈Hh

jk

vi + |Hh
jk| y j + |Hh

jk| yk ≤ 2 |Hh
jk|, ∀ j,k : j < k, (10d)

x ∈ [0,1]m, v ∈ [0,1]m, y ∈ {0,1}n. (10e)

Objective (10a) can attain a value of at most m if all rows are included as either
increasing (xi = 1) or decreasing (vi = 1) and there are exactly γ columns in the
recovered GOPSM. Because Ih

jk∩Hh
jk = /0 for all column pairs (j,k), j < k, the form of

constraint sets (10c) and (10d) naturally ensure that, for all i, at most one of xi or vi can
be set to 1 (i.e., taken together, it is impossible for xi = vi = 1). Moreover, in a manner
analogous to [12], we can relax the domain of the v variables to continuous without
changing the optimal solution, i.e. v ∈ [0,1]m. A recovered GOPSM will have area of
z?G · γ . For a given γ and h, we refer to formulation (10a)–(10e) as MAXGOPSMh

γ .

2.3.2 Exact Formulations for the GOPSM Problem via Minimization

The minimization-based formulation (7a)–(7d) can also be extended to handle the
GOPSM pattern. Introduce new binary variable vector s ∈ {0,1}m, where si = 1 in-
dicates that row i is excluded from being in decreasing order. It is not difficult to see
that the domain of the s variables can also be relaxed to s ∈ [0,1]m without affecting
the binary nature of the optimal solution. The following formulation will exclude the

10 Andrew C. Trapp et al.

fewest rows in a GOPSM according to the permuted data matrix Âh:

minimize ζG =
m

∑
i=1

(ri + si) (11a)

subject to
n

∑
j=1

c j = γ, (11b)

∑
i∈Ih

jk

ri + |Ih
jk| c j + |Ih

jk| ck ≥ |Ih
jk|, ∀ j,k : j < k, (11c)

∑
i∈Hh

jk

si + |Hh
jk| c j + |Hh

jk| ck ≥ |Hh
jk|, ∀ j,k : j < k, (11d)

r ∈ [0,1]m, s ∈ [0,1]m, c ∈ {0,1}n. (11e)

We next show that, for any i, at most one of ri or si can take the value of 0. Con-
sequently, formulation (11a)–(11e), by construction, naturally avoids the prohibitive
result of retaining (i.e., not excluding) both increasing and decreasing orders for row i.

Proposition 2 For any GOPSM corresponding to optimal solution (r?,s?,c?) to for-
mulation (11a)–(11e) and all rows i ∈ {1, . . . ,m}, at most one linear ordering can be
chosen; that is, no more than one of r?i or s?i can be 0.

Proof. Objective function (11a) attempts to set to zero as many ri and si variables
as possible. Constraint (11b) ensures any optimal solution (r?,s?,c?) has exactly γ

columns excluded, thus n− γ columns are not excluded in an optimal GOPSM. Con-
sider two of these non-excluded columns, e.g. j and k, so that c?j = c?k = 0, and con-
sider any row i∈ {1, . . . ,m}. Suppose âh

i, j > âh
i,k, so that i∈ Ih

jk. The values c?j = c?k = 0
in (11c) imply ri = 1. Similarly, if i ∈Hh

jk, then si = 1 by (11d), so that in either case,
no more than one of r?i or s?i is 0.

Similar to (7a)–(7d), formulation (11a)–(11e) must be algorithmically solved over
all m rows and n− 2 columns. The recovered GOPSM will have a maximized area
of (m− ζ ?

G) · (n− γ). Hereafter, for a given γ and h we refer to (11a)–(11e) as MIN-
GOPSMh

γ .

3 Towards Extracting All Meaningful GOPSM Patterns

Our algorithmic procedures are able to identify a single largest GOPSM: solve MAX-
GOPSMh

γ or MINGOPSMh
γ according to each nontrivial fixed column level γ and row

h ∈ {1, . . . ,m}. Moreover, for the goal of finding a GOPSM of globally maximum
size, a variety of algorithmic improvements exist to enhance such an implementation,
e.g. in [17], where the authors extend this idea to recover a single largest OPSM pat-
tern, one that corresponds to various levels of γ . This idea is further expanded upon
in [12], where they provide an algorithm to recover a single largest OPSM for every
nontrivial level of γ .

Recovering All Generalized Order-Preserving Submatrices 11

So, whether with respect to a fixed column level, or over all column levels, the
aforementioned methods return a single optimal solution (if one exists). We expand
on these ideas as follows. In the context of DNA microarray data analysis, consider
the case of multiple (e.g., two) optimal solutions for MAXGOPSMh

γ , a common oc-
currence in combinatorial optimization problems. Although both patterns may have
biological significance, the selection of a “single” optimal solution is left completely
to the jurisdiction of the solver, and only one is reported. This realistic setting high-
lights the importance of identifying multiple GOPSMs, as long as certain size thresh-
olds are met, and the recovered GOPSMs are not submatrices of other recovered
GOPSMs (i.e., they should be maximal in the row and column dimensions).

We next demonstrate how to explicitly integrate a size threshold into the MAX-
GOPSMh

γ and MINGOPSMh
γ formulations.

3.1 Guarding Against Spurious Correlation in Recovered GOPSMs

A general challenge in data mining is not being fooled by randomness, that is, re-
vealed patterns should have a negligible probability of appearing in random data. [1]
propose the following method to serve as a proxy for assessing the statistical signif-
icance of any obtained order-preserving submatrix. They introduce an upper bound
on the probability of having found, at random, an increasing OPSM pattern with γ

columns and at least ρ rows as:

U(γ,ρ) = n · · · (n− γ +1)
m

∑
i=ρ

(
m
i

)(
1
γ!

)i(
1− 1

γ!

)(m−i)

. (12)

By adapting (12) to accommodate the GOPSM pattern, for which we need to
account for precisely two linear orderings (one increasing, and one decreasing), we
obtain:

UG(γ,ρ) = n · · · (n− γ +1)
m

∑
i=ρ

(
m
i

)(
2
γ!

)i(
1− 2

γ!

)(m−i)

. (13)

While we recognize that the approach of [1] implies the testing of combinatorially
many hypotheses, the upper bounds in (12) and (13) are still useful to guard against
spurious correlation. For a fixed number of columns γ and arbitrary significance level
α , let ρα

γ be the smallest integer number of rows for which UG(γ,ρ
α
γ)≤ α . Then for

MAXGOPSMh
γ we can introduce a new constraint that requires a minimum necessary

number of rows ρα
γ to satisfy a size threshold:

m

∑
i=1

(xi + vi)≥ ρ
α
γ . (14)

We can use (14) to serve as a margin of safety against being fooled by random-
ness. Note that, for constant α , ρα

γ is nonincreasing as γ increases. To accommodate
such a large number of hypotheses, in our computational experiments we require very
stringent significance levels of α to be observed.

12 Andrew C. Trapp et al.

Similarly, for MINGOPSMh
γ an upper bound on the number of rows excluded to

ensure statistical significance of a resulting GOPSM can be expressed as:

m

∑
i=1

(ri + si)≤ m+(m−ρ
α
γ) = 2m−ρ

α
γ , (15)

where the right-hand side is derived from the fact that at least one of r?i = 1 or s?i = 1
for every row i = 1, . . . ,m, as can be seen from Proposition 2. A constraint in the
form of (14) and (15) exists for any level α and every level of γ considered, and each
ensure that every recovered GOPSM pattern is of sufficient size.

3.2 Ensuring Maximality of Recovered GOPSMs

For any fixed column level γ and level α , there may be many distinct GOPSMs that
satisfy constraints (14) and (15). We now propose a method to discover all such
GOPSMs, so long as they are maximal – that is, for the given rows and columns
that constitute such a GOPSM, it is not possible to expand in either dimension. This
will ensure that any recovered GOPSM is not a proper subset of another. Figure 4
highlights the two dimensions that a submatrix could be non-maximal – in the rows,
and in the columns.

Without loss of generality, we assume the perspective of MAXGOPSMh
γ for ease

of exposition (a parallel argument exists for MINGOPSMh
γ). Consider an algorithmic

procedure that iterates over all values of γ ∈ {3, . . . ,n} and h ∈ {1, . . . ,m}. For any
GOPSM optimal for MAXGOPSMh

γ and (14), say Γ ? = (x?,v?,y?), objective func-
tion (10a) already ensures we are maximal with respect to the number of rows, so
it is not possible for the row dimension to be suboptimal. To ensure that we are
maximal in the column dimension, we can prioritize recovering the largest column-
wise GOPSMs first in the algorithmic procedure, by stepping the value of γ from the
largest value to the smallest, i.e., γ = n, . . . ,3.

Fig. 4 Two non-maximal possibili-
ties of a GOPSM.

Suppose, in a process of iterating γ from n to 3
and h = 1 to m, we solve MAXGOPSMh

γ with (14)
and recover Γ ? = (x?,v?,y?). We refer to the
particular number of columns as γ?. By (10b)
Γ ? has exactly γ? columns and as per (10a)
it maximizes the number of included rows zG.
Define X −

Γ ? = {i : x?i = 0}, X +
Γ ? = {i : x?i = 1},

V −
Γ ? = {i : v?i = 0}, V +

Γ ? = {i : v?i = 1}, Y −
Γ ? ={

j : y?j = 0
}

, and Y +
Γ ? =

{
j : y?j = 1

}
. For this

level of γ?, there is no subset of columns for which
a greater number of rows exists. Still, for this level
of h there may be other GOPSMs that satisfy (14),
and we would like to avoid recovering the same
Γ ? for this level of h and γ?.

Moreover, at lower levels of γ̄ < γ?, we would
also like to avoid finding a new GOPSM consisting

Recovering All Generalized Order-Preserving Submatrices 13

of a strict subset of the columns in Y +
Γ ? , if there is no accompanying change in newly

included rows (i.e., if no new increasing or decreasing rows are added beyond those
appearing in Γ ?). However, this concern is irrelevant if at γ̄ the corresponding level
of ρα

γ̄
exceeds zG for Γ ?– because from (14) there will necessarily be additional rows

included in any optimal GOPSM to maintain feasibility.
Hence we can forbid the recovery of Γ ?, as well as any GOPSM formed from a

strictly smaller subset of its column set Y +
Γ ? together with no accompanying change

in new rows, by adding the following family of inequalities, one for each unique
subset of column indices:

∑
i∈X −

Γ ?

xi + ∑
i∈V −

Γ ?

vi + ∑
j∈Ȳ +

Γ ?

(1− y j)≥ 1, ∀ Ȳ +
Γ ? ⊆ Y +

Γ ? : |Ȳ +
Γ ? | ≥ 3. (16)

Constraints of form (16) can be readily understood through the use of a small
example. Suppose we have a data matrix with m = 10 rows, n = 6 columns, and we
are presently considering exactly γ = 4 columns. For the first row h = 1, the MIP
according to the sort order Â1 (constructed using MAXGOPSMh

γ with (14)) is gener-
ated and solved. Suppose the recovered GOPSM Γ ? has five included rows, three
that are increasing, and two that are decreasing. Suppose that the column indices of
this GOPSM are 2, 3, 5, and 6; that rows 1, 7, and 10 are increasing; and that rows
5 and 8 are decreasing. Then we have X +

Γ ? = {1,7,10}, X −
Γ ? = {2,3,4,5,6,8,9},

V +
Γ ? = {5,8}, V −

Γ ? = {1,2,3,4,6,7,9,10}, Y +
Γ ? = {2,3,5,6}, and Y −

Γ ? = {1,4}.
Now for all Ȳ +

Γ ? ⊆ Y +
Γ ? : |Ȳ +

Γ ? | ≥ 3, we have a constraint of the form (16). There
are five such subsets: {2,3,5,6}, {2,3,5}, {2,3,6}, {2,5,6}, and {3,5,6}. This con-
straint family serves a dual purpose. Consider the first subset, with Ȳ +

Γ ? = {2,3,5,6}.
It yields the following constraint: (x2 + x3 + x4 + x5 + x6 + x8 + x9)+(v1 + v2 + v3 +
v4+v6+v7+v9+v10)+(1−y2)+(1−y3)+(1−y5)+(1−y6)≥ 1. Once added, it
ensures that the same GOPSM Γ ? cannot be recovered again; further, it forbids only
this Γ ?: it is the only GOPSM for which the left-hand side equals zero.

The second purpose of (16) is now discussed. Constraints (16) for the second,
third, fourth, and fifth subsets are very similar in form; we detail only the second,
with Ȳ +

Γ ? = {2,3,5}. It yields the following constraint: (x2 +x3 +x4 +x5 +x6 +x8 +
x9)+(v1+v2+v3+v4+v6+v7+v9+v10)+(1−y2)+(1−y3)+(1−y5)≥ 1. When
these four constraints are taken together, they forbid those GOPSMs having the same
increasing and decreasing rows, and only a subset of three of the four columns of
Y +

Γ ? . That is, they forbid the four GOPSMs that are strict subsets with respect to
columns. However, they are designed to allow a GOPSM with any subset of three of
the columns of Y +

Γ ? , as long as a previously inactive row becomes active. This would
correspond to a GOPSM involving additional rows, which is distinct from Γ ?.

While on the one hand there are combinatorially many constraints of the form (16),
mitigating this growth is the fact that they are only relevant when, for some γ̄ < γ?, the
corresponding level of ρα

γ̄
does not exceed the value of z?G for Γ ?. In light of the rate of

growth of ρα
γ̄

for stringent α as γ̄ decreases from γ? (see, e.g., Tables 4 and 5), this ap-
pears to be rather manageable, as we observe later in our computational experiments.

Theorem 1 For fixed γ and h, let Γ ? = (x?,v?,y?) represent an optimal solution to
MAXGOPSMh

γ with (14). Adding inequalities (16) to subsequent MAXGOPSMh
γ formu-

lations renders infeasible precisely (i) the GOPSM patterns specified by Γ ? as well

14 Andrew C. Trapp et al.

as (ii) those formed from a strictly smaller subset of its column set Y +
Γ ? together with

no accompanying change in new rows. Further, it does not affect feasibility of any
other GOPSM patterns.

Proof. The left-hand side of (16) evaluates to zero for Γ ?, so clearly it is forbidden.
Suppose there exists at this level of γ another GOPSM pattern Γ̃ where Γ̃ 6= Γ ?, for
which the left-hand side of (16) also evaluates to zero. Further, suppose that Γ̃ has the
identical column set Y +

Γ ? in common with Γ ?, so that Γ̃ must differ from Γ ? in X −
Γ ?

or V −
Γ ? . Yet Γ ? already represents the largest GOPSM over this particular column set

Y +
Γ ? ; it is impossible to increase ∑i∈X −

Γ ?
xi +∑i∈V −

Γ ?
vi over the same column set Y +

Γ ? ,

for this would imply that Γ ? is suboptimal. So it must be that Γ̃ differs from Γ ? in
the column set Y +

Γ ? , immediately implying its feasibility in inequality (16).
Now consider a lower level γ̄ < γ for which ρα

γ̄
≤ z?G. Suppose there exists a

GOPSM Γ̂ = (x̂, v̂, ŷ) with X −
Γ̂

, X +
Γ̂

, V −
Γ̂

, V +
Γ̂

, Y −
Γ̂

, and Y +
Γ̂

defined analogously,
and with Y +

Γ̂
⊂ Y +

Γ ? . We want to show that Γ̂ cannot be a strict submatrix of Γ ?.
Consider the particular constraint of the form (16) that corresponds to the column
subset Y +

Γ̂
; here, ∑ j∈Y +

Γ̂

(1− y j) also evaluates to zero. Thus, the constraint implies

that there must be a change in X −
Γ̂

or V −
Γ̂

, thereby preventing Γ̂ from being a strict
submatrix of Γ ?.
For MINGOPSMh

γ , let an optimal Γ ? be denoted by (r?,s?,c?), and similarly de-
fine R−

Γ ? = {i : r?i = 0}, R+
Γ ? = {i : r?i = 1}, S −

Γ ? = {i : s?i = 0}, S +
Γ ? = {i : s?i = 1},

C−
Γ ? =

{
j : c?j = 0

}
, and C+

Γ ? =
{

j : c?j = 1
}

. The following inequality forbids Γ ?,
and can be used to forbid any GOPSMs formed by strict subsets of the indices of
C−

Γ ? if there are no corresponding changes in rows (again, supposing size thresholds
specified in (15) remain satisfied for the previous Γ ?):

∑
i∈R+

Γ ?∩S +
Γ ?

{(1− ri)+(1− si)}+ ∑
j∈C−

Γ ?

c j ≥ 1, ∀ C̄−
Γ ? ⊆ C−

Γ ? : |C̄−
Γ ? | ≥ 3. (17)

We omit the associated proof for MINGOPSMh
γ because of its similarity to Theorem 1.

3.3 Algorithms to Find All GOPSMs of Sufficient Size

We now present two algorithms to find all GOPSMs in a given data matrix A with
respect to a prespecified significance α . They are complementary to one another, and
are based on the idea of iterating (and so fixing) all nontrivial values of γ columns
to include, iterating over rows h = 1, . . .m, and for each level of γ and h, solving
either MAXGOPSMh

γ using constraint (14) or MINGOPSMh
γ with constraint (15). For

each level of γ and h, each algorithm continues to recover all associated GOPSMs of
sufficient size, so long as they are unique and not contained in larger GOPSMs (i.e.,
they must be maximal). The termination condition is reached when all nontrivial lev-
els of columns and rows have been considered, and the list L of recovered GOPSMs
is returned.

Both Algorithms 1 and 2 solve a sequence of mixed-integer programs to find all
GOPSMs that adhere to the minimum size thresholds of (14). Notwithstanding that

Recovering All Generalized Order-Preserving Submatrices 15

Algorithm 1 Find All GOPSMs of Sufficient Size via MAXGOPSMh
γ

Input: Data matrix A = (ai j)m×n, significance level α , and precomputed set of ρα
γ values for all relevant

values of γ

1: Set L ← /0. {List of all recovered GOPSMs.}
2: for γ = n, . . . ,3 do {γ is (fixed) number of columns to include.}
3: for h = 1, . . . ,m do
4: Set CONTINUE← TRUE.
5: while CONTINUE do
6: Formulate MAXGOPSMh

γ with (14).
7: for all ` ∈L do
8: if (|X +

Γ ?
`
|+ |V +

Γ ?
`
|)≥ ρα

γ then

9: Add all
(|Y +

Γ ?
`
|

γ

)
inequalities of the form (16).

10: Solve resulting MIP to global optimality.
11: if MIP is infeasible then
12: CONTINUE← FALSE.
13: else
14: Add new solution Γ ? to L , i.e., L ←L ∪Γ ?.
15: return L .

they are integer optimization problems, each instance encountered in Step 10 solves
relatively quickly, typically in under a minute for the real data sets we later discuss.

Algorithm 2 Find All GOPSMs of Sufficient Size via MINGOPSMh
γ

Input: Data matrix A = (ai j)m×n, significance level α , and precomputed set of ρα
γ values for all relevant

values of γ

1: Set L ← /0. {List of all recovered GOPSMs.}
2: for γ = 0, . . . ,n−3 do {γ is (fixed) number of columns to delete.}
3: for h = 1, . . . ,m do
4: Set CONTINUE← TRUE.
5: while CONTINUE do
6: Formulate MINGOPSMh

γ with (15).
7: for all ` ∈L do
8: if (|R+

Γ ?
`
|+ |S +

Γ ?
`
|)≤ (2m−ρα

γ) then

9: Add all
(|C−

Γ ?
`
|

γ

)
inequalities of the form (17).

10: Solve resulting MIP to global optimality.
11: if MIP is infeasible then
12: CONTINUE← FALSE.
13: else
14: Add new solution Γ ? to L , i.e., L ←L ∪Γ ?.
15: return L .

4 Computational Experiments

Throughout our computational experiments, we considered the relative ordering of
the expression levels for each gene, that is, the ranks, rather than the absolute (ex-
act) measurements. This is consistent with [1] and [17], and alleviates any potential
data-scaling issues. We also make explicit that we adhere to the strict monotonically
increasing (decreasing) definition for the OPSM (GOPSM) problem of [1]. That is,

16 Andrew C. Trapp et al.

in the event that ai j = aik in row i for two columns j and k, no more than one entry
can appear in any OPSM (GOPSM) pattern.

4.1 Test Sets

We tested our approach on two real biological data sets from the literature. The first
is the Cooper promoter data set (m = 730× n = 16), which contains gene expres-
sion levels across 16 cell lines for a variety of promoter sequences, and was intro-
duced in [5]. This data set was previously used for testing of the KiWi algorithm to
find OPSMs (subspace clusters) in [10]. The second data set is yeast cell cycle data
(m = 612×n = 18) from [16]. Spellman et al. identified 799 genes that are cell-cycle
regulated over 18 points in time. We further reduced the feature space by removing
genes for which there was incomplete information, leaving 612 genes under the 18
time points.

4.2 Computational Strategy

We ran Algorithms 1 and 2 for varying stringent α levels to identify GOPSMs. In
particular, we allow α ∈

{
10−25,10−50, . . . ,10−150

}
. These levels, while conserva-

tive, are consistent with those prevalent the literature, and provide a buffer of safety
against being fooled by randomness. By allowing α to vary over the proposed range,
we can observe the behavior of the algorithm through iterative tightening of this size
threshold on recovered GOPSMs.

4.3 Computational Setup

CPLEX 12.5.1 was used to conduct the optimization [13] for the mixed-integer pro-
grams (Step 10 in Algorithm 1, and Step 10 in Algorithm 2). We ran the algorithm on
code on IBM x3650 server with 2 Intel Xeon E5-2690 CPUs each with 6 cores run-
ning at 2.90 GHZ and 128GB of RAM. Each individual optimization problem solved
in seconds.

5 Results and Discussion

We now present the computational results of Algorithms 1 and 2 on two biological
data sets from the literature.

5.1 Algorithmic Performance

The results on the 730× 16 Cooper promoter data set are presented in Table 1, and
the results on the 612× 18 Spellman yeast cell cycle data set are presented in Ta-
ble 2. In each table, we report the α level in the first column, the count of recovered

Recovering All Generalized Order-Preserving Submatrices 17

GOPSMs at this level for each fixed number of columns γ , and the computational run-
times, in seconds of CPU time, for both Algorithm 1 (penultimate column, solving the
MAXGOPSMh

γ formulation), and Algorithm 2 (final column, solving the MINGOPSMh
γ

formulation). We note that the column heading “GOPSMs with γ Columns” uses the
convention of γ in the MAXGOPSMh

γ definition, i.e., these are the number of retained
columns in the recovered GOPSM (the corresponding MINGOPSMh

γ convention for γ

can be obtained by subtracting the column heading from n).
Significance Number of GOPSMs with γ Columns Runtime (sec.)

α 3 4 5 6 7 8 9 . . . 16 Total MAXGOPSM MINGOPSM

10−25 77 458 1,320 985 278 26 0 3,144 5,706,000 907,258
10−50 16 153 210 57 0 0 0 436 329,320 190,654
10−75 2 38 42 1 0 0 0 83 111,310 142,841
10−100 0 4 6 0 0 0 0 10 84,504 127,784
10−125 0 1 1 0 0 0 0 2 72,660 119,368
10−150 0 0 0 0 0 0 0 0 67,464 113,110

Table 1 Performance of Algorithms 1 and 2 on (730×16) Cooper Promoter data set [5].

Significance Number of GOPSMs with γ Columns Runtime (sec.)

α 3 4 5 6 7 8 9 . . . 18 Total MAXGOPSM MINGOPSM

10−25 20 237 505 300 31 1 0 1,094 1,549,720 1,070,333
10−50 1 15 14 3 0 0 0 33 162,768 190,892
10−75 0 0 0 0 0 0 0 0 133,756 166,762
10−100 0 0 0 0 0 0 0 0 116,391 153,245
10−125 0 0 0 0 0 0 0 0 101,741 142,590
10−150 0 0 0 0 0 0 0 0 92,683 134,351

Table 2 Performance of Algorithms 1 and 2 on (612×18) Spellman Yeast data set [16].

γ 3 4 5 6 7 8

Cooper 496 304 165 70 33 16
Spellman 395 213 104 53 27 14

Table 3 Maximum number of rows (increasing + de-
creasing) in recovered GOPSMs with γ columns.

Table 3 shows the largest GOPSMs
recovered in the Cooper and Spell-
man data sets per level of γ . Figure 5
uses heatmaps [14] to depict two ex-
emplary GOPSMs recovered in each
of the Cooper (left) and Spellman
(right) data sets, with α = 10−25.
Each GOPSM has the increasing rows sorted to the top, immediately followed by
the decreasing rows. Each pair of depicted GOPSMs was chosen so that the pat-
terns are clearly visible by ensuring their column and row sets are disjoint, though
larger GOPSMs than these were recovered (as can be seen in Table 3). The top
Cooper GOPSM has 6 columns and 46 rows, while the bottom has 6 columns and 60
rows. The top Spellman GOPSM has 5 columns and 65 rows, while the bottom has 5
columns and 77 rows. Note that all GOPSMs meet or exceed the minimum threshold
requirement of 36 and 65 rows for the Cooper and Spellman data sets, respectively.

18 Andrew C. Trapp et al.

Fig. 5 Heatmaps of two GOPSMs recovered in each of the Cooper (left) and Spellman (right) data sets;
α = 10−25. Rows and columns are sorted to illustrate the increasing (and decreasing) nature of the patterns.

5.2 Algorithmic Discussion

The results displayed in Tables 1 and 2 reveal several trends. First, both Algorithms 1
and 2 recovered exactly the same number of GOPSMs for both data sets, and across

Recovering All Generalized Order-Preserving Submatrices 19

all levels of α . Further inspection of the two sets of GOPSMs confirmed they were
identical. Second, it becomes increasingly difficult to recover GOPSMs with more
stringent levels of α . This is an intuitive observation, and in fact, for the Spellman
data, it can be seen in Table 2 that there were no GOPSMs at the α = 10−75 level or
beyond. For the Cooper Promoter data, there were exactly two GOPSMs in the range
of 10−125 ≤ α ≤ 10−150, and none beyond.

Also of note is the general trend of GOPSM counts to rise for low levels of γ ,
peak around γ = 5, and then decrease as γ increases toward n. The reasons for the
initial increase are twofold. First, the ρα

γ thresholds for lower γ values are higher
than for larger γ values (see Tables 4 and 5). Second, constraints (16) and (17) ensure
GOPSMs at lower levels of γ are not subsets of GOPSMs at larger values of γ , hence
there is no double-counting. For both data sets, no GOPSMs were recovered with
γ ≥ 9; perhaps if the α threshold was lowered below α = 10−25, such GOPSMs
would be recovered.

Concerning algorithmic performance, it appears Algorithm 2, which solves MIN-
GOPSMh

γ , excels when there are relatively many GOPSMs to solve, as can be seen for
the lower levels of α . Alternatively, Algorithm 1 excels at the more stringent levels
of α , exhibiting shorter overall running times to essentially prove infeasibility on the
resulting mixed-integer programs found in Step 10 of Algorithm 1 and Step 10 of
Algorithm 2, respectively.

6 Conclusions

We explore extensions that generalize the OPSM problem originally proposed by [1],
and discuss two exact solution approaches to solve these generalizations. We demon-
strate how to handle the generalized OPSM (GOPSM) pattern [8] in a mathemati-
cal programming context, extending both maximization- [12, 17] and minimization-
based [11] OPSM optimization formulations to accommodate the GOPSM pattern.
We explicitly integrate the notion of statistical significance [see, e.g., 1] to require that
recovered OPSMs meet size thresholds for both the maximization- and minimization-
variant formulations of the GOPSM problem. To meet a specified significance level
α , there exists a corresponding minimum size (expressed via the number of rows
and columns) to which a GOPSM pattern must adhere. This provides for a margin
of safety against being fooled by randomness. Such restrictions are explicitly rep-
resented using constraints in our mathematical formulations, thereby ensuring, for
arbitrary significance level, that recovered GOPSMs are of sufficient size.

Our most important contribution is two new and complementary algorithms that
repeatedly solve the maximization- and minimization-variant formulations to global
optimality to recover, for any given significance level α , all GOPSMs that are of
sufficient size. In so doing, our algorithms exploit the properties of optimization to
ensure that all GOPSMs are recovered via an iterative process, forbidding recovered
GOPSMs as well as related ones that are strict subsets prior to resolving, until the
threshold for significance is violated.

We believe this contribution has important practical implications. In the context
of DNA microarray data analysis, there is value in recovering all such meaningful

20 Andrew C. Trapp et al.

GOPSMs – each may indicate distinct sets of genes that are closely coregulated across
many experiments, likely revealing unique and previously undiscovered pathways
or processes. The ability to apriori choose a desired level of strictness makes this
approach especially powerful.

The findings of our study are somewhat limited by the computational complexity
in the column dimension. That is, as the number of columns increases, each associ-
ated mixed-integer program in Step 10 of Algorithm 1 and Step 10 of Algorithm 2
become increasingly prohibitive to computationally solve to global optimality; a con-
tributing factor is the subset selection over the columns introduced by the cardinality
constraint. Moreover, this is compounded in that our algorithmic approaches solve
one or more integer programs for O(mn) column and row combinations.

In the future, it should be further explored why, at least for the two data sets ex-
plored, the number of GOPSMs seems to peak around γ = 5, and further why no
GOPSMs were recovered in either data set with γ ≥ 9. This may have to do with the
strength of the upper bound computed in (13). Another productive avenue for future
research may be to exploit the natural structure of the mixed-integer programs. For
both the MAXGOPSMh

γ and the MINGOPSMh
γ formulations, solving over row variables

(continuous) is easy once column variables (binary) are fixed, which suggests a de-
composition approach such as Benders. There may be potential for such an approach
to solve problems with larger column dimensions.

7 Appendix: Additional Algorithmic and Computational Details

Tables 4 and 5 below identify, for a given column level γ , the corresponding minimum
number of rows ρα

γ necessary for a GOPSM to meet the statistical significance thresh-
old for level α as motivated in [1]. These values are computed via (13), and are used
in the construction of constraints (14) and (15). We detail these right-hand side values
for both the Cooper promoter (Table 4) and the Spellman yeast (Table 5) data sets.

Significance GOPSMs with γ Columns

α 3 4 5 6 7 8 9 10 11 12 13 14 15 16

10−25 390 161 70 36 21 14 11 8 7 6 5 4 4 3
10−50 448 205 98 54 34 24 18 14 11 10 8 7 6 5
10−75 493 242 122 70 45 32 24 19 16 13 11 10 9 8
10−100 530 274 145 85 56 40 31 25 20 17 15 13 11 10
10−125 562 303 165 100 67 48 37 30 24 21 18 16 14 12
10−150 591 330 185 114 77 56 43 35 29 24 21 18 16 14

Table 4 Minimum number of rows required for statistical significance level α on (730× 16) Cooper
Promoter data set [5].

References

1. Ben-Dor, A., Chor, B., Karp, R., Yakhini, Z.: Discovering local structure in gene
expression data: The order-preserving submatrix problem. Journal of Computa-
tional Biology 10(3-4), 373–384 (2003)

Recovering All Generalized Order-Preserving Submatrices 21

Significance GOPSMs with γ Columns

α 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

10−25 339 144 65 34 21 14 11 8 7 6 5 4 4 3 3 3
10−50 392 185 91 51 33 23 17 14 11 10 8 7 6 6 5 5
10−75 432 219 114 67 44 31 24 19 16 13 11 10 9 8 7 6
10−100 466 249 136 82 55 40 30 24 20 17 15 13 11 10 9 8
10−125 495 276 155 96 65 47 37 29 24 21 18 16 14 12 11 10
10−150 520 301 174 109 75 55 43 34 28 24 21 18 16 14 13 12

Table 5 Minimum number of rows required for statistical significance level α on (612× 18) Cooper
Promoter data set [16].

2. Busygin, S., Prokopyev, O., Pardalos, P.M.: Biclustering in data mining. Com-
puters & Operations Research 35(9), 2964–2987 (2008)

3. Causton, H.C., Ren, B., Koh, S.S., Harbison, C.T., Kanin, E., Jennings, E.G.,
Lee, T.I., True, H.L., Lander, E.S., Young, R.A.: Remodeling of yeast genome
expression in response to environmental changes. Molecular Biology of the Cell
12(2), 323–337 (2001)

4. Chui, C.K., Kao, B., Yip, K.Y., Lee, S.D.: Mining order-preserving submatrices
from data with repeated measurements. In: The 8th IEEE International Confer-
ence on Data Mining (ICDM), pp. 133–142. IEEE (2008)

5. Cooper, S.J., Trinklein, N.D., Anton, E.D., Nguyen, L., Myers, R.M.: Compre-
hensive analysis of transcriptional promoter structure and function in 1% of the
human genome. Genome Research 16(1), 1–10 (2006)

6. Fang, Q., Ng, W., Feng, J., Li, Y.: Mining bucket order-preserving submatrices in
gene expression data. IEEE Transactions on Knowledge and Data Engineering
24(12), 2218–2231 (2012)

7. Fang, Q., Ng, W., Feng, J., Li, Y.: Mining order-preserving submatrices from
probabilistic matrices. ACM Transactions on Database Systems 39(1), 1–43
(2014)

8. Gao, B.J., Griffith, O.L., Ester, M., Jones, S.J.: Discovering significant OPSM
subspace clusters in massive gene expression data. In: Proceedings of the 12th

ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 922–928. ACM New York, NY, Philadelphia, PA (2006)

9. Gao, B.J., Griffith, O.L., Ester, M., Xiong, H., Zhao, Q., Jones, S.J.: On the deep
order-preserving submatrix problem: A best effort approach. IEEE Transactions
on Knowledge and Data Engineering 24(2), 309–325 (2012)

10. Griffith, O.L., Gao, B.J., Bilenky, M., Prychyna, Y., Ester, M., Jones, S.J.: KiWi:
A scalable subspace clustering algorithm for gene expression analysis. In: Pro-
ceedings of the 3rd International Conference on Bioinformatics and Biomedical
Engineering (iCBBE), pp. 1–9. IEEE (2009)

11. Hochbaum, D.S., Levin, A.: Approximation algorithms for a minimization vari-
ant of the order-preserving submatrices and for biclustering problems. ACM
Transactions on Algorithms 9(2), 1–12 (2013)

12. Humrich, J., Gartner, T., Garriga, G.C.: A fixed parameter tractable integer pro-
gram for finding the maximum order preserving submatrix. In: The 11th Interna-

22 Andrew C. Trapp et al.

tional Conference on Data Mining (ICDM), pp. 1098–1103. IEEE (2011)
13. IBM: IBM ILOG CPLEX 12.5.1 User’s Manual. IBM ILOG CPLEX Division,

Incline Village, NV (2015)
14. King, J.Y., Ferrara, R., Tabibiazar, R., Spin, J.M., Chen, M.M., Kuchinsky, A.,

Vailaya, A., Kincaid, R., Tsalenko, A., Deng, D.X.F., et al.: Pathway analysis of
coronary atherosclerosis. Physiological Genomics 23(1), 103–118 (2005)

15. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analy-
sis: A survey. IEEE Transactions on Computational Biology and Bioinformatics
1(1), 24–45 (2004)

16. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B.,
Brown, P.O., Botstein, D., Futcher, B.: Comprehensive identification of cell
cycle–regulated genes of the yeast saccharomyces cerevisiae by microarray hy-
bridization. Molecular Biology of the Cell 9(12), 3273–3297 (1998)

17. Trapp, A.C., Prokopyev, O.A.: Solving the order-preserving submatrix problem
via integer programming. INFORMS Journal on Computing 22(3), 387–400
(2010)

18. Yip, K.Y., Kao, B., Zhu, X., Chui, C.K., Lee, S.D., Cheung, D.W.: Mining order-
preserving submatrices from data with repeated measurements. IEEE Transac-
tions on Knowledge and Data Engineering 25(7), 1587–1600 (2013)

19. Zhang, M., Wang, W., Liu, J.: Mining approximate order preserving clusters in
the presence of noise. In: IEEE 24th International Conference on Data Engineer-
ing (ICDE), pp. 160–168. IEEE (2008)

